JPH08246178A - Electrochemical recovering method of salts and device therefor - Google Patents

Electrochemical recovering method of salts and device therefor

Info

Publication number
JPH08246178A
JPH08246178A JP7079430A JP7943095A JPH08246178A JP H08246178 A JPH08246178 A JP H08246178A JP 7079430 A JP7079430 A JP 7079430A JP 7943095 A JP7943095 A JP 7943095A JP H08246178 A JPH08246178 A JP H08246178A
Authority
JP
Japan
Prior art keywords
chamber
anode
exchange membrane
gas diffusion
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7079430A
Other languages
Japanese (ja)
Inventor
Takahiro Ashida
高弘 芦田
Takayuki Shimamune
孝之 島宗
Yoshinori Nishiki
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP7079430A priority Critical patent/JPH08246178A/en
Priority to IT96RM000152A priority patent/IT1284290B1/en
Publication of JPH08246178A publication Critical patent/JPH08246178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To provide a method and device for electrochemically recovering salts containing no impurities more economically than a conventional salts recovering. CONSTITUTION: A gas diffusion electrode 27 is used as an anode of an electrolytic cell 21 separated into an anode chamber 23, an intermediate chamber 24 and a cathode chamber 26 by an anion exchange membrane 22 and a cation exchange membrane 25 and a salt solution supplied to the intermediate chamber 24 is electrolyzed and recovered while supplying gaseous hydrogen and steam to the anode. Since the anode chamber 23 different from an electrolytic cell using a conventional gas diffusion anode is constituted only of a gas chamber, the device is made compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無機塩や有機塩を含む
溶液例えば工業用水及び排水から酸及びアルカリを電気
化学的に分離回収する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for electrochemically separating and recovering an acid and an alkali from a solution containing an inorganic salt or an organic salt such as industrial water and waste water.

【0002】[0002]

【従来技術とその問題点】工場排水の水質は、環境保全
対策のため厳しい規制がなされ、無機塩類についても河
川の富栄養化や汚濁の原因となることを防止するためそ
の水質管理レベルは年々厳しくなっており、海洋への投
棄は禁止される方向にある。従来より無機塩及び有機塩
類の回収及び除去方法として、生物的処理、物理化学的
処理(キレート吸着、沈澱分離)、イオン交換処理、汚
泥濃縮回収、焼却等が実施されている。
[Prior art and its problems] The water quality of factory effluent is strictly regulated as an environmental conservation measure, and the level of water quality control for inorganic salts is also increasing year by year to prevent it from causing eutrophication and pollution of rivers. It is becoming stricter, and dumping into the ocean is prohibited. Conventionally, as a method for recovering and removing inorganic salts and organic salts, biological treatment, physicochemical treatment (chelate adsorption, precipitation separation), ion exchange treatment, sludge concentration recovery, incineration, etc. have been carried out.

【0003】しかし今後の環境問題を考慮すると、塩を
回収して薬剤の再利用を図るグローズド化の実現に積極
的に取り組むことが望まれる。この観点からイオン交換
膜及び電極を用いる電気化学的に塩を分離して酸及びア
ルカリとして回収する技術は有用な回収方法として注目
されている。図2は、従来から行なわれている電気透析
による塩からの酸及びアルカリの回収に使用される3室
型電解槽の概略図である。この電解系では、電解槽1は
陰イオン交換膜2及び陽イオン交換膜3により陽極室
4、中間室5及び陰極室6に区画され、中間室5に無機
又は有機塩例えば硫酸ナトリウム水溶液が供給され、電
解が進行する。該電解により硫酸イオンは陰イオン交換
膜2を通って陽極室4に達し水素イオンと反応して硫酸
として回収される。又ナトリウムイオンは陽イオン交換
膜3を通って陰極室6に達し水酸イオンと反応して水酸
化ナトリウムとして回収される。この電解系では電力原
単位が大きくなり、経済的な回収操作を行ない得ないと
いう欠点がある。
However, in consideration of future environmental problems, it is desirable to actively work on the realization of a grown-up system in which salt is recovered and a drug is reused. From this point of view, a technique of electrochemically separating a salt by using an ion exchange membrane and an electrode and recovering it as an acid and an alkali has been noted as a useful recovery method. FIG. 2 is a schematic view of a three-chamber type electrolytic cell used for recovering an acid and an alkali from a salt by a conventional electrodialysis. In this electrolytic system, the electrolytic cell 1 is divided into an anode chamber 4, an intermediate chamber 5 and a cathode chamber 6 by an anion exchange membrane 2 and a cation exchange membrane 3, and an inorganic or organic salt such as an aqueous solution of sodium sulfate is supplied to the intermediate chamber 5. Then, electrolysis proceeds. By the electrolysis, sulfate ions reach the anode chamber 4 through the anion exchange membrane 2 and react with hydrogen ions to be recovered as sulfuric acid. Further, sodium ions reach the cathode chamber 6 through the cation exchange membrane 3, react with hydroxyl ions and are recovered as sodium hydroxide. This electrolytic system has a disadvantage that the power consumption becomes large and an economical recovery operation cannot be performed.

【0004】図3は図2の電解系の改良に関するもの
で、バイポーラ膜7、陰イオン交換膜8及び陽イオン交
換膜9により電解槽10が陽極室11、中間室12及び陰極室
13に区画され、中間室12に硫酸ナトリウム溶液等を供給
しながら電解を行なうと図2の場合と同様に硫酸と水酸
化ナトリウムが得られるが、これは電極による電気分解
ではなく、バイポーラ膜での水の分裂により、プロトン
と水酸イオンが生じ、その結果として酸及びアルカリの
回収が可能になる。この方法は電力原単位は図2の電解
系と比較して小さいものの、高濃度での回収が困難であ
り、電流密度が図2の系の半分以下となるという欠点が
ある。図4は図2の電解槽において陽極として水素陽極
14を使用することにより図2のガス発生電極を使用する
電解槽よりも更にガス拡散電極を使用した分セル電圧を
低減できる電解槽を示している。この電解槽では陽極室
4′がイオン交換膜15により溶液室16とガス室17に区画
されている。この電解槽では電力原単位としては改善が
可能になるものの、構造が複雑であり、液室が3つある
ために電力原単位が十分には低いとは言えず、より以上
の改善が望ましく、又陰イオン交換膜の特性により必ず
しも濃度の高い酸が得られないという欠点がある。
FIG. 3 relates to the improvement of the electrolytic system of FIG. 2, in which the electrolytic cell 10 is composed of the bipolar membrane 7, the anion exchange membrane 8 and the cation exchange membrane 9 to form the anode chamber 11, the intermediate chamber 12 and the cathode chamber.
When electrolysis is carried out while being divided into 13 and supplying a sodium sulfate solution or the like to the intermediate chamber 12, sulfuric acid and sodium hydroxide are obtained as in the case of FIG. 2, but this is not electrolysis by electrodes, but a bipolar membrane. The splitting of water in the water produces protons and hydroxide ions, which results in the recovery of acids and alkalis. Although this method has a smaller power consumption than the electrolytic system shown in FIG. 2, it is difficult to recover at a high concentration and has a drawback that the current density is less than half that of the system shown in FIG. FIG. 4 shows a hydrogen anode as an anode in the electrolytic cell of FIG.
By using 14, an electrolytic cell in which the cell voltage can be further reduced by using the gas diffusion electrode as compared with the electrolytic cell using the gas generating electrode in FIG. 2 is shown. In this electrolytic cell, the anode chamber 4'is divided into a solution chamber 16 and a gas chamber 17 by the ion exchange membrane 15. Although this electrolyzer can be improved in terms of electric power consumption, it has a complicated structure and cannot be said to have a sufficiently low electric power consumption due to the fact that there are three liquid chambers. Further, there is a drawback that an acid having a high concentration cannot always be obtained due to the characteristics of the anion exchange membrane.

【0005】[0005]

【発明の目的】本発明は、前述の従来技術の問題点、つ
まり消費電力量が大きくかつ不純物を生じやすいという
欠点を解消して、低セル電圧で不純物を生じさせること
なく塩類を回収するための方法及び装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, that is, the drawbacks of high power consumption and easy generation of impurities, and recovers salts without producing impurities at a low cell voltage. It is an object of the present invention to provide a method and device.

【0006】[0006]

【問題点を解決するための手段】本発明は、陰イオン交
換膜により陽極室と中間室が区画され、陽イオン交換膜
により中間室と陰極室が区画された3室型電解槽の中間
室に無機塩及び/又は有機塩を含有する溶液を供給して
該塩を酸及びアルカリとして電気化学的に回収する方法
において、陽極としてガス拡散電極を使用し陽極室に水
素ガスを供給しながら電解を行なうことを特徴とする方
法であって、前記ガス拡散電極を前記陰イオン交換膜に
密着させて電解する装置である。
The present invention provides an intermediate chamber of a three-chamber type electrolytic cell in which an anion exchange membrane defines an anode chamber and an intermediate chamber, and a cation exchange membrane defines an intermediate chamber and a cathode chamber. In a method of supplying a solution containing an inorganic salt and / or an organic salt to the above and electrochemically recovering the salt as an acid and an alkali, a gas diffusion electrode is used as an anode and electrolysis is performed while supplying hydrogen gas to the anode chamber. The method is characterized in that the gas diffusion electrode is brought into close contact with the anion exchange membrane for electrolysis.

【0007】以下本発明を詳細に説明する。本発明で
は、無機塩及び/又は有機塩からの酸アルカリ回収にお
いて陽極としてガス拡散電極を使用しかつ該陽極に水素
ガスを供給しながら電解を行ない、酸及びアルカリを回
収する。本発明に使用する電解槽は3室型とし、陰イオ
ン交換膜により陽極室を中間室から区画し、かつ陽イオ
ン交換膜により陰極室を中間室から区画する。前記陽極
室はガス室のみとし、従来のような溶液室は設けない。
前記ガス拡散電極は陽極室及び中間室を区画する陰イオ
ン交換膜に直接接触させても、僅かな距離をおいて設置
しても良いが、効率上は接触させることが望ましい。
The present invention will be described in detail below. In the present invention, in acid / alkali recovery from inorganic salts and / or organic salts, a gas diffusion electrode is used as an anode and electrolysis is performed while supplying hydrogen gas to the anode to recover the acid and alkali. The electrolytic cell used in the present invention is of a three-chamber type, the anode chamber is partitioned from the intermediate chamber by the anion exchange membrane, and the cathode chamber is partitioned from the intermediate chamber by the cation exchange membrane. Only the gas chamber is used as the anode chamber, and the conventional solution chamber is not provided.
The gas diffusion electrode may be brought into direct contact with the anion exchange membrane that defines the anode chamber and the intermediate chamber, or may be placed at a short distance, but it is desirable to make contact with it for efficiency.

【0008】前記中間室に硫酸ナトリウム、硝酸ナトリ
ウム、過塩素酸ナトリウム、塩化アンモニウム等の無機
塩や、酢酸ナトリウムやクエン酸ナトリウム等の有機塩
を供給しながら電解を行なうと、硫酸イオンや酢酸イオ
ン等の陰イオンが前記陰イオン交換膜を透過して陽極室
に達し、供給される水素ガスとガス拡散電極表面で反応
して対応する酸つまり硫酸や酢酸に変換され回収され
る。通常の陽極反応では酸素が発生し生成する酸を更に
酸化するなどして副生成物が生ずるが、本発明では供給
される水素が水素イオンとなり、前記陰イオンと反応し
て対応する酸を生成するため、副生成物を生ずることな
く目的の酸を回収できる。なお通常陽極室には前記水素
ガスとともに水蒸気を供給し、生成する酸を水溶液とし
て回収することが好ましく、前記ガス拡散電極は多孔質
構造であるため水蒸気中に溶解して水溶液となった酸は
該電極の背面側に容易に取り出すことができ、これによ
り不要なセル電圧の上昇を抑制する。
When electrolysis is carried out while supplying an inorganic salt such as sodium sulfate, sodium nitrate, sodium perchlorate or ammonium chloride or an organic salt such as sodium acetate or sodium citrate to the intermediate chamber, sulfate ion or acetate ion is obtained. Anions such as permeate through the anion exchange membrane to reach the anode chamber, react with the supplied hydrogen gas on the surface of the gas diffusion electrode, and are converted into corresponding acids, that is, sulfuric acid and acetic acid, and are recovered. In a normal anodic reaction, oxygen is generated and a by-product is generated by further oxidizing the generated acid, but in the present invention, the supplied hydrogen becomes a hydrogen ion and reacts with the anion to generate a corresponding acid. Therefore, the target acid can be recovered without producing a by-product. Note that it is generally preferable to supply water vapor together with the hydrogen gas to the anode chamber and recover the acid produced as an aqueous solution. Since the gas diffusion electrode has a porous structure, the acid dissolved in water vapor to form an aqueous solution is It can be easily taken out to the back side of the electrode, thereby suppressing an unnecessary rise in cell voltage.

【0009】このガス拡散電極は、好ましくは銀、白金
及び金等の貴金属である触媒をそのままあるいは該貴金
属をカーボンやニッケル等の伝導性粉体上に担持し、こ
れをガス通路を確保するため及びガス拡散電極としての
耐久性と撥水性を確保するためのバインダーであるポリ
テトラフルオロエチレン(PTFE)粉末等のフッ素樹
脂と混合し混練したものを電気導電性を有する多孔性、
繊維状又は網状等の電極基体上に塗布焼成し展開担持し
て製造される。更に本発明では生成した酸がその背面に
抜けやすいような親水性領域も十分に形成することが望
ましい。前記電極基体の材料としては、カーボン、ジル
コニウム、ステンレス、チタン、セラミクス等の多孔性
材料を使用し、市販品としては微細な金網、繊維焼結体
及びセルメット等が利用できる。
This gas diffusion electrode preferably carries a noble metal catalyst such as silver, platinum and gold as it is or carries the noble metal on a conductive powder such as carbon or nickel to secure a gas passage. And a porous material having electrical conductivity, which is obtained by mixing and kneading a fluororesin such as polytetrafluoroethylene (PTFE) powder which is a binder for ensuring durability and water repellency as a gas diffusion electrode,
It is manufactured by coating, firing, spreading and supporting on a fibrous or mesh-like electrode substrate. Further, in the present invention, it is desirable to sufficiently form a hydrophilic region on the back surface of which the generated acid can easily escape. Porous materials such as carbon, zirconium, stainless steel, titanium, and ceramics are used as the material of the electrode substrate, and commercially available products such as fine wire mesh, fiber sintered body and celmet can be used.

【0010】担持触媒量は10〜500 g/m2 、ガス拡散
電極の厚さは0.1 〜5mm、空孔率は30〜70%とするこ
とが好ましい。陰極触媒としては、銀、酸化ルテニウ
ム、白金等の活性の高い物質を用い、これらをニッケ
ル、ステンレス等の多孔性材料上に形成して陰極を形成
することが望ましい。前記ガス拡散電極への給電は耐酸
性の優れたステンレス、ジルコニウム及びカーボン等の
集電体を通して行ない、陰極へは直接あるいはステンレ
スやニッケル等の陰極集電体を通して行なえる。
It is preferable that the supported catalyst amount is 10 to 500 g / m 2 , the gas diffusion electrode thickness is 0.1 to 5 mm, and the porosity is 30 to 70%. As the cathode catalyst, it is desirable to use a highly active substance such as silver, ruthenium oxide or platinum, and to form these on a porous material such as nickel or stainless steel to form the cathode. Power can be supplied to the gas diffusion electrode through a current collector having excellent acid resistance such as stainless steel, zirconium and carbon, and to the cathode directly or through a cathode current collector such as stainless steel or nickel.

【0011】電極室を区画するイオン交換膜としては種
々の高分子樹脂を骨格とし種々のイオン交換基を有する
膜を使用できる。陽極室と中間室を区画する陰イオン交
換膜としては、4級アンモニウム基を交換基とする炭化
水素樹脂、フッ素樹脂等の膜が利用可能であり、旭硝子
株式会社製のAAV、株式会社トクヤマ製のAMH及び
東ソー株式会社製のSF−34等の市販品が使用できる。
陰極室と中間室を区画する陽イオン交換膜としてはスル
ホン酸基を交換基とする炭化水素系又はフッ素樹脂系膜
が入手可能であり、耐久性の面からはフッ素樹脂系膜が
好ましく、市販品ではデュポン社製のナフィオン(登録
商標)#324 、#350 及び#427 等が優れている。
As the ion exchange membrane for partitioning the electrode chamber, a membrane having various polymer resins as a skeleton and various ion exchange groups can be used. As the anion exchange membrane for partitioning the anode chamber and the intermediate chamber, a membrane such as a hydrocarbon resin or a fluororesin having a quaternary ammonium group as an exchange group can be used. Asahi Glass Co., Ltd. AAV, Tokuyama Co., Ltd. Commercially available products such as AMH and SF-34 manufactured by Tosoh Corporation can be used.
As a cation exchange membrane that partitions the cathode chamber and the intermediate chamber, a hydrocarbon-based or fluororesin-based membrane having a sulfonic acid group as an exchange group is available, and a fluororesin-based membrane is preferable from the viewpoint of durability, and is commercially available. Nafion (registered trademark) # 324, # 350, and # 427 manufactured by DuPont are excellent as products.

【0012】前述の通り、陽極と陰イオン交換膜及び陰
極と陽イオン交換膜はセル電圧低減のため、それぞれな
るべく近接して設置することが望ましい。発生する気泡
による抵抗損失増加も考慮して電極−イオン交換膜間距
離は0〜3mmの範囲で適宜調節することが好ましい。
陰イオン交換膜と陽極、及び陽イオン交換膜と陰極とを
密着状態に維持するためには、中間室の水圧を両極室の
水圧より高く保てば良い。好ましい水圧差は1〜10mH
(0.1 〜1kg/cm2 )である。
As described above, the anode and the anion exchange membrane and the cathode and the cation exchange membrane are preferably placed as close to each other as possible in order to reduce the cell voltage. The distance between the electrode and the ion exchange membrane is preferably adjusted in the range of 0 to 3 mm in consideration of the increase in resistance loss due to the generated bubbles.
In order to maintain the anion exchange membrane and the anode, and the cation exchange membrane and the cathode in close contact with each other, the water pressure in the intermediate chamber may be kept higher than the water pressure in the both electrode chambers. Preferred water pressure difference is 1-10 mH
(0.1 to 1 kg / cm 2 ).

【0013】前記陰陽両イオン交換膜間に形成される中
間室は供給される硫酸ナトリウム等の水溶液が円滑に流
通する程度の容量を有していれば良いが、運転中の前記
イオン交換膜の撓みにより容量が過度に小さくなり前記
水溶液の流動が不均一化することを防止するために、両
イオン交換膜間にスペーサを配置しても良い。該スペー
サは中間室と前記両極室間に水圧差を生じさせられない
場合にも有効であり、かつ中間室の水流を均一にするた
めに両集電体間に圧力を加え十分な締め付けを行なうこ
とが望ましい(5〜50kgf/cm2 )。
The intermediate chamber formed between the anion and cation ion exchange membranes should have a capacity such that the supplied aqueous solution of sodium sulfate or the like can smoothly flow. A spacer may be arranged between the two ion exchange membranes in order to prevent the flow of the aqueous solution from becoming non-uniform due to an excessively small capacity due to bending. The spacer is also effective when a water pressure difference cannot be generated between the intermediate chamber and the both electrode chambers, and pressure is applied between both current collectors in order to make the water flow in the intermediate chamber uniform and perform sufficient tightening. It is desirable (5 to 50 kgf / cm 2 ).

【0014】前記スペーサは弱酸及び弱アルカリへの耐
久性のある例えばポリプロピレン、ポリエチレンあるい
はポリ塩化ビニル等の開口率30〜80%、10〜200 メッシ
ュ程度の網状の構造体が好ましく、これを積層して使用
し、膜間距離が0.5 〜10mm程度に維持されるようにす
る。なお本発明の電解槽は1対の陽イオン交換膜及び陰
イオン交換膜のみを使用する態様には限定されず、例え
ば図3に示すようにバイポーラ膜を使用して複数の陽極
室、中間室及び陰極室を形成する態様も含む。
The spacer is preferably a mesh structure having a resistance to weak acids and weak alkalis, such as polypropylene, polyethylene, or polyvinyl chloride, having an opening ratio of 30 to 80% and a mesh size of 10 to 200 mesh. It is used to maintain the intermembrane distance at about 0.5-10 mm. The electrolytic cell of the present invention is not limited to a mode in which only one pair of cation exchange membrane and anion exchange membrane is used. For example, as shown in FIG. 3, a bipolar membrane is used to form a plurality of anode chambers and intermediate chambers. And a mode of forming the cathode chamber.

【0015】このように構成された電解槽の中間室に硫
酸ナトリウム等の水溶液を供給して電解による酸及びア
ルカリの回収を行なう。前記水溶液は若干の酸性又はア
ルカリ性を示しても良く、0.5 〜5M程度の濃度が望ま
しい。電解温度は膜やスペーサの耐熱性により決定すれ
ば良いが通常40〜60℃である。本発明により電解処理さ
れる無機塩及び有機塩水溶液は工場排水等である場合が
多く中には高アルカリ溶液である場合あるいは多価の不
純物カチオンを多く含むことがある。これらの場合には
前もって前記カチオンを1ppm程度以下にする前処理
を行ない、イオン交換膜の保護を図ることが望ましい。
通電は電流密度が10〜40A/dm2 となる程度に行な
い、該通電により陽極室では供給塩の種類に応じて10〜
25%程度の硫酸、塩酸及び酢酸等が、又陰極室では10〜
30%の金属水酸化物や水酸化アンモニウム等が得られ、
電流効率は50〜90%である。前記酸の濃度を25%以上に
制御することも可能であるが、電流効率が著しく低下す
るため、前記範囲内で回収することが望ましい。
An aqueous solution of sodium sulfate or the like is supplied to the intermediate chamber of the electrolytic cell thus constructed to recover the acid and alkali by electrolysis. The aqueous solution may show some acidity or alkalinity, and a concentration of about 0.5 to 5M is desirable. The electrolysis temperature may be determined depending on the heat resistance of the film or spacer, but is usually 40 to 60 ° C. The inorganic salt and organic salt aqueous solutions to be electrolyzed according to the present invention are often factory wastewater or the like, and in some cases, they are highly alkaline solutions or contain many polyvalent impurity cations. In these cases, it is desirable to carry out a pretreatment to reduce the cation content to about 1 ppm or less in advance to protect the ion exchange membrane.
The energization is carried out to such an extent that the current density becomes 10 to 40 A / dm 2, and the energization causes 10 to 10 A / dm 2 depending on the kind of salt supplied in the anode chamber.
About 25% sulfuric acid, hydrochloric acid, acetic acid, etc.
30% metal hydroxide, ammonium hydroxide, etc. are obtained,
The current efficiency is 50-90%. It is possible to control the concentration of the acid to 25% or more, but the current efficiency is significantly reduced, so it is desirable to recover the acid within the above range.

【0016】本発明では排水等の中の無機塩や有機塩を
酸及び金属水酸化物又は水酸化アンモニウム等として回
収でき該回収物を再利用することにより、間接的に排水
処理費用の低減を図ることができる。陽極としてガス拡
散電極を使用する従来の電解方法では、陽極の両側にガ
スと溶液の2室を必要とし電解槽が複雑になっていた
が、本発明ではガス拡散陽極を陰イオン交換膜に密着し
て設置することにより単一の陽極室のみで良く、電解シ
ステムが簡便になる。
In the present invention, inorganic salts and organic salts in wastewater and the like can be recovered as acid and metal hydroxide or ammonium hydroxide, and the recovered material can be reused to indirectly reduce the wastewater treatment cost. Can be planned. In the conventional electrolysis method using a gas diffusion electrode as the anode, two chambers for gas and solution were required on both sides of the anode, which complicates the electrolytic cell, but in the present invention, the gas diffusion anode is adhered to the anion exchange membrane. Since it is installed in a single anode chamber, the electrolysis system can be simplified.

【0017】次に添付図面に基づいて本発明に係わる塩
類の電気化学的回収装置の一例を説明する。図1は、本
発明に係わる塩類の電気化学的回収装置の一例を示す概
略断面図である。塩類回収用電解槽21は、陰イオン交換
膜22により陽極室23が中間室24から区画され、かつ陽イ
オン交換膜25により陰極室26が中間室24から区画され
て、3室型電解槽として構成されている。前記陰イオン
交換膜22の陽極室23側にはカーボンとPTFEを混練し
焼成して作製されたガス拡散陰極27が密着して設置さ
れ、該ガス拡散電極27には多孔性の集電体28が接続され
ている。又前記陰イオン交換膜25の陰極室26側にはニッ
ケルやステンレスから成る多孔性陰極29が密着して設置
されている。
Next, an example of the electrochemical recovery device for salts according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view showing an example of the electrochemical recovery device for salts according to the present invention. The electrolytic cell 21 for recovering salts is a three-chamber type electrolytic cell in which the anode chamber 23 is partitioned from the intermediate chamber 24 by the anion exchange membrane 22 and the cathode chamber 26 is partitioned from the intermediate chamber 24 by the cation exchange membrane 25. It is configured. On the anode chamber 23 side of the anion exchange membrane 22, a gas diffusion cathode 27 prepared by kneading and firing carbon and PTFE is closely attached, and the gas diffusion electrode 27 is provided with a porous current collector 28. Are connected. On the cathode chamber 26 side of the anion exchange membrane 25, a porous cathode 29 made of nickel or stainless is closely attached.

【0018】前記中間室24に例えば硫酸ナトリウム水溶
液を供給し、陰極室26には希水酸化ナトリウム水溶液を
満たしかつ気相である陽極室23に水蒸気と水素ガスを供
給しながら電解を行なうと、中間室24の硫酸イオンが前
記陰イオン交換膜22を通して陽極室23に透過して硫酸分
子を形成し、該硫酸分子は水蒸気に溶解して硫酸として
系外に取り出されて回収され、一方中間室24のナトリウ
ムイオンは陽イオン交換膜25を透過して陰極室26に達し
て水酸イオンと反応して水酸化ナトリウムを生じ、該水
酸化ナトリウムは前記希水酸化ナトリウム水溶液中に溶
解して高濃度水酸化ナトリウムとして回収される。
When the intermediate chamber 24 is supplied with, for example, an aqueous sodium sulfate solution, the cathode chamber 26 is filled with a dilute sodium hydroxide aqueous solution, and the vapor and hydrogen gas are supplied to the anode chamber 23 in the vapor phase, electrolysis is performed. Sulfate ions in the intermediate chamber 24 permeate the anode chamber 23 through the anion exchange membrane 22 to form sulfuric acid molecules, which are dissolved in water vapor and taken out of the system as sulfuric acid to be recovered, while the intermediate chamber is The sodium ions of 24 permeate the cation exchange membrane 25, reach the cathode chamber 26, and react with hydroxide ions to produce sodium hydroxide, which is dissolved in the dilute aqueous solution of sodium hydroxide and becomes high. It is recovered as concentrated sodium hydroxide.

【0019】[0019]

【実施例】次に本発明に係わる塩類の電気化学的回収方
法の実施例を記載するが、該実施例は本発明を限定する
ものではない。
EXAMPLES Next, examples of the electrochemical recovery method of salts according to the present invention will be described, but the examples do not limit the present invention.

【実施例1】2μmの黒鉛化処理カーボン粉末(東海カ
ーボン株式会社製)をPTFE水性分散液にC:PTF
E=1:0.3 (重量比)となるように混合し、超音波分
散して塗布液を作製した。直径49mm、板厚0.5 mmの
チタンマイクロメッシュ材を基体金属とし、これを20%
沸騰塩酸中で10分間エッチングし、表面積増大及び表面
粗化の前処理を行なった。
Example 1 Graphite-treated carbon powder of 2 μm (manufactured by Tokai Carbon Co., Ltd.) was added to a PTFE aqueous dispersion to prepare C: PTF.
The mixture was mixed so that E = 1: 0.3 (weight ratio) and ultrasonically dispersed to prepare a coating liquid. Titanium micromesh material with a diameter of 49 mm and a plate thickness of 0.5 mm is used as the base metal, and this is 20%.
Etching was performed in boiling hydrochloric acid for 10 minutes, and pretreatment for increasing the surface area and roughening the surface was performed.

【0020】この基体全面に上記塗布液を約10mg塗布
し、次いで60℃で30分間予備乾燥しその後370 ℃で90分
間焼成する工程を繰り返してガス拡散電極用基体とし
た。この基体の両面に白金を熱分解法により担持し、メ
ッシュ状のガス拡散電極を作製した。このガス拡散電極
を2枚重ねて水素陽極とし、これを図1に示すように陰
イオン交換膜(旭化成株式会社製のA−200 )に密着さ
せ、電極背面より水素ガス及び水蒸気を供給した。陰極
としてラネーニッケルを表面につけたニッケルメッシュ
を、陽イオン交換膜としてデュポン社製のナフィオン32
4 をそれぞれ用い、中間室液を25%硫酸ナトリウム水溶
液、陰極液を20%水酸化ナトリウム水溶液とし、浴温70
℃、電流密度30A/dm2 の条件で電解試験を行なっ
た。その結果、セル電圧3.8 Vで安定した電解が可能で
あり、2時間後に硫酸17g(純硫酸として収率80%)が
得られ、陰極液である水酸化ナトリウム水溶液の電流効
率も約80%でありバランスしていた。
About 10 mg of the above-mentioned coating solution was applied to the entire surface of this substrate, then pre-dried at 60 ° C. for 30 minutes and then baked at 370 ° C. for 90 minutes to obtain a gas diffusion electrode substrate. Platinum was carried on both sides of this substrate by a thermal decomposition method to prepare a mesh-shaped gas diffusion electrode. Two of these gas diffusion electrodes were stacked to form a hydrogen anode, which was brought into close contact with an anion exchange membrane (A-200 manufactured by Asahi Kasei Corporation) as shown in FIG. 1, and hydrogen gas and water vapor were supplied from the back surface of the electrode. A nickel mesh with Raney nickel on the surface as a cathode, Nafion 32 manufactured by DuPont as a cation exchange membrane.
Using 4 each, the middle chamber liquid was 25% sodium sulfate aqueous solution, the catholyte was 20% sodium hydroxide aqueous solution, and the bath temperature was 70%.
An electrolytic test was conducted under conditions of a temperature of 30 ° C. and a current density of 30 A / dm 2 . As a result, stable electrolysis was possible at a cell voltage of 3.8 V, and after 2 hours, 17 g of sulfuric acid (80% yield as pure sulfuric acid) was obtained, and the current efficiency of the catholyte sodium hydroxide aqueous solution was about 80%. There was a balance.

【0021】[0021]

【比較例1】カーボン布に白金触媒を付与したガス拡散
電極表面に陽イオン交換膜(ナフィオン117 )を密着さ
せ、白金めっきジルコニウムマイクロメッシュを集電体
として水素陽極を構成した。この水素陽極を用い、他は
実施例1と同様にして図4に示した従来型の電解槽を構
成した。陽極液を15%硫酸、中間室液を25%硫酸ナトリ
ウム水溶液、陰極液を20%水酸化ナトリウム水溶液とし
て同様に試験を行なったところ、電流密度30A/dm2
におけるセル電圧は4.2 Vであった。なお電流効率は陰
極側及び陽極側共80%であった。
[Comparative Example 1] A cation exchange membrane (Nafion 117) was brought into close contact with the surface of a gas diffusion electrode obtained by applying a platinum catalyst to a carbon cloth, and a hydrogen anode was constituted by using a platinum-plated zirconium micromesh as a current collector. Using this hydrogen anode, the conventional electrolytic cell shown in FIG. 4 was constructed in the same manner as in Example 1 except for the above. When the same test was performed using 15% sulfuric acid as the anolyte, 25% sodium sulfate aqueous solution as the intermediate chamber liquid, and 20% sodium hydroxide aqueous solution as the catholyte solution, the current density was 30 A / dm 2
The cell voltage at 4.2V was 4.2V. The current efficiency was 80% on both the cathode side and the anode side.

【0022】[0022]

【比較例2】陽極として寸法安定性電極を用い、陽極液
として15%硫酸を使用したこと以外は実施例1と同様に
して試験を行なったところ、セル電圧は5.5 Vであっ
た。
Comparative Example 2 A cell voltage was 5.5 V when tested in the same manner as in Example 1 except that a dimensionally stable electrode was used as the anode and 15% sulfuric acid was used as the anolyte.

【0023】[0023]

【発明の効果】本発明方法は、陰イオン交換膜により陽
極室と中間室が区画され、陽イオン交換膜により中間室
と陰極室が区画された3室型電解槽の中間室に無機塩及
び/又は有機塩を含有する溶液を供給して該塩を酸及び
アルカリとして電気化学的に回収する方法において、陽
極としてガス拡散電極を使用し陽極室に水素ガスを供給
しながら電解を行なうことを特徴とする方法である。
According to the method of the present invention, an inorganic salt and an inorganic salt are contained in the intermediate chamber of a three-chamber type electrolytic cell in which the anode chamber and the intermediate chamber are partitioned by the anion exchange membrane, and the intermediate chamber and the cathode chamber are partitioned by the cation exchange membrane. In a method of supplying a solution containing an organic salt and / or electrochemically recovering the salt as an acid and an alkali, it is possible to use a gas diffusion electrode as an anode and perform electrolysis while supplying hydrogen gas to the anode chamber. This is a characteristic method.

【0024】本発明方法では、陽極としてガス拡散電極
を使用し水素ガスと水蒸気を供給しながら塩類の電解回
収を行なうようにしているため、中間室から陰イオン交
換膜を通して透過してくる陰イオンが供給される水素ガ
スと反応して対応する酸を生じかつ供給される水蒸気中
に溶解して高純度の酸として回収できる。又陽極として
酸素発生陽極を使用した場合と比較して消費電力量が低
減され、経済的な塩回収が可能になり、該回収物の再利
用により間接的に更に電解コストを低減できる。
In the method of the present invention, the gas diffusion electrode is used as the anode and the electrolytic recovery of the salts is performed while supplying the hydrogen gas and the water vapor. Therefore, the anions permeating from the intermediate chamber through the anion exchange membrane are used. Reacts with the supplied hydrogen gas to generate the corresponding acid and dissolves in the supplied steam to be recovered as a high-purity acid. In addition, compared with the case where an oxygen generating anode is used as the anode, the power consumption is reduced, economical salt recovery becomes possible, and the electrolytic cost can be further reduced indirectly by reusing the recovered material.

【0025】本発明に係わる塩類の回収装置は、前記方
法に使用する電解槽において、陽極であるガス拡散電極
を陰イオン交換膜に密着させて構成されている。従来の
陽極としてガス拡散電極を使用する電解では、その両側
にガス室と溶液室の2室を必要とし電解槽が複雑になっ
ていたのに対し、この本発明装置ではガス拡散陽極を陽
極室内に陰イオン交換膜に密着して設置することにより
単一の陽極室を構成でき、装置がコンパクトになる。又
従来と同様に陽極室、中間室及び陰極室をイオン交換膜
を使用して確実に区画しているため、高純度の酸や金属
水酸化物等を回収できる。
The apparatus for recovering salts according to the present invention is constructed by adhering a gas diffusion electrode as an anode to an anion exchange membrane in the electrolytic cell used in the above method. In conventional electrolysis using a gas diffusion electrode as an anode, two chambers, a gas chamber and a solution chamber, are required on both sides of the electrolysis cell, which complicates the electrolytic cell. A single anode chamber can be constructed by installing the device in close contact with the anion exchange membrane, and the device becomes compact. Further, as in the conventional case, the anode chamber, the intermediate chamber and the cathode chamber are surely partitioned by using the ion exchange membrane, so that high-purity acid, metal hydroxide and the like can be recovered.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる塩類の電気化学的回収装置の一
例を示す概略断面図。
FIG. 1 is a schematic cross-sectional view showing an example of a device for electrochemically recovering salts according to the present invention.

【図2】従来使用されている塩回収用3室型の電解槽の
概略断面図。
FIG. 2 is a schematic cross-sectional view of a conventionally used three-chamber type electrolytic cell for recovering salt.

【図3】図2の電解槽を改良した従来のバイポーラ膜を
使用する電解槽の概略断面図。
3 is a schematic cross-sectional view of an electrolytic cell using a conventional bipolar membrane which is an improvement of the electrolytic cell of FIG.

【図4】ガス拡散電極を陽極として使用した図2の電解
槽を改良した従来の電解槽の概略断面図。
FIG. 4 is a schematic cross-sectional view of a conventional electrolytic cell obtained by improving the electrolytic cell of FIG. 2 using a gas diffusion electrode as an anode.

【符号の説明】[Explanation of symbols]

21・・・電解槽 22・・・陰イオン交換膜 23・・・陽
極室 24・・・中間室 25・・・陽イオン交換膜 26・・・陰極室 27・・・ガ
ス拡散陽極 28・・・集電体 29・・・陰極
21 ... Electrolyzer 22 ... Anion exchange membrane 23 ... Anode chamber 24 ... Intermediate chamber 25 ... Cation exchange membrane 26 ... Cathode chamber 27 ... Gas diffusion anode 28 ...・ Current collector 29 ・ ・ ・ Cathode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陰イオン交換膜により陽極室と中間室が
区画され、陽イオン交換膜により中間室と陰極室が区画
された3室型電解槽の中間室に無機塩及び/又は有機塩
を含有する溶液を供給して該塩を酸及びアルカリとして
電気化学的に回収する方法において、陽極としてガス拡
散電極を使用し陽極室に水素ガスを供給しながら電解を
行なうことを特徴とする方法。
1. An inorganic salt and / or an organic salt is contained in an intermediate chamber of a three-chamber type electrolytic cell in which an anion exchange membrane defines an anode chamber and an intermediate chamber, and a cation exchange membrane defines an intermediate chamber and a cathode chamber. A method of electrochemically recovering the salt as an acid and an alkali by supplying a solution containing the gas, using a gas diffusion electrode as an anode, and performing electrolysis while supplying hydrogen gas to the anode chamber.
【請求項2】 陽極室と中間室が陰イオン交換膜により
区画され、中間室と陰極室が陽イオン交換膜により区画
された3室型電解槽の中間室に無機塩及び/又は有機塩
を含有する溶液を供給して該塩を酸及びアルカリとして
電気化学的に回収する装置において、前記陽極室内にガ
ス拡散電極を前記陰イオン交換膜に密着して設置し該陽
極室内に水素ガスを供給しながら電解を行ない、陽極反
応により生ずる酸を前記ガス拡散電極のガス室側に回収
することを特徴とする装置。
2. An inorganic salt and / or an organic salt is added to an intermediate chamber of a three-chamber type electrolytic cell in which the anode chamber and the intermediate chamber are partitioned by an anion exchange membrane, and the intermediate chamber and the cathode chamber are partitioned by a cation exchange membrane. In an apparatus for electrochemically recovering the salt as an acid and an alkali by supplying a solution containing the gas diffusion electrode in the anode chamber in close contact with the anion exchange membrane, and supplying hydrogen gas in the anode chamber. While conducting electrolysis, an acid generated by the anodic reaction is recovered in the gas chamber side of the gas diffusion electrode.
JP7079430A 1995-03-10 1995-03-10 Electrochemical recovering method of salts and device therefor Pending JPH08246178A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7079430A JPH08246178A (en) 1995-03-10 1995-03-10 Electrochemical recovering method of salts and device therefor
IT96RM000152A IT1284290B1 (en) 1995-03-10 1996-03-08 METHOD AND ELECTROCHEMICAL RECOVERY OF SALTS AND EQUIPMENT FOR SUCH ELECTROCHEMICAL RECOVERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7079430A JPH08246178A (en) 1995-03-10 1995-03-10 Electrochemical recovering method of salts and device therefor

Publications (1)

Publication Number Publication Date
JPH08246178A true JPH08246178A (en) 1996-09-24

Family

ID=13689669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7079430A Pending JPH08246178A (en) 1995-03-10 1995-03-10 Electrochemical recovering method of salts and device therefor

Country Status (2)

Country Link
JP (1) JPH08246178A (en)
IT (1) IT1284290B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003066A1 (en) * 1998-07-09 2000-01-20 Ppg Industries Ohio, Inc. Method of electrochemically producing epoxides
JPWO2008044499A1 (en) * 2006-10-06 2010-02-12 森 幸信 Hydrogen generator
JP2011528407A (en) * 2008-07-16 2011-11-17 カレラ コーポレイション Use of CO2 in electrochemical systems
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US9267211B2 (en) 2009-02-10 2016-02-23 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
JP2017170431A (en) * 2016-03-18 2017-09-28 株式会社東芝 Electrolytic tank and electrolyzed water producing apparatus
KR20210000073A (en) * 2019-06-24 2021-01-04 한국에너지기술연구원 Hydrogen production system using acid-base solution
CN115057505A (en) * 2022-05-31 2022-09-16 荆门市格林美新材料有限公司 Treatment device and method for washing waste liquid of ternary cathode material precursor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003066A1 (en) * 1998-07-09 2000-01-20 Ppg Industries Ohio, Inc. Method of electrochemically producing epoxides
JPWO2008044499A1 (en) * 2006-10-06 2010-02-12 森 幸信 Hydrogen generator
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
JP2011528407A (en) * 2008-07-16 2011-11-17 カレラ コーポレイション Use of CO2 in electrochemical systems
JP2014012899A (en) * 2008-07-16 2014-01-23 Calera Corp Use of carbon dioxide in electrochemical system
US9267211B2 (en) 2009-02-10 2016-02-23 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
JP2017170431A (en) * 2016-03-18 2017-09-28 株式会社東芝 Electrolytic tank and electrolyzed water producing apparatus
KR20210000073A (en) * 2019-06-24 2021-01-04 한국에너지기술연구원 Hydrogen production system using acid-base solution
CN115057505A (en) * 2022-05-31 2022-09-16 荆门市格林美新材料有限公司 Treatment device and method for washing waste liquid of ternary cathode material precursor

Also Published As

Publication number Publication date
ITRM960152A0 (en) 1996-03-08
ITRM960152A1 (en) 1997-09-08
IT1284290B1 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
EP0636051B1 (en) Apparatus comprising a water ionizing electrode and process of use of said apparatus
CA1153729A (en) Three-compartment cell with a pressurized buffer compartment
US4224121A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US4312720A (en) Electrolytic cell and process for electrolytic oxidation
US20090095636A1 (en) Electrolytic Cells and Methods for the Production of Ammonia and Hydrogen
RU2718872C2 (en) Water treatment system using device for electrolysis of aqueous solution of alkali and alkaline fuel cell
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
US3214362A (en) Electrolysis of aqueous electrolyte solutions and apparatus therefor
EP2691559B1 (en) Cell for depolarised electrodialysis of salt solutions
WO1996031637A1 (en) Methods of producing hydrogen iodide electrochemically
US5565082A (en) Brine electrolysis and electrolytic cell therefor
Lu et al. Sulfur dioxide depolarized electrolysis for hydrogen production: development status
US5089095A (en) Electrochemical process for producing chlorine dioxide from chloric acid
JPH08246178A (en) Electrochemical recovering method of salts and device therefor
CA1163957A (en) Energy efficient electrolyzer for the production of hydrogen
CN1275535A (en) Acid/alkali electrolytic separator
JP3493242B2 (en) Method and apparatus for electrochemical recovery of nitrate
EP0008232A2 (en) Oxygen electrode rejuvenation methods
EP0004191B1 (en) Chloralkali electrolytic cell and method for operating same
JP3538271B2 (en) Hydrochloric acid electrolyzer
JP3201854B2 (en) Method for electrolytic separation of salt
JPH01234585A (en) Method and device for electrolysis using gas diffusion electrode
JPH11172484A (en) Gas diffusion electrode structural body and its production
JPS63250480A (en) Improvement of method for generating ozone by electrolysis