JPH0816275B2 - Method for separating acid and alkali from aqueous salt solution - Google Patents

Method for separating acid and alkali from aqueous salt solution

Info

Publication number
JPH0816275B2
JPH0816275B2 JP61189537A JP18953786A JPH0816275B2 JP H0816275 B2 JPH0816275 B2 JP H0816275B2 JP 61189537 A JP61189537 A JP 61189537A JP 18953786 A JP18953786 A JP 18953786A JP H0816275 B2 JPH0816275 B2 JP H0816275B2
Authority
JP
Japan
Prior art keywords
exchange membrane
anion exchange
fluorine
chamber
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61189537A
Other languages
Japanese (ja)
Other versions
JPS6347386A (en
Inventor
隆 毛利
健市 福田
康博 庫内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP61189537A priority Critical patent/JPH0816275B2/en
Priority to US06/922,727 priority patent/US4707234A/en
Priority to DE8686308357T priority patent/DE3677463D1/en
Priority to EP86308357A priority patent/EP0221751B1/en
Publication of JPS6347386A publication Critical patent/JPS6347386A/en
Publication of JPH0816275B2 publication Critical patent/JPH0816275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/366

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、イオン交換膜電解法により、塩の水溶液か
ら、酸,アルカリを分離する方法に関するものであり、
さらに詳しくは、特殊なフッ素系陰イオン交換膜と、フ
ッ素系陽イオン交換膜を隔膜として用いる3室電解槽を
使用し、陽極側に陽イオン交換膜を配し、該両膜に挟ま
れた中間室に塩の水溶液を供給して、陽極室で酸を生成
し、陰極室でアルカリを生成せしめるイオン交換膜電解
法により、塩の水溶液から、酸,アルカリを分離する方
法に関するものである。
TECHNICAL FIELD The present invention relates to a method for separating an acid and an alkali from an aqueous salt solution by an ion exchange membrane electrolysis method,
More specifically, using a special fluorine-based anion exchange membrane and a three-chamber electrolytic cell using a fluorine-based cation exchange membrane as a diaphragm, a cation exchange membrane was placed on the anode side and sandwiched between both membranes. The present invention relates to a method for separating an acid and an alkali from an aqueous salt solution by an ion exchange membrane electrolysis method in which an aqueous salt solution is supplied to an intermediate chamber to generate an acid in the anode chamber and an alkali is generated in the cathode chamber.

本発明の方法は、各種の利用分野が考えられるが、特
に廃液処理分野に於いて、極めて有効な方法を提示する
ものである。
Although the method of the present invention can be used in various fields, it presents an extremely effective method, particularly in the field of waste liquid treatment.

化学工場,メッキ工場,半導体工場など、多種,多様
の工場において中和工程は無数に有り、そこから排出さ
れる塩は、種類,量とも莫大なものである。これらの塩
を無処理のまま、廃棄することは、環境上の問題があ
る。特に、原子力関連設備の様に、放射性物質等の有害
物質を含む塩廃液の処理に於いては、設備敷地内で完全
に処理を行う必要があり、廃液中の放射性物質などの有
害物質を濃縮すると共に塩廃液から、酸,アルカリを分
離回収して再利用することの可能な処理システムの開発
が強く望まれている。
There are innumerable neutralization processes in various types of factories such as chemical factories, plating factories, and semiconductor factories, and the amount of salt discharged from them is huge. Discarding these salts untreated is an environmental problem. In particular, in the treatment of salt waste liquid containing harmful substances such as radioactive substances, such as nuclear power related facilities, it is necessary to completely treat it within the facility premises, and the harmful substances such as radioactive substances in the waste liquid are concentrated. At the same time, it is strongly desired to develop a treatment system capable of separating and recovering acid and alkali from the salt waste liquid and reusing them.

[従来技術] 塩の酸,アルカリの分離は、通常の化学反応では不可
能であり、イオン交換樹脂又はイオン交換膜を利用する
必要がある。イオン交換膜電解法は、イオン交換樹脂法
に比較して、原理上、大量の塩を、簡単な操作により、
効率よく、酸,アルカリに分離可能なプロセスとして注
目を集めている。例えば、近年、火力発電所の排煙中の
亜硫酸ガス(SO2)の除去方法は、カセイソーダを用い
てSO2ガスを吸収する湿式法が一般的であるが、このプ
ロセスに於いて生成するボウ硝(Na2SO4)をイオン交換
膜電解により、カセイソーダと硫酸に分離回収する方法
が提案されている。このプロセスは、ボウ硝の水溶液を
供給する中間室と、陰極室の間にフッ素系陽イオン交換
膜(例えば、Dupont社のNafion膜)を使用し、中間室と
陽極室の間には、微孔性の隔膜、もしくは、微孔性の隔
膜及び炭化水素系の陰イオン交換膜を用い、陰極室でカ
セイソーダ、陽極室に硫酸を生成するプロセスとなって
いる。このプロセスは、塩の酸,アルカリの分離方法と
して、有効な方法ではあるが幾つかの問題点を含んでい
る。
[Prior Art] Separation of salt from acid and alkali is impossible by a normal chemical reaction, and it is necessary to use an ion exchange resin or an ion exchange membrane. Compared to the ion exchange resin method, the ion exchange membrane electrolysis method, in principle, uses a large amount of salt with a simple operation.
It is attracting attention as a process that can be efficiently separated into acid and alkali. For example, in recent years, as a method for removing sulfur dioxide (SO 2 ) in the flue gas of a thermal power plant, a wet method in which SO 2 gas is absorbed using caustic soda is generally used. A method of separating and recovering sodium (Na 2 SO 4 ) into caustic soda and sulfuric acid by ion exchange membrane electrolysis has been proposed. This process uses a fluorinated cation exchange membrane (eg, Dupont's Nafion membrane) between the cathode chamber and the intermediate chamber that supplies the aqueous solution of Glauber's salt. It is a process of producing caustic soda in the cathode chamber and sulfuric acid in the anode chamber using a porous diaphragm, or a microporous diaphragm and a hydrocarbon-based anion exchange membrane. Although this process is an effective method for separating salt acid and alkali, it has some problems.

即ち、中間室と陽極室の間に、微多孔性の隔膜を用い
る場合は、陽極室にて生成される硫酸中への硫酸ソーダ
の混入をさけることができず、又、微多孔性隔膜と炭化
水素系の陰イオン交換膜を組み合わせた場合も、炭化水
素系の陰イオン交換膜の耐久性(耐熱,耐酸,耐酸化
性)が問題となる。この炭化水素系の陰イオン交換膜の
耐久性は、60℃以上の高温電解、或いは、硫酸よりもよ
り酸化力の強い酸、例えば、硝酸,塩酸,フッ酸,クロ
ム酸等々の酸が、分離される系では一層深刻な問題とな
り、イオン交換膜電解法により、塩の酸,アルカリの分
離プロセスの経済性を消失させることになる。
That is, when a microporous diaphragm is used between the intermediate chamber and the anode chamber, it is not possible to prevent the mixture of sodium sulfate into the sulfuric acid generated in the anode chamber, and the microporous diaphragm is used. Even when a hydrocarbon-based anion exchange membrane is combined, the durability of the hydrocarbon-based anion exchange membrane (heat resistance, acid resistance, oxidation resistance) becomes a problem. The durability of this hydrocarbon-based anion exchange membrane is that high-temperature electrolysis at 60 ° C or higher, or acids that have a stronger oxidizing power than sulfuric acid, such as nitric acid, hydrochloric acid, hydrofluoric acid, and chromic acid, are separated. However, the ion exchange membrane electrolysis method loses the economical efficiency of the salt / acid separation process.

例えば、特開昭58−37596号には、原子力関連施設に
おいて生成する硝酸塩含有放射性廃液の濃縮処理方法に
関し、イオン交換膜電解法を用いたプロセスが提案され
ている。
For example, Japanese Patent Application Laid-Open No. 58-37596 proposes a process using an ion exchange membrane electrolysis method for a method for concentrating a nitrate-containing radioactive waste liquid produced in nuclear facilities.

このプロセスも、中間室に硝酸塩溶液を供給し、陽極
室に硝酸,陰極室に水酸化アルカリ又は水酸化アンモニ
ウムを生成するプロセスであるが、中間室と陽極室の間
に炭化水素系の陰イオン交換膜、中間室と陽イオン交換
膜の間にフッ素系陽イオン交換膜(例えば、Dupont社の
Nafion膜)を配置した3室型の電解槽を用いている。
This process is also a process in which a nitrate solution is supplied to the intermediate chamber and nitric acid is generated in the anode chamber and alkali hydroxide or ammonium hydroxide is generated in the cathode chamber. An exchange membrane, a fluorinated cation exchange membrane between the intermediate chamber and the cation exchange membrane (for example, Dupont
A three-chamber type electrolytic cell in which a Nafion membrane) is arranged is used.

このプロセスに於いては、経済的な電解方法として、
陽極室,陰極室の濃度が0.5M/以下とすることが述べ
られており、この理由は、経済的な電流効率の維持のた
めであると述べられているが、炭化水素系の陰イオン交
換膜自体の耐久性にも問題があると推察される。
In this process, as an economical electrolysis method,
It is stated that the concentration in the anode chamber and cathode chamber should be 0.5 M / or less. The reason for this is to maintain economical current efficiency. It is speculated that the durability of the film itself is also problematic.

電解効率も含めたプロセス全体の効率を考えた場合、
塩の酸,アルカリの分離方法に於いては、出来るだけ高
濃度の塩を、高濃度の酸,アルカリに分離回収すること
が望ましいことは当然であるが、高温,高濃度の硝酸溶
液中での炭化水素系の陰イオン交換膜の耐久性は決して
満足できるものではない。
Considering the efficiency of the whole process including the electrolysis efficiency,
In the method of separating salts from acids and alkalis, it is natural that it is desirable to separate and recover as much salt as possible into high concentrations of acid and alkali, but in a high temperature, high concentration nitric acid solution. The durability of the hydrocarbon-based anion exchange membrane is not satisfactory.

高温,高濃度の酸溶液中では、炭化水素系の陰イオン
交換膜は、1ヶ月以内の短期間で膜の電気抵抗の著しい
増大をきたし、電解電圧を上昇させることになる。
In a high-temperature, high-concentration acid solution, a hydrocarbon-based anion exchange membrane causes a significant increase in the electric resistance of the membrane within a short period of less than one month, resulting in an increase in electrolysis voltage.

従って、高温,高濃度の酸溶液中で、従来の炭化水素
系の陰イオン交換膜を用いて、この様な、プロセスを実
施しようとすれば、陰イオン交換膜の頻繁な取換えを余
儀なくされ結果的にプロセス自体の経済性を乏しいもの
とすることになる。
Therefore, if an attempt is made to carry out such a process using a conventional hydrocarbon-based anion exchange membrane in a high temperature, high concentration acid solution, frequent replacement of the anion exchange membrane is unavoidable. As a result, the economic efficiency of the process itself becomes poor.

さらに言及すれば、塩が塩化物塩の場合は、陽極で
は、塩素ガスを発生するが、塩素ガスの様な強酸化性ガ
スに対して炭化水素系の陰イオン交換膜は全くといって
良い程、耐久性を示さず、2週間程の短期間で、膜が崩
壊することもある。従って、イオン交換膜電解法による
塩化物塩からの酸,アルカリの分離方法は、事実上、実
現しないと考えられる。
Furthermore, when the salt is a chloride salt, chlorine gas is generated at the anode, but a hydrocarbon-based anion exchange membrane can be said to be completely effective against a strong oxidizing gas such as chlorine gas. The film does not exhibit such durability, and the film may collapse in a short period of about 2 weeks. Therefore, it is considered that the method of separating the acid and the alkali from the chloride salt by the ion exchange membrane electrolysis method cannot be practically realized.

以上述べた様に、イオン交換膜電解法による塩の水溶
液からの酸,アルカリの分離方法は、公知の技術であ
り、かつ、工業プロセスとして実用化の要望の極めて高
いものであるにもかかわらず、プロセス上の制約条件
や、解決を必要とする多くの問題点のため、未だ満足す
べき工業プロセスとして確立されていない現状にある。
As described above, the method for separating an acid and an alkali from an aqueous solution of a salt by the ion exchange membrane electrolysis method is a known technique and is extremely demanded for practical use as an industrial process. However, due to process constraints and many problems that need to be solved, it has not yet been established as a satisfactory industrial process.

[本発明が解決しようとする問題点] 本発明の目的は、従来のイオン交換膜電解法の塩の
酸,アルカリの分離方法の欠点であった、塩の種類,酸
濃度,電解温度等の制約条件を取り除き、塩の水溶液を
効率よく、高濃度の酸,アルカリに分離,回収する、イ
オン交換膜電解法を提供するものである。
[Problems to be Solved by the Present Invention] An object of the present invention is to solve the problems such as salt type, acid concentration, electrolysis temperature, etc. The present invention provides an ion exchange membrane electrolysis method that removes constraint conditions and efficiently separates and recovers an aqueous salt solution into high-concentration acids and alkalis.

[問題点を解決するための手段] 本発明者等は、イオン交換膜電解法による塩の酸,ア
ルカリの分離方法に関し、特に従来問題とされていた陰
イオン交換膜に関し、鋭意検討を重ねた結果、特殊な構
造を有すフッ素系陰イオン交換膜が、極めて優れた特性
を示すことを見いだしさらにこの特殊な構造を有すフッ
素系陰イオン交換膜とフッ素系陽イオン交換膜を用いる
電解操作により、多種,多様な塩の水溶液から効率良
く、高濃度の酸,アルカリを分離回収し得ることを見い
だし、本発明を完成するに到ったものである。本発明に
用いる特殊な構造を有すフッ素系陰イオン交換膜とは、
下記一般式 [ただし、XはFまたはCF3,lは0または1〜5の整数,
mは0または1,nは1〜5の整数,p,qは正の数であって、
その比は2〜16,R1,R2,R3は低級アルキル基(ただし、R
1とR2が一体となってテトラメチレン鎖,ペンタメチレ
ン鎖を形成してもよい。) R4は水素原子または低級アルキル基(ただし、R3とR4
が一体となってエチレン鎖,トリメチレン鎖を形成して
もよい。) Z =ハロゲン陰イオン,aは2〜10の整数] で表わされる繰り返し単位の共重合体よりなるフッ素系
陰イオン交換膜を意味している。
[Means for Solving the Problems] The inventors of the present invention have found that the salt acid
Regarding the method of separating Lucari, the shadow
As a result of extensive studies on the ion exchange membrane, a special structure
Fluorine-based anion exchange membrane, which has a structure, has extremely excellent characteristics
We have found that a foot with this special structure
Use an anion exchange membrane and a fluorine cation exchange membrane
Efficient from aqueous solutions of various salts by electrolysis
And found that high concentrations of acid and alkali can be separated and recovered.
However, the present invention has been completed. In the present invention
What is a fluorine-based anion exchange membrane with a special structure used?
The following general formula[However, X is F or CF3, l is 0 or an integer of 1 to 5,
m is 0 or 1, n is an integer from 1 to 5, p and q are positive numbers,
The ratio is 2 ~ 16, R1, R2, R3Is a lower alkyl group (provided that R
1And R2Integrated into a tetramethylene chain, pentamethyle
Chains may be formed. ) RFourIs a hydrogen atom or a lower alkyl group (provided that R3And RFour
Unite to form an ethylene chain and a trimethylene chain
Good. ) Z = Halogen anion, a is an integer of 2 to 10]
It means an anion exchange membrane.

これらのフッ素系陰イオン交換膜の陰イオン交換基と
しては、以下のような構造式として例示することができ
る。
The anion-exchange groups of these fluorine-based anion-exchange membranes can be exemplified by the following structural formulas.

本発明に用いる特殊な構造を有すフッ素系陰イオン交
換膜の交換容量は、0.16meq/g・乾燥樹脂〜3.0meq/g・
乾燥樹脂の範囲のものを用いることができるが、好まし
くは、0.5meq/g・乾燥樹脂〜2.8meq/g・乾燥樹脂の範囲
のものが用いられる。
The exchange capacity of the fluorine-based anion exchange membrane having a special structure used in the present invention is 0.16 meq / g · dry resin to 3.0 meq / g ·
A dry resin in the range of 0.5 meq / g.dry resin to 2.8 meq / g.dry resin is preferably used.

交換容量が上記範囲未満の場合は、膜の抵抗が高く、
電解電圧が上昇し、電力コストの上昇をまねき、交換容
量が上記範囲を越える場合は、膜の膨潤,崩壊等の問題
が生じ、安定した電解運転を妨げる原因となる。
If the exchange capacity is less than the above range, the resistance of the membrane is high,
If the electrolysis voltage rises and the electric power cost rises, and the exchange capacity exceeds the above range, problems such as swelling and collapsing of the membrane occur, which hinders stable electrolysis operation.

本発明に用いるフッ素系陰イオン交換膜の膜厚は通常
40μ〜500μの範囲で使用できるが、好ましくは100μ〜
300μの範囲のものが用いられる。さらに、本発明に用
いるフッ素系陰イオン交換膜は、膜の強度を上昇させる
ために、補強材を導入することもできる。
The film thickness of the fluorine-based anion exchange membrane used in the present invention is usually
It can be used in the range of 40μ ~ 500μ, but preferably 100μ ~
Those in the range of 300μ are used. Further, in the fluorine-based anion exchange membrane used in the present invention, a reinforcing material can be introduced in order to increase the strength of the membrane.

本発明に用いるフッ素系陰イオン交換膜は、交換基が
均一に存在する陰イオン交換膜を用いることも出来る
が、一方の面と他方の面の交換容量が異なる陰イオン交
換膜を用いることもできる。
The fluorine-based anion exchange membrane used in the present invention may be an anion exchange membrane having exchange groups uniformly present, or an anion exchange membrane having different exchange capacities on one surface and the other surface may be used. it can.

この様な陰イオン交換膜は、陰イオン交換膜中のH+
オンの透過を抑制するために効果がある。陰イオン交換
膜中のH+イオンの透過の抑制は、以下に説明する陽イオ
ンに、本発明の塩の水溶液からの酸,アルカリの分離方
法における電流効率の増大をもたらす。
Such an anion exchange membrane is effective in suppressing the permeation of H + ions in the anion exchange membrane. Suppression of H + ion permeation through the anion exchange membrane causes the cation described below to increase the current efficiency in the method for separating acid and alkali from the aqueous solution of the salt of the present invention.

即ち、本発明のイオン交換膜電解法においては、電解
槽は通常、陽極室,中間室,陰極室の3室よりなり、陰
極室と中間室の間に陰イオン交換膜を配置し、中間室と
陰極室の間に陽イオン交換膜を配置して、陽極室に酸、
陰極室にアルカリ水溶液を生成する電解プロセスとなっ
ている。
That is, in the ion exchange membrane electrolysis method of the present invention, the electrolytic cell is usually composed of three chambers, an anode chamber, an intermediate chamber and a cathode chamber, and an anion exchange membrane is arranged between the cathode chamber and the intermediate chamber. And a cation exchange membrane between the cathode chamber and the acid chamber,
It is an electrolysis process that produces an alkaline aqueous solution in the cathode chamber.

一般に陰イオン交換膜は、膜に接する液中の酸濃度、
即ち、本発明のイオン交換膜電解法においては、陽極室
中の酸濃度が高くなればなる程、陽極室から中間室へH+
イオンが通過し易くなり、従って、この様な電解プロセ
スにおいては、陰イオン交換膜中の陰イオンの輪率が低
下し、結果的に電流効率が低下する様になる。
Generally, the anion exchange membrane has an acid concentration in the liquid in contact with the membrane,
That is, in the ion exchange membrane electrolysis method of the present invention, the higher the acid concentration in the anode chamber, the more H + from the anode chamber to the intermediate chamber.
Ions are allowed to easily pass through, and therefore, in such an electrolysis process, the anion exchange ratio of the anions in the anion exchange membrane is reduced, resulting in a reduction in current efficiency.

ところが、前述した一方の面と他方の面の交換容量が
異なるフッ素系陰イオン交換膜を用いることにより、H+
イオンの透過を抑制し、電流効率の増大をもたらす。
However, by using the fluorine-based anion exchange membranes having different exchange capacities on the one surface and the other surface as described above, H +
It suppresses the permeation of ions, resulting in increased current efficiency.

一方の面と他方の面の異なる陰イオン交換膜とは例え
ば、一方の面と他方の面の交換容量の比が1.1〜6.0の範
囲、好ましくは1.3〜4.0の範囲で用いられる。
The anion exchange membrane having different one surface and the other surface is used, for example, in a ratio of the exchange capacities of the one surface and the other surface of 1.1 to 6.0, preferably 1.3 to 4.0.

交換容量の比が上記範囲未満の場合は、H+イオン透過
の抑制効果が不充分であり、交換容量の比が上記範囲を
越える場合は、膜の電気抵抗が増大する傾向がある。
When the exchange capacity ratio is less than the above range, the effect of suppressing H + ion permeation is insufficient, and when the exchange capacity ratio exceeds the above range, the electric resistance of the membrane tends to increase.

なお、一方の面と他方の面の交換容量が異なるフッ素
系陰イオン交換膜の向きは、強酸側、即ち、本発明のイ
オン交換膜電解法においては、陽極室側に交換容量の小
さい面を向け、中間室側に交換容量の大きい面を向ける
ことが好ましく、大巾な電流効率の増大が期待できる。
Incidentally, the orientation of the fluorine-based anion exchange membranes having different exchange capacities on one surface and the other surface is a strong acid side, that is, in the ion exchange membrane electrolysis method of the present invention, a surface having a small exchange capacity is placed on the anode chamber side. However, it is preferable to direct the surface having a large exchange capacity toward the intermediate chamber side, and a large increase in current efficiency can be expected.

以上の様な、特殊な構造を有すフッ素系陰イオン交換
膜は、優れた耐熱性,耐酸性および耐酸化性を示すもの
であり、さらに、この特殊な構造を有すフツ素系陰イオ
ン交換膜と、後述するフッ素系陽イオン交換膜を用いる
電解操作により、多種,多様な塩の水溶液から効率良く
高濃度の酸,アルカリを分離する方法が可能となる。
The above-mentioned fluorine-based anion exchange membrane with a special structure exhibits excellent heat resistance, acid resistance, and oxidation resistance. Furthermore, the fluorine-based anion exchange membrane with this special structure By an electrolysis operation using an exchange membrane and a fluorinated cation exchange membrane which will be described later, it becomes possible to efficiently separate high-concentration acids and alkalis from aqueous solutions of various salts.

本発明に用いるフッ素系陽イオン交換膜は従来公知の
陽イオン交換膜(例えば、Dupont社のNafion膜)を用い
ることができる。
As the fluorine-based cation exchange membrane used in the present invention, a conventionally known cation exchange membrane (for example, Nafion membrane manufactured by Dupont) can be used.

本発明に用いる電解槽の陽極及び陰極としては、従来
公知の電極材料を用いることができるが、目的とする電
解プロセスの電極反応に対し、安価で低過電圧を示し、
かつ耐食性の優れた電極材料が適宜選択される。
As the anode and cathode of the electrolytic cell used in the present invention, a conventionally known electrode material can be used, but with respect to the electrode reaction in the intended electrolytic process, it is inexpensive and exhibits low overvoltage,
Moreover, an electrode material having excellent corrosion resistance is appropriately selected.

この様な電極材料は、例えば陽極としては、Ti,Ta,Z
n,Nd等の耐食性基材の表面に、Pt,Ir,Rh等の白金族金属
及び/又は白金族金属の酸化物を被覆した陽極が用いら
れ、陰極としては、Fe,Ni,Cu等の金属、又はこれらの合
金や、これらの表面に低過電圧を示す物質(例えば、ラ
ネーニッケル等)を被覆した陰極を用いることができ
る。
Such an electrode material is, for example, Ti, Ta, Z for the anode.
An anode coated with a platinum group metal such as Pt, Ir, or Rh and / or an oxide of a platinum group metal is used on the surface of a corrosion-resistant substrate such as n, Nd, etc., and a cathode such as Fe, Ni, Cu, etc. is used. It is possible to use a metal, an alloy thereof, or a cathode having a surface thereof coated with a substance exhibiting a low overvoltage (for example, Raney nickel).

本発明のイオン交換膜電解法においては、前述した様
に、原理的には3室型電解槽で構成することができるた
め、さらに、大量の塩溶液を処理する場合は、積層セル
を用い効率の良い電解方法を実施することも可能であ
る。
In the ion-exchange membrane electrolysis method of the present invention, as described above, in principle, a three-chamber type electrolytic cell can be used. Therefore, when a large amount of salt solution is processed, a stacked cell is used. It is also possible to implement a good electrolysis method.

中間室には塩の水溶液を供給するが、この濃度は、例
えば廃液処理においては、前工程の塩の濃縮度合に左右
されるが、通常0.1mol/〜飽和濃度の範囲で供給する
ことができる。
Although an aqueous solution of salt is supplied to the intermediate chamber, this concentration is usually 0.1 mol / to a saturated concentration range, for example, in waste liquid treatment, although it depends on the degree of concentration of salt in the previous step. .

さらに、陽極室及び陰極室の酸,アルカリの濃度は、
本発明に用いる陰イオン交換膜の優れた耐久性により、
0.6mol/以上の濃度まので上昇する事が可能で有り、
通常1mol/以上の高濃度領域とすることができる。
Furthermore, the concentrations of acid and alkali in the anode chamber and cathode chamber are
Due to the excellent durability of the anion exchange membrane used in the present invention,
It is possible to increase the concentration up to 0.6mol /,
Usually, it can be set to a high concentration region of 1 mol / or more.

さらに、本発明のイオン交換膜電解法においては、電
解温度は室温から100℃迄可能であり、電流密度は、通
常、5A/dm2から50A/dm2の範囲で実施することができ
る。
Further, in the ion exchange membrane electrolysis method of the present invention, the electrolysis temperature can be from room temperature to 100 ° C., and the current density can be usually carried out in the range of 5 A / dm 2 to 50 A / dm 2 .

[本発明の効果] 以上述べた様に、特殊な構造を有すフッ素系陰イオン
交換膜とフッ素系陽イオン交換膜を用いたイオン交換膜
電解法により、多種,多様な塩の水溶液から、効率よく
高濃度の酸,アルカリを分離することが可能となる。
[Effects of the Present Invention] As described above, by the ion exchange membrane electrolysis method using a fluorine-based anion exchange membrane and a fluorine-based cation exchange membrane having a special structure, from various aqueous solutions of various salts, It is possible to efficiently separate high-concentration acids and alkalis.

本発明の方法は、各種の利用分野が考えられるが、特
に廃液処理分野において極めて工業的価値の高いもので
ある。
Although the method of the present invention can be used in various fields, it has extremely high industrial value particularly in the field of waste liquid treatment.

[実施例] 以下、実施例を述べるが本発明は、これに限定される
ものではない。
[Examples] Examples will be described below, but the present invention is not limited thereto.

実施例1,比較例1 イオン交換膜電解法により、硫酸ナトリウム水溶液か
ら、硝酸とカセイソーダを生成する電解プロセスを実施
した。
Example 1, Comparative Example 1 An electrolytic process of producing nitric acid and caustic soda from an aqueous sodium sulfate solution was carried out by an ion exchange membrane electrolysis method.

陰イオン交換膜としては、下記の構造 を示すフッ素系陰イオン交換膜(交換容量0.91meq/g乾
燥樹脂,膜厚175μ)を用い、陽イオン交換膜としてはD
upont社のNafion膜を使用した。
The anion exchange membrane has the following structure Fluorine-based anion exchange membrane (exchange capacity 0.91meq / g dry resin, film thickness 175μ) is used, and as a cation exchange membrane, D
Upont's Nafion membrane was used.

この電解プロセスを図1に示す。電解槽は、陽極室1,
中間室3,陰極室2よりなる3室型電解槽である。
This electrolysis process is shown in FIG. The electrolytic cell is the anode chamber 1,
It is a three-chamber type electrolytic cell consisting of an intermediate chamber 3 and a cathode chamber 2.

陽極室1と中間室3の間は、陰イオン交換膜16で仕切
られ、中間室3と陰極室2の間は、陽イオン交換膜17で
仕切られている。
The anode chamber 1 and the intermediate chamber 3 are partitioned by an anion exchange membrane 16, and the intermediate chamber 3 and the cathode chamber 2 are partitioned by a cation exchange membrane 17.

陽極室液中では、陽極反応である酸素ガス発生反応に
より生成されるH+イオンと陰イオン交換膜を通過してく
る▲NO ▼イオンにより硝酸が生成されるが水の供給
ライン5より水を供給することにより陽極液中の硝酸濃
度を一定に維持することができる。
The anode chamber liquid, coming through the H + ions and an anion exchange membrane produced by the oxygen gas generation reaction which is an anode reaction ▲ NO - 3 ▼ Although nitrate is produced by ion over the supply line 5 of the water By supplying water, the nitric acid concentration in the anolyte can be kept constant.

同様に陰極液中では、陰極反応である水素ガス発生反
応により生成されるOH-イオンと陽イオン交換膜を通過
してくるNa+イオンによりカセイソーダが生成される
が、水の供給ライン10より水を供給することにより陰極
液中のカセイソーダ濃度を一定に維持することができ
る。
Similarly, in the catholyte, caustic soda is produced by OH ions generated by the hydrogen gas generation reaction, which is a cathodic reaction, and Na + ions that pass through the cation exchange membrane. By supplying the solution, the concentration of caustic soda in the catholyte can be maintained constant.

陽極として、TiのExpanded Metal基材上に貴金属酸化
物を被覆した電極を使用し、陰極としてNiのExpanded M
etalを用いた。電極面積は各々0.12dm2、陽,陰極間距
離は、2cmとした。電流密度30A/dm2,電解温度70℃とし
て中間室に5mol/の硝酸ナトリウム水溶液を供給し、
陽極室の硝酸濃度を2mol/、陰極室のカセイソーダ水
溶液の濃度を3mol/として、1ヶ月の電解テストを実
施した。
As an anode, an electrode coated with a noble metal oxide on an expanded metal substrate of Ti is used, and as an anode, an expanded metal of Ni is used.
etal was used. The electrode area was 0.12 dm 2 , and the distance between the positive and negative electrodes was 2 cm. With a current density of 30 A / dm 2 and an electrolysis temperature of 70 ° C, 5 mol / sodium nitrate aqueous solution was supplied to the intermediate chamber,
An electrolytic test was carried out for one month with the concentration of nitric acid in the anode chamber being 2 mol / and the concentration of the caustic soda solution in the cathode chamber being 3 mol /.

電解電圧は約6.0V,硝酸生成の電流効率は、約58%,
カセイソーダ生成の電流効率は、約80%であった。
Electrolysis voltage is about 6.0V, nitric acid production current efficiency is about 58%,
The current efficiency of caustic soda production was about 80%.

一方、比較例1として、実施例1のフッ素系陰イオン
交換膜のかわりに、炭化水素系の陰イオン交換膜を用
い、他は実施例1と全く同様な電解テストを実施した
所、電解電圧は所期5.8Vであったが電解時間の経過と共
に徐々に電解電圧は上昇し、12V以上となり、硝酸生成
の電流効率は、約53%,カセイソーダ生成の電流効率は
約82%であった。
On the other hand, as Comparative Example 1, a hydrocarbon-based anion exchange membrane was used in place of the fluorine-based anion exchange membrane of Example 1, and the same electrolytic test as in Example 1 was conducted except that the electrolytic voltage was changed. Was initially 5.8V, but the electrolysis voltage gradually increased with the passage of electrolysis time to 12V or more, and the current efficiency for nitric acid production was about 53% and the current efficiency for caustic soda production was about 82%.

実施例2 陰イオン交換膜として、一方の面の交換容量が、0.62
meq/g・乾燥樹脂,膜厚50μ、他方の面の交換容量が0.9
1meq/g・乾燥樹脂、膜厚125μで、実施例1と同一の構
造を示すフッ素系陰イオン交換膜を用い、実施例1と同
一の電解条件で硝酸ナトリウム水溶液から、硝酸とカセ
イソーダを生成する電解プロセスを実施した。
Example 2 As an anion exchange membrane, the exchange capacity on one side was 0.62.
meq / g / dry resin, film thickness 50μ, exchange capacity of the other side is 0.9
Nitric acid and caustic soda are produced from an aqueous solution of sodium nitrate under the same electrolytic conditions as in Example 1, using a fluorine-based anion exchange membrane having the same structure as in Example 1 with 1 meq / g · dry resin and a film thickness of 125 μm. An electrolytic process was carried out.

なお、陰イオン交換膜の向きは、交換容量の小さい面
を陽極室側に向け、交換容量の大きい面を中間室側へ向
けた。
As for the orientation of the anion exchange membrane, the surface with a small exchange capacity was directed toward the anode chamber side, and the surface with a large exchange capacity was directed toward the intermediate chamber side.

実施例1と同様の電解テストの結果、電解電圧は、6.
7V,硝酸生成の電流効率は、約81%,カセイソーダ生成
の電流効率は、約86%であった。
As a result of the same electrolysis test as in Example 1, the electrolysis voltage was 6.
The current efficiency of 7V, nitric acid production was about 81%, and the current efficiency of caustic soda production was about 86%.

実施例3 陰イオン交換膜として、一方の面の交換容量が、0.67
meq/g・乾燥樹脂,膜厚40μ、他方の面の交換容量が1.0
0meq/g・乾燥樹脂,膜厚130μで、下記の構造 を示すフッ素系陰イオン交換膜を用い、硫酸ナトリウム
水溶液から、硫酸とカセイソーダを生成する電解プロセ
スを実施した。
Example 3 As an anion exchange membrane, the exchange capacity on one side was 0.67.
meq / g / dry resin, film thickness 40μ, exchange capacity of the other side is 1.0
0meq / g ・ dry resin, film thickness 130μ, the following structure An electrolytic process for producing sulfuric acid and caustic soda was carried out from an aqueous solution of sodium sulfate using the fluorine-based anion exchange membrane shown in.

なお、陰イオン交換膜の向きは、交換容量の小さい面
を陽極室側に向け、交換容量の大きい面を中間室側に向
けた。
Regarding the orientation of the anion exchange membrane, the surface with a small exchange capacity was directed toward the anode chamber side, and the surface with a large exchange capacity was directed toward the intermediate chamber side.

フッ素系陰イオン交換膜と、塩の種類を変更した以外
は、実施例1と同様の条件で1ケ月電解テストを実施し
た所、電解電圧は約6.8V,硫酸生成の電流効率は約80
%,カセイソーダ生成の電流効率は約85%であった。
A one-month electrolysis test was carried out under the same conditions as in Example 1 except that the fluorine-based anion exchange membrane and the type of salt were changed. The electrolysis voltage was about 6.8 V, and the current efficiency for sulfuric acid generation was about 80.
%, The current efficiency of caustic soda production was about 85%.

【図面の簡単な説明】[Brief description of drawings]

図1は、本発明の電解プロセスの一例を示す概念図であ
る。 1……陽極室 2……陰極室 3……中間室 4……硝酸の回収タンク 5……水の供給ライン 6……酸素ガスの抜き出しライン 7……酸素ガスタンク 8……硝酸の回収ライン 9……水酸化ナトリウムの回収タンク 10……水の供給ライン 11……水素ガス抜き出しライン 12……水素ガスタンク 13……水酸化ナトリウムの回収ライン 14……硝酸ナトリウムの供給ライン 15……硝酸ナトリウムの排出ライン 16……陰イオン交換膜 17……陽イオン交換膜 18……硝酸ナトリウムの循環タンク
FIG. 1 is a conceptual diagram showing an example of the electrolysis process of the present invention. 1 ... Anode chamber 2 ... Cathode chamber 3 ... Intermediate chamber 4 ... Nitric acid recovery tank 5 ... Water supply line 6 ... Oxygen gas extraction line 7 ... Oxygen gas tank 8 ... Nitric acid recovery line 9 …… Sodium hydroxide recovery tank 10 …… Water supply line 11 …… Hydrogen gas extraction line 12 …… Hydrogen gas tank 13 …… Sodium hydroxide recovery line 14 …… Sodium nitrate supply line 15 …… Sodium nitrate Discharge line 16 …… Anion exchange membrane 17 …… Cation exchange membrane 18 …… Sodium nitrate circulation tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】陰イオン交換膜と陽イオン交換膜を隔膜と
して用いる3室電解槽を使用し、陽極側に陰イオン交換
膜を配し、陰極側に陽イオン交換膜を配し、該両膜に挟
まれた中間室に塩の水溶液を供給して、陽極室で酸を生
成し、陰極室でアルカリを生成せしめるイオン交換膜電
解法において、陽イオン交換膜としてフッ素系陽イオン
交換膜を用い、かつ、陰イオン交換膜として、下記一般
[ただし、XはFまたはCF3,lは0または1〜5の整数,
mは0または1,nは1〜5の整数,p,qは正の数であって、
その比は2〜16,R1,R2,R3は低級アルキル基(ただし、R
1とR2が一体となってテトラメチレン鎖,ペンタメチレ
ン鎖を形成してもよい。) R4は水素原子または低級アルキル基(ただし、R3とR4
一体となってエチレン鎖,トリメチレン鎖を形成しても
よい。) Z-=ハロゲン陰イオン,aは2〜10の整数] で表わされる繰り返し単位の共重合体よりなるフッ素系
陰イオン交換膜を用いることを特徴とする塩の水溶液か
らの酸,アルカリの分離方法。
1. A three-chamber electrolytic cell using an anion exchange membrane and a cation exchange membrane as a diaphragm is used, an anion exchange membrane is arranged on the anode side, and a cation exchange membrane is arranged on the cathode side. In the ion exchange membrane electrolysis method in which an aqueous salt solution is supplied to the intermediate chamber sandwiched between the membranes to generate an acid in the anode chamber and an alkali in the cathode chamber, a fluorine-based cation exchange membrane is used as the cation exchange membrane. Used and as an anion exchange membrane, the following general formula [Where X is F or CF 3 , l is 0 or an integer of 1 to 5,
m is 0 or 1, n is an integer from 1 to 5, p and q are positive numbers,
The ratio is 2 to 16, R 1 , R 2 and R 3 are lower alkyl groups (provided that R
1 and R 2 may be integrated to form a tetramethylene chain or a pentamethylene chain. ) R 4 is a hydrogen atom or a lower alkyl group (provided that the ethylene chain is R 3 and R 4 are integrated, may form a trimethylene chain) Z -. = Halogen anion, a is 2 to 10 integer ] A method for separating an acid or an alkali from an aqueous solution of a salt, which comprises using a fluorine-based anion exchange membrane composed of a copolymer of repeating units represented by
【請求項2】フッ素系陰イオン交換膜として、均一な交
換容量を示す陰イオン交換膜を用いることを特徴とする
特許請求の範囲第1項記載の方法。
2. The method according to claim 1, wherein an anion exchange membrane having a uniform exchange capacity is used as the fluorine-based anion exchange membrane.
【請求項3】フッ素系陰イオン交換膜として、一方の面
と他方の面の交換容量が異なる陰イオン交換膜を用い、
交換容量の小さい面を陽極室側へむけ交換容量の大きい
面を中間室側へむけるように配置することを特徴とする
特許請求の範囲第1項記載の方法。
3. An anion exchange membrane having different exchange capacities on one side and the other side is used as the fluorine-based anion exchange membrane,
The method according to claim 1, wherein the surface having a small exchange capacity is arranged toward the anode chamber side and the surface having a large exchange capacity is arranged toward the intermediate chamber side.
JP61189537A 1985-10-25 1986-08-14 Method for separating acid and alkali from aqueous salt solution Expired - Lifetime JPH0816275B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61189537A JPH0816275B2 (en) 1986-08-14 1986-08-14 Method for separating acid and alkali from aqueous salt solution
US06/922,727 US4707234A (en) 1985-10-25 1986-10-24 Method for separating an acid and an alkali from an aqueous solution of a salt
DE8686308357T DE3677463D1 (en) 1985-10-25 1986-10-27 METHOD FOR SEPARATING ACID AND LYE FROM AN AQUEOUS SALT SOLUTION.
EP86308357A EP0221751B1 (en) 1985-10-25 1986-10-27 Method for separating an acid and an alkali from an aqueous solution of a salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189537A JPH0816275B2 (en) 1986-08-14 1986-08-14 Method for separating acid and alkali from aqueous salt solution

Publications (2)

Publication Number Publication Date
JPS6347386A JPS6347386A (en) 1988-02-29
JPH0816275B2 true JPH0816275B2 (en) 1996-02-21

Family

ID=16242967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189537A Expired - Lifetime JPH0816275B2 (en) 1985-10-25 1986-08-14 Method for separating acid and alkali from aqueous salt solution

Country Status (1)

Country Link
JP (1) JPH0816275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007049495A1 (en) 2007-09-14 2009-03-19 Extrude Hone Gmbh Apparatus and method for electrochemical machining
CN114703493A (en) * 2022-03-30 2022-07-05 西安热工研究院有限公司 System and method for coupling application of hydrogen production by new energy and carbon dioxide capture

Also Published As

Publication number Publication date
JPS6347386A (en) 1988-02-29

Similar Documents

Publication Publication Date Title
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4312722A (en) Process for preparing nitrites
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
JPH04224689A (en) Electrolytic method of alkali metal sulfate
TW434329B (en) Synthesis of onium hydroxides from onium salts
JP2009231238A (en) Recycling method for exhaust electrolyte
US4253923A (en) Electrolytic process for producing potassium hydroxide
CN114402095B (en) Cross-flow water electrolysis
US5225054A (en) Method for the recovery of cyanide from solutions
JPH0816275B2 (en) Method for separating acid and alkali from aqueous salt solution
JP3265495B2 (en) Method for producing nickel hypophosphite
JPH08246178A (en) Electrochemical recovering method of salts and device therefor
JP3493242B2 (en) Method and apparatus for electrochemical recovery of nitrate
GB2137658A (en) Electrolyzing dilute caustic alkali aqueous solution and apparatus therefor
JPS62182292A (en) Diaphragm electrolysis of hci
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP3201854B2 (en) Method for electrolytic separation of salt
JPS6299487A (en) Separation of acid and alkali from aqueous salt solution
JPS6024439B2 (en) Treatment method for radioactive waste liquid containing nitrates
Grot Nafion® membrane and its applications
JPS622036B2 (en)
JPS62105922A (en) Recovery of metal and acid
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis
WO2023119779A1 (en) Aqueous solution electrolysis method
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide