JP3909957B2 - Electrolyzer for hydrogen peroxide production - Google Patents

Electrolyzer for hydrogen peroxide production Download PDF

Info

Publication number
JP3909957B2
JP3909957B2 JP17406998A JP17406998A JP3909957B2 JP 3909957 B2 JP3909957 B2 JP 3909957B2 JP 17406998 A JP17406998 A JP 17406998A JP 17406998 A JP17406998 A JP 17406998A JP 3909957 B2 JP3909957 B2 JP 3909957B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
unit
anode
pure water
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17406998A
Other languages
Japanese (ja)
Other versions
JPH11350178A (en
Inventor
吉継 四宮
弘二 三好
裕一 窪田
孝之 島宗
保夫 中島
善之 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
De Nora Permelec Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd, Permelec Electrode Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP17406998A priority Critical patent/JP3909957B2/en
Publication of JPH11350178A publication Critical patent/JPH11350178A/en
Application granted granted Critical
Publication of JP3909957B2 publication Critical patent/JP3909957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、ガス拡散電極を使用して過酸化水素を含む塩水又は海水を製造するための電解槽に関し、より詳細には酸素ガス及び水素ガスを水電解により生成させ、両ガスを原料として過酸化水素製造を製造する際に、流量調整を不要とすることができる過酸化水素製造用電解槽に関する。
【0002】
【従来技術とその問題点】
過酸化水素は、食品、医薬品、パルプ、繊維、半導体工業において欠くことのできない有用な基礎薬品である。従来より過酸化水素は、2−アルキルアントラキノールを自動酸化させることにより工業的に得られ、同時に得られるアントラキノンを水素還元して元のアントラキノンに戻すことで連続的に大量合成が行なわれている。その精製のためには精留を繰り返す等の煩雑な操作が必要であり、しかも過酸化水素が不安定であり長期間の保存が不可能なため、更に輸送に伴う安全性及び汚染対策の面から、オンサイト型の過酸化水素製造装置の需要が高まっている。
冷却水として海水を利用する発電所や工場では復水器内部への生物付着防止のために、海水を直接電解して次亜塩素酸を生成させ、これを利用することが従来から行なわれているが、環境保全の観点から次亜塩素酸の使用は規制されつつある。即ち次亜塩素酸と海水中の生物や有機物の反応により有機塩素化合物が形成され、それが二次公害の原因になることを防止するためである。一方過酸化水素を前記冷却水中に微量添加すると良好な生物付着防止効果があることも報告されている。又養魚場用水の水質維持にも過酸化水素の添加が効果的であるとの報告もある。しかしながら前述の通り、過酸化水素の輸送に伴う安全性や汚染対策の課題が残されている。
【0003】
従来から酸素ガスの還元反応を用いる過酸化水素の製造が提案され、米国特許第3,693,749 号には数種類の過酸化水素の電解製造装置が、又米国特許第4,384,931 号にはイオン交換膜を用いるアルカリ性過酸化水素溶液の製造方法がそれぞれ開示されている。又米国特許第3,969,201 号には三次元構造のカーボン陰極とイオン交換膜から成る過酸化水素の製造装置が提案されている。しかしこれらの方法では、過酸化水素の生成に必須であるアルカリの量は生成過酸化水素にほぼ比例して増加するため、得られる過酸化水素の濃度に対するアルカリ濃度が高くなり過ぎ用途が限定されてしまう。
又米国特許第4,406,758 号、米国特許第4,891,107 号及び米国特許第4,457,953 号では多孔性隔膜と疎水性カーボン陰極を使用する過酸化水素の製造方法が開示され、重量比(水酸化ナトリウム/過酸化水素)の小さいアルカリ性過酸化水素水溶液が得られている。しかしこれらの方法では陽極室から陰極室への電解質溶液の移行量及び移行速度の制御が困難であり運転条件の管理が煩雑で特に生成する過酸化水素の割合が一定しないという欠点がある。
【0004】
更にJournal of Electrochemical Society, vol.130, 1117〜(1983)には陽、陰イオン交換膜を用い、中間室に硫酸を供給し、酸性の過酸化水素溶液を安定的に得る方法が提案されている。更に電気化学57巻p1073(1989)には、陽極として膜電極接合体を使用することで性能を向上させる手法が報告されている。又Jornal of Applied Electrochem. 25 (1995) 613〜627 には、その時点で公知であった過酸化水素の電解合成プロセスについて説明されている。しかしこれらの方法では電力原単位が掛かり経済性に問題があり、更に硫酸の使用及び混入が不可避であるという欠点があり、現在に至るまで十分に満足できる過酸化水素の製造方法は得られていない。
前述のアルカリ濃度が高い過酸化水素水溶液は、過酸化水素の濃度自体は満足できるレベルにあるが、アルカリ水溶液雰囲気でのみ効率良く過酸化水素が得られるため、アルカリ成分の供給が不可避であり、輸送上及び安全上の問題点がある。
【0005】
一方前述のように海水の直接電解における問題点から海水処理用としては過酸化水素を使うことが環境上の問題並びに経済的に望ましい方向として種々検討が進められている。これらの検討の中で市販の過酸化水素を使用することは、前記問題点の他に海水中に合成された新たな薬品を添加して海水そのものを汚染してしまうという環境上の問題点が発生する可能性がある。アルカリ電解で過酸化水素を製造する場合も、アルカリを外部から添加すると同様の問題点が生ずる。
この問題点を回避するために、本発明者らは、海水を塩分離してアルカリを得て、このアルカリから過酸化水素を得、最終的に分離された酸で前記アルカリを中和する方法を提案した。この方法では外部からの薬品添加を全く必要としないため環境問題の発生を最小限に抑制でき、更に必要とする電力も極めて小さく理想に近いものであるが、装置が複雑になるため、より取扱いの容易な、よりシンプルな装置となれば、更に理想に近づいた過酸化水素製造方法となる。
【0006】
【発明の目的】
本発明は、従来よりも簡単な機構で、種々の過酸化水素利用プロセス、特に海水等の殺菌処理に適した過酸化水素を製造するための装置を提供することを目的とする。
【0007】
【問題点を解決するための手段】
本発明は、水素ガス拡散陽極及び酸素ガス拡散陰極を含んで成る過酸化水素製造ユニット、及び該過酸化水素製造ユニット1個に対して3個の純水電解ユニットの基本単位で構成される電解槽であり、前記両ユニットを、純水電解ユニットの陽極側で発生する酸素を前記酸素ガス拡散陰極に、又純水電解ユニットの陰極側で発生する水素を前記水素ガス拡散陽極にそれぞれ供給するように配置し、かつ前記過酸化水素製造用ユニットの前記両ガス拡散電極に塩水又は海水を流して電解して過酸化水素を含む塩水又は海水を製造することを特徴とする過酸化水素製造用電解槽であり、前記両ユニットを、純水電解ユニットの陽極側で発生する酸素を前記酸素ガス拡散陰極に、又純水電解ユニットの陰極側で発生する水素を前記水素ガス拡散陽極にそれぞれ供給するように配置し、かつ前記過酸化水素製造用ユニットの前記両ガス拡散電極に塩水又は海水を流して電解して過酸化水素を含む塩水又は海水を製造することを特徴とする過酸化水素製造用電解槽である。
【0008】
以下本発明を詳細に説明する。
本発明は、海水等の塩水電解による過酸化水素製造における電解槽の陽極として水素ガス拡散陽極を使用する。これにより通常陽極が有する酸化性が抑えられ、海水中に含有される塩化物イオンや臭化物イオン等の酸化が理論的に生じないため、トリハロメタンやトリハロエタン等の発癌性物質の生成を抑制できる。従来の酸素発生陽極では、前記物質の生成が無視できないのに対し、本発明は、根本的に環境保全適合性を有している。
更に本発明ではアルカリを使用することも可能であるが、アルカリを使用しなくても過酸化水素を製造することができ、アルカリの使用を嫌う用途には最適である。
【0009】
本発明では、過酸化水素製造用ユニットの陰極で酸素ガス(又は酸素含有ガス)が、陽極で水素ガスが必要になる。該ガスはボンベ等の外部から供給することも可能である。しかし本発明では基本的に両ガスを水電解により製造し、これにより数十〜千ppm の高濃度の過酸化水素を含む塩水を製造することが可能になり、更に装置の小型化にも寄与し得る。
過酸化水素の電解製造におけるそれぞれの電極反応は次のようになる。
陰極反応: O2 +H2 O+2e- → OH- +HO2 -
陽極反応: H2 → 2H+ +2e-
一方通常の水電解の電極反応は次のようになる。
陰極反応: 2H2 O+2e- → H2 +2OH-
陽極反応: 2H2 O → O2 +4H+ +4e-
これらの反応式から、過酸化水素製造反応で必要とされる酸素量は同一電気量における水電解反応で生成する酸素量の2倍であることが判る。
【0010】
従って過酸化水素製造用ユニットと純水電解ユニットとを1対1で対応させるだけでは酸素ガスが不足することになる。これを解消するためには、純水電解ユニットへの通電量を2倍にして酸素発生量を過酸化水素製造反応における酸素消費量に合わせるか、酸素ボンベ等の酸素源からの酸素ガスを過酸化水素製造用ユニットに前記電解酸素含有ガスとともに供給することが可能であるが、本発明では過酸化水素製造用の水素ガス及び酸素ガスとして電解製造ガスのみを使用することとする。この場合、理論的には過酸化水素製造ユニット1個に対し純水電解ユニット2個を使用すると過不足なく過酸化水素が製造されるが、実際の操業では流量調整を行わないと酸素ガスが化学量論的に水素ガスの2倍供給されないことがあり、効率的な過酸化水素製造が行われなくなることがある。従って本発明では単一の過酸化水素製造ユニットに対し、3個の純水電解ユニットを使用して基本単位を構成する。これにより理論量の1.5 倍の酸素ガスが供給され、流量調整を行うことなく確実に必要量の酸素ガスが供給されて、最大効率で過酸化水素が製造できる。なお本発明の電解槽は1個の過酸化水素製造ユニットと3個の純水電解ユニットで構成される以外に、2個の過酸化水素製造ユニットと6個の純水電解ユニットというように、過酸化水素製造ユニットと純水電解ユニットの個数の比が1:3となる任意数の過酸化水素製造ユニット及び純水電解ユニットで構成できる。
【0011】
このように、本発明では過酸化水素製造用ユニット1に対し純水製造ユニット3の基本単位で過酸化水素製造用電解槽を構成し、電解により発生した酸素ガス及び水素ガスを同一電解槽内の過酸化水素製造に使用し、これにより配管等が不要になり、装置の小型化が達成できる。
過酸化水素製造用ユニットと同一電解槽内に設置される純水製造ユニットは、通常の水電解により陽極で酸素ガスを陰極で水素ガスを製造できるユニットであり、特に限定されないが、生成する両ガスを、近接する過酸化水素製造用ユニットに供給する構造であり、均一にガス供給を行なうためには、両ユニット間に充分な空間があることが望ましく、更に液の混合を防止するために、ガスのみを透過するシート等のバッファを両ユニット間に設置することも好ましい。更に構造を簡単にするためには、例えば水製造ユニットのイオン交換膜として厚めのイオン交換膜を使用し該イオン交換膜に両極を密着させ、このイオン交換膜の周縁部に水を滴下等により供給して該イオン交換膜全面に水を行き渡らせるようにすると、別個の水供給手段を設ける必要がなくなる。この場合電極の他面を撥水化させておくと、水が電極内に保持されるため更に有効である。この他にアルカリを含浸させた多孔質膜を使用する方法があり、該アルカリ多孔質膜に水分が供給され、余分な水分は下方から回収される。
【0012】
この過酸化水素製造用ユニットと純水製造ユニットから成る電解槽は、各ユニット間を隔壁で区画し隣接するユニット間の電極を接続した複極型電解槽としても良い。この過酸化水素製造用ユニットの両極間に海水や食塩水等の塩水を通し、純水電解ユニットで生成する水素を過酸化水素製造用ユニットの陽極に、又酸素を陰極にそれぞれ供給しながら電解を行って、前記式に従って過酸化水素を製造する。該過酸化水素製造用ユニットの陽極は前述した通りガス拡散陽極とする。このガス拡散陽極は通常のガス電極で良く、どのような水素ガス拡散陽極でも使用できるが、多く使用される海水中の不純物の影響を最小限にするために、液及びガス透過性として、その表面の海水側にイオン交換膜を密着させた構成とすることが好ましい。この構成により海水中の不純物イオン及び食塩のガス拡散電極への影響が最小となり、長期間の安定性が維持される。
【0013】
ガス拡散陰極は、背面側から供給される酸素ガスを有効に使用できるようにいわゆる半疎水型陰極であることが望ましく、これにより過剰量の酸素供給が不要になるとともに、電極表面を平滑にできるようになり、陰極反応によって発生する水酸基によるpH変化に伴う海水成分であるカルシウムやマグネシウムの水酸化物としての沈澱を容易に電極表面から除去できるようになる。なお半疎水型ガス拡散電極であっても、疎水部分の多孔性を改良して送気ガスに窒素が含有される場合その窒素を過酸化水素製造用ユニット側に抜くようにしたものであれば、生成沈澱を吹き飛ばすことができる。
このガス拡散陰極の触媒物質としては、2電子反応が選択的に起こることが必要であり、それが達成できれば特に限定されないが、通常は炭素(黒鉛、カーボンブラック)、炭素に金粉末を担持したもの、又は金合金、あるいは金塩を溶解した液を塗布し空気中あるいは還元雰囲気中で焼成した金触媒などが使用される。
【0014】
純水製造ユニットで使用される陽極及び陰極は特に限定されず、例えば陽極としてはチタンメッシュや穴明き板表面に電極物質を被覆したDSEと呼ばれる不溶性金属電極が、陰極としては同じくメッシュや穴明き板等のニッケル材料が使用され、電解液がアルカリ性の場合は陽極はDSEでなく陰極と同じニッケルとしても良い。更に過酸化水素製造用ユニットの場合と同じガス拡散陽極やガス拡散陰極を使用することもできる。
これらの電極の電解面の反対面にフッ素樹脂等により撥水化処理を行なっても良い。この撥水化方法は任意の方法を使用できるが、例えばニッケルの場合は撥水化すべき面に、PTFE樹脂を分散させたニッケルめっきを行なえば良く、チタンの場合はフッ化グラファイトを電極物質の焼付け時にその薬液に混合し、又は塩化タンタルや塩化チタン液に混合したものを塗布し350 〜500 ℃にて焼き付けることにより撥水化を行なうことができる。
【0015】
次に添付図面に基づいて本発明に係わる過酸化水素製造用電解槽を例示するが、本発明はこれらに限定されるものではない。
図1は、本発明に係わる過酸化水素製造用電解槽の一例を示す概略縦断面図である。
電解槽本体1は、3個の純水電解ユニット2と1個の過酸化水素製造ユニット3により、左から順に純水電解ユニット−過酸化水素製造ユニット−純水電解ユニット−純水電解ユニットのように構成され、各ユニット2、3間は隔壁4により区画されている。各純水電解ユニット2は、陽イオン交換膜5の左側に離間して純水電解用陽極6が位置し、又右側には純水電解用陰極7が位置して構成されている。
【0016】
又過酸化水素製造ユニット3は、左側に隔壁4に陽極集電体8を介して接続されたカーボン製でガス拡散陽極9が位置し、右側の隔壁4には陰極集電体10を介して過酸化水素を選択的に電解製造できる電極物質が担持された過酸化水素製造用ガス拡散陰極11が離間して位置しかつ陽イオン交換膜12により陽極室及び陰極室に区画することにより構成されている。過酸化水素製造ユニット3と純水電解ユニット2の各陽極6、9及び陰極7、11は複極型に接続され、両端の陽極6及び陰極7に通電することにより各ユニット2、3の電極に給電される。
過酸化水素製造ユニット3の底板には塩水導入口13が、又天板には左から順に水素導入口14、過酸化水素取出口15及び酸素導入口16が設置され、各純水電解ユニット2の底板の陽極室側及び陰極室側には純水導入口17が、又各陽極室の天板には酸素ガス取出口18が、各陰極室の天板には水素ガス取出口19がそれぞれ設置されている。
【0017】
このような構成から成る電解槽本体1の塩水導入口13から海水を供給し、かつ各純水電解ユニット2に純水導入口17から純水を給水しながら、各ユニット2及び3に通電すると、各純水電解ユニット2の陽極で酸素が生成して酸素ガス取出口18から取り出されて過酸化水素製造ユニット3のガス拡散陰極11に供給され、、又各純水電解ユニット2の陰極で水素が生成して水素ガス取出口19から取り出されて過酸化水素製造ユニット3の過酸化水素製造用ガス拡散陽極9に供給される。この際に過酸化水素製造ユニット2に供給される酸素は化学量論の2モルに対し3モルになり、過酸化水素製造ユニット2における過酸化水素製造能力の最大限度で過酸化水素が製造され、該過酸化水素は過酸化水素取出口15から塩水に溶解した形で取り出される。
【0018】
【実施例】
次に本発明による塩水を電解して過酸化水素を含む塩水を製造する実施例を記載するが、該実施例は本発明を限定するものではない。
【0019】
【実施例1】
それぞれの電極面積が1.4dm2である、白金触媒を担持した気液透過性のカーボン製多孔性陽極及び金触媒を担持したカーボン製陰極を作製し、前記陽極をデュポン社製のナフィオン117 陽イオン交換膜に密着させ、該陽イオン交換膜の反対側に陽極からの距離が5mmとなるように前記陰極を設置して、過酸化水素製造ユニットとした。
一方、チタンメッシュに酸化イリジウムを電極物質として被覆した不溶性金属電極をデュポン社製のナフィオン117 陽イオン交換膜に密着させ、該陽イオン交換膜の反対側にチタンメッシュを設置して純水電解ユニットとした。
これらの過酸化水素製造ユニット1個及び純水電解ユニット3個を添付図面の通り複極式に接続して過酸化水素製造用電解槽とした。
過酸化水素製造ユニットには中性に維持した3%の食塩水を毎分200 ml流し、入口温度を20℃とし、純水電解ユニットで生成する水素ガスを過酸化水素製造ユニットの陽極側に又酸素ガスを陰極側に供給しながら、各ユニットに7A(電流密度5A/dm2 )の電流を流して電解を行ったところ、前記電解槽の槽電圧は2.0 Vであり、過酸化水素製造ユニットから350 ppm の過酸化水素を含む食塩水が電流効率90%で得られた。
【0020】
【発明の効果】
本発明は、水素ガス拡散陽極及び該陽極から離間した酸素ガス拡散陰極を含んで成る単一の過酸化水素製造ユニット、及び該過酸化水素製造ユニットに対して3個の純水電解ユニットの基本単位で構成される電解槽であり、前記両ユニットを、純水電解ユニットの陽極側で発生する酸素を前記酸素ガス拡散陰極に、又純水電解ユニットの陰極側で発生する水素を前記水素ガス拡散陽極にそれぞれ供給するように配置し、かつ前記過酸化水素製造用ユニットの前記両ガス拡散電極に塩水又は海水を流して電解して過酸化水素を含む塩水又は海水を製造することを特徴とする過酸化水素製造用電解槽である。
本発明の第1の特徴は、塩水電解による過酸化水素製造における陽極として水素ガス拡散陽極を使用した点にある。ガス拡散陽極を使用すると、DSE等の通常の陽極が有する酸化性が抑えられ、従ってトリハロメタン等の発癌性物質の生成を抑制でき、環境保全適合性を有している。更にアルカリを使用しなくても、ほぼ同じ効率で過酸化水素製造を行なうことができる。
【0021】
本発明の第2の特徴は、第1の特徴に加えて、両ガス拡散電極に供給するガスを電解で製造する点にある。電解の際には過酸化水素製造ユニットと純水電解ユニットを3:1の割合で設置し、純水電解ユニットで生成するガスをそのまま過酸化水素製造ユニットで過酸化水素製造用に使用するため、供給される酸素ガスと前記過酸化水素で必要とされる酸素ガスの割合が3:2となり、過酸化水素製造ユニットの最大の過酸化水素製造能力で過酸化水素を製造できる。
【図面の簡単な説明】
【図1】本発明に係わる過酸化水素製造用電解槽の一例を示す概略縦断面図。
【符号の説明】
1・・・電解槽本体 2・・・純水電解ユニット 3・・・過酸化水素製造用ユニット 4・・・隔壁 5・・・陽イオン交換膜 6・・・純水電解用陽極
7・・・純水電解用陰極 8・・・陽極集電体 9・・・ガス拡散陽極 10・・・陰極集電体 11・・・ガス拡散陰極 12・・・陽イオン交換膜 13・・・塩水導入口 14・・・水素導入口14 15・・・過酸化水素取出口 16・・・酸素導入口 17・・・純水導入口 18・・・酸素ガス取出口 19・・・水素ガス取出口
[0001]
[Industrial application fields]
The present invention relates to an electrolytic cell for producing salt water or seawater containing hydrogen peroxide using a gas diffusion electrode. More specifically, oxygen gas and hydrogen gas are produced by water electrolysis, and both gases are used as raw materials. The present invention relates to an electrolytic cell for hydrogen peroxide production that can eliminate the need for flow rate adjustment when producing hydrogen oxide production.
[0002]
[Prior art and its problems]
Hydrogen peroxide is a useful basic chemical indispensable in the food, pharmaceutical, pulp, fiber and semiconductor industries. Conventionally, hydrogen peroxide is industrially obtained by auto-oxidizing 2-alkylanthraquinol, and at the same time, the anthraquinone obtained at the same time is hydrogen-reduced to return to the original anthraquinone, and mass synthesis is continuously performed. . The purification requires complicated operations such as repeated rectification, and hydrogen peroxide is unstable and cannot be stored for a long period of time. Therefore, demand for on-site hydrogen peroxide production equipment is increasing.
In power plants and factories that use seawater as cooling water, it has traditionally been used to generate hypochlorous acid by directly electrolyzing seawater to prevent the attachment of organisms inside the condenser. However, the use of hypochlorous acid is being regulated from the viewpoint of environmental conservation. In other words, this is to prevent organochlorine compounds from being formed due to the reaction of hypochlorous acid with the organisms and organic substances in the sea water, which causes secondary pollution. On the other hand, it has also been reported that when a small amount of hydrogen peroxide is added to the cooling water, there is a good biofouling prevention effect. There are also reports that the addition of hydrogen peroxide is effective in maintaining the quality of fish farm water. However, as described above, there are still problems of safety and pollution control associated with the transport of hydrogen peroxide.
[0003]
The production of hydrogen peroxide using a reduction reaction of oxygen gas has been proposed. US Pat. No. 3,693,749 has several types of hydrogen peroxide electrolytic production equipment, and US Pat. A method for producing a hydrogen peroxide solution is disclosed. US Pat. No. 3,969,201 proposes an apparatus for producing hydrogen peroxide comprising a three-dimensional carbon cathode and an ion exchange membrane. However, in these methods, the amount of alkali essential for the production of hydrogen peroxide increases almost in proportion to the produced hydrogen peroxide, so the alkali concentration becomes too high with respect to the concentration of hydrogen peroxide obtained, and the application is limited. End up.
US Pat. No. 4,406,758, US Pat. No. 4,891,107 and US Pat. No. 4,457,953 disclose a method for producing hydrogen peroxide using a porous membrane and a hydrophobic carbon cathode, and a weight ratio (sodium hydroxide / hydrogen peroxide). ) Is obtained. However, these methods have the disadvantages that it is difficult to control the amount and rate of transfer of the electrolyte solution from the anode chamber to the cathode chamber, the management of operating conditions is complicated, and the proportion of hydrogen peroxide produced is not particularly constant.
[0004]
Furthermore, Journal of Electrochemical Society, vol.130, 1117- (1983) proposed a method for stably obtaining an acidic hydrogen peroxide solution by using a cation / anion exchange membrane and supplying sulfuric acid to an intermediate chamber. Yes. Furthermore, Electrochemical 57, p1073 (1989) reports a method for improving performance by using a membrane electrode assembly as an anode. Further, Journal of Applied Electrochem. 25 (1995) 613 to 627 describes a hydrogen peroxide electrolytic synthesis process known at that time. However, these methods have a problem in terms of power consumption and economical efficiency, and further have the disadvantage that the use and mixing of sulfuric acid is unavoidable, and until now there have been no satisfactory methods for producing hydrogen peroxide. Absent.
The aqueous hydrogen peroxide solution having a high alkali concentration described above is at a satisfactory level of the hydrogen peroxide concentration itself, but since hydrogen peroxide can be obtained efficiently only in an alkaline aqueous solution atmosphere, the supply of alkali components is inevitable. There are transportation and safety issues.
[0005]
On the other hand, as described above, various problems have been studied as the environmental problem and the economically desirable direction to use hydrogen peroxide for seawater treatment because of problems in direct electrolysis of seawater. In addition to the above-mentioned problems, the use of commercially available hydrogen peroxide in these studies has the environmental problem of adding new chemicals synthesized in seawater to contaminate the seawater itself. May occur. When hydrogen peroxide is produced by alkaline electrolysis, the same problem occurs when alkali is added from the outside.
In order to avoid this problem, the present inventors obtained a method in which seawater is salt-separated to obtain an alkali, hydrogen peroxide is obtained from this alkali, and the alkali is finally neutralized with the separated acid. Proposed. This method does not require any chemical addition from the outside, so the occurrence of environmental problems can be minimized, and the required power is very small and close to the ideal. A simpler and easier device would be a more ideal hydrogen peroxide production method.
[0006]
OBJECT OF THE INVENTION
An object of the present invention is to provide an apparatus for producing hydrogen peroxide suitable for various hydrogen peroxide utilization processes, in particular, sterilization treatment of seawater or the like, with a simpler mechanism than before.
[0007]
[Means for solving problems]
The present invention relates to a hydrogen peroxide production unit comprising a hydrogen gas diffusion anode and an oxygen gas diffusion cathode, and an electrolysis comprising a basic unit of three pure water electrolysis units for one hydrogen peroxide production unit. The two units supply oxygen generated on the anode side of the pure water electrolysis unit to the oxygen gas diffusion cathode and hydrogen generated on the cathode side of the pure water electrolysis unit to the hydrogen gas diffusion anode, respectively. And producing salt water or seawater containing hydrogen peroxide by flowing salt water or seawater through the gas diffusion electrodes of the hydrogen peroxide production unit and electrolyzing them. An electrolyzer, wherein both units include oxygen generated on the anode side of the pure water electrolysis unit on the oxygen gas diffusion cathode, and hydrogen generated on the cathode side of the pure water electrolysis unit on the hydrogen gas diffusion anode. A peroxidation characterized in that it is disposed so as to be supplied and salt water or seawater is electrolyzed by flowing salt water or seawater to both gas diffusion electrodes of the hydrogen peroxide production unit to produce hydrogen peroxide-containing salt water or seawater. It is an electrolytic cell for hydrogen production.
[0008]
The present invention will be described in detail below.
The present invention uses a hydrogen gas diffusion anode as an anode of an electrolytic cell in the production of hydrogen peroxide by salt water electrolysis of seawater or the like. As a result, the oxidizability of the anode is usually suppressed, and oxidation of chloride ions, bromide ions, etc. contained in seawater does not theoretically occur, so that generation of carcinogenic substances such as trihalomethane and trihaloethane can be suppressed. In the conventional oxygen generating anode, the production of the substance cannot be ignored, whereas the present invention has fundamentally environmental compatibility.
Furthermore, in the present invention, an alkali can be used, but hydrogen peroxide can be produced without using an alkali, which is optimal for applications that do not like the use of an alkali.
[0009]
In the present invention, oxygen gas (or oxygen-containing gas) is required at the cathode of the unit for producing hydrogen peroxide, and hydrogen gas is required at the anode. The gas can also be supplied from the outside such as a cylinder. However, in the present invention, both gases are basically produced by water electrolysis, which makes it possible to produce salt water containing hydrogen peroxide with a high concentration of several tens to 1,000 ppm, and further contributes to downsizing of the apparatus. Can do.
Each electrode reaction in electrolytic production of hydrogen peroxide is as follows.
Cathodic reaction: O 2 + H 2 O + 2e → OH + HO 2
Anodic reaction: H 2 → 2H + + 2e
On the other hand, the electrode reaction of normal water electrolysis is as follows.
Cathodic reaction: 2H 2 O + 2e → H 2 + 2OH
Anodic reaction: 2H 2 O → O 2 + 4H + + 4e
From these reaction equations, it can be seen that the amount of oxygen required for the hydrogen peroxide production reaction is twice the amount of oxygen generated by the water electrolysis reaction with the same amount of electricity.
[0010]
Therefore, the oxygen gas is insufficient by simply making a one-to-one correspondence between the unit for producing hydrogen peroxide and the pure water electrolysis unit. In order to solve this problem, the energization amount of the pure water electrolysis unit is doubled to match the oxygen generation amount with the oxygen consumption amount in the hydrogen peroxide production reaction, or oxygen gas from an oxygen source such as an oxygen cylinder is excessively passed. Although it is possible to supply the unit for hydrogen oxide production together with the electrolytic oxygen-containing gas, in the present invention, only the electrolytic production gas is used as hydrogen gas and oxygen gas for hydrogen peroxide production. In this case, theoretically, if two pure water electrolysis units are used for one hydrogen peroxide production unit, hydrogen peroxide is produced without excess or deficiency, but oxygen gas is not produced unless the flow rate is adjusted in actual operation. The stoichiometric amount of hydrogen gas may not be supplied twice, and efficient hydrogen peroxide production may not be performed. Therefore, in the present invention, a basic unit is constituted by using three pure water electrolysis units for a single hydrogen peroxide production unit. As a result, 1.5 times the theoretical amount of oxygen gas is supplied, and the required amount of oxygen gas is reliably supplied without adjusting the flow rate, so that hydrogen peroxide can be produced with maximum efficiency. The electrolytic cell of the present invention is composed of one hydrogen peroxide production unit and three pure water electrolysis units, as well as two hydrogen peroxide production units and six pure water electrolysis units, An arbitrary number of hydrogen peroxide production units and pure water electrolysis units in which the ratio of the number of hydrogen peroxide production units to pure water electrolysis units is 1: 3 can be used.
[0011]
As described above, in the present invention, an electrolytic cell for producing hydrogen peroxide is constituted by the basic unit of the pure water production unit 3 with respect to the unit 1 for producing hydrogen peroxide, and oxygen gas and hydrogen gas generated by electrolysis are contained in the same electrolytic cell. This makes it possible to reduce the size of the apparatus.
The pure water production unit installed in the same electrolytic cell as the unit for producing hydrogen peroxide is a unit capable of producing oxygen gas at the anode and hydrogen gas at the cathode by ordinary water electrolysis, and is not particularly limited. It is a structure that supplies gas to adjacent units for hydrogen peroxide production, and in order to supply gas uniformly, it is desirable that there is sufficient space between both units, and in order to prevent liquid mixture It is also preferable to install a buffer such as a sheet that allows only gas to pass between both units. In order to further simplify the structure, for example, a thick ion exchange membrane is used as the ion exchange membrane of the water production unit, both electrodes are brought into close contact with the ion exchange membrane, and water is dropped on the peripheral portion of the ion exchange membrane. If water is supplied and spread over the entire surface of the ion exchange membrane, it is not necessary to provide a separate water supply means. In this case, it is more effective to make the other surface of the electrode water-repellent because water is retained in the electrode. In addition, there is a method of using a porous membrane impregnated with alkali, moisture is supplied to the alkaline porous membrane, and excess moisture is recovered from below.
[0012]
The electrolytic cell comprising the hydrogen peroxide production unit and the pure water production unit may be a bipolar electrolytic cell in which each unit is partitioned by a partition and electrodes between adjacent units are connected. Salt water such as seawater or saline is passed between the two electrodes of this hydrogen peroxide production unit, and electrolysis is performed while supplying hydrogen produced by the pure water electrolysis unit to the anode of the hydrogen peroxide production unit and oxygen to the cathode. To produce hydrogen peroxide according to the above formula. The anode of the unit for producing hydrogen peroxide is a gas diffusion anode as described above. This gas diffusion anode can be a normal gas electrode, and any hydrogen gas diffusion anode can be used, but in order to minimize the effects of impurities in the seawater used frequently, its gas and liquid permeability are considered as liquid and gas permeable. It is preferable that an ion exchange membrane is in close contact with the seawater side of the surface. With this configuration, the influence of impurity ions and salt in seawater on the gas diffusion electrode is minimized, and long-term stability is maintained.
[0013]
The gas diffusion cathode is preferably a so-called semi-hydrophobic cathode so that the oxygen gas supplied from the back side can be used effectively. This makes it unnecessary to supply an excessive amount of oxygen and to smooth the electrode surface. Thus, precipitation as calcium hydroxide or magnesium hydroxide, which is a seawater component accompanying pH change due to a hydroxyl group generated by the cathode reaction, can be easily removed from the electrode surface. Even if it is a semi-hydrophobic gas diffusion electrode, if the porosity of the hydrophobic part is improved and nitrogen is contained in the air supply gas, the nitrogen can be extracted to the hydrogen peroxide production unit side. The generated precipitate can be blown away.
The catalyst material for this gas diffusion cathode requires that a two-electron reaction should occur selectively, and is not particularly limited as long as it can be achieved. Usually, carbon (graphite, carbon black), or gold powder is supported on carbon. Or a gold catalyst coated with a solution in which a gold salt is dissolved and calcined in air or in a reducing atmosphere is used.
[0014]
The anode and the cathode used in the pure water production unit are not particularly limited. For example, the anode is a titanium mesh or an insoluble metal electrode called DSE having a perforated plate coated with an electrode material, and the cathode is also a mesh or a hole. When a nickel material such as a bright plate is used and the electrolyte is alkaline, the anode may be the same nickel as the cathode instead of the DSE. Furthermore, the same gas diffusion anode and gas diffusion cathode as in the case of the hydrogen peroxide production unit can be used.
The surface opposite to the electrolytic surface of these electrodes may be subjected to a water repellent treatment with a fluororesin or the like. Any water repellent method can be used. For example, in the case of nickel, nickel plating in which PTFE resin is dispersed may be performed on the surface to be water repellent. In the case of titanium, graphite fluoride is used as the electrode material. Water repellency can be achieved by applying a mixture mixed with the chemical at the time of baking, or mixed with a tantalum chloride or titanium chloride solution and baking at 350 to 500 ° C.
[0015]
Next, an electrolytic cell for producing hydrogen peroxide according to the present invention will be illustrated based on the accompanying drawings, but the present invention is not limited to these.
FIG. 1 is a schematic longitudinal sectional view showing an example of an electrolytic cell for producing hydrogen peroxide according to the present invention.
The electrolytic cell main body 1 includes a pure water electrolysis unit, a hydrogen peroxide production unit, a pure water electrolysis unit, and a pure water electrolysis unit in order from the left by three pure water electrolysis units 2 and one hydrogen peroxide production unit 3. The units 2 and 3 are partitioned by a partition wall 4. Each pure water electrolysis unit 2 is configured such that a pure water electrolysis anode 6 is located on the left side of the cation exchange membrane 5 and a pure water electrolysis cathode 7 is located on the right side.
[0016]
The hydrogen peroxide production unit 3 is made of carbon and connected to the partition wall 4 via the anode current collector 8 on the left side, and the gas diffusion anode 9 is located on the right partition wall 4 via the cathode current collector 10. A gas diffusion cathode 11 for producing hydrogen peroxide carrying an electrode material capable of selectively electrolytically producing hydrogen peroxide is located at a distance and partitioned into an anode chamber and a cathode chamber by a cation exchange membrane 12. ing. The anodes 6 and 9 and the cathodes 7 and 11 of the hydrogen peroxide production unit 3 and the pure water electrolysis unit 2 are connected in a bipolar manner, and the electrodes of the units 2 and 3 are energized by energizing the anode 6 and the cathode 7 at both ends. Is supplied with power.
A salt water inlet 13 is installed on the bottom plate of the hydrogen peroxide production unit 3, and a hydrogen inlet 14, a hydrogen peroxide outlet 15 and an oxygen inlet 16 are installed in order from the left on the top plate. A pure water inlet 17 is provided at the anode chamber side and the cathode chamber side of the bottom plate, an oxygen gas outlet 18 is provided at the top plate of each anode chamber, and a hydrogen gas outlet 19 is provided at the top plate of each cathode chamber. is set up.
[0017]
When seawater is supplied from the salt water inlet 13 of the electrolytic cell main body 1 having such a structure, and each unit 2 and 3 is energized while supplying pure water from the pure water inlet 17 to each pure water electrolysis unit 2. Oxygen is generated at the anode of each pure water electrolysis unit 2 and is taken out from the oxygen gas outlet 18 and supplied to the gas diffusion cathode 11 of the hydrogen peroxide production unit 3, and at the cathode of each pure water electrolysis unit 2. Hydrogen is generated and taken out from the hydrogen gas outlet 19 and supplied to the gas diffusion anode 9 for hydrogen peroxide production in the hydrogen peroxide production unit 3. At this time, the oxygen supplied to the hydrogen peroxide production unit 2 is 3 moles per 2 moles of stoichiometry, and hydrogen peroxide is produced at the maximum level of the hydrogen peroxide production capacity in the hydrogen peroxide production unit 2. The hydrogen peroxide is taken out from the hydrogen peroxide outlet 15 in a form dissolved in salt water.
[0018]
【Example】
Next, although the Example which electrolyzes the salt water by this invention and manufactures the salt water containing hydrogen peroxide is described, this Example does not limit this invention.
[0019]
[Example 1]
A gas-liquid permeable carbon porous anode carrying a platinum catalyst and a carbon cathode carrying a gold catalyst, each having an electrode area of 1.4 dm 2 , were prepared, and the anode was a Nafion 117 cation made by DuPont. The cathode was placed in close contact with the exchange membrane, and the distance from the anode was 5 mm on the opposite side of the cation exchange membrane, to obtain a hydrogen peroxide production unit.
On the other hand, an insoluble metal electrode coated with iridium oxide as an electrode material on a titanium mesh is closely attached to a Nafion 117 cation exchange membrane manufactured by DuPont, and a titanium mesh is installed on the opposite side of the cation exchange membrane to provide a pure water electrolysis unit. It was.
One hydrogen peroxide production unit and three pure water electrolysis units were connected in a bipolar manner as shown in the accompanying drawings to form an electrolytic cell for producing hydrogen peroxide.
The hydrogen peroxide production unit was fed with 200 ml of neutral 3% saline solution per minute, the inlet temperature was set to 20 ° C, and the hydrogen gas generated by the pure water electrolysis unit was fed to the anode side of the hydrogen peroxide production unit. Moreover, when electrolysis was performed by supplying a current of 7 A (current density 5 A / dm 2 ) to each unit while supplying oxygen gas to the cathode side, the cell voltage of the electrolytic cell was 2.0 V, producing hydrogen peroxide. A saline solution containing 350 ppm hydrogen peroxide was obtained from the unit with a current efficiency of 90%.
[0020]
【The invention's effect】
The present invention relates to a single hydrogen peroxide production unit comprising a hydrogen gas diffusion anode and an oxygen gas diffusion cathode spaced from the anode, and a basis for three pure water electrolysis units for the hydrogen peroxide production unit. An electrolytic cell constituted by a unit, wherein both the units are configured such that oxygen generated on the anode side of a pure water electrolysis unit is supplied to the oxygen gas diffusion cathode and hydrogen generated on the cathode side of the pure water electrolysis unit is supplied to the hydrogen gas It arranges so that it may supply to a diffusion anode, respectively, and salt water or seawater is made to flow through both gas diffusion electrodes of the hydrogen peroxide manufacture unit, and electrolysis is carried out, and salt water or seawater containing hydrogen peroxide is manufactured. This is an electrolytic cell for producing hydrogen peroxide.
The first feature of the present invention is that a hydrogen gas diffusion anode is used as an anode in hydrogen peroxide production by salt water electrolysis. When the gas diffusion anode is used, the oxidizability of a normal anode such as DSE can be suppressed, and therefore the generation of carcinogenic substances such as trihalomethane can be suppressed, and it has environmental conservation compatibility. Further, hydrogen peroxide can be produced with substantially the same efficiency without using alkali.
[0021]
The second feature of the present invention is that, in addition to the first feature, the gas supplied to both gas diffusion electrodes is produced by electrolysis. In the case of electrolysis, a hydrogen peroxide production unit and a pure water electrolysis unit are installed at a ratio of 3: 1, and the gas generated by the pure water electrolysis unit is used as it is for hydrogen peroxide production in the hydrogen peroxide production unit. The ratio of the supplied oxygen gas to the oxygen gas required for the hydrogen peroxide is 3: 2, and hydrogen peroxide can be produced with the maximum hydrogen peroxide production capacity of the hydrogen peroxide production unit.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing an example of an electrolytic cell for producing hydrogen peroxide according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrolyzer main body 2 ... Pure water electrolysis unit 3 ... Unit for hydrogen peroxide production 4 ... Partition 5 ... Cation exchange membrane 6 ... Anode for pure water electrolysis 7 ...・ Cathode for pure water electrolysis 8 ... Anode current collector 9 ... Gas diffusion anode 10 ... Cathode current collector 11 ... Gas diffusion cathode 12 ... Cation exchange membrane 13 ... Salt water introduction Port 14 ... Hydrogen inlet 14 15 ... Hydrogen peroxide outlet 16 ... Oxygen inlet 17 ... Pure water inlet 18 ... Oxygen gas outlet 19 ... Hydrogen gas outlet

Claims (1)

水素ガス拡散陽極及び酸素ガス拡散陰極を含んで成る過酸化水素製造ユニット、及び該過酸化水素製造ユニット1個に対して3個の純水電解ユニットの基本単位で構成される電解槽であり、前記両ユニットを、純水電解ユニットの陽極側で発生する酸素を前記酸素ガス拡散陰極に、又純水電解ユニットの陰極側で発生する水素を前記水素ガス拡散陽極にそれぞれ供給するように配置し、かつ前記過酸化水素製造用ユニットの前記両ガス拡散電極に塩水又は海水を流して電解して過酸化水素を含む塩水又は海水を製造することを特徴とする過酸化水素製造用電解槽。A hydrogen peroxide production unit comprising a hydrogen gas diffusion anode and an oxygen gas diffusion cathode, and an electrolytic cell comprising basic units of three pure water electrolysis units for one hydrogen peroxide production unit; Both units are arranged so that oxygen generated on the anode side of the pure water electrolysis unit is supplied to the oxygen gas diffusion cathode and hydrogen generated on the cathode side of the pure water electrolysis unit is supplied to the hydrogen gas diffusion anode. An electrolytic cell for producing hydrogen peroxide, wherein salt water or sea water containing hydrogen peroxide is produced by flowing salt water or sea water through the two gas diffusion electrodes of the hydrogen peroxide production unit for electrolysis.
JP17406998A 1998-06-04 1998-06-04 Electrolyzer for hydrogen peroxide production Expired - Fee Related JP3909957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17406998A JP3909957B2 (en) 1998-06-04 1998-06-04 Electrolyzer for hydrogen peroxide production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17406998A JP3909957B2 (en) 1998-06-04 1998-06-04 Electrolyzer for hydrogen peroxide production

Publications (2)

Publication Number Publication Date
JPH11350178A JPH11350178A (en) 1999-12-21
JP3909957B2 true JP3909957B2 (en) 2007-04-25

Family

ID=15972099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17406998A Expired - Fee Related JP3909957B2 (en) 1998-06-04 1998-06-04 Electrolyzer for hydrogen peroxide production

Country Status (1)

Country Link
JP (1) JP3909957B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320173B2 (en) * 2008-06-30 2013-10-23 クロリンエンジニアズ株式会社 Sulfuric acid electrolysis method
WO2021025991A1 (en) * 2019-08-02 2021-02-11 Evoqua Water Technologies Llc Regulation of on-site electrochemical generation of hydrogen peroxide for ultraviolet advanced oxidation process control

Also Published As

Publication number Publication date
JPH11350178A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
JP3913923B2 (en) Water treatment method and water treatment apparatus
US5938916A (en) Electrolytic treatment of aqueous salt solutions
JP3689541B2 (en) Seawater electrolyzer
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JP3729432B2 (en) Hypochlorite production equipment
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
FI90790B (en) Combined process for the production of chlorine dioxide and sodium hydroxide
JP3818619B2 (en) Hypochlorite production apparatus and method
US6761815B2 (en) Process for the production of hydrogen peroxide solution
KR101436139B1 (en) A electrolysis apparatus
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
JP3421021B2 (en) Electrolysis method of alkali chloride
JPH10291808A (en) Production method of aqueous hydrogen peroxide and device therefor
AU2003226644A1 (en) A process for electrochemical oxidation of bromide to bromine
JP3909957B2 (en) Electrolyzer for hydrogen peroxide production
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
JP3073968B2 (en) Salt water electrolysis method
JPH05179475A (en) Production of hypochlorite
FI87936B (en) PRODUKTION AV KLORDIOXID I EN ELEKTROLYTISK CELL
WO1998012144A1 (en) Electrolytic treatment of aqueous salt solutions
JPH11158674A (en) Hydrogen peroxide producing device
JP2001246383A (en) Electrolyzed water forming device
JP4062917B2 (en) Method for producing sodium hydroxide
JPH11189889A (en) Production of hydrogen peroxide and alkali hydroxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees