JPH01234585A - Method and device for electrolysis using gas diffusion electrode - Google Patents

Method and device for electrolysis using gas diffusion electrode

Info

Publication number
JPH01234585A
JPH01234585A JP63057505A JP5750588A JPH01234585A JP H01234585 A JPH01234585 A JP H01234585A JP 63057505 A JP63057505 A JP 63057505A JP 5750588 A JP5750588 A JP 5750588A JP H01234585 A JPH01234585 A JP H01234585A
Authority
JP
Japan
Prior art keywords
anode
cathode
electrode
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63057505A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63057505A priority Critical patent/JPH01234585A/en
Publication of JPH01234585A publication Critical patent/JPH01234585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prevent the generation of a harmful gas from an electrolytic cell and to lower the electrolytic voltage by using a gas diffusion electrode as the anode and cathode of a diaphragm electrolytic cell, and connecting the gas chambers of the anode and cathode to chemically combine the gases generated from both electrodes. CONSTITUTION:A gas diffusion electrode is used as the anode 3 and cathode 4 of the electrolytic cell 50 of an aq. NaCl soln., and the gas chambers 5 and 5 are respectively provided behind the electrodes, and connected by a pipe 16. The inside of the cell 50 is separated by cation-exchange membranes 1 and an anion-exchange membrane 2, aq. NaCl 12 is supplied to the anode chamber 6 and a desalting chamber 8, and gaseous Cl is introduced into the gas chambers 5 and 5 and a connecting pipe 16. A current is applied to the anode 3 and cathode 4 of the cell 50, and the Cl<-> ion in the anode chamber 6 is oxidized to Cl by the anode 3, discharged into the gas chamber 5, introduced into gas chamber 5 of the cathode chamber 4 through the connecting pipe 16, and reduced to Cl<-> by the cathode 4. The Cl<-> ion chemically combines with the Na<+> ion permeated through the cation-exchange membrane 1 to form NaCl. The cathode chamber 7 acts as a concentration chamber, hence gaseous Cl and H2 are not generated, the electrolytic voltage is lowered, and the consumption of electric power is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解プロセスの方法及び装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to methods and apparatus for electrolytic processes.

[従来の技術] 従来、イオン交換膜を隔膜として電解を行なうイオン交
換膜プロセスがある。例えば、陽極と陰極の間に陰イオ
ン交換膜と陽イオン交換膜を交互に配し、通電すること
で食塩水を濃縮する電気透析、あるいは陽極液と陰極液
を陰イオン交換膜で分離し、陰極液とし・た廃酸から陽
極液に硫酸等を回収する電解プロセスがある。
[Prior Art] Conventionally, there is an ion exchange membrane process in which electrolysis is performed using an ion exchange membrane as a diaphragm. For example, electrodialysis, in which anion exchange membranes and cation exchange membranes are arranged alternately between the anode and cathode and the saline is concentrated by applying electricity, or an anion exchange membrane is used to separate the anolyte and catholyte. There is an electrolytic process that recovers sulfuric acid, etc. from the waste acid used as the catholyte to the anolyte.

[発明が解決しようとする問題点コ ところで、これらの電解プロセスでは通電するための電
極から力゛ス発生が伴う。例えば、食塩水を電気透析し
て濃厚潅水とする場合には陽極で塩素、陰極で水素が発
生する。電解法による酸回収において硫酸の場合では陽
極で酸素、陰極で水素が発生する。発生塩素は大気に放
出すると有毒、腐食性が強く処理が厄介で危険性も高い
。叉、発生酸素、水素は通常大気に放出され、利用価値
のないものである。さらに水素は爆発の危険もある。
[Problems to be Solved by the Invention] Incidentally, these electrolytic processes involve the generation of force from the electrodes for conducting electricity. For example, when saline is electrodialyzed to produce concentrated irrigation, chlorine is generated at the anode and hydrogen is generated at the cathode. In the case of sulfuric acid, oxygen is generated at the anode and hydrogen is generated at the cathode during acid recovery using the electrolytic method. When the generated chlorine is released into the atmosphere, it is highly toxic, corrosive, difficult to dispose of, and highly dangerous. However, the generated oxygen and hydrogen are normally released into the atmosphere and have no utility value. Furthermore, hydrogen is also at risk of explosion.

塩素又は酸素と水素を発生させるためには数Vの電解電
圧が必要であり、この発生気体が利用されない場合は無
駄にエネルギーが消費されたことになり電解プロセスの
運転コストの高い原因にもなっている。
An electrolytic voltage of several volts is required to generate chlorine or oxygen and hydrogen, and if this generated gas is not used, energy is wasted, which also causes high operating costs for the electrolytic process. ing.

[発明の目的コ 本発明の目的はイオン交換膜等を用いた電解プロセスに
おいて電解槽外に不用な気体を放出せず、無公害、しか
も省エネルギー、高能率、さらに装置を小型化でき、作
業性の良い電解方法及び装置を提供することを目的とす
るものである。
[Purpose of the Invention] The purpose of the present invention is to eliminate unnecessary gases from being released outside the electrolytic cell in an electrolytic process using an ion exchange membrane, etc., to achieve non-pollution, energy saving, high efficiency, miniaturization of the device, and ease of work. The purpose is to provide a good electrolysis method and device.

[問題点を解決するための手段] イオン交換膜を有する電解装置においてガス拡せ散電極
を陰極と陽極に配し、一方の電極で発生した気体を他方
の電極で酸化または還元消費するようにした。また、陰
極でガス発生を伴わない電解装置において陽極をガス拡
散電極とし、水素を陽極に供給するように構成した。
[Means for solving the problem] In an electrolysis device having an ion exchange membrane, gas diffusion electrodes are arranged at the cathode and anode, and the gas generated at one electrode is oxidized or reduced and consumed at the other electrode. did. Furthermore, in an electrolytic device that does not involve gas generation at the cathode, the anode is used as a gas diffusion electrode, and hydrogen is supplied to the anode.

[作用] イオン交換膜を有する電解装置において上記の如く構成
したのでガス拡散電極が気体発生を伴う場合、例えは、
水素が発生する陰極とすると通常の板状電極では電解液
中に気泡が発生するがガス拡散電極では気体は電解液側
に気泡として発生せず電極背面から取り出すことが出来
る。この水素をガス拡散電極から成る他方の陽極で酸化
消費することで発生ガスが電解槽内で処理され系外に出
ることがなくなった。結果的に陰極室の水素イオンが陽
極室に移動したことになる。
[Function] Since the electrolyzer having an ion exchange membrane is configured as described above, when the gas diffusion electrode is accompanied by gas generation, for example,
When using a cathode that generates hydrogen, bubbles are generated in the electrolyte with a normal plate electrode, but with a gas diffusion electrode, gas can be taken out from the back of the electrode without being generated as bubbles on the electrolyte side. By oxidizing and consuming this hydrogen at the other anode consisting of a gas diffusion electrode, the generated gas is treated within the electrolytic cell and does not exit the system. As a result, hydrogen ions in the cathode chamber moved to the anode chamber.

また、塩素が発生する陽極とすると通常の板状電極では
電解液中に塩素気泡が発生するがガス拡散電極では電極
背面から取り出すことが出来、この塩素をガス拡散電極
から成る他方の陰極で還元消費することで塩素ガスが電
解槽内で処理され系外ここ出ることがなくなった。その
結果、陽極室の塩素イオンが陰極室に移動したことにな
る。本発明の反応層を有するガス拡散電極を用いれば膜
状に成っているので水素イオン、塩素イオンを容易に移
動できる。
In addition, when using an anode that generates chlorine, chlorine bubbles are generated in the electrolyte with a normal plate electrode, but with a gas diffusion electrode, the chlorine can be extracted from the back of the electrode, and this chlorine is reduced at the other cathode, which is a gas diffusion electrode. By consuming the chlorine gas, it is processed in the electrolytic cell and no longer leaves the system. As a result, chlorine ions in the anode chamber moved to the cathode chamber. If a gas diffusion electrode having a reaction layer according to the present invention is used, hydrogen ions and chloride ions can be easily moved because it is in the form of a membrane.

陰極からガス発生を伴わない電解装置においては水素を
陽極のガス拡散電極に供給し酸化させるので、塩素又は
酸素ガスが生成しないようになった。このため有毒、腐
食性が強く処理が厄介で危険性も高い塩素が発生しなく
なった。その結果、装置の腐食が少なくなり、電極の寿
命は酸化雰囲気におかれなでため長くなった。叉、酸素
、水素も通常大気に放出されなくなり爆発の危険もなく
なった。電解液中に気泡が放出されないのでバブルエフ
ェクトがなくなり過電圧の減少、極間距離の減少による
低過電圧化が可能となった。極間距離の減少によりコン
パクトな装置となる。塩素または酸素の発生ここ必要で
あった電圧分が削減された結果、2から3■の浴電圧が
低下しその分消費電力が減少した。塩素又は酸素と水素
を発生させるための電圧が不用になった結果、省エネル
ギーの電解装置となった。
In electrolyzers that do not involve gas generation from the cathode, hydrogen is supplied to the anode gas diffusion electrode and oxidized, so chlorine or oxygen gas is not generated. As a result, chlorine, which is highly toxic, corrosive, difficult to dispose of, and highly dangerous, is no longer generated. As a result, corrosion of the device was reduced and the life of the electrodes was extended because they were exposed to an oxidizing atmosphere. Additionally, oxygen and hydrogen are no longer released into the atmosphere and there is no danger of explosion. Since no bubbles are released into the electrolyte, the bubble effect is eliminated, reducing overvoltage and reducing the distance between electrodes, making it possible to lower overvoltage. The reduced distance between poles makes the device more compact. As a result of the reduction in the voltage required for the generation of chlorine or oxygen, the bath voltage was reduced by 2 to 3 μm, and power consumption was reduced accordingly. This eliminates the need for voltage to generate chlorine or oxygen and hydrogen, resulting in an energy-saving electrolyzer.

[実施例1コ イオン交換膜電解プロセスの例として広く知られている
従来の電気透析装置では第1図に示すように陰、陽イオ
ン交換膜2.1ではさまれた脱塩室8にNaCl 12
を供給し、電解するとNa”、Cトイオンはそれぞれ陰
、陽イオン交換膜2.1を透過し濃縮室9で濃縮され、
陰極4では水素が陽極3では塩素が発生し、陰極室7か
ら水素15が、陽極室6から塩素17が排出される。こ
のとき陰極室では力性ソータ゛が生成する。塩素とNa
OHが不用な場合にはこのプロセスは不向きである。
[Example 1] In a conventional electrodialysis apparatus which is widely known as an example of the coin ion exchange membrane electrolysis process, as shown in FIG.
When the Na and C ions are supplied and electrolyzed, they pass through the anion and cation exchange membranes 2.1, respectively, and are concentrated in the concentration chamber 9.
Hydrogen is generated at the cathode 4 and chlorine is generated at the anode 3, and hydrogen 15 is discharged from the cathode chamber 7 and chlorine 17 is discharged from the anode chamber 6. At this time, a force sorter is generated in the cathode chamber. Chlorine and Na
This process is unsuitable if OH is not required.

本発明を適用した電解装置を第2図によって説明すると
、50は縦120mm、横120mm、奥行き70mm
の電解槽、lは陽イオン交換膜、2は陰イオン交換膜、
3と4は120mm角のガス拡散電極から成る陽極と陰
極、陽極と陰極の気室は接続管16で接続されている。
The electrolytic device to which the present invention is applied is explained with reference to FIG. 2. 50 is 120 mm long, 120 mm wide, and 70 mm deep.
electrolytic cell, l is a cation exchange membrane, 2 is an anion exchange membrane,
The anodes and cathodes 3 and 4 are composed of 120 mm square gas diffusion electrodes, and the air chambers of the anode and cathode are connected by a connecting tube 16.

次に上記構成の電解装置を用いる本発明の電気透析装置
の電解方法を説明する。 陽極室6と脱塩室8にはNa
Cl水が供給される。気室、接続管に前もって塩素ガス
な満たし、電極に通電すると陽極室60C1−イオンは
陽極3で塩素に酸化され気室5に塩素ガスとして放出さ
れ、接続管16を通り陰極の気室5に移動し陰極で再び
CI−イオンになる。  このC1−イオンと陽イオン
交換膜を透過したNa”イオンとでNaClとなる。 
このように本方式では陰極室7も濃縮室として働き、塩
素、水素が発生することが無かった。本発明の装置では
塩素発生と塩素還元を行なうため反応をさせるのに必要
な摺電圧が1.2Vと著しく低下した。本実施例では単
一の電解槽の陽極気室と陰極気室とを接続したが複数の
電解槽の陽極気室と陰極気室を接続してもよいことは言
うまでもない。
Next, an electrolysis method for the electrodialysis apparatus of the present invention using the electrolysis apparatus having the above-mentioned configuration will be explained. Na in the anode chamber 6 and demineralization chamber 8
Cl water is supplied. The air chamber and connecting tube are filled with chlorine gas in advance, and when the electrode is energized, the anode chamber 60C1- ions are oxidized to chlorine at the anode 3 and released as chlorine gas into the air chamber 5, passing through the connecting tube 16 to the cathode air chamber 5. They move and become CI- ions again at the cathode. This C1- ion and the Na'' ion that has passed through the cation exchange membrane become NaCl.
In this way, in this method, the cathode chamber 7 also functioned as a concentration chamber, and no chlorine or hydrogen was generated. In the apparatus of the present invention, since chlorine generation and chlorine reduction are performed, the sliding voltage required for the reaction was significantly lowered to 1.2V. In this embodiment, the anode air chamber and the cathode air chamber of a single electrolytic cell were connected, but it goes without saying that the anode air chamber and the cathode air chamber of a plurality of electrolytic cells may be connected.

[実施例2] NaCl水から塩酸と力性曹達への分離に適用した電解
槽の構成を第3図に示す。
[Example 2] Fig. 3 shows the configuration of an electrolytic cell applied to the separation of NaCl water into hydrochloric acid and sodium chloride.

脱塩室8にNaCl水、陽極室6に希塩酸、陰極室7に
希NaOH水をいれ、陰極と陽極の気室5接続管16に
水素を充填しておき通電すると陰極で水素が発生し、陰
極の気室、接続管16を通り陽極の気室から陽極のガス
拡散電極に供給され酸化して再び■゛付ンなる。陰極室
ではこの■゛イオン陰イオン交換膜を透過してきたC1
−イオンとで塩酸が生成する。陽極室では陽イオン交換
膜を透過したNa”イオンとは陰極で水素が発生したこ
とで生成したOH−イオンとでNaOHが生成される。
Put NaCl water in the demineralization chamber 8, dilute hydrochloric acid in the anode chamber 6, and dilute NaOH water in the cathode chamber 7, and fill the air chamber 5 connecting tube 16 between the cathode and anode with hydrogen. When electricity is applied, hydrogen is generated at the cathode. It passes through the air chamber of the cathode and the connecting tube 16, and is supplied from the air chamber of the anode to the gas diffusion electrode of the anode, where it is oxidized and attached again. In the cathode chamber, C1 that has passed through the ion-anion exchange membrane
- Hydrochloric acid is produced with ions. In the anode chamber, Na'' ions that have passed through the cation exchange membrane are combined with OH- ions generated by hydrogen generation at the cathode to generate NaOH.

塩素ガスが発生せず塩酸と力性ソーダが製造できた。Hydrochloric acid and hydrochloric soda could be produced without generating chlorine gas.

他の塩の酸/アルカリへの分離に同様に適用できる。各
産業から排出される塩廃液の量は莫大なものである。塩
廃液を酸とアルカリに分離して再利用することは、環境
上あるいは経済上の価値の有ることである。
It is similarly applicable to the separation of other salts into acids/alkali. The amount of salt waste discharged from various industries is enormous. Separating salt waste into acid and alkali and reusing it has environmental and economic value.

[実施例3コ 電解法による酸回収に適用した場合を第4図に示す。耐
酸性に優れたフッ素系陽イオン交換膜2と二枚のガス拡
散電極3.4を使用し、接続管16を上下に付は上部接
続管にはシリカゲルを充填した乾燥管を、下部接続管に
は循環ポンプ21を付加し、水素を乾燥しながら循環す
る。また水素補給装置から漏れた水素は補給されるよう
にした。陰極液7に廃酸として1止の硫酸をいれて電解
すると陽極液6に、電流効率約50%で40%濃度の硫
酸を回収できた。塩酸、硫酸、硝酸、フッ酸、リン酸、
クロム酸等の酸回収が可能である。
[Example 3 A case in which this method is applied to acid recovery by co-electrolysis method is shown in FIG. 4. A fluorine-based cation exchange membrane 2 with excellent acid resistance and two gas diffusion electrodes 3.4 are used, and connecting tubes 16 are attached above and below.The upper connecting tube is a drying tube filled with silica gel, and the lower connecting tube is a drying tube filled with silica gel. A circulation pump 21 is added to circulate the hydrogen while drying it. Additionally, hydrogen that leaked from the hydrogen replenishment device was refilled. When one drop of sulfuric acid was added as a waste acid to the catholyte 7 and electrolyzed, 40% concentration of sulfuric acid could be recovered in the anolyte 6 with a current efficiency of about 50%. Hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, phosphoric acid,
It is possible to recover acids such as chromic acid.

同様に耐酸性に優れたフッ素系カチオン交換膜と二枚の
ガス拡散電極を使用し、陰極液に廃アルカリをいれて電
解すると陰極液に、高電流効率で高濃度のアルカリを回
収できる。
Similarly, by using a fluorine-based cation exchange membrane with excellent acid resistance and two gas diffusion electrodes, and by adding waste alkali to the catholyte and electrolyzing it, a high concentration of alkali can be recovered into the catholyte with high current efficiency.

[実施例4] 貴金属処理に適用した場合を第5図に示す。ガス拡散電
極から成る陽極3と陰イオン交換膜2、白金板24で電
解槽を構成し、陽極液6に希塩M25、陰極液に150
ppmの白金イオンを含む塩酸溶液26を、供給口から
水素ガスを供給し電解を行なった。その結果、I 、5
mA/ dm2で25時間電解したところPtは97%
析出し、その電流効率は40%であった。また、陰極で
は塩素が発生せず塩酸の濃度が増加した。
[Example 4] Fig. 5 shows a case where the present invention is applied to precious metal processing. An electrolytic cell is constituted by an anode 3 consisting of a gas diffusion electrode, an anion exchange membrane 2, and a platinum plate 24. The anolyte 6 contains a dilute salt M25, and the catholyte contains a dilute salt M25.
Hydrochloric acid solution 26 containing ppm of platinum ions was electrolyzed by supplying hydrogen gas from the supply port. As a result, I,5
When electrolyzed at mA/dm2 for 25 hours, Pt was 97%
The current efficiency was 40%. Furthermore, no chlorine was generated at the cathode, and the concentration of hydrochloric acid increased.

以上の例では陰極と陽極のガス拡散電極が電解槽の両端
に分離されていたが第6図のようにガス拡散電極の反応
層を外側にむけ対象に配置してもよい。さらに第7図の
ようにガス拡散層を中心に両面に一体接合した物であっ
てもよい。
In the above example, the cathode and anode gas diffusion electrodes were separated at both ends of the electrolytic cell, but they may be arranged symmetrically with the reaction layers of the gas diffusion electrodes facing outward as shown in FIG. Furthermore, as shown in FIG. 7, it may be integrally joined on both sides with the gas diffusion layer at the center.

この電極は疎水性カーボン微粒子としてアセチレンブラ
ックとポリテトラフロロエチレンディスバージョンとの
混合物をソルベントナフサと共にロール機でシートとし
たものに、親水性カーボンブラック、疎水性カーボンブ
ラック及びポリテトラフロロエチレンディスバージョン
との混合物をソルベントナフサと共にシートとした二枚
を両側に重ね1mm程度にし、280℃で2時間加熱処
理、380℃で600kg/cn+2でホットプレスし
た後、反応層に白金を担持する事で得られる。
This electrode is made by forming a sheet of a mixture of acetylene black and polytetrafluoroethylene disversion as hydrophobic carbon particles together with solvent naphtha on a roll machine. It is obtained by stacking two sheets of the mixture together with solvent naphtha on both sides to a thickness of about 1 mm, heat-treating at 280°C for 2 hours, hot-pressing at 380°C at 600kg/cn+2, and supporting platinum on the reaction layer. .

これらの電極は塩素イオン、水素イオンのイオン交換膜
として使用できる。
These electrodes can be used as ion exchange membranes for chloride ions and hydrogen ions.

以上の実施例以外に貴金属イオンのような複数の酸化状
態を取る多価金属イオンについては、触媒等の用途にお
いてはある一定の価数で存在することが必要である。こ
のような価数交換制御法、=10− さらに電解イオン置換法等にも本発明が適用できる。
In addition to the above embodiments, polyvalent metal ions that take multiple oxidation states, such as noble metal ions, are required to exist at a certain valence in applications such as catalysts. The present invention can also be applied to such a valence exchange control method, =10-, and an electrolytic ion replacement method.

[発明の効果コ 以上の説明で判るように本発明によればイオン交換膜プ
ロセス等の電解装置においてガス拡散電極を一方の電極
とすると発生気体は電解液側に気泡として発生せず電極
背面から取り出すことが出来る。この気体をガス拡散電
極から成る他方の電極に導きは消費することで一方の電
極室から他方の電極室にイオンを移動させることができ
る。すなわち、イオン交換膜の代わりに使用できる。そ
の結果、塩素ガス又は酸素ガス等が陽極から、水素ガス
が陰極から発生しなくなった。陰極からガス発生を伴わ
ない電解装置においては水素を陽極のガス拡散電極に供
給し酸化させるので、塩素又は酸素ガスが生成しないよ
うになった。このため有毒、腐食性が強く処理が厄介で
危険性も高い塩素が発生しなくなった。叉、酸素、水素
も通常大気に放出されなくなり爆発の危険もなくなった
。塩素又は酸素と水素を発生させるための電圧が不用に
なり省エネルギーの電解装置となった。電解液中に気泡
が放出されないのでバブルエフェクトがなくなり過電圧
の減少、極間距離の減少による低過電圧化が可能となっ
た。低公害、省エネルギー、コンパクトな電解装置とす
ることができる。
[Effects of the Invention] As can be seen from the above explanation, according to the present invention, when the gas diffusion electrode is used as one electrode in an electrolysis device such as an ion exchange membrane process, the generated gas is not generated as bubbles on the electrolytic solution side but from the back of the electrode. It can be taken out. This gas is introduced into the other electrode, which is a gas diffusion electrode, and is consumed to move ions from one electrode chamber to the other. That is, it can be used in place of an ion exchange membrane. As a result, chlorine gas, oxygen gas, etc. were no longer generated from the anode, and hydrogen gas was no longer generated from the cathode. In electrolyzers that do not involve gas generation from the cathode, hydrogen is supplied to the anode gas diffusion electrode and oxidized, so chlorine or oxygen gas is not generated. As a result, chlorine, which is highly toxic, corrosive, difficult to dispose of, and highly dangerous, is no longer generated. Additionally, oxygen and hydrogen are no longer released into the atmosphere and there is no danger of explosion. This eliminates the need for voltage to generate chlorine or oxygen and hydrogen, resulting in an energy-saving electrolyzer. Since no bubbles are released into the electrolyte, the bubble effect is eliminated, reducing overvoltage and reducing the distance between electrodes, making it possible to lower overvoltage. It can be a low-pollution, energy-saving, and compact electrolyzer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電解透析装置の構成図。第2図は本発明
を電解透析装置に適用した構成図。第3図は塩の酸/ア
ルカリの分離装置を構成した図。 第4図は硫酸の濃縮装置を構成した図。第5図は白金の
回収装置を構成した図を示す。第6図はガス拡散電極を
二枚合わせた図。第7図はガス拡散層の両面に反応層が
接合された電極を示す図。
FIG. 1 is a configuration diagram of a conventional electrolytic dialysis apparatus. FIG. 2 is a configuration diagram in which the present invention is applied to an electrolytic dialysis device. FIG. 3 is a diagram illustrating the configuration of a salt acid/alkali separation device. FIG. 4 is a diagram showing the configuration of a sulfuric acid concentrator. FIG. 5 shows a configuration of a platinum recovery device. Figure 6 is a diagram of two gas diffusion electrodes put together. FIG. 7 is a diagram showing an electrode in which reaction layers are bonded to both sides of a gas diffusion layer.

Claims (5)

【特許請求の範囲】[Claims] (1)、電解プロセスにおいて陰極及び陽極がガス拡散
電極とから成り、一方の電極で電極反応で発生した気体
を他方の電極で電極反応で消費させ、一方の電極室から
他方の電極室にイオンを移動させることを特徴とする電
解方法。
(1) In the electrolytic process, the cathode and anode consist of a gas diffusion electrode, and the gas generated by the electrode reaction at one electrode is consumed by the electrode reaction at the other electrode, and ions are transferred from one electrode chamber to the other electrode chamber. An electrolytic method characterized by moving.
(2)、電解プロセスにおいて陰極と陽極のガス拡散電
極の気室どうしを密閉接続し、一方の電極で発生した気
体を、他方の電極に導くようにしたことを特徴とする電
解装置。
(2) An electrolytic device characterized in that the air chambers of the cathode and anode gas diffusion electrodes are hermetically connected to each other in the electrolytic process, so that gas generated at one electrode is guided to the other electrode.
(3)、疎水性カーボン微粒子とポリテトラフロロエチ
レン等の弗素樹脂とから成るガス拡散膜の両面に親水性
カーボン微粒子、触媒、疎水性カーボン微粒子及び弗素
樹脂とからなる膜が接合されてなることを特徴とする特
許請求の範囲2に示した電解装置用電極。
(3) A membrane made of hydrophilic carbon particles, a catalyst, hydrophobic carbon particles, and a fluororesin is bonded to both sides of a gas diffusion membrane made of hydrophobic carbon particles and a fluororesin such as polytetrafluoroethylene. An electrode for an electrolytic device according to claim 2, characterized in that:
(4)、イオン交換膜と陽極がガス拡散電極とから成る
電解装置において水素を陽極に供給し酸化生成物を生成
しないようにしたことを特徴とする電解方法。
(4) An electrolytic method characterized in that hydrogen is supplied to the anode in an electrolyzer comprising an ion exchange membrane and a gas diffusion electrode as the anode so that oxidation products are not produced.
(5)、イオン交換膜と陽極がガス拡散電極とから成る
電解装置において水素の供給口と排出口とを有すること
を特徴とする電解装置。
(5) An electrolytic device comprising an ion exchange membrane, an anode, and a gas diffusion electrode, characterized in that the electrolytic device has a hydrogen supply port and a hydrogen discharge port.
JP63057505A 1988-03-11 1988-03-11 Method and device for electrolysis using gas diffusion electrode Pending JPH01234585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63057505A JPH01234585A (en) 1988-03-11 1988-03-11 Method and device for electrolysis using gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63057505A JPH01234585A (en) 1988-03-11 1988-03-11 Method and device for electrolysis using gas diffusion electrode

Publications (1)

Publication Number Publication Date
JPH01234585A true JPH01234585A (en) 1989-09-19

Family

ID=13057588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63057505A Pending JPH01234585A (en) 1988-03-11 1988-03-11 Method and device for electrolysis using gas diffusion electrode

Country Status (1)

Country Link
JP (1) JPH01234585A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004383A1 (en) * 1999-07-09 2001-01-18 Toagosei Co., Ltd. Method for electrolysis of alkali chloride
JP2009544032A (en) * 2006-07-19 2009-12-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus for analyzing a sample including gas deployment means
JP2011528407A (en) * 2008-07-16 2011-11-17 カレラ コーポレイション Use of CO2 in electrochemical systems
JP2015528855A (en) * 2012-06-27 2015-10-01 コーニンクレッカ フィリップス エヌ ヴェ Apparatus and method for generating bubbles and bubbles
US11090606B2 (en) 2013-12-05 2021-08-17 Dionex Corporation Gas-less electrolytic device and method
KR102656514B1 (en) * 2024-02-29 2024-04-11 한국화학연구원 An electrochemical method capable of processing alkali metal sulfate and simultaneously producing hydrogen, sulfuric acid, alkali metal hydroxide, and high value-added compounds within an electrodialysis stack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004383A1 (en) * 1999-07-09 2001-01-18 Toagosei Co., Ltd. Method for electrolysis of alkali chloride
US6488833B1 (en) 1999-07-09 2002-12-03 Toagosei Co., Ltd. Method for electrolysis of alkali chloride
JP2009544032A (en) * 2006-07-19 2009-12-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus for analyzing a sample including gas deployment means
JP2011528407A (en) * 2008-07-16 2011-11-17 カレラ コーポレイション Use of CO2 in electrochemical systems
JP2015528855A (en) * 2012-06-27 2015-10-01 コーニンクレッカ フィリップス エヌ ヴェ Apparatus and method for generating bubbles and bubbles
US11090606B2 (en) 2013-12-05 2021-08-17 Dionex Corporation Gas-less electrolytic device and method
KR102656514B1 (en) * 2024-02-29 2024-04-11 한국화학연구원 An electrochemical method capable of processing alkali metal sulfate and simultaneously producing hydrogen, sulfuric acid, alkali metal hydroxide, and high value-added compounds within an electrodialysis stack

Similar Documents

Publication Publication Date Title
EP0730675B1 (en) Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane
KR102274666B1 (en) Electrolytic enrichment method for heavy water
US4561945A (en) Electrolysis of alkali metal salts with hydrogen depolarized anodes
US5041196A (en) Electrochemical method for producing chlorine dioxide solutions
US5160416A (en) Process for the production of perchloric acid
US5358609A (en) Electrolytic production of hydrogen peroxide using bipolar membranes
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
US5437771A (en) Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide
CA2649873A1 (en) Method, apparatus and plant for desalinating saltwater using concentration difference energy
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
US4057474A (en) Electrolytic production of alkali metal hydroxide
JPH01142093A (en) Electrolysis method
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
US4647351A (en) Process for generating chlorine and caustic soda using a membrane electrolysis cell coupled to a membrane alkaline fuel cell
US5089095A (en) Electrochemical process for producing chlorine dioxide from chloric acid
US4305793A (en) Method of concentrating alkali metal hydroxide in hybrid cells having cation selective membranes
JP3421021B2 (en) Electrolysis method of alkali chloride
JPH01234585A (en) Method and device for electrolysis using gas diffusion electrode
JPH10291808A (en) Production method of aqueous hydrogen peroxide and device therefor
EP3161185B1 (en) Narrow gap, undivided electrolysis cell
US4725341A (en) Process for performing HCl-membrane electrolysis
JPH07171353A (en) Electric dialysis
JPH08246178A (en) Electrochemical recovering method of salts and device therefor
CA1155792A (en) Air-depolarized chlor-alkali cell operation methods
JP3645636B2 (en) 3-chamber electrolytic cell