JP3420790B2 - Electrolyzer and electrolysis method for alkali chloride electrolysis - Google Patents

Electrolyzer and electrolysis method for alkali chloride electrolysis

Info

Publication number
JP3420790B2
JP3420790B2 JP06268493A JP6268493A JP3420790B2 JP 3420790 B2 JP3420790 B2 JP 3420790B2 JP 06268493 A JP06268493 A JP 06268493A JP 6268493 A JP6268493 A JP 6268493A JP 3420790 B2 JP3420790 B2 JP 3420790B2
Authority
JP
Japan
Prior art keywords
gas
chamber
cathode
exchange membrane
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06268493A
Other languages
Japanese (ja)
Other versions
JPH06248483A (en
Inventor
孝之 島宗
保夫 中島
秀司 中松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP06268493A priority Critical patent/JP3420790B2/en
Priority to AT94830041T priority patent/ATE179765T1/en
Priority to DE69418239T priority patent/DE69418239T2/en
Priority to EP94830041A priority patent/EP0612864B1/en
Priority to ES94830041T priority patent/ES2132364T3/en
Priority to US08/196,442 priority patent/US5437771A/en
Publication of JPH06248483A publication Critical patent/JPH06248483A/en
Application granted granted Critical
Publication of JP3420790B2 publication Critical patent/JP3420790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高効率で塩化アルカリ
水溶液を電解して水酸化アルカリを製造する方法に関
し、より詳細には大規模な工業的に塩化アルカリ電解を
行うための低電力消費型電解槽及び電解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrolyzing an aqueous solution of alkali chloride with high efficiency to produce an alkali hydroxide, and more particularly, to low power consumption for industrial large-scale alkali chloride electrolysis. Type electrolytic cell and electrolysis method.

【0002】[0002]

【従来技術とその問題点】塩化アルカリ水溶液特に食塩
水から水酸化ナトリウム等と塩素を電解的に製造するい
わゆるソーダ電解は工業電解の主体をなすもので主生成
物である前記水酸化ナトリウム等と塩素を製品として使
用できる有用な電解であり、その製法や電解槽に関する
多くの改良が行われてきた。現在の最も進んだ工業的方
法はいわゆるイオン交換膜法であり、過電圧が数十mV
と低い不溶性陽極及び過電圧が100 mV前後である活性
化陰極を使用し、しかもその間に挟まれるイオン交換膜
の電気抵抗低下の改良もあって、その電解電圧は実用領
域において理論分解電圧2.2 〜2.4 Vに対して約3Vと
不可避なオーム損を除くとこれ以上の省エネルギーを望
むことが殆ど不可能な段階に達している。
2. Description of the Related Art So-called soda electrolysis for electrolytically producing sodium hydroxide and chlorine from an aqueous solution of alkali chloride, particularly saline, is the main component of industrial electrolysis and is the main product, sodium hydroxide. It is a useful electrolysis that can use chlorine as a product, and many improvements have been made regarding its production method and electrolytic cell. The most advanced industrial method at present is the so-called ion exchange membrane method, which has an overvoltage of several tens of mV.
In addition, a low insoluble anode and an activated cathode with an overvoltage of about 100 mV are used, and the electrolysis voltage of the ion-exchange membrane sandwiched between them is improved. It has reached a stage where it is almost impossible to desire further energy saving except the unavoidable ohmic loss of about 3V against V.

【0003】一方製品である塩素ガスと水酸化アルカリ
は100 %使用されるが、全反応式 2NaCl + H2 O → 2NaOH + Cl2 + H2 で示される物質のうち水素ガスは一部使用されているが
十分活用されていないのが現状であり今後も活用されな
いと予測されている。理論分解電圧の面から見ると水素
発生に伴う電圧が約0.83Vであり、水素発生を伴わない
ようにすると前記電圧分の電力消費を減少させることが
可能になる。このために開発された手段が酸素ガス減極
電極(ガス陰極)であり、酸素ガスを陰極に供給するこ
とにより陰極反応を従来の H2 O + e → OH- + 1/2 H2 (−0.83V)から H2 O + 2e + 1/2 O2 → 2OH- (0.40V) の反応に代えることにより水素発生がなくしかも理論的
には約1.2 Vに相当する電力消費節減が可能な電解シス
テムを提供することが可能になる。
On the other hand, the product chlorine gas and alkali hydroxide are used 100%, but hydrogen gas is partially used among the substances represented by the total reaction formula 2NaCl + H 2 O → 2NaOH + Cl 2 + H 2. However, it is currently underutilized and it is predicted that it will not be utilized in the future. From the viewpoint of theoretical decomposition voltage, the voltage associated with hydrogen generation is about 0.83 V, and if hydrogen generation is not involved, it is possible to reduce the power consumption corresponding to the voltage. A means developed for this purpose is an oxygen gas depolarizing electrode (gas cathode), and by supplying oxygen gas to the cathode, the cathodic reaction can be carried out by conventional H 2 O + e → OH + 1/2 H 2 (− 0.83 V) from the H 2 O + 2e + 1/2 O 2 → 2OH - ( be substituted in the reaction power consumption savings that can electrolyte which corresponds to approximately 1.2 V in addition theoretically no hydrogen generated by the 0.40 V) It becomes possible to provide the system.

【0004】このガス陰極自体は周知であり(例えば特
公平2−29757 号公報、特開昭59−25179 号公報)、こ
れらはいずれも約0.8 〜1Vの電圧低下を達成してい
る。前記ガス電極は片面に疎水性多孔層を設け、他面又
は該疎水層上に電解触媒を担持した親水層を設けて成
り、主として導電性炭素表面に白金を担持して製造され
る。しかしこれらの電極は電解初期には良好な性能を示
すものの触媒自体が濃厚水酸化アルカリに直接触れ、そ
の中で電気化学反応が行われるため、触媒の耐性が不充
分で短期間で触媒活性を失ってしまうという問題点があ
り、更に気液が相互にリークしない大面積のガス電極を
作製することは極めて困難であり工業的規模の電解用と
して実用化されたガス電極は存在しない。更にこのガス
電極ではガスとして空気を使用すると空気中の二酸化炭
素が電解室で水酸化アルカリと反応して炭酸ナトリウム
に変換されて膜の目詰まりを生じさせ使用不能になるこ
とを回避するため、使用ガス中の二酸化炭素除去が大き
な問題となっている。
This gas cathode itself is well known (for example, Japanese Examined Patent Publication No. 2-29757 and Japanese Patent Laid-Open No. 59-25179), and all of them achieve a voltage drop of about 0.8 to 1V. The gas electrode has a hydrophobic porous layer on one surface and a hydrophilic layer carrying an electrocatalyst on the other surface or on the hydrophobic layer, and is mainly manufactured by carrying platinum on a conductive carbon surface. However, although these electrodes show good performance in the initial stage of electrolysis, the catalyst itself comes into direct contact with concentrated alkali hydroxide, and the electrochemical reaction takes place in it, so that the resistance of the catalyst is insufficient and the catalyst activity is short-term. However, it is extremely difficult to produce a large-area gas electrode in which gas and liquid do not leak to each other, and no gas electrode has been put into practical use for industrial-scale electrolysis. Furthermore, when air is used as the gas in this gas electrode, carbon dioxide in the air reacts with alkali hydroxide in the electrolytic chamber and is converted into sodium carbonate to prevent clogging of the membrane and prevent it from becoming unusable. Removal of carbon dioxide in the used gas is a big problem.

【0005】又ガス電極の前にイオン交換膜を設け、ガ
ス電極から電解液室にH+ (陽極)及びOH- (陰極)
を供給することが提案され、この提案はガス電極の大型
化に有利なように思えるが、具体的な使用条件等が不明
であり、依然として実用化には至っていない。このよう
に塩化アルカリ電解用としてガス電極を使用する省エネ
ルギー化については、実用化の予測はある程度立ってい
るが、実現のための手段、ガス電極の長寿命化等の具体
的手法については依然として見出されていない。
[0005] The ion exchange membrane before the gas electrode is provided, H + (anode) in the electrolyte chamber from the gas electrode and OH - (cathode)
Is proposed, and this proposal seems to be advantageous for increasing the size of the gas electrode, but the specific conditions of use are unknown, and it has not yet been put into practical use. As for energy saving by using gas electrodes for alkaline chloride electrolysis, there are some predictions for practical use, but concrete means such as means for realization and longer life of gas electrodes are still unseen. It has not been issued.

【0006】[0006]

【発明の目的】本発明は、ガス陰極を使用する塩化アル
カリ電解槽及び電解方法、特に前記ガス陰極の電極性能
を長期間良好に維持しながらかつ大型化が可能な塩化ア
ルカリ電解槽及び該電解槽を使用する塩化アルカリ電解
方法を提供することを目的とする。
An object of the present invention is to provide an alkaline chloride electrolytic cell using a gas cathode and an electrolyzing method, and more particularly to an alkaline chloride electrolytic cell capable of maintaining a good electrode performance of the gas cathode for a long time and increasing in size, and the electrolytic method. An object is to provide an alkali chloride electrolysis method using a bath.

【0007】[0007]

【問題点を解決するための手段】本発明に係わる塩化ア
ルカリ電解槽は、陽イオン交換膜により陽極を収容する
陽極室とガス陰極を収容する陰極室とに区画され、更に
該陰極室が陰イオン交換膜により前記陽極室と接する溶
液室と前記ガス陰極を収容するガス室とに区画されたこ
とを特徴とする塩化アルカリ電解用電解槽であり、本発
明方法はこのような構成から成る電解槽の陽極室に塩化
アルカリ水溶液を、ガス室に前記酸素含有ガスを供給し
ながら前記塩化アルカリ水溶液の電解を行い、前記溶液
室で水酸化アルカリを生成することを特徴とする塩化ア
ルカリの電解方法である。以下本発明を詳細に説明す
る。
The alkali chloride electrolytic cell according to the present invention is divided by a cation exchange membrane into an anode chamber containing an anode and a cathode chamber containing a gas cathode. An electrolytic cell for alkaline chloride electrolysis characterized by being divided into a solution chamber in contact with the anode chamber and a gas chamber containing the gas cathode by an ion exchange membrane, and the method of the present invention is an electrolyzer having such a configuration. Alkali chloride aqueous solution to the anode chamber of the tank, electrolyzing the alkaline chloride aqueous solution while supplying the oxygen-containing gas to the gas chamber, to produce an alkali hydroxide in the solution chamber, an alkali chloride electrolysis method Is. The present invention will be described in detail below.

【0008】通常のガス電極を塩化アルカリ電解に使用
すると該ガス電極は濃厚水酸化アルカリと直接接触し該
水酸化アルカリの化学的腐食性により前記ガス電極の触
媒層が消耗しこれが塩化アルカリ電解におけるガス電極
の短寿命化の一因と考えられている。しかし本発明者ら
は、塩化アルカリ電解における陰極の役割は陰極室へ水
酸イオンを供給することであると認識し、それ以外の機
能は極力排除するよう試みた。つまり本発明の電解槽及
び電解方法は、電解槽を陽イオン交換膜により陽極室と
陰極室とに区画し、更に陰イオン交換膜により前記陰極
室を生成する水酸化アルカリ水溶液が存在する溶液室と
ガス電極が存在するガス室とに区画し、前記陰イオン交
換膜の存在によりガス電極が直接濃厚な水酸化アルカリ
水溶液と接触することを防止することにより前記ガス電
極の長寿命化を意図する。
When a normal gas electrode is used for alkaline chloride electrolysis, the gas electrode is brought into direct contact with concentrated alkali hydroxide, and the chemical corrosion of the alkali hydroxide causes the catalyst layer of the gas electrode to be consumed, which results in alkaline chloride electrolysis. It is considered to be one of the causes of shortening the life of the gas electrode. However, the present inventors recognized that the role of the cathode in the alkali chloride electrolysis was to supply hydroxide ions to the cathode chamber, and tried to eliminate other functions as much as possible. That is, the electrolytic cell and the electrolysis method of the present invention divide the electrolytic cell into an anode chamber and a cathode chamber by a cation exchange membrane, and further, a solution chamber in which an aqueous alkali hydroxide solution that forms the cathode chamber by the anion exchange membrane exists. And a gas chamber in which the gas electrode is present, and it is intended to prolong the life of the gas electrode by preventing the gas electrode from coming into direct contact with a concentrated aqueous alkali hydroxide solution due to the presence of the anion exchange membrane. .

【0009】このように陽イオン交換膜、陰イオン交換
膜及びガス陰極を配置し陽極室に塩化アルカリ水溶液
を、陰極室の溶液室に水又は希釈水酸化アルカリ水溶液
を、ガス室に酸素や空気等の酸素含有ガスを供給する
と、陽極室中のナトリウムイオンが陽イオン交換膜を浸
透して溶液室に達し又ガス室で生成する水酸イオンが陰
イオン交換膜を浸透して溶液室に達し、該溶液室中で水
酸化アルカリが生成する。この電解フローにおいて、陰
極室の溶液室中の水酸化アルカリ中のナトリウムイオン
のガス室方向への浸透が前記陰イオン交換膜により阻止
され、又ガス陰極表面で生成する水酸イオンはその電荷
により陰イオン交換膜を浸透して溶液室方向に移動し再
度陰極に接触することが防止され、この水酸イオンの移
動は前記ナトリウムイオンのガス陰極への接触を更に確
実に防止し、実質的に前記ガス陰極は水酸化アルカリ水
溶液と接触することがなくなり、ガス陰極の寿命を長く
することができる。
In this way, the cation exchange membrane, the anion exchange membrane and the gas cathode are arranged, and an aqueous solution of alkali chloride is placed in the anode chamber, water or a diluted aqueous solution of alkali hydroxide is placed in the solution chamber of the cathode chamber, and oxygen or air is placed in the gas chamber. When oxygen-containing gas is supplied, sodium ions in the anode chamber permeate the cation exchange membrane and reach the solution chamber, and hydroxide ions generated in the gas chamber permeate the anion exchange membrane and reach the solution chamber. , Alkali hydroxide is generated in the solution chamber. In this electrolysis flow, permeation of sodium ions in the alkali hydroxide in the solution chamber of the cathode chamber toward the gas chamber is blocked by the anion exchange membrane, and hydroxide ions generated on the surface of the gas cathode are charged by the charge. It is prevented that it permeates the anion exchange membrane and moves toward the solution chamber and again contacts the cathode, and this migration of the hydroxide ions further reliably prevents the contact of the sodium ions with the gas cathode, and substantially The gas cathode does not come into contact with the alkali hydroxide aqueous solution, so that the life of the gas cathode can be extended.

【0010】更に多孔質である前記ガス陰極自体により
陰極室を溶液室とガス室とに区画する方式と比較して本
発明における電解槽及び電解方法は、両室の分離をガス
陰極と該ガス陰極より遙に緻密で液不浸透性に優れた陰
イオン交換膜により行っているため、気液リーク特に溶
液室の水酸化アルカリ水溶液のガス室への浸透を確実に
防止してガス陰極の劣化及び電流効率の低下を抑制でき
るため、高電流密度での操業を必要とする工業的規模の
電解にも使用することができる。但し電解反応の進行に
従って触媒とガスとの接触面積が小さくなったり、生成
したイオンの移動に若干の制限が生じたりするため、小
型の電解セル例えば燃料電池の場合のようには所望の性
能が実現される訳ではなく、特に高電流密度では過電圧
が大きくなりがちであり、実用上は5KA/m2 以下の
電流密度で操業を行うことが望ましい。
Further, in comparison with the system in which the cathode chamber is divided into a solution chamber and a gas chamber by the gas cathode itself which is porous, the electrolytic cell and the electrolysis method in the present invention are to separate the chambers from the gas cathode and the gas. Since it uses an anion exchange membrane that is much denser than the cathode and has excellent liquid impermeability, gas-liquid leaks, especially alkali hydroxide aqueous solution in the solution chamber, are reliably prevented from permeating into the gas chamber, and the gas cathode is degraded. In addition, since it is possible to suppress a decrease in current efficiency, it can be used for electrolysis on an industrial scale that requires operation at a high current density. However, as the electrolytic reaction progresses, the contact area between the catalyst and the gas becomes smaller, or the movement of the generated ions is slightly restricted, so that the desired performance is not obtained as in the case of a small electrolytic cell such as a fuel cell. It is not realized, and the overvoltage tends to increase especially at a high current density, and it is desirable to operate at a current density of 5 KA / m 2 or less for practical use.

【0011】塩化アルカリ電解の実用電流密度である3
〜4KA/m2 では、陰イオン交換膜の性能にもよる
が、従来の水素発生陰極の場合と比較して、酸素を陰極
室に供給しながら電解を行う場合には約0.7 V、空気を
供給しながら電解を行う場合には約0.5 Vの電解電圧の
低下が見られる。又前述した供給ガス中の二酸化炭素は
膜の目詰まりの原因になることがあり本発明でも例外で
はないが、供給前に酸素含有ガスを石灰水中を通すこと
により実質的に膜の目詰まりを防止することができる。
これは従来のように親水層でガスと液が直接会合するの
ではないからと推測される。本発明の電解槽は従来のフ
ィルタープレス型電解槽として構成することが望まし
い。
The practical current density of alkaline chloride electrolysis is 3
At ~ 4 KA / m 2 , it depends on the performance of the anion exchange membrane, but compared to the case of the conventional hydrogen generating cathode, when electrolysis is performed while supplying oxygen to the cathode chamber, about 0.7 V, air is supplied. When electrolysis is performed while supplying, a decrease in electrolysis voltage of about 0.5 V is observed. Further, the carbon dioxide in the above-mentioned supply gas may cause the clogging of the membrane and is not an exception in the present invention, but the clogging of the membrane is substantially caused by passing the oxygen-containing gas through the lime water before the feeding. Can be prevented.
This is presumed to be because the gas and the liquid do not directly associate with each other in the hydrophilic layer as in the conventional case. The electrolytic cell of the present invention is preferably constructed as a conventional filter press type electrolytic cell.

【0012】本発明に使用する陰イオン交換膜は約30%
の高濃度の高温水酸化アルカリ水溶液に対する耐性を有
しなければならない。そのためには従来の陽イオン交換
膜に使用されているようなフッ素樹脂系イオン交換膜を
使用することが好ましいが、炭化水素系のイオン交換膜
も数カ月程度の運転では問題なく使用することができ、
これはガス陰極の特徴的な作用である陰極側からの水酸
イオンの移行とそれに伴う随伴水によって陰イオン交換
膜表面が保護されること及びガス発生による気泡の攪拌
効果がないことからと推測される。しかし1年以上の連
続運転の場合には上述のフッ素樹脂系イオン交換膜を使
用すべきである。本発明に使用できる陰イオン交換膜と
しては、徳山曹達株式会社の商品名ネオセプタACLE
−5P、東ソー株式会社のフッ素系陰イオン交換膜であ
る商品名トスフレックスIE−SF34等がある。又前
記陰イオン交換膜は、粒状の陰イオン交換樹脂から成膜
したものであってもよい。
The anion exchange membrane used in the present invention is about 30%.
It must be resistant to high concentrations of high temperature aqueous alkali hydroxide solution. For that purpose, it is preferable to use a fluororesin-based ion exchange membrane like that used in conventional cation exchange membranes, but a hydrocarbon-based ion exchange membrane can also be used without problems in a few months of operation. ,
It is speculated that this is because the migration of hydroxide ions from the cathode side, which is a characteristic action of the gas cathode, and the accompanying water that protects the anion-exchange membrane surface and that there is no agitation effect on bubbles due to gas generation. To be done. However, in the case of continuous operation for one year or more, the above-mentioned fluororesin type ion exchange membrane should be used. The anion exchange membrane that can be used in the present invention is manufactured by Tokuyama Soda Co., Ltd. under the trade name Neoceptor ACLE
-5P, Tosflex IE-SF34, which is a fluorine-based anion exchange membrane manufactured by Tosoh Corporation, and the like. Further, the anion exchange membrane may be formed from a granular anion exchange resin.

【0013】この陰イオン交換膜はガス陰極が水酸化ア
ルカリ水溶液と直接接触することを防止するとともに、
溶液室内の水酸化アルカリ水溶液が該陰イオン交換膜を
浸透しガス陰極と接触することも防止する。従って前記
陰イオン交換膜はその周縁を確実に電解槽の室枠等で締
着して液のリークを防止しなければならない。又該陰イ
オン交換膜とガス陰極間の液抵抗を最小にするため両者
を密着させるSPE型とすることが望ましいが、両者を
若干離間させて設置してもよい。
This anion exchange membrane prevents the gas cathode from coming into direct contact with the alkali hydroxide aqueous solution, and
It also prevents the aqueous alkali hydroxide solution in the solution chamber from penetrating the anion exchange membrane and coming into contact with the gas cathode. Therefore, the periphery of the anion exchange membrane must be securely fastened by a chamber frame of the electrolytic cell or the like to prevent liquid leakage. Further, it is desirable to use an SPE type in which both the anion exchange membrane and the gas cathode are brought into close contact with each other in order to minimize the liquid resistance between them, but they may be set apart from each other.

【0014】前記陰イオン交換膜のガス室側に設置する
ガス陰極は、 H2 O + 2e + 1/2 O2 → 2OH- の反応で水酸イオンを生成する機能を有し、生成した水
酸イオンは前記陰イオン交換膜を通して電場により溶液
室に移行する。ガス陰極は前述の通り前記陰イオン交換
膜と接触するSPE型であってもなくてもよいがガス室
中に液と接触しないように配置される。従って液相にお
ける会合が生じないため、従来のガス電極のように疎水
層と親水層の2層により構成される電極であっても、又
疎水層中に触媒を埋め込んだ形態の電極であってもよ
い。該ガス陰極は例えば白金や銀等の触媒を担持した炭
素粉末とポリテトラフルオロエチレン(以下PTFEと
いう)のような撥水性樹脂を混合しシート状に加工した
従来のガス電極を使用すればよく、芯材としてカーボン
クロスや金属メッシュを使用することもできる。該ガス
電極に給電するための集電体としては例えば銀メッキし
たニッケル多孔体(エキスパンドメッシュ等)を使用
し、これを前記ガス陰極に圧接して給電する。
The gas cathode installed on the gas chamber side of the anion exchange membrane has a function of generating hydroxyl ions by the reaction of H 2 O + 2e + 1/2 O 2 → 2OH , and the generated water The acid ions are transferred to the solution chamber by the electric field through the anion exchange membrane. The gas cathode may or may not be of the SPE type that comes into contact with the anion exchange membrane as described above, but it is arranged in the gas chamber so as not to come into contact with the liquid. Therefore, since no association occurs in the liquid phase, even an electrode composed of two layers, a hydrophobic layer and a hydrophilic layer, like a conventional gas electrode, or an electrode in which a catalyst is embedded in the hydrophobic layer Good. As the gas cathode, for example, a conventional gas electrode prepared by mixing a carbon powder carrying a catalyst such as platinum or silver and a water repellent resin such as polytetrafluoroethylene (hereinafter referred to as PTFE) and processing it into a sheet shape may be used. It is also possible to use carbon cloth or a metal mesh as the core material. As a current collector for supplying power to the gas electrode, for example, a silver-plated nickel porous body (expanded mesh or the like) is used, and this is pressed against the gas cathode to supply power.

【0015】陽イオン交換膜によって前記溶液室から区
画される陽極室に収容される陽極としては寸法安定性陽
極として知られるチタン等のバルブメタル基体上に貴金
属酸化物を主体とする触媒層を担持した電極(DSE)
を使用することが好ましい。前記陽イオン交換膜は通常
のイオン交換膜法塩化アルカリ電解に使用されるフッ素
系イオン交換膜を使用することが好ましく、これらのイ
オン交換膜としては例えば米国デュポン社の商品名ナフ
ィオン、旭硝子株式会社の商品名フレミオン、旭化成株
式会社の商品名アシプレックスF等がある。
As the anode accommodated in the anode chamber separated from the solution chamber by the cation exchange membrane, a catalyst layer mainly composed of a noble metal oxide is carried on a valve metal substrate such as titanium known as a dimensionally stable anode. Electrode (DSE)
Is preferably used. As the cation exchange membrane, it is preferable to use a fluorine-based ion exchange membrane used for ordinary ion exchange membrane method alkali chloride electrolysis, and examples of these ion exchange membranes include Nafion under the trade name of DuPont, USA, Asahi Glass Co., Ltd. The brand name is Flemion, and the brand name of Asahi Kasei Co., Ltd., Aciplex F.

【0016】次に添付図面に基づいて本発明方法を説明
する。図1は本発明に係わる塩化アルカリ電解槽の一例
を示す概略縦断面図である。電解槽本体1は陽イオン交
換膜2により陽極室3と陰極室4とに区画され、陽極室
3内には前記陽イオン交換膜2に密着するようにDSE
等である陽極5が設置されている。前記陰極室4は陰イ
オン交換膜6により更に陽極室3側の溶液室7と該陰イ
オン交換膜6に密着するガス陰極8及び該ガス陰極8に
給電するためのメッシュ状の集電体9が収容されたガス
室10とに区画されている。前記陽極室3の側壁の下部及
び上部にはそれぞれ塩水供給口11及び塩水及び塩素ガス
取出口12が設置され、前記溶液室7の下面及び上面には
それぞれ希釈水酸化アルカリ水溶液供給口13及び濃厚水
酸化アルカリ水溶液取出口14が設置され、更にガス室10
の側壁の上部及び下部にはそれぞれ酸素含有ガス供給口
15及び酸素含有ガス取出口16が設置されている。
Next, the method of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic vertical sectional view showing an example of an alkali chloride electrolytic cell according to the present invention. The electrolytic cell body 1 is divided into an anode chamber 3 and a cathode chamber 4 by a cation exchange membrane 2, and in the anode chamber 3 a DSE is formed so as to be in close contact with the cation exchange membrane 2.
Etc., the anode 5 is installed. The cathode chamber 4 is further provided with a solution chamber 7 on the side of the anode chamber 3 by means of an anion exchange membrane 6, a gas cathode 8 in close contact with the anion exchange membrane 6, and a mesh-shaped current collector 9 for supplying power to the gas cathode 8. Is divided into a gas chamber 10 in which is stored. A salt water supply port 11 and a salt water and chlorine gas extraction port 12 are installed at the lower and upper portions of the side wall of the anode chamber 3, and a diluted alkaline hydroxide aqueous solution supply port 13 and a concentrated aqueous solution are provided at the lower and upper surfaces of the solution chamber 7, respectively. An alkali hydroxide aqueous solution outlet 14 is installed, and a gas chamber 10
The upper and lower side walls of the
15 and an oxygen-containing gas outlet 16 are installed.

【0017】この電解槽本体1の陽極室3に塩水を、溶
液室7に希釈水酸化アルカリ水溶液を、又ガス室10に酸
素含有ガスを供給しながら両極に通電すると、陽極室で
生成するナトリウムイオンが陽イオン交換膜2を浸透し
て溶液室7に達し、ガス陰極8表面で生成し陰イオン交
換膜6を浸透して該溶液室7に到達した水酸イオンと反
応して水酸化アルカリを生成する。溶液室7中の水酸化
アルカリ水溶液は循環させて徐々に濃度を上げて行くこ
とが望ましいが、前記溶液室7中に濃厚水酸化アルカリ
水溶液が存在しても該溶液室7とガス室10を区画する陰
イオン交換膜6が確実にガス陰極8の濃厚水酸化アルカ
リ水溶液との接触及び該水酸化アルカリ水溶液のリーク
を防止するためガス陰極8の寿命が延びる。又通常のガ
ス電極の場合と異なり溶液室とガス室がイオン交換膜で
区画されているため前記水酸化アルカリ水溶液のリーク
が確実に防止され、大型の電解槽でも使用できるため、
図示の電解槽は工業的規模の電解にも適用することがで
きる。
When salt water is supplied to the anode chamber 3 of the electrolytic cell body 1, a dilute alkaline hydroxide aqueous solution is supplied to the solution chamber 7, and an oxygen-containing gas is supplied to the gas chamber 10, both electrodes are energized to generate sodium in the anode chamber. Ions permeate the cation exchange membrane 2 to reach the solution chamber 7, are generated on the surface of the gas cathode 8 and permeate the anion exchange membrane 6 to reach the solution chamber 7 and react with the hydroxide ions to react with alkali hydroxide. To generate. Although it is desirable to circulate the alkaline hydroxide aqueous solution in the solution chamber 7 to gradually increase the concentration, even if the concentrated alkaline hydroxide aqueous solution is present in the solution chamber 7, the solution chamber 7 and the gas chamber 10 are separated from each other. The partitioning anion exchange membrane 6 surely prevents the contact of the gas cathode 8 with the concentrated aqueous alkali hydroxide solution and the leakage of the aqueous alkali hydroxide solution, so that the life of the gas cathode 8 is extended. Further, unlike the case of a normal gas electrode, since the solution chamber and the gas chamber are partitioned by an ion exchange membrane, the alkali hydroxide aqueous solution is reliably prevented from leaking and can be used even in a large electrolytic cell.
The electrolyzer shown can also be applied to industrial scale electrolysis.

【0018】[0018]

【実施例】次に本発明による塩化アルカリ水溶液の電解
を例示する実施例を記載するが、本発明はこれらに限定
されるものではない。
EXAMPLES Next, examples illustrating the electrolysis of an aqueous alkali chloride solution according to the present invention will be described, but the present invention is not limited thereto.

【実施例1】陰極として炭素繊維の薄布の表面に、触媒
無担持グラファイト粉末と、表面に白金をスパッタ法で
担持させたグラファイト粉末を、フッ素樹脂と混練した
混練物を塗布し、前記薄布上で平板状に維持されるよう
に重しを載せながら250 ℃で30分間焼き付けてガス陰極
とした。白金担持量は15g/m2 であった。
Example 1 As a cathode, a surface of a thin carbon fiber cloth was coated with a catalyst-free graphite powder, and a graphite powder having platinum supported on the surface by a sputtering method was kneaded with a fluororesin to form a thin film. A weight was placed on the cloth so that the gas cathode was baked for 30 minutes at 250 ° C. The amount of platinum carried was 15 g / m 2 .

【0019】このガス陰極の表面にフッ素樹脂系陰イオ
ン交換膜である東ソー株式会社製のトスフレックス(T
osflex)IE−SF34を密着させ、該陰イオン
交換膜の反対側から銀メッキしたニッケル製の目開き6
×3.5 mmのエキスパンドメッシュを集電体として圧接
し、電解面積が50×125 の実験用電解槽に組み込んだ。
陽極としてチタン穴明板に(ルテニウム−チタン)酸化
物系のDSE電極を使用した。陽イオン交換膜としては
米国デュポン社の商品名ナフィオン90209 を使用して陽
極室と陰極室を区画した。
On the surface of this gas cathode is a fluororesin-based anion exchange membrane, Tosflex (T
osflex) IE-SF34 is adhered, and the nickel-made openings 6 are silver-plated from the opposite side of the anion exchange membrane.
An expanded mesh of × 3.5 mm was pressed as a current collector and assembled into an experimental electrolytic cell with an electrolysis area of 50 × 125.
A (ruthenium-titanium) oxide-based DSE electrode was used for a titanium perforated plate as an anode. As the cation exchange membrane, Nafion 90209 (trade name, manufactured by DuPont, USA) was used to partition the anode chamber and the cathode chamber.

【0020】陽極液として200 g/リットルの食塩水を
循環して使用し、陰極液として水酸化ナトリウム濃度が
約32%となるように純水を添加しながら1分間に3回程
度循環させた。陰極ガスとしては水電解で生成した酸素
ガスを水層を通して十分加湿した後、水柱30cmの圧力
でガス室に供給した。
As the anolyte, 200 g / liter of saline was circulated and used, and as the catholyte, pure water was added so that the sodium hydroxide concentration was about 32%, and the solution was circulated about 3 times per minute. . As a cathode gas, oxygen gas generated by water electrolysis was sufficiently humidified through a water layer and then supplied to a gas chamber at a pressure of 30 cm of water column.

【0021】温度90℃、電流密度30A/dm2 で電解した
ところ、槽電圧は2.4 Vであり、通常の活性化陰極を使
用した場合の3.1 Vより0.7 Vの低下が見られた。6ヶ
月間電解を継続したが性能の低下は見られなかった。又
白金の消耗は1g/m2 程度であり、消耗率も極めて小
さいことが判った。
When electrolysis was carried out at a temperature of 90 ° C. and a current density of 30 A / dm 2 , the cell voltage was 2.4 V, showing a decrease of 0.7 V from 3.1 V in the case of using a normal activation cathode. Electrolysis was continued for 6 months, but no deterioration in performance was observed. Further, it was found that the consumption of platinum was about 1 g / m 2 , and the consumption rate was extremely small.

【0022】[0022]

【実施例2】実施例1と同様にして触媒を担持したガス
陰極の片面に第三アンモニウム系陰イオン交換樹脂粉末
をPTFE分散液と混練した混練物を塗布し、120 ℃で
焼き付けた。更にその表面にフッ化グラファイトの微粉
末を含むPTFE樹脂を焼き付けた。これを陰極として
実施例1と同様にして電解を行ったところ、電解電圧は
2.5 Vであり、実施例1より100 mV高かったが、通常
の電解より600 mVの低下が見られた。又6ヶ月の電圧
後も性能の低下は全く見られなかった。本実施例におけ
る酸素ガスの代わりに、石灰水を通した空気を供給した
ところ、電圧は2.7 Vとなったが、他の性能は変わらな
かった。
Example 2 In the same manner as in Example 1, a kneaded material obtained by kneading a powder of a tertiary ammonium anion exchange resin with a PTFE dispersion was applied to one side of a gas cathode supporting a catalyst, and baked at 120 ° C. Further, a PTFE resin containing fine graphite fluoride powder was baked on the surface. When this was used as a cathode and electrolysis was performed in the same manner as in Example 1, the electrolysis voltage was
The voltage was 2.5 V, which was 100 mV higher than that in Example 1, but a decrease of 600 mV was observed as compared with normal electrolysis. Moreover, no deterioration in performance was observed even after a voltage of 6 months. When air that passed lime water was supplied instead of oxygen gas in this example, the voltage was 2.7 V, but other performances were the same.

【0023】[0023]

【比較例1】陰イオン交換膜を使用せずガス陰極が水酸
化ナトリウム水溶液と直接接触するようにしたこと以外
は実施例1と同一条件で電圧を行ったところ、10日後に
ガス陰極のガス室側に水酸化ナトリウムがリークしはじ
め、槽電圧の上昇が始まり、14日後に槽電圧が3Vを越
えたため電解を停止した。その後電解槽を解体し、ガス
陰極を観察したところその疎水性は完全に失われてい
た。
Comparative Example 1 A voltage was applied under the same conditions as in Example 1 except that the anion exchange membrane was not used and the gas cathode was brought into direct contact with an aqueous sodium hydroxide solution. Sodium hydroxide began to leak to the chamber side, the cell voltage started to rise, and 14 days later, the cell voltage exceeded 3 V, and the electrolysis was stopped. After that, the electrolytic cell was disassembled, and the gas cathode was observed. As a result, its hydrophobicity was completely lost.

【0024】[0024]

【発明の効果】本発明は、陽イオン交換膜により陽極を
収容する陽極室とガス陰極を収容する陰極室とに区画さ
れ、更に該陰極室が陰イオン交換膜により前記陽極室と
接する溶液室と前記ガス陰極を収容するガス室とに区画
されたことを特徴とする塩化アルカリ電解用電解槽であ
る。
The present invention is divided into an anode chamber containing an anode and a cathode chamber containing a gas cathode by a cation exchange membrane, and the cathode chamber is in contact with the anode chamber by an anion exchange membrane. And an electrolytic cell for alkaline chloride electrolysis, which is characterized by being partitioned into a gas chamber containing the gas cathode.

【0025】本発明では、腐食性の濃厚水酸化アルカリ
水溶液が存在する溶液室とガス陰極が存在するガス室と
が緻密な陰イオン交換膜で区画されているため、耐性に
劣るガス陰極が直接腐食性の水酸化アルカリ水溶液と直
接接触することが回避され、従って前記ガス陰極の長寿
命化が達成される。しかも前記陰イオン交換膜により確
実に溶液室とガス室が区画されているため、前記水酸化
アルカリ水溶液のガス室へのリークが防止され、従って
前記ガス陰極が間接的に腐食性の水酸化アルカリ水溶液
と接触することも防止され、より長寿命化が達成でき
る。そして電解槽を大型化するにつれ溶液室の水酸化ア
ルカリ水溶液のガス室へのリークの防止が困難になる
が、本発明の電解槽では前述の通りリークをほぼ完全に
阻止することができ、本発明は電解槽の大型化及びそれ
による工業的規模の操業を可能にする。
In the present invention, since the solution chamber in which the corrosive concentrated alkali hydroxide aqueous solution is present and the gas chamber in which the gas cathode is present are partitioned by the dense anion exchange membrane, the gas cathode having poor resistance is directly Direct contact with corrosive aqueous alkali hydroxide solution is avoided, thus extending the life of the gas cathode. Moreover, since the solution chamber and the gas chamber are reliably partitioned by the anion exchange membrane, the alkali hydroxide aqueous solution is prevented from leaking into the gas chamber, and therefore the gas cathode is indirectly corrosive alkali hydroxide. Contact with an aqueous solution is also prevented, and a longer life can be achieved. And as the electrolytic cell becomes larger, it becomes difficult to prevent the leak of the aqueous alkali hydroxide solution into the gas chamber of the solution chamber, but in the electrolytic cell of the present invention, the leak can be almost completely prevented as described above. The invention enables the electrolytic cell to be upsized and thereby to operate on an industrial scale.

【0026】本発明による電解方法の場合も同様に、陰
イオン交換膜の使用によるガス陰極の長寿命化を達成で
きかつ電解槽の大型化にも寄与することができる。
Similarly, in the case of the electrolysis method according to the present invention, the life of the gas cathode can be extended by using the anion exchange membrane and the size of the electrolytic cell can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる塩化アルカリ電解槽の一例を示
す概略縦断面図。
FIG. 1 is a schematic vertical cross-sectional view showing an example of an alkali chloride electrolytic cell according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・電解槽本体 2・・・陽イオン交換膜 3・・
・陽極室 4・・・陰極室 5・・・陽極 6・・・陰
イオン交換膜 7・・・溶液室 8・・・ガス陰極 9
・・・集電体 10・・・ガス室
1 ... Electrolyzer main body 2 ... Cation exchange membrane 3 ...
・ Anode chamber 4 ・ ・ ・ Cathode chamber 5 ・ ・ ・ Anode 6 ・ ・ ・ Anion exchange membrane 7 ・ ・ ・ Solution chamber 8 ・ ・ ・ Gas cathode 9
... Current collector 10 ... Gas chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中松 秀司 神奈川県藤沢市大庭5568−4パピヨング レースII102号 (56)参考文献 特開 昭56−69384(JP,A) 特開 昭56−47578(JP,A) 特開 昭54−132498(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shuji Nakamatsu               5568-4 Obiwa, Fujisawa City, Kanagawa Prefecture               Race II 102                (56) References JP-A-56-69384 (JP, A)                 JP-A-56-47578 (JP, A)                 JP 54-132498 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽イオン交換膜により陽極を収容する陽
極室とガス陰極を収容する陰極室とに区画され、更に該
陰極室が陰イオン交換膜により前記陽極室と接する溶液
室と前記ガス陰極を収容するガス室とに区画されたこと
を特徴とする塩化アルカリ電解用電解槽。
1. A solution chamber and a gas cathode which are partitioned by a cation exchange membrane into an anode chamber containing an anode and a cathode chamber containing a gas cathode, the cathode chamber being in contact with the anode chamber by an anion exchange membrane. An electrolytic cell for alkaline chloride electrolysis, which is characterized in that it is divided into a gas chamber that accommodates.
【請求項2】 陽イオン交換膜により陽極を収容する陽
極室とガス陰極を収容する陰極室とに区画され、更に該
陰極室が陰イオン交換膜により前記陽極室と接する溶液
室と前記ガス陰極を収容するガス室とに区画された塩化
アルカリ電解用電解槽の前記陽極室に塩化アルカリ水溶
液を、前記ガス室に酸素含有ガスを供給しながら前記塩
化アルカリ水溶液の電解を行い、前記溶液室で水酸化ア
ルカリを生成することを特徴とする塩化アルカリの電解
方法。
2. A gas chamber, which is divided into an anode chamber containing an anode and a cathode chamber containing a gas cathode by a cation exchange membrane, and the cathode chamber is in contact with the anode chamber by an anion exchange membrane. Aqueous alkali chloride solution in the electrolytic chamber for alkaline chloride electrolysis divided into a gas chamber containing the alkaline chloride aqueous solution, while performing the electrolysis of the alkaline chloride aqueous solution while supplying an oxygen-containing gas to the gas chamber, in the solution chamber A method for electrolyzing alkali chloride, which comprises producing alkali hydroxide.
JP06268493A 1993-02-26 1993-02-26 Electrolyzer and electrolysis method for alkali chloride electrolysis Expired - Fee Related JP3420790B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP06268493A JP3420790B2 (en) 1993-02-26 1993-02-26 Electrolyzer and electrolysis method for alkali chloride electrolysis
AT94830041T ATE179765T1 (en) 1993-02-26 1994-02-04 ELECTROLYSIS CELL AND METHOD FOR PRODUCING ALKALINE METAL HYDROXIDE AND HYDROGEN PEROXIDE
DE69418239T DE69418239T2 (en) 1993-02-26 1994-02-04 Electrolysis cell and process for the production of alkali metal hydroxide and hydrogen peroxide
EP94830041A EP0612864B1 (en) 1993-02-26 1994-02-04 Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide
ES94830041T ES2132364T3 (en) 1993-02-26 1994-02-04 ELECTROLYSIS CELL AND PRODUCTION PROCEDURES FOR ALKALINE HYDROXIDE AND HYDROGEN PEROXIDE.
US08/196,442 US5437771A (en) 1993-02-26 1994-02-15 Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06268493A JP3420790B2 (en) 1993-02-26 1993-02-26 Electrolyzer and electrolysis method for alkali chloride electrolysis

Publications (2)

Publication Number Publication Date
JPH06248483A JPH06248483A (en) 1994-09-06
JP3420790B2 true JP3420790B2 (en) 2003-06-30

Family

ID=13207363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06268493A Expired - Fee Related JP3420790B2 (en) 1993-02-26 1993-02-26 Electrolyzer and electrolysis method for alkali chloride electrolysis

Country Status (1)

Country Link
JP (1) JP3420790B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154643A1 (en) * 2017-02-22 2018-08-30 日本碍子株式会社 Brine electrolysis device for producing caustic soda
CN113818036A (en) * 2021-11-05 2021-12-21 天津工业大学 Universal electrolytic tank for electrolysis

Also Published As

Publication number Publication date
JPH06248483A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
EP0636051B1 (en) Apparatus comprising a water ionizing electrode and process of use of said apparatus
US4224121A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US5437771A (en) Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide
JP3182216B2 (en) Gas depolarized electrode structure and method and apparatus for performing an electrochemical reaction using the same
JPH07126880A (en) Method for electrolyzing brine and electrolytic cell
US4578159A (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
JP3421021B2 (en) Electrolysis method of alkali chloride
Ito et al. Chlor–alkali electrolysis
US4956061A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
US4772364A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
KR100282769B1 (en) Method for blocking an electrolytic cell having a membrane and an oxygen reduction cathode
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis
CA1155792A (en) Air-depolarized chlor-alkali cell operation methods
JP2001020089A (en) Protective method of alkali chloride electrolytic cell and protective device therefor
JP3304481B2 (en) Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide
JP3538271B2 (en) Hydrochloric acid electrolyzer
JPS586789B2 (en) Method for preventing deterioration of palladium oxide anodes
JPH08296076A (en) Production of aqueous solution of hydrogen peroxide and device therefor
JP3875808B2 (en) Electrode for producing hydrogen peroxide and method for producing the same
HU180463B (en) Process for producing halogenes and alkali-metal-hydrocides with elektrolysis of alkali-metal-halogenides
JP4062917B2 (en) Method for producing sodium hydroxide
JPH09217185A (en) Three-chamber based electrolytic cell
KR830000620B1 (en) Operation method of air depleted chlor-alkali electrolyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees