JPH08296076A - Production of aqueous solution of hydrogen peroxide and device therefor - Google Patents

Production of aqueous solution of hydrogen peroxide and device therefor

Info

Publication number
JPH08296076A
JPH08296076A JP7120574A JP12057495A JPH08296076A JP H08296076 A JPH08296076 A JP H08296076A JP 7120574 A JP7120574 A JP 7120574A JP 12057495 A JP12057495 A JP 12057495A JP H08296076 A JPH08296076 A JP H08296076A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
aqueous solution
alkaline aqueous
chamber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7120574A
Other languages
Japanese (ja)
Other versions
JP3677078B2 (en
Inventor
Takayuki Shimamune
孝之 島宗
Yasuo Nakajima
保夫 中島
Shuhei Wakita
修平 脇田
Takahiro Ashida
高弘 芦田
Yoshinori Nishiki
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Inc
De Nora Permelec Ltd
Original Assignee
Katayama Chemical Inc
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Inc, Permelec Electrode Ltd filed Critical Katayama Chemical Inc
Priority to JP12057495A priority Critical patent/JP3677078B2/en
Publication of JPH08296076A publication Critical patent/JPH08296076A/en
Application granted granted Critical
Publication of JP3677078B2 publication Critical patent/JP3677078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To provide a method and a device capable of producing hydrogen peroxide effective for a water treatment on-site and eliminating the need of a transport, etc., of a starting material. CONSTITUTION: A seawater 1 being a starting material is supplied to the first electrolytic cell 4 to electrolytically produce an alkaline aq. soln. and an acidic salt water, and an electrolysis of water is executed at the second electrolytic cell 7 while supplying the obtained alkaline aq. soln. and an oxygen-containing gas to produce the alkaline aq. soln. containing hydrogen peroxide. The obtained hydrogen peroxide-containing alkaline aq. soln. is mixed with the acidic salt water at need at a mixing tank 9 to obtain a neutral aq. sol. of hydrogen peroxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩水、主として海水を
原料として過酸化水素水を電気化学的に製造する方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for electrochemically producing hydrogen peroxide solution using salt water, mainly seawater as a raw material.

【0002】[0002]

【従来技術とその問題点】過酸化水素は、食品、医薬
品、パルプ、繊維、半導体工業において不可欠の基礎薬
品として有用であり、従来はアントラキノン法により合
成されている。従来から、例えば冷却水として海水を使
用する発電所や工場では、復水器内部への生物付着を防
止するために、海水を直接電解して次亜塩素酸を生成さ
せ、該次亜塩素酸を有効利用することが試みられてい
る。しかし次亜塩素酸をそのまま放流することは次亜塩
素酸自体、及び分解により生成する有機塩素化合物や塩
素ガスが有毒で環境保全上問題があり、その規制が強化
されつつある。
2. Description of the Related Art Hydrogen peroxide is useful as an essential basic chemical in the food, pharmaceutical, pulp, fiber and semiconductor industries, and is conventionally synthesized by the anthraquinone method. Conventionally, for example, in power plants and factories that use seawater as cooling water, in order to prevent biofouling inside the condenser, seawater is directly electrolyzed to generate hypochlorous acid, and the hypochlorous acid is generated. It has been attempted to effectively utilize. However, if the hypochlorous acid is discharged as it is, the hypochlorous acid itself, and the organic chlorine compound and chlorine gas generated by decomposition are toxic, which poses a problem in environmental protection, and the regulation thereof is being strengthened.

【0003】一方微量の過酸化水素を前記冷却水中に添
加すると、良好な生物付着防止効果があることが報告さ
れ、又養魚場の水質維持にも過酸化水素の添加が効果的
であるという報告がなされている。しかも過酸化水素は
分解しても無害な水と酸素に変換されるのみで環境衛生
上の問題も生じない。しかしながら過酸化水素は不安定
であり、長期間の保存が不可能であるため、又輸送に伴
う安全性、汚染対策の面から、オンサイト型装置の需要
が高まっている。
On the other hand, it has been reported that the addition of a small amount of hydrogen peroxide to the cooling water has a good effect of preventing the adhesion of organisms, and that the addition of hydrogen peroxide is effective for maintaining the water quality of fish farms. Has been done. Moreover, even if hydrogen peroxide is decomposed, it is converted into harmless water and oxygen, and no environmental hygiene problems occur. However, hydrogen peroxide is unstable and cannot be stored for a long period of time, and there is an increasing demand for an on-site apparatus because of safety associated with transportation and measures against pollution.

【0004】このような要請に応えるために従来から種
々の過酸化水素の製法が提案されている。米国特許第3,
592,749 号には数種類の電解装置が提案され、又米国特
許第4,384,931 号にはアルカリ性過酸化水素水の製法と
してイオン交換膜を用いる電解法が開示されている。更
に米国特許第3,969,201 号には三次元構造のカーボン陰
極とイオン交換膜から成る過酸化水素の製造装置が記載
されているが、得られる過酸化水素の濃度に対してアル
カリ濃度が大きくなり、用途に制限が生ずる。更に特公
昭59−15990 号には多孔性の隔膜材料と疎水性カーボン
陰極を用いる過酸化水素の製法が開示されているが、こ
れらの方法では陽極室から陰極室への電解質溶液の移行
量や速度の制御が困難で運転が煩雑である。
In order to meet such demands, various methods for producing hydrogen peroxide have been conventionally proposed. U.S. Patent No. 3,
592,749 proposes several kinds of electrolysis devices, and U.S. Pat. No. 4,384,931 discloses an electrolysis method using an ion exchange membrane as a method for producing alkaline hydrogen peroxide solution. Further, U.S. Pat.No. 3,969,201 describes a hydrogen peroxide production apparatus comprising a carbon cathode having a three-dimensional structure and an ion exchange membrane. There will be restrictions on. Furthermore, Japanese Patent Publication No. 59-15990 discloses a method for producing hydrogen peroxide using a porous diaphragm material and a hydrophobic carbon cathode. In these methods, the transfer amount of the electrolyte solution from the anode chamber to the cathode chamber and It is difficult to control the speed and the operation is complicated.

【0005】又陽イオン交換膜及び陰イオン交換膜を用
いて3室に区画した電解槽の中間室に硫酸を供給し酸性
の過酸化水素水を安定的に得る方法〔Journal of Elect
rochemical Society, vol.130, p1117(1983)〕や陽極と
して膜と電極の接合体を使用することにより高性能で過
酸化水素を得る方法が提案されている。しかしながらこ
れらの方法では電力原単位が掛かり経済性に問題があ
る。しかもこれらの方法ではいずれも過酸化水素がアル
カリ水溶液雰囲気で効率良く得られるため、原料として
のアルカリ成分を供給する必要があり、この大量のアル
カリ水溶液の輸送にも問題がある。このように現在に至
っても十分に満足できる電解による過酸化水素製造方法
及び装置は得られていない。
A method for stably obtaining acidic hydrogen peroxide solution by supplying sulfuric acid to the intermediate chamber of an electrolytic cell divided into three chambers by using a cation exchange membrane and an anion exchange membrane [Journal of Elect
rochemical Society, vol.130, p1117 (1983)] and a method for obtaining hydrogen peroxide with high performance by using a membrane-electrode assembly as an anode has been proposed. However, these methods have a problem in economical efficiency because they require a unit power consumption. In addition, in any of these methods, hydrogen peroxide can be efficiently obtained in an alkaline aqueous solution atmosphere, so that it is necessary to supply an alkaline component as a raw material, and there is a problem in transporting this large amount of alkaline aqueous solution. As described above, a method and an apparatus for producing hydrogen peroxide by electrolysis that have been sufficiently satisfactory even at the present time have not been obtained.

【0006】[0006]

【発明の目的】本発明は、塩水を原料としてオンサイト
で過酸化水素を高効率で製造するための方法及び装置を
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and apparatus for producing hydrogen peroxide on-site with high efficiency using salt water as a raw material.

【0007】[0007]

【問題点を解決するための手段】本発明は、塩水を電解
してアルカリ水溶液を製造し、該アルカリ水溶液及び酸
素含有ガスを加えながら水を電解して過酸化水素を含む
アルカリ水溶液を製造することを特徴とする過酸化水素
水の製造方法、及び該方法に使用可能な過酸化水素水の
製造装置である。
According to the present invention, salt water is electrolyzed to produce an alkaline aqueous solution, and water is electrolyzed by adding the alkaline aqueous solution and an oxygen-containing gas to produce an alkaline aqueous solution containing hydrogen peroxide. A method for producing hydrogen peroxide solution, and an apparatus for producing hydrogen peroxide solution usable in the method.

【0008】以下本発明を詳細に説明する。本発明で
は、第1段階として塩化ナトリウム水溶液や塩化カリウ
ム水溶液等の塩水、好ましくは海水を電解してアルカリ
水溶液を製造し、第2段階として第1段階で得られたア
ルカリ水溶液及び酸素含有ガスを添加しながら水を電解
して過酸化水素を含むアルカリ水溶液を得る。この第2
段階で第1段階で生成したアルカリ水溶液を添加するの
は過酸化水素の生成効率を高めるためである。即ち中
性、酸性域では、単にO2 の4電子還元つまりO2 +2
2 0+4e→4OH- が進行し、H2 2 を得ること
が困難になる。なおアルカリ水溶液の濃度が高過ぎると
生成苛性ソーダは問題がないが、アルカリ濃度が高いた
めにその用途が限られることがある。
Hereinafter, the present invention will be described in detail. In the present invention, salt water such as sodium chloride aqueous solution or potassium chloride aqueous solution, preferably seawater is electrolyzed to produce an alkaline aqueous solution as the first step, and the alkaline aqueous solution and the oxygen-containing gas obtained in the first step are produced as the second step. While adding, the water is electrolyzed to obtain an alkaline aqueous solution containing hydrogen peroxide. This second
The reason why the aqueous alkaline solution generated in the first step is added in the step is to increase the production efficiency of hydrogen peroxide. That neutral, the acidic range, simply 4 O 2-electron reduction that is O 2 +2
H 2 0 + 4e → 4OH progresses, and it becomes difficult to obtain H 2 O 2 . If the concentration of the aqueous alkali solution is too high, the generated caustic soda will not cause any problems, but its use may be limited due to the high concentration of alkali.

【0009】第1電解槽は、2枚のイオン交換膜を使用
して電解槽を陽極室−中間室−陰極室の3室に区画した
3室型電解槽でも、1枚のイオン交換膜を使用して陽極
室と陰極室に区画した2室型電解槽のいずれでも良い。
3室型電解槽を使用する場合には陽極室と中間室を陰イ
オン交換膜を使用して区画し陰極室と中間室を陽イオン
交換膜を使用して区画し、中間室に塩水を供給しながら
通電を行なう。中間室に供給された塩水中のナトリウム
イオン等が陽イオン交換膜を透過して陰極室に達し、水
の電解還元により生成する水酸イオンと結合して水酸化
アルカリを生成し、陰極液がアルカリ水溶液となる。な
おこの通常の陰極反応では水素が発生するが、酸素ガス
を供給しながら電解を進行させることにより水素を水に
変換して水素の発生を抑制して槽電圧の低減を図ること
ができる。
The first electrolytic cell is a three-chamber type electrolytic cell in which the electrolytic cell is divided into three chambers of an anode chamber, an intermediate chamber and a cathode chamber by using two ion exchange membranes, and one ion exchange membrane is used. It may be a two-chamber type electrolytic cell which is divided into an anode chamber and a cathode chamber by using it.
When using a three-chamber type electrolytic cell, the anode chamber and the intermediate chamber are partitioned using an anion exchange membrane, the cathode chamber and the intermediate chamber are partitioned using a cation exchange membrane, and salt water is supplied to the intermediate chamber. While energizing. Sodium ions in salt water supplied to the intermediate chamber pass through the cation exchange membrane and reach the cathode chamber, where they combine with hydroxide ions generated by electrolytic reduction of water to form alkali hydroxide, and the catholyte solution It becomes an alkaline aqueous solution. Although hydrogen is generated in this normal cathode reaction, hydrogen can be converted to water by advancing the electrolysis while supplying oxygen gas to suppress the generation of hydrogen and reduce the cell voltage.

【0010】一方中間室に供給される塩水中の塩素イオ
ンは陰イオン交換膜を透過して陽極室に達し、塩素ガス
や次亜塩素酸を発生する。塩素ガスや次亜塩素酸の生成
を望まない場合は中間室と陽極室を区画するイオン交換
膜として陽イオン交換膜を使用すれば良く、塩素イオン
は陽極室へも陰極室へも透過できず、陽極側から供給さ
れる水素イオンと共に塩酸になり酸性塩水として中間室
から排出される。この陽イオン交換膜で陽極室と中間室
を区画する態様では、陽極室で通常の水の電解酸化によ
る酸素発生が生じるが、前述の陰極反応と同様に水素ガ
スを供給しながら電解を進行させることにより発生する
酸素を水に変換して酸素の発生を抑制して槽電圧の低減
を図ることができる。前記第1電解槽における陽極反応
及び陰極反応は次の通りである。 陽極:2H2 0→O2 +4H+ +4e 又は H2
2H+ +2e 陰極:2H2 0+2e→H2 +2OH- 又は O2
2 O+4e→4OH- なお第1電解槽として前述の2室型電解槽を使用する場
合には、塩水を陽極室に供給しながら電解を行ない、陰
極室でアルカリ水溶液を得る。しかし陽極室で塩素ガス
が発生するため、後述するアルカリ性を中和するための
酸性塩水は得られない。
On the other hand, chloride ions in the salt water supplied to the intermediate chamber pass through the anion exchange membrane to reach the anode chamber, and generate chlorine gas and hypochlorous acid. If you do not want to generate chlorine gas or hypochlorous acid, you can use a cation exchange membrane as the ion exchange membrane that separates the intermediate chamber and the anode chamber, and chlorine ions cannot permeate into the anode chamber or the cathode chamber. , Becomes hydrochloric acid together with hydrogen ions supplied from the anode side, and is discharged from the intermediate chamber as acidic salt water. In the embodiment in which the cation exchange membrane separates the anode chamber and the intermediate chamber, oxygen is generated by electrolytic oxidation of normal water in the anode chamber, but electrolysis proceeds while supplying hydrogen gas as in the cathode reaction described above. As a result, the oxygen generated can be converted into water and the generation of oxygen can be suppressed to reduce the cell voltage. The anodic reaction and cathodic reaction in the first electrolytic cell are as follows. Anode: 2H 2 0 → O 2 + 4H + + 4e or H 2
2H + + 2e Cathode: 2H 2 0 + 2e → H 2 + 2OH or O 2 +
H 2 O + 4e → 4OH − When the above-mentioned two-chamber electrolysis cell is used as the first electrolysis cell, electrolysis is performed while supplying salt water to the anode cell to obtain an alkaline aqueous solution in the cathode cell. However, since chlorine gas is generated in the anode chamber, acidic salt water for neutralizing the alkalinity described later cannot be obtained.

【0011】次いで前記陰極室で生成したアルカリ水溶
液を第2電解槽に供給する。該第2電解槽は、1枚のイ
オン交換膜等の隔膜で陽極室及び陰極室に区画した2室
型電解槽があることが好ましく、隔膜として中性膜又は
陰イオン交換膜を使用する場合には前記アルカリ水溶液
は陽極室及び陰極室のいずれに供給しても良く、隔膜と
して陽イオン交換膜を使用する場合には陰極室に供給す
る。陰極室に酸素含有ガスを供給しながら通電すると下
記の反応式に従って陰極室で過酸化水素が生成する。 陽極:2H2 0→O2 +4H+ +4e 又は H2 →2
+ +2e 陰極:O2 +H2 0+2e→OH- +HO2 - (過酸化
水素)
Then, the alkaline aqueous solution generated in the cathode chamber is supplied to the second electrolytic cell. The second electrolytic cell preferably has a two-chamber type electrolytic cell in which an anode chamber and a cathode chamber are partitioned by a single diaphragm such as an ion exchange membrane, and when a neutral membrane or an anion exchange membrane is used as the diaphragm. The alkaline aqueous solution may be supplied to either the anode chamber or the cathode chamber. If a cation exchange membrane is used as the diaphragm, it is supplied to the cathode chamber. When electricity is supplied to the cathode chamber while supplying the oxygen-containing gas, hydrogen peroxide is produced in the cathode chamber according to the following reaction formula. Anode: 2H 2 0 → O 2 + 4H + + 4e or H 2 → 2
H + + 2e cathode: O 2 + H 2 0 + 2e → OH + HO 2 (hydrogen peroxide)

【0012】第2電解槽で得られる過酸化水素は同時に
生成する水酸イオンを含むアルカリ水溶液に溶解してい
るためアルカリ性水溶液として得られるが、中性領域の
水溶液が望ましい場合には、第1又は第2電解槽の陽極
室で得られる酸性水と混合すれば良い。次に前述の各電
解槽を構成する部材及び運転条件につき説明する。第1
及び第2電解槽とも電極としては通常の板状又は多孔性
電極あるいはガス電極のいずれも使用可能である。陽極
として使用する板状又は多孔性電極である酸素発生陽極
は、チタン、ニオブ、タンタル等の耐食性を有する金
網、粉末焼結体、金属繊維焼結体等の基材上に、白金、
イリジウム、ルテニウム等の貴金属又はそれらの酸化物
から成る触媒を、熱分解法、樹脂による固着法、複合め
っき法等により10〜500 g/m2 程度の担持量になるよ
うに担持して製造できる。
The hydrogen peroxide obtained in the second electrolytic cell is obtained as an alkaline aqueous solution because it is dissolved in an alkaline aqueous solution containing hydroxide ions which are simultaneously produced, but when an aqueous solution in a neutral region is desired, the first Alternatively, it may be mixed with acidic water obtained in the anode chamber of the second electrolytic cell. Next, members constituting each of the above-described electrolytic cells and operating conditions will be described. First
As for the electrode in both the second electrolytic cell and the plate, any ordinary plate-shaped or porous electrode or gas electrode can be used. Oxygen generating anode is a plate-like or porous electrode used as the anode, titanium, niobium, wire mesh having corrosion resistance such as tantalum, powder sintered body, on a substrate such as a metal fiber sintered body, platinum,
A catalyst composed of a noble metal such as iridium or ruthenium or an oxide thereof can be manufactured by carrying it by a thermal decomposition method, a fixing method with a resin, a composite plating method or the like so that the carried amount becomes about 10 to 500 g / m 2. .

【0013】水素発生陰極の場合も同様に、白金、イリ
ジウム、ルテニウム等の貴金属又はそれらの酸化物から
成る触媒を熱分解法等により、ニッケル焼結体等の基材
上に1〜500 g/m2 程度の担持量になるように担持し
て製造できる。水素ガス陽極の場合は、チタン、ニオ
ブ、タンタル、カーボン等の耐食性を有する網状体、粉
末焼結体、繊維焼結体等の基材上に、白金、イリジウム
等の貴金属又はそれらの酸化物又はカーボンから成る触
媒を、熱分解法、樹脂による固着法、複合めっき法等に
より10〜500 g/m2 程度の担持量になるように担持し
て製造できる。反応生成ガス、液の供給、除去を速やか
に行なうために疎水性や親水性の材料を分散担持するこ
とが好ましい。
Similarly, in the case of a hydrogen generating cathode, a catalyst composed of a noble metal such as platinum, iridium, ruthenium or an oxide thereof is used at a rate of 1 to 500 g / on a substrate such as a nickel sintered body by a thermal decomposition method or the like. It can be manufactured by carrying so that the carried amount is about m 2 . In the case of hydrogen gas anode, titanium, niobium, tantalum, carbon or other corrosion-resistant mesh, powder sintered body, fiber sintered body or other base material, platinum, iridium or other noble metal or their oxides or A catalyst composed of carbon can be produced by carrying it by a thermal decomposition method, a fixing method with a resin, a composite plating method or the like so as to have a carried amount of about 10 to 500 g / m 2 . In order to rapidly supply and remove the reaction product gas and liquid, it is preferable to disperse and carry a hydrophobic or hydrophilic material.

【0014】酸素ガス陰極の場合も同様に、ステンレ
ス、ジルコニウム、銀、カーボン等の耐食性を有する網
状体、粉末焼結体、繊維焼結体等の基材上に、金、銀、
白金、イリジウム等の貴金属又はそれらの酸化物及び/
又はカーボンから成る触媒を、熱分解法、樹脂による固
着法、複合めっき法等により10〜500 g/m2 程度の担
持量になるように担持して製造できる。水素ガス陽極の
場合と同様に疎水性や親水性の材料を分散担持すること
が好ましい。使用するイオン交換膜はフッ素樹脂系、炭
化水素樹脂系のいずれでも良いが、耐食性の面から前者
が望ましい。イオン交換膜は、陽極及び陰極で生成した
各イオンが対極で消費されるのを防止するとともに、本
発明のように液の電導度が低い場合でも電解を速やかに
進行させる機能を有する。
Similarly, in the case of an oxygen gas cathode, gold, silver, and the like are formed on a base material such as a corrosion-resistant mesh body, powder sintered body, fiber sintered body, etc., such as stainless steel, zirconium, silver, and carbon.
Noble metals such as platinum and iridium or their oxides and /
Alternatively, a catalyst composed of carbon can be produced by carrying it by a thermal decomposition method, a fixing method with a resin, a composite plating method or the like so as to have a carried amount of about 10 to 500 g / m 2 . It is preferable to disperse and carry a hydrophobic or hydrophilic material as in the case of the hydrogen gas anode. The ion exchange membrane to be used may be either a fluororesin type or a hydrocarbon resin type, but the former is preferable from the viewpoint of corrosion resistance. The ion exchange membrane has a function of preventing each ion generated at the anode and the cathode from being consumed by the counter electrode, and has a function of promptly promoting electrolysis even when the conductivity of the liquid is low as in the present invention.

【0015】前述のガス電極の場合、イオン交換膜と陰
極の間に陰極液室、陽極と該膜の間に陽極液室を設けて
も良いが、液の電導度が低い場合、槽電圧の増加とな
り、又槽構造が複雑になり、各ガス電極の気液分離性能
が必要となる等不利な点が多い。従って電極をイオン交
換膜に接合する構造が最も好ましい。本発明の場合、陽
極室を実質的なガス室とすることができるが、陰極室で
はアルカリ水溶液や過酸化水素水が生成するため、気液
混合状態となる。電極とイオン交換膜を接合させる必要
がある場合には前もってそれらを機械的に結合させてお
くか、あるいは電解時に圧力を与えれば良い。該圧力と
しては0.1 〜30kgf/cm2 が好ましい。
In the case of the above-mentioned gas electrode, a catholyte chamber may be provided between the ion exchange membrane and the cathode, and an anolyte chamber may be provided between the anode and the membrane, but when the conductivity of the solution is low, the cell voltage There are many disadvantages such as an increase in the number, a complicated tank structure, and a need for gas-liquid separation performance of each gas electrode. Therefore, the structure in which the electrode is bonded to the ion exchange membrane is most preferable. In the case of the present invention, the anode chamber can be a substantial gas chamber, but the cathode chamber is in a gas-liquid mixed state because the alkaline aqueous solution and the hydrogen peroxide solution are generated. When it is necessary to bond the electrode and the ion exchange membrane, they may be mechanically bonded in advance, or pressure may be applied during electrolysis. The pressure is preferably 0.1 to 30 kgf / cm 2 .

【0016】原料である水素ガスや酸素ガスは市販ボン
ベを使用しても良いが、別に設置した電解槽で水の電解
により製造したものを使用しても良く、前述の第1電解
槽で発生する水素及び酸素ガスを使用することが最も好
ましい。別に電解槽を設置する場合には、イオン交換膜
の両面に電極を接合し、純水を原料とする電解方式を用
いることが好ましい。経済性の観点からこの電解槽を本
発明の前述の電解槽と一体化することもできる。本発明
の利用分野によっては、この電解槽の陽極からオゾンガ
スを発生させることも可能であり、エネルギーの有効利
用の観点からはこのように構成することが望ましい。水
素の供給量は理論量の1.2 倍程度、酸素の供給量は理論
量の1.2 〜100 倍程度が良い。
As the raw material, hydrogen gas or oxygen gas may be a commercially available cylinder, but may be one produced by electrolysis of water in a separately installed electrolytic cell, and may be generated in the first electrolytic cell described above. Most preferably, hydrogen and oxygen gases are used. When an electrolysis tank is separately installed, it is preferable to use an electrolysis method in which electrodes are bonded to both sides of the ion exchange membrane and pure water is used as a raw material. From the viewpoint of economy, this electrolytic cell can be integrated with the above-mentioned electrolytic cell of the present invention. Depending on the field of use of the present invention, it is possible to generate ozone gas from the anode of this electrolytic cell, and it is desirable to have such a configuration from the viewpoint of effective use of energy. It is recommended that the hydrogen supply amount is about 1.2 times the theoretical amount, and the oxygen supply amount is 1.2 to 100 times the theoretical amount.

【0017】前述の第1電解槽の中間室の厚さは抵抗損
失を低下させるためになるべく薄くすべきであるが、塩
水を供給する際のポンプの圧力損失を小さくし圧力分布
を均一に保つために1〜10mmとするのが好ましく、又
中間室の両側のイオン交換膜が接触しないように絶縁性
及び耐食性の優れたスペーサーを挿入することが好まし
い。該第1電解槽における塩水の分解率が大きくなると
プロトンの濃度が増加し陰極側へのナトリウム等の陽イ
オンの輸率を低下させる。従って前記分解率は40〜80%
に維持することが好ましい。この塩水として海水を使用
する場合、膜特性に悪影響を及ぼすカルシウム、マグネ
シウム、重金属イオン、SS及び固形分を前もって除去
してイオン交換膜を保護することが望ましい。この前処
理としてはストレーナーやフィルターを設ける以外に、
該第1電解槽で生成するアルカリ水溶液の一部を取水口
に注入して前記イオンを沈澱させておくことが効果的で
ありかつ好ましい。
The thickness of the intermediate chamber of the above-mentioned first electrolytic cell should be made as thin as possible in order to reduce the resistance loss, but the pressure loss of the pump at the time of supplying salt water is made small and the pressure distribution is kept uniform. Therefore, it is preferably 1 to 10 mm, and it is preferable to insert a spacer having excellent insulation and corrosion resistance so that the ion exchange membranes on both sides of the intermediate chamber do not come into contact with each other. When the decomposition rate of salt water in the first electrolytic cell increases, the concentration of protons increases and the transport number of cations such as sodium to the cathode side decreases. Therefore, the decomposition rate is 40-80%
It is preferable to maintain at. When seawater is used as the salt water, it is desirable to protect the ion exchange membrane by removing calcium, magnesium, heavy metal ions, SS and solids which adversely affect the membrane characteristics in advance. For this pretreatment, in addition to installing a strainer and a filter,
It is effective and preferable to inject a part of the alkaline aqueous solution generated in the first electrolytic cell into the water inlet to precipitate the ions.

【0018】第1電解槽の運転条件は、温度は5〜40
℃、電流密度は1〜50A/dm2 、中間室への供給塩水
濃度を20〜300 g/リットルとすることが好ましい。こ
のような条件で生成するアルカリ水溶液の濃度が高過ぎ
るときはそのまま使用すると前述した通り逆効果となる
ことがあるため、純水で希釈して第2電解槽で必要なア
ルカリ水溶液濃度に調節することが望ましく、用途にも
依存するがpH10以上、濃度35%以下のアルカリ水溶液
を添加することが好ましい。第2電解槽の材料は耐久性
及び過酸化水素の安定性維持の観点から、ガラスライニ
ング材料、カーボン、耐食性チタン、ステンレス、PT
FE樹脂などが好ましい。なお条件によっては第1及び
第2電解槽を一体化しても良い。
The operating condition of the first electrolytic cell is that the temperature is 5 to 40.
C., the current density is 1 to 50 A / dm.sup.2, and the concentration of salt water supplied to the intermediate chamber is preferably 20 to 300 g / liter. If the concentration of the alkaline aqueous solution generated under such conditions is too high, the reverse effect may occur if it is used as it is. Therefore, dilute it with pure water and adjust it to the required concentration of the alkaline aqueous solution in the second electrolytic cell. Although it depends on the intended use, it is preferable to add an alkaline aqueous solution having a pH of 10 or more and a concentration of 35% or less. The material of the second electrolytic cell is glass lining material, carbon, corrosion resistant titanium, stainless steel, PT from the viewpoint of durability and stability of hydrogen peroxide.
FE resin and the like are preferable. The first and second electrolytic cells may be integrated depending on the conditions.

【0019】次に添付図面に基づいて本発明方法及び装
置を例示するが、本発明はこれらに限定されるものでは
ない。図1は、本発明方法を例示するフローチャートで
ある。原料である海水1を貯留しかつ固形分を濾過等に
より除去するためのストレーナー2内の前記海水1がポ
ンプ3により第1電解槽4により供給され、該第1電解
槽4で電解されて、アルカリ水溶液と酸性海水が生成す
る。該第1電解槽4で生成したアルカリ水溶液は一部が
循環ライン5を通って前記ストレーナー2に循環され、
残りのアルカリ水溶液は供給ライン6により第2電解槽
7に供給される。該第2電解槽7では通常の水電解が行
なわれるが、該電解槽に供給されたアルカリ水溶液が過
酸化水素の生成を促進し、高濃度の過酸化水素が生成し
過酸化水素を含有するアルカリ水溶液として第2電解槽
7から取り出され、混合用ライン8を通って混合タンク
9へ供給される。一方前記第1電解槽4で生成した酸性
塩水は迂回ライン10を通って前記混合タンク9へ供給さ
れ、前記過酸化水素を含有するアルカリ水溶液と混合さ
れてほぼ中性の過酸化水素水として該混合タンク9から
取り出される。
The method and apparatus of the present invention will be illustrated with reference to the accompanying drawings, but the present invention is not limited thereto. FIG. 1 is a flow chart illustrating the method of the present invention. The seawater 1 in a strainer 2 for storing seawater 1 as a raw material and removing solids by filtration or the like is supplied by a first electrolyzer 4 by a pump 3 and electrolyzed in the first electrolyzer 4, Aqueous alkaline solution and acidic seawater are produced. Part of the alkaline aqueous solution generated in the first electrolysis tank 4 is circulated to the strainer 2 through a circulation line 5,
The remaining alkaline aqueous solution is supplied to the second electrolytic cell 7 through the supply line 6. Normal water electrolysis is carried out in the second electrolysis tank 7, but the alkaline aqueous solution supplied to the electrolysis tank promotes the production of hydrogen peroxide, so that high-concentration hydrogen peroxide is produced and contains hydrogen peroxide. It is taken out of the second electrolytic cell 7 as an alkaline aqueous solution and supplied to the mixing tank 9 through the mixing line 8. On the other hand, the acidic salt water generated in the first electrolysis tank 4 is supplied to the mixing tank 9 through a bypass line 10 and mixed with the alkaline aqueous solution containing hydrogen peroxide to form a substantially neutral hydrogen peroxide solution. Taken out of the mixing tank 9.

【0020】図2は、図1の第1電解槽の縦断面図、図
3は、図2の第1電解槽の縦断面図である。第1電解槽
4は、2枚の陽イオン交換膜11及び12により陽極室13、
中間室14及び陰極室15に区画され、前記中間室14には網
状のスペーサー16が収容されている。前記陽極室13側の
陽イオン交換膜11の陽極面側には、チタン等の基材に貴
金属酸化物等の触媒を担持して成る多孔性陽極17が、又
前記陰極室15側の陽イオン交換膜12の陰極面側には、チ
タン等の基材に白金等の触媒を担持して成る多孔性陰極
18が、それぞれ陽イオン交換膜に密着状態で設置されて
いる。陽極室下部及び上部側面には、純水供給口19及び
陽極液及び酸素ガス取出口20がそれぞれ設置され、又中
間室下面及び上面には塩水供給口21及び塩水取出口22が
それぞれ設置され、更に陰極室下部及び上部側面には、
純水供給口23及びアルカリ水溶液取出口24がそれぞれ設
置されている。
FIG. 2 is a vertical sectional view of the first electrolytic cell of FIG. 1, and FIG. 3 is a vertical sectional view of the first electrolytic cell of FIG. The first electrolyzer 4 is composed of two cation-exchange membranes 11 and 12 for the anode chamber 13,
It is divided into an intermediate chamber 14 and a cathode chamber 15, and a mesh-like spacer 16 is housed in the intermediate chamber 14. On the anode surface side of the cation exchange membrane 11 on the side of the anode chamber 13, there is a porous anode 17 formed by supporting a catalyst such as a noble metal oxide on a base material such as titanium, and on the side of the cathode chamber 15 cations. On the cathode side of the exchange membrane 12, a porous cathode formed by supporting a catalyst such as platinum on a substrate such as titanium.
18 are installed in close contact with the cation exchange membrane. Pure water supply port 19 and anolyte and oxygen gas outlet 20 are installed on the lower and upper side surfaces of the anode chamber, respectively, and salt water supply port 21 and salt water outlet 22 are installed on the lower surface and upper surface of the intermediate chamber, respectively. Furthermore, on the lower and upper side surfaces of the cathode chamber,
A pure water supply port 23 and an alkaline aqueous solution extraction port 24 are provided respectively.

【0021】第2電解槽7は、陽イオン交換膜25により
陽極室26及び陰極室27に区画され、前記陽イオン交換膜
25の陽極室側には、チタン等の基材に貴金属酸化物等の
触媒を担持して成る多孔性陽極28が、又前記陽イオン交
換膜25の陰極室側にはチタン等の基材に炭素、金等の触
媒を担持して成る多孔性陰極29が、それぞれ陽イオン交
換膜に密着状態で設置されている。陽極室上部及び下部
側面には、水素ガス及び陽極液供給口30及び陽極液取出
口31がそれぞれ設置され、又陰極室下部及び上部側面に
は、酸素及び前記取出口24から取り出されたアルカリ水
溶液の供給口32及び過酸化水素水を含有するアルカリ水
溶液取出口33がそれぞれ設置されている。両電解槽4及
び7は図1のフローチャートで示した通りに配置され
て、過酸化水素を生成する。
The second electrolytic cell 7 is divided into an anode chamber 26 and a cathode chamber 27 by a cation exchange membrane 25, and the cation exchange membrane is used.
On the anode chamber side of 25, there is a porous anode 28 formed by supporting a catalyst such as a noble metal oxide on a substrate such as titanium, and on the cathode chamber side of the cation exchange membrane 25 a substrate such as titanium. Porous cathodes 29 carrying catalysts such as carbon and gold are installed in close contact with the cation exchange membrane. Hydrogen gas and anolyte supply port 30 and anolyte outlet 31 are installed on the upper and lower side surfaces of the anode chamber, respectively, and oxygen and an alkaline aqueous solution taken out from the outlet 24 are provided on the lower and upper side surfaces of the cathode chamber. A supply port 32 and an alkaline aqueous solution extraction port 33 containing a hydrogen peroxide solution are installed. Both electrolytic cells 4 and 7 are arranged as shown in the flow chart of FIG. 1 to produce hydrogen peroxide.

【0022】[0022]

【実施例】次に本発明による過酸化水素水の製造の実施
例を記載するが、該実施例は本発明を限定するものでは
ない。
EXAMPLES Next, examples of production of hydrogen peroxide solution according to the present invention will be described, but the examples do not limit the present invention.

【実施例1】それぞれ電極面積が0.2 dm2 である酸化
イリジウム粉末触媒を被覆した気液透過性のチタン製多
孔性陽極及び酸化ルテニウム粉末触媒を被覆したニッケ
ル製多孔性陰極を電解槽の陽極室及び陰極室に収容し、
前記陽極を陽イオン交換膜ナフィオン117 (デュポン社
製)に密着させかつ前記陰極を陽イオン交換膜ナフィオ
ン350 (デュポン社製)に密着させて両陽イオン交換膜
間に厚さが3mmの中間室を形成した。該中間室にはポ
リプロピレン製の網の積層体をスペーサーとして配設
し、次いで全体を締め付けて図2に示すような第1電解
槽を構成した。
Example 1 A gas-liquid permeable porous titanium anode coated with an iridium oxide powder catalyst and a nickel porous cathode coated with a ruthenium oxide powder catalyst each having an electrode area of 0.2 dm 2 were used as an anode chamber of an electrolytic cell. And accommodated in the cathode chamber,
An intermediate chamber having a thickness of 3 mm between the cation exchange membrane Nafion 117 (manufactured by DuPont) and the cathode was closely contacted with the cation exchange membrane Nafion 350 (manufactured by DuPont). Was formed. In the intermediate chamber, a polypropylene net laminate was provided as a spacer, and then the whole was tightened to form a first electrolytic cell as shown in FIG.

【0023】この第1電解槽の陽極室、中間室及び陰極
室のそれぞれには順に、純水を毎分1cc、30g/リッ
トルの塩化ナトリウム水溶液を毎分10cc及び純水を毎
分3ccの割合で供給しながら、温度40℃、電流1Aで
電解を行なったところ、槽電圧は2.5 Vであり、陰極室
出口からは25g/リットルのアルカリ(水酸化ナトリウ
ム)水溶液が電流効率80%で得られ、又陽極室出口から
は25g/リットルの酸性塩水溶液が電流効率80%で得ら
れた。それぞれ電極面積が0.2 dm2 である白金触媒を
被覆した気液透過性のカーボン製ガス陽極及び金触媒を
被覆したカーボン製ガス陰極を、陽イオン交換膜ナフィ
オン117 (デュポン社製)で区画した電解槽の陽極室及
び陰極室に前記陽イオン交換膜に密着するように収容
し、全体を締め付けて図3に示すような第2電解槽を構
成した。
The positive electrode chamber, the intermediate chamber and the negative electrode chamber of the first electrolyzer are in the order of 1 cc of pure water, 10 cc of 30 g / liter sodium chloride aqueous solution and 3 cc of pure water, respectively. Electrolysis was carried out at a temperature of 40 ° C and a current of 1 A while supplying the solution at a cell voltage of 2.5 V, and a 25 g / liter aqueous solution of alkali (sodium hydroxide) was obtained with a current efficiency of 80% from the cathode chamber outlet. From the outlet of the anode chamber, a 25 g / liter aqueous solution of acidic salt was obtained with a current efficiency of 80%. Electrolysis in which a gas-liquid permeable carbon gas anode coated with a platinum catalyst having an electrode area of 0.2 dm 2 and a carbon gas cathode coated with a gold catalyst were partitioned with a cation exchange membrane Nafion 117 (manufactured by DuPont). The cells were housed in the anode chamber and the cathode chamber of the cell so as to be in close contact with the cation exchange membrane, and the whole was tightened to form a second electrolytic cell as shown in FIG.

【0024】この第2電解槽の陽極室には前記第1電解
槽の陰極室で発生した水素に加えて市販の工業用水素ボ
ンベからの水素ガスを合計毎分10ミリリットルで供給
し、一方陰極室には工業用酸素ボンベからの毎分500 ミ
リリットルの酸素ガス及び前記第1電解槽で生成した25
g/リットルのアルカリ水溶液を毎分1ミリリットルの
割合で供給しながら、温度30℃、電流1Aで電解を行な
ったところ、槽電圧は1.5 Vであり、陰極室出口からは
10g/リットルの過酸化水素を含むアルカリ水溶液が電
流効率95%で得られた。該水溶液を前記第1電解槽で生
成した酸性塩水と混合することにより、ほぼ中性の0.5
%過酸化水素水溶液が毎分10ccの割合で得られた。
In addition to hydrogen generated in the cathode chamber of the first electrolytic cell, hydrogen gas from a commercial industrial hydrogen cylinder was supplied to the anode chamber of the second electrolytic cell at a total of 10 ml / min, while the cathode In the chamber, 500 ml / min of oxygen gas from an industrial oxygen cylinder and the gas produced in the first electrolyzer 25
When electrolysis was carried out at a temperature of 30 ° C. and a current of 1 A while supplying 1 ml / min of an alkaline aqueous solution of g / liter, the cell voltage was 1.5 V, and from the cathode chamber outlet
An alkaline aqueous solution containing 10 g / liter of hydrogen peroxide was obtained with a current efficiency of 95%. By mixing the aqueous solution with the acidic salt water produced in the first electrolyzer, an almost neutral 0.5
% Aqueous hydrogen peroxide solution was obtained at a rate of 10 cc / min.

【0025】[0025]

【実施例2】実施例1と同じ第1電解槽を構成し、該第
1電解槽の陽極室、中間室及び陰極室のそれぞれに順
に、純水を毎分1cc、30g/リットルの海水を毎分10
cc及び純水を毎分3ccの割合で供給しながら、温度
40℃、電流2Aで電解を行なったところ、槽電圧は4.5
Vであり、陰極室出口からは25g/リットルのアルカリ
水溶液が電流効率80%で得られ、又陽極室出口からは25
g/リットルの酸性海水が電流効率60%で得られた。こ
のとき生成したアルカリ水溶液の一部を原料海水のタン
クに注入し、カルシウム、マグネシウム及び重金属イオ
ンを沈澱させた。SS及び固形分は前処理としてストレ
ーナーと濾過フィルターにより除去した。
Example 2 The same first electrolytic cell as in Example 1 was constructed, and 1 cc of pure water and 30 g / liter of seawater were successively supplied to the anode chamber, the intermediate chamber and the cathode chamber of the first electrolytic cell, respectively. 10 per minute
While supplying cc and pure water at a rate of 3 cc / min,
When electrolysis was performed at 40 ° C and a current of 2 A, the cell voltage was 4.5.
V, a 25 g / liter aqueous alkaline solution was obtained from the cathode chamber outlet with a current efficiency of 80%, and 25 from the anode chamber outlet.
g / l of acidic seawater was obtained with a current efficiency of 60%. A part of the alkaline aqueous solution generated at this time was injected into a tank of raw material seawater to precipitate calcium, magnesium and heavy metal ions. The SS and solids were removed by a strainer and a filtration filter as a pretreatment.

【0026】実施例1と同じ第2電解槽を構成し、該第
2電解槽の陽極室には、前記第1電解槽の陰極室で発生
した水素に加えて市販の工業用水素ボンベからの水素ガ
スを合計毎分10ミリリットルで供給し、一方陰極室には
酸素濃縮装置(日本酸素株式会社製OA−2L)からの
酸素ガス毎分2リットルと25g/リットルの前記第1電
解槽で生成したアルカリ水溶液毎分1ミリリットルの割
合で供給しながら、温度30℃、電流1Aで電解を行なっ
たところ、槽電圧は1.5 Vであり、陰極室出口からは10
g/リットルの過酸化水素を含むアルカリ水溶液がが電
流効率95%で得られた。該水溶液を前記第1電解槽で生
成した酸性塩水と混合することにより、ほぼ中性の0.5
%過酸化水素水溶液が毎分10ccの割合で得られた。
The same second electrolysis cell as in Example 1 was constructed, and in addition to hydrogen generated in the cathode cell of the first electrolysis cell, an anode cell of the second electrolysis cell was supplied from a commercially available industrial hydrogen cylinder. Hydrogen gas was supplied at a total of 10 ml / min, while oxygen gas from an oxygen concentrator (OA-2L manufactured by Nippon Oxygen Co., Ltd.) was generated in the cathode chamber at 2 liters / min and 25 g / liter of the first electrolytic cell. Electrolysis was carried out at a temperature of 30 ° C. and a current of 1 A while supplying 1 ml / min of the alkaline aqueous solution, and the cell voltage was 1.5 V, and 10 V from the cathode chamber outlet.
An alkaline aqueous solution containing g / l hydrogen peroxide was obtained with a current efficiency of 95%. By mixing the aqueous solution with the acidic salt water produced in the first electrolyzer, an almost neutral 0.5
% Aqueous hydrogen peroxide solution was obtained at a rate of 10 cc / min.

【0027】[0027]

【発明の効果】本発明方法は、塩水を電解してアルカリ
水溶液を製造し、該アルカリ水溶液及び酸素含有ガスを
加えながら水を電解して過酸化水素を含むアルカリ水溶
液を製造することを特徴とする過酸化水素水の製造方法
である。この本発明方法によると、冷却水や養魚場水等
の殺菌に効果のある過酸化水素水が海水等の塩水と純水
のみを原料として使用して製造できる。この過酸化水素
は従来から海水等の冷却水の殺菌用として使用されてい
る次亜塩素酸と異なり分解しやすく残留することが殆ど
なく、しかも分解生成物も水と酸素であるため、環境に
悪影響を与えることがない。
The method of the present invention is characterized in that salt water is electrolyzed to produce an alkaline aqueous solution, and water is electrolyzed while adding the alkaline aqueous solution and an oxygen-containing gas to produce an alkaline aqueous solution containing hydrogen peroxide. It is a method for producing hydrogen peroxide solution. According to this method of the present invention, hydrogen peroxide water, which is effective for sterilizing cooling water, fish farm water, etc., can be produced by using only salt water such as sea water and pure water as raw materials. Unlike hypochlorous acid, which has been conventionally used for sterilizing cooling water such as seawater, this hydrogen peroxide easily decomposes and hardly remains, and since the decomposition products are water and oxygen, it is environmentally friendly. There is no adverse effect.

【0028】そして第1段階で製造したアルカリ水溶液
を第2段階で添加して過酸化水素の製造を促進している
ため、過酸化水素製造の電流効率が上昇し、従来と比較
して多量の過酸化水素を得ることができる。又このアル
カリ水溶液はオンサントで製造されるため、輸送上の問
題が生じない。更に本発明方法は電解槽及び原料として
の塩水及び純水以外を必要としないためオンサイト製造
を容易に行なうことができ、製造された過酸化水素をそ
のまま殺菌等に使用できるため過酸化水素の欠点である
分解しやすさも克服できる。又前述の通り原料が塩水と
純水のみであるため、殺菌用として過酸化水素が広く使
用されている海水を冷却水として使用する際の冷却水及
びその装置の場合は純水のみを準備すれば良く、コスト
が殆ど掛からないだけでなく、輸送も容易で輸送時の物
質の分解も考慮する必要がなく、従来の欠点の殆どが解
消された画期的な過酸化水素水の製造方法が提供され
る。
Since the alkaline aqueous solution produced in the first stage is added in the second stage to promote the production of hydrogen peroxide, the current efficiency of hydrogen peroxide production increases, and a large amount of hydrogen peroxide is produced as compared with the conventional case. Hydrogen peroxide can be obtained. Further, since this alkaline aqueous solution is produced on-site, there is no problem in transportation. Furthermore, since the method of the present invention does not require anything other than an electrolytic cell and salt water and pure water as raw materials, on-site production can be easily performed, and the produced hydrogen peroxide can be used as it is for sterilization and the like. It can also overcome the drawback of easy disassembly. Further, as described above, since the raw materials are only salt water and pure water, it is necessary to prepare only pure water in the case of cooling water and its equipment when using seawater in which hydrogen peroxide is widely used for sterilization. Not only is it cost-effective, it costs little, it is easy to transport, and there is no need to consider decomposition of substances during transportation. Provided.

【0029】用途によっては中性の過酸化水素水が必要
な場合もあるが、本発明の3室型電解では酸性塩水も副
生し、この酸性塩水を前述の過酸化水素を含むアルカリ
水溶液と混合することによりほぼ中性の過酸化水素を得
ることができる。本発明装置は、塩水を電解してアルカ
リ水溶液を製造する第1電解槽、及び前記アルカリ水溶
液及び酸素含有ガスを供給しながら電解を行ない過酸化
水素を含むアルカリ水溶液を製造する第2電解槽を含ん
で成ることを特徴とする過酸化水素水の製造装置であ
る。
Depending on the application, neutral hydrogen peroxide water may be necessary, but in the three-chamber electrolysis of the present invention, acidic salt water is also by-produced, and this acidic salt water is used as the above-mentioned alkaline aqueous solution containing hydrogen peroxide. By mixing, almost neutral hydrogen peroxide can be obtained. The apparatus of the present invention comprises a first electrolytic cell for electrolyzing salt water to produce an alkaline aqueous solution, and a second electrolytic cell for electrolyzing while supplying the alkaline aqueous solution and an oxygen-containing gas to produce an alkaline aqueous solution containing hydrogen peroxide. An apparatus for producing hydrogen peroxide water, comprising:

【0030】この装置を使用すると前述の本発明方法と
同様に従来と比較して多量の過酸化水素を含む水溶液を
得ることができる。そして使用する電極をガス電極と
し、水素ガスや酸素ガスを供給しながら電解を行なうと
それぞれ酸素ガス及び水素ガスの発生を抑制して槽電圧
の低下を達成できる。
By using this apparatus, an aqueous solution containing a large amount of hydrogen peroxide can be obtained as compared with the conventional method, similarly to the above-mentioned method of the present invention. When the electrode to be used is a gas electrode and electrolysis is performed while supplying hydrogen gas or oxygen gas, the generation of oxygen gas and hydrogen gas can be suppressed, respectively, and the cell voltage can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を例示するフローチャート。FIG. 1 is a flow chart illustrating the method of the present invention.

【図2】図1の第1電解槽の縦断面図。2 is a vertical cross-sectional view of the first electrolytic cell of FIG.

【図3】図2の第1電解槽の縦断面図。3 is a vertical cross-sectional view of the first electrolytic cell of FIG.

【符号の説明】[Explanation of symbols]

1・・・海水 2・・・ストレーナー 3・・・ポンプ
4・・・第1電解槽 7・・・第2電解槽 9・・・混合タンク 11、12・・
・陽イオン交換膜 13・・・陽極室 14・・・中間室
15・・・陰極室 16・・・スペーサー 17・・・多孔性
陽極 18・・・多孔性陰極 25・・・陽イオン交換膜
26・・・陽極室 27・・・陰極室 28・・・多孔性陽極 29・・・多孔性
陰極
1 ... Sea water 2 ... Strainer 3 ... Pump 4 ... First electrolysis tank 7 ... Second electrolysis tank 9 ... Mixing tank 11, 12 ...
・ Cation exchange membrane 13 ・ ・ ・ Anode chamber 14 ・ ・ ・ Intermediate chamber
15 ... Cathode chamber 16 ... Spacer 17 ... Porous anode 18 ... Porous cathode 25 ... Cation exchange membrane
26 ... Anode chamber 27 ... Cathode chamber 28 ... Porous anode 29 ... Porous cathode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年4月28日[Submission date] April 28, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】図2は、図1の第1電解槽の縦断面図、図
3は、図1の第2電解槽の縦断面図である。第1電解槽
4は、2枚の陽イオン交換膜11及び12により陽極室13、
中間室14及び陰極室15に区画され、前記中間室14には網
状のスペーサー16が収容されている。前記陽極室13側の
陽イオン交換膜11の陽極面側には、チタン等の基材に貴
金属酸化物等の触媒を担持して成る多孔性陽極17が、又
前記陰極室15側の陽イオン交換膜12の陰極面側には、チ
タン等の基材に白金等の触媒を担持して成る多孔性陰極
18が、それぞれ陽イオン交換膜に密着状態で設置されて
いる。陽極室下部及び上部側面には、純水供給口19及び
陽極液及び酸素ガス取出口20がそれぞれ設置され、又中
間室下面及び上面には塩水供給口21及び塩水取出口22が
それぞれ設置され、更に陰極室下部及び上部側面には、
純水供給口23及びアルカリ水溶液取出口24がそれぞれ設
置されている。
FIG. 2 is a vertical sectional view of the first electrolytic cell shown in FIG . 1 , and FIG . 3 is a vertical sectional view of the second electrolytic cell shown in FIG. The first electrolyzer 4 is composed of two cation-exchange membranes 11 and 12 for the anode chamber 13,
It is divided into an intermediate chamber 14 and a cathode chamber 15, and a mesh-like spacer 16 is housed in the intermediate chamber 14. On the anode surface side of the cation exchange membrane 11 on the side of the anode chamber 13, there is a porous anode 17 formed by supporting a catalyst such as a noble metal oxide on a base material such as titanium, and on the side of the cathode chamber 15 cations. On the cathode side of the exchange membrane 12, a porous cathode formed by supporting a catalyst such as platinum on a substrate such as titanium.
18 are installed in close contact with the cation exchange membrane. Pure water supply port 19 and anolyte and oxygen gas outlet 20 are installed on the lower and upper side surfaces of the anode chamber, respectively, and salt water supply port 21 and salt water outlet 22 are installed on the lower surface and upper surface of the intermediate chamber, respectively. Furthermore, on the lower and upper side surfaces of the cathode chamber,
A pure water supply port 23 and an alkaline aqueous solution extraction port 24 are provided respectively.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】図1の第2電解槽の縦断面図。FIG. 3 is a vertical cross-sectional view of the second electrolytic cell of FIG.

フロントページの続き (72)発明者 脇田 修平 神奈川県藤沢市辻堂元町5−9−8 (72)発明者 芦田 高弘 神奈川県座間市立野台2−7−6 (72)発明者 錦 善則 神奈川県藤沢市藤沢1丁目1番の23Front page continuation (72) Inventor Shuhei Wakita 5-9-8 Tsujido Motomachi, Fujisawa City, Kanagawa Prefecture (72) Inventor Takahiro Ashida 2-7-6 Nodai, Zama City, Kanagawa Prefecture (72) Inventor Yoshinori Nishiki Fujisawa, Kanagawa Prefecture 23, 1-1-1, Fujisawa, Ichi

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩水を電解してアルカリ水溶液を製造
し、該アルカリ水溶液及び酸素含有ガスを加えながら水
を電解して過酸化水素を含むアルカリ水溶液を製造する
ことを特徴とする過酸化水素水の製造方法。
1. A hydrogen peroxide solution comprising electrolyzing salt water to produce an alkaline aqueous solution, and electrolyzing water while adding the alkaline aqueous solution and an oxygen-containing gas to produce an alkaline aqueous solution containing hydrogen peroxide. Manufacturing method.
【請求項2】 塩水を電解して酸性塩水とアルカリ水溶
液を製造し、該アルカリ水溶液及び酸素含有ガスを加え
ながら水を電解して過酸化水素を含むアルカリ水溶液を
製造し、該過酸化水素を含むアルカリ水溶液と前記酸性
塩水を混合してpHが5から9の過酸化水素を含む水溶
液とすることを特徴とする過酸化水素水の製造方法。
2. Electrolyzing salt water to produce acidic salt water and an alkaline aqueous solution, and electrolyzing water while adding the alkaline aqueous solution and an oxygen-containing gas to produce an alkaline aqueous solution containing hydrogen peroxide. A method for producing hydrogen peroxide solution, which comprises mixing the alkaline aqueous solution containing the acid salt solution and an aqueous solution containing hydrogen peroxide having a pH of 5 to 9.
【請求項3】 塩水を電解してアルカリ水溶液を製造す
る第1電解槽、及び前記アルカリ水溶液及び酸素含有ガ
スを供給しながら電解を行ない過酸化水素を含むアルカ
リ水溶液を製造する第2電解槽を含んで成ることを特徴
とする過酸化水素水の製造装置。
3. A first electrolysis tank for electrolyzing salt water to produce an alkaline aqueous solution, and a second electrolysis cell for electrolyzing while supplying the alkali aqueous solution and an oxygen-containing gas to produce an alkaline aqueous solution containing hydrogen peroxide. An apparatus for producing hydrogen peroxide water, comprising:
【請求項4】 第1電解槽が、2枚のイオン交換膜によ
り多孔性又はガス陽極を有する陽極室、多孔性又はガス
陰極を有する陰極室及び両極室間に形成される中間室に
区画され、該中間室に塩水を供給し、陽極室で酸性塩水
を、陰極室で過酸化水素を含むアルカリ水溶液を得るよ
うにした請求項3に記載の過酸化水素水の製造装置。
4. The first electrolytic cell is divided by two ion exchange membranes into an anode chamber having a porous or gas anode, a cathode chamber having a porous or gas cathode, and an intermediate chamber formed between both electrode chambers. The apparatus for producing hydrogen peroxide solution according to claim 3, wherein salt water is supplied to the intermediate chamber, acidic salt water is obtained in the anode chamber, and an alkaline aqueous solution containing hydrogen peroxide is obtained in the cathode chamber.
JP12057495A 1995-04-21 1995-04-21 Method and apparatus for producing hydrogen peroxide water Expired - Fee Related JP3677078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12057495A JP3677078B2 (en) 1995-04-21 1995-04-21 Method and apparatus for producing hydrogen peroxide water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12057495A JP3677078B2 (en) 1995-04-21 1995-04-21 Method and apparatus for producing hydrogen peroxide water

Publications (2)

Publication Number Publication Date
JPH08296076A true JPH08296076A (en) 1996-11-12
JP3677078B2 JP3677078B2 (en) 2005-07-27

Family

ID=14789667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12057495A Expired - Fee Related JP3677078B2 (en) 1995-04-21 1995-04-21 Method and apparatus for producing hydrogen peroxide water

Country Status (1)

Country Link
JP (1) JP3677078B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623695B2 (en) 1997-12-04 2003-09-23 Steris Corporation Chemical modification of electrochemically activated solutions for improved performance
JP2003531300A (en) * 2000-04-19 2003-10-21 アムキナ ソチエタ ペル アチオニ Electrolysis cell and electrolysis method
JP2009248059A (en) * 2008-04-10 2009-10-29 Niigata Univ Simultaneously manufacturing apparatus for ozone water and hydrogen peroxide water
JP2012067336A (en) * 2010-09-21 2012-04-05 Masaaki Arai Apparatus for manufacturing electrolytic water, and method for manufacturing the electrolytic water
EP2734659A4 (en) * 2011-07-19 2015-05-13 Ecolab Usa Inc Support of ion exchange membranes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283018A1 (en) * 2022-05-24 2023-11-29 Siemens Energy Global GmbH & Co. KG Method of producing a concentrated hydrogen peroxide solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623695B2 (en) 1997-12-04 2003-09-23 Steris Corporation Chemical modification of electrochemically activated solutions for improved performance
JP2003531300A (en) * 2000-04-19 2003-10-21 アムキナ ソチエタ ペル アチオニ Electrolysis cell and electrolysis method
JP2009248059A (en) * 2008-04-10 2009-10-29 Niigata Univ Simultaneously manufacturing apparatus for ozone water and hydrogen peroxide water
JP2012067336A (en) * 2010-09-21 2012-04-05 Masaaki Arai Apparatus for manufacturing electrolytic water, and method for manufacturing the electrolytic water
EP2734659A4 (en) * 2011-07-19 2015-05-13 Ecolab Usa Inc Support of ion exchange membranes
EP3135797A1 (en) * 2011-07-19 2017-03-01 Ecolab USA Inc. Support of ion exchange membranes

Also Published As

Publication number Publication date
JP3677078B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP3913923B2 (en) Water treatment method and water treatment apparatus
JP3716042B2 (en) Acid water production method and electrolytic cell
US5460705A (en) Method and apparatus for electrochemical production of ozone
JP3689541B2 (en) Seawater electrolyzer
US20020153262A1 (en) Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
JPH10286571A (en) Electrolytic cell for acidic water and alkaline water preparation
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JP3420820B2 (en) Method and apparatus for producing electrolytic acidic water
US6761815B2 (en) Process for the production of hydrogen peroxide solution
KR101436139B1 (en) A electrolysis apparatus
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JPH10291808A (en) Production method of aqueous hydrogen peroxide and device therefor
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
JPH05179475A (en) Production of hypochlorite
JP2003293178A (en) Method for preparing chemical for water treatment
JP3725685B2 (en) Hydrogen peroxide production equipment
JPH0114830B2 (en)
JP3909957B2 (en) Electrolyzer for hydrogen peroxide production
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis
JPH09195079A (en) Electrolytic cell for producing electrolyzed water
JPH10280180A (en) Apparatus for production of hydrogen peroxide water and method therefor
JPH09202986A (en) Three-compartment electrolytic cell
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees