JPS6347386A - Separation of acid and alkali from aqueous salt solution - Google Patents

Separation of acid and alkali from aqueous salt solution

Info

Publication number
JPS6347386A
JPS6347386A JP61189537A JP18953786A JPS6347386A JP S6347386 A JPS6347386 A JP S6347386A JP 61189537 A JP61189537 A JP 61189537A JP 18953786 A JP18953786 A JP 18953786A JP S6347386 A JPS6347386 A JP S6347386A
Authority
JP
Japan
Prior art keywords
exchange membrane
anion exchange
fluorine
acid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61189537A
Other languages
Japanese (ja)
Other versions
JPH0816275B2 (en
Inventor
Takashi Mori
隆 毛利
Kenichi Fukuda
福田 健市
Yasuhiro Kuranai
庫内 康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP61189537A priority Critical patent/JPH0816275B2/en
Priority to US06/922,727 priority patent/US4707234A/en
Priority to EP86308357A priority patent/EP0221751B1/en
Priority to DE8686308357T priority patent/DE3677463D1/en
Publication of JPS6347386A publication Critical patent/JPS6347386A/en
Publication of JPH0816275B2 publication Critical patent/JPH0816275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/366

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To efficiently separate acid and alkali at high concn. from an aq. salt soln. independently of the kind of salt by carrying out electrolysis with an anion exchange membrane contg. fluorine and made of a polymer represented by a specified general formula and a cation exchange membrane contg. fluorine. CONSTITUTION:An electrolytic cell is divided into chambers with an anion exchange membrane and a cation exchange membrane as diaphragms and an aq. salt soln. is fed to the middle chamber and electrolyzed to produce an aq. acid soln. in the anode chamber and an aq. alkali soln. in the cathode chamber. When acid and alkali are separated by electrolysis with the ion exchange membranes as mentioned above, a cation exchange membrane contg. fluorine is used as the cation exchange membrane and an anion exchange membrane contg. fluorine and made of a copolymer having repeating units represented by the general formula is used as the anion exchange membrane. In the formula, X is F or CF3, l is 0 or an integer of 1-5, m is 0 or 1, n is an integer of 1-5, each of p and q is a positive number, p/q=2-16, each of R1-R3 is lower alkyl, R4 is H or lower alkyl, Z(-) is a halogen anion and a is an integer of 2-10. Thus, restrictions on the kind of salt, electrolytic conditions, etc., can be eliminated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、イオン交換膜電解法により、塩の水溶液から
、酸、アルカリを分離する方法に関するものであり、さ
らに詳しくは、特殊なフッ素系陰イオン交換膜と、フッ
素系陽イオン交換膜を隔膜として用いるイオン交換膜電
解法により、塩の水溶液から、酸、アルカリを分離する
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for separating acids and alkalis from an aqueous salt solution by ion exchange membrane electrolysis. The present invention relates to a method for separating acids and alkalis from an aqueous salt solution using an ion exchange membrane electrolysis method using an anion exchange membrane and a fluorine-based cation exchange membrane as a diaphragm.

本発明の方法は、各種の利用分野が考えられるが、特に
廃液処理分野に於いて、極めて有効な方法を提示するも
のである。
Although the method of the present invention can be used in various fields, it presents an extremely effective method particularly in the field of waste liquid treatment.

化学工場、メッキ工場、半導体工場など、多種。A wide variety of plants, including chemical factories, plating factories, semiconductor factories, etc.

多様の工場において中和工程は無数に有り、そこから排
出される塩は、種類、■とも莫大なものである。これら
の塩を無処理のまま、廃棄することは、環境上の問題が
ある。特に、原子力関連設備の様に、放射性物質等の有
害物質を含む塩廃液の処理に於いては、設備敷地内で完
全に処理を行う必要があり、廃液中の放射性物質などの
有害物質を濃縮すると共に塩廃液から、酸、アルカリを
分離回収して再利用することの可能な処理システムの開
発が強く望まれている。
There are countless neutralization processes in various factories, and the amount of salt discharged from these processes is huge in both types. Disposing of these salts without treatment poses environmental problems. In particular, when treating salt waste liquid that contains harmful substances such as radioactive substances, such as in nuclear power-related facilities, it is necessary to completely treat it on the premises of the facility, and it is necessary to concentrate the harmful substances such as radioactive substances in the waste liquid. At the same time, there is a strong desire to develop a treatment system that can separate and recover acids and alkalis from salt waste liquid and reuse them.

[従来技術] 塩の酸、アルカリの分離は、通常の化学反応では不可能
であり、イオン交換樹脂又はイオン交換膜を利用する必
要がある。イオン交換膜電解法は、イオン交換樹脂法に
比較して、原理上、大母の塩を、簡単な操作により、効
率よく、酸、アルカリに分離可能なプロセスとして注目
を集めている。
[Prior Art] Separation of acids and alkalis from salts is impossible by ordinary chemical reactions, and requires the use of ion exchange resins or ion exchange membranes. Compared to the ion exchange resin method, the ion exchange membrane electrolysis method is attracting attention as a process that, in principle, allows for the efficient separation of major salts into acids and alkalis through simple operations.

例えば、近年、火力発電所の排煙中の亜@酸ガス(S0
2)の除去方法は、カセイソーダを用いてSO2ガスを
吸収する湿式法が一般的であるが、このプロセスに於い
て生成するボウ硝 (Na  5o4)をイオン交換膜電解により、カセイ
ソーダと硫酸に分離回収する方法が提案されている。こ
のプロセスは、ボウ硝の水溶液を供給する中間室と、陰
極室の間にフッ素系陽イオン交換膜(例えば、DLlp
Ont社のNafiOn膜)を使用し、中間室と陽極室
の間には、微孔性の隔膜、もしくは、微孔性の隔膜及び
炭化水素系の陰イオン交換膜を用い、陰極室でカセイソ
ーダ、FjA極室に硫酸を生成するプロセスとなってい
る。このプロセスは、塩の酸、アルカリの分離方法とし
て、有効な方法ではあるが幾つかの問題点を含んでいる
For example, in recent years, nitrite gas (S0
The common method for removing 2) is a wet method that uses caustic soda to absorb SO2 gas, but the nitrate (Na5O4) produced in this process is separated into caustic soda and sulfuric acid using ion exchange membrane electrolysis. A method of recovery has been proposed. In this process, a fluorine-based cation exchange membrane (for example, DLlp
A microporous diaphragm or a microporous diaphragm and a hydrocarbon-based anion exchange membrane are used between the intermediate chamber and the anode chamber, and caustic soda, This process produces sulfuric acid in the FjA electrode chamber. Although this process is an effective method for separating acids and alkalis from salts, it has several problems.

即ち、中間室と陽極室の間に、微多孔性の隔膜を用いる
場合は、陽極室にて生成される硫酸中への硫酸ソーダの
混入をさけることができず、又、微多孔性隔膜と炭化水
素系の陰イオン交換膜を組み合わせた場合も、炭化水素
系の陰イオン交換膜の耐久性(耐熱、耐酸、耐酸化性)
が問題となる。
That is, if a microporous diaphragm is used between the intermediate chamber and the anode chamber, it is impossible to avoid mixing of sodium sulfate into the sulfuric acid produced in the anode chamber, and the microporous diaphragm and Even when combined with a hydrocarbon-based anion exchange membrane, the durability of the hydrocarbon-based anion exchange membrane (heat resistance, acid resistance, oxidation resistance)
becomes a problem.

この炭化水素系の陰イオン交換膜の耐久性は、60℃以
上の高温電解、或いは、硫酸よりもより酸化力の強い酸
、例えば、硝酸、塩酸、フッ酸。
The durability of this hydrocarbon-based anion exchange membrane is determined by high-temperature electrolysis at 60°C or higher, or by acids with stronger oxidizing power than sulfuric acid, such as nitric acid, hydrochloric acid, and hydrofluoric acid.

クロム酸等々の酸が、分離される系では一層深刻な問題
となり、イオン交換S電解法により、塩の酸、アルカリ
の分離プロセスの経済性を浦失させることになる。
This becomes a more serious problem in systems in which acids such as chromic acid are separated, and the economic efficiency of the process for separating acids and alkalis from salts using ion exchange S electrolysis is lost.

例えば、特開昭58−37596号には、原子力関連M
設において生成する硝酸塩含有放射性廃液の濃縮処理方
法に関し、イオン交換膜電解法を用いてプロセスが提案
されている。
For example, in Japanese Patent Application Laid-Open No. 58-37596, nuclear power-related M
A process using ion exchange membrane electrolysis has been proposed for concentrating nitrate-containing radioactive waste generated in facilities.

このプロセスも、中間室に硝酸塩溶液を供給し、陽極室
に硝酸、陰極室に水酸化アルカリ又は水酸化アンモニウ
ムを生成するプロセスであるが、中間室と陽極室の間に
炭化水素系の陰イオン交換膜、中間室と陽イオン交換膜
の間にフッ素系陽イオン交換膜(例えば、oupont
社のNarion膜)を配置した3室型の電解槽を用い
ている。
This process also supplies a nitrate solution to the intermediate chamber, producing nitric acid in the anode chamber and alkali hydroxide or ammonium hydroxide in the cathode chamber, but between the intermediate chamber and the anode chamber hydrocarbon-based anions are produced. Exchange membrane, fluorine-based cation exchange membrane (e.g., overpont
A three-chamber electrolytic cell equipped with a Narion membrane (manufactured by Co., Ltd.) is used.

このプロセスに於いては、経済的な電解方法として、陽
極室、陰極室の濃度が0.5M71以下とすることが述
べられており、この理由は、経済的な電流効率の維持の
ためであると述べられているが、炭化水素系の陰イオン
交換膜自体の耐久性にも問題があると推察される。
In this process, it is stated that the concentration in the anode and cathode chambers should be 0.5M71 or less as an economical electrolysis method, and the reason for this is to maintain economical current efficiency. However, it is presumed that there is also a problem with the durability of the hydrocarbon-based anion exchange membrane itself.

電解効率も含めたプロセス全体の効率を考えた場合、塩
の酸、アルカリの分離方法に於いては、出来るだけ高濃
度の塩を、高濃度の酸、アルカリに分離回収することが
望ましいことは当然であるが、高温、高濃度の硝酸溶液
中での炭化水素系の陰イオン交換膜の耐久性は決して満
足できるものではない。
When considering the efficiency of the entire process including electrolytic efficiency, it is desirable to separate and recover salt with a high concentration of acid and alkali as much as possible in the method of separating acid and alkali from salt. Naturally, the durability of hydrocarbon-based anion exchange membranes in high-temperature, high-concentration nitric acid solutions is by no means satisfactory.

高温、高i1度の酸溶液中では、炭化水素系の陰イオン
交換膜は、1ケ月以内の短期間で膜の電気抵抗の著しい
増大をきたし、電解電圧を上昇させることになる。
In a high-temperature, high-I1 acid solution, a hydrocarbon-based anion exchange membrane will significantly increase its electrical resistance in a short period of one month or less, resulting in an increase in electrolytic voltage.

従って、高温、高濃度の酸溶液中で、従来の炭化水素系
の陰イオン交換膜を用いて、この様な、プロセスを実施
しようとすれば、陰イオン交換膜の頻繁な取換えを余儀
なくされ結果的にプロセス自体の経済性を乏しいものと
することになる。
Therefore, if you try to carry out such a process using a conventional hydrocarbon-based anion exchange membrane in a high temperature, high concentration acid solution, you will be forced to frequently replace the anion exchange membrane. As a result, the economic efficiency of the process itself becomes poor.

さらに言及すれば、塩が塩化物塩の場合は、陽橿では、
塩素ガスを発生するが、塩素ガスの様な強酸化性ガスに
対して炭化水素系の陰イオン交換膜は全くといって良い
程、耐久性を示さず、2週間程の短期間で、膜が崩壊す
ることもある。従って、イオン交換WAN解法による塩
化物塩からの酸、アルカリの分離方法は、事実上、実現
しないと考えられる。
To further mention, if the salt is chloride salt, in Yanggui,
Hydrocarbon-based anion exchange membranes do not show any durability against strongly oxidizing gases such as chlorine gas, and the membranes will fail in a short period of about two weeks. may collapse. Therefore, it is considered that a method of separating acids and alkalis from chloride salts using the ion exchange WAN method will not be realized in practice.

以上述べた様に、イオン交換膜電解法による塩の水溶液
からの酸、アルカリの分離方法は、公知の技術であり、
かつ、工業プロセスとして実用化の要望の極めて高いも
のであるにもかかわらず、プロセス上の制約条件や、解
決を必要とする多くの問題点のため、未だ満足すべき工
業プロセスとして確立されていない現状にある。
As mentioned above, the method for separating acids and alkalis from aqueous solutions of salts using ion-exchange membrane electrolysis is a well-known technique.
Furthermore, although there is an extremely high demand for its practical application as an industrial process, it has not yet been established as a satisfactory industrial process due to process constraints and many problems that need to be resolved. In the current situation.

[本発明が解決しようとする問題点] 本発明の目的は、従来のイオン交換wA!解決の塩の酸
、アルカリの分離方法の欠点であった、塩の種類、W1
濃度、電解温度等の制約条件を取り除き、塩の水溶液を
効率よ(、高濃度の酸、アルカリに分離9回収する、イ
オン交換膜電解法を提供するものである。
[Problems to be Solved by the Present Invention] The purpose of the present invention is to solve the problem of conventional ion exchange wA! Type of salt, W1, which was a drawback of the method of separating acid and alkali from salt
The present invention provides an ion-exchange membrane electrolysis method that removes constraints such as concentration and electrolysis temperature, and efficiently separates and recovers salt aqueous solutions into highly concentrated acids and alkalis.

[問題点を解決するための手段] 本発明者等は、イオン交換VA電解法による塩の酸、ア
ルカリの分離方法に関し、特に従来問題とされていた陰
イオン交換膜に関し、鋭意検討を重ねた結果、特殊な構
造を有すフッ素系陰イオン交換膜が、極めて優れた特性
を示すことを見いだしさらにこの特殊な構造を有すフッ
素系陰イオン交換膜とフッ素系陽イオン交換膜を用いる
電解操作により、多種、多様な塩の水溶液から効率良く
、高濃度の酸、アルカリを分離回収し得ることを見いだ
し、本発明を完成するに到ったものである。
[Means for Solving the Problems] The present inventors have made extensive studies regarding the method for separating acids and alkalis from salts using ion exchange VA electrolysis, especially regarding anion exchange membranes, which have been a problem in the past. As a result, it was discovered that a fluorine-based anion exchange membrane with a special structure exhibits extremely excellent properties, and electrolytic operations using fluorine-based anion exchange membranes and fluorine-based cation exchange membranes with this special structure were performed. The inventors have discovered that highly concentrated acids and alkalis can be efficiently separated and recovered from aqueous solutions of a wide variety of salts, and have completed the present invention.

本発明に用いる特殊な構造を有すフッ素系陰イオン交換
膜とは、下記一般式 %式% [ただし、XはFまたはCF、1はOまたは1〜5の整
数1mはOまたは1.nは1〜5の整数。
The fluorine-based anion exchange membrane having a special structure used in the present invention is expressed by the following general formula % [where X is F or CF, 1 is O or an integer from 1 to 5, 1m is O or 1. n is an integer from 1 to 5.

p、qは正の数であって、その比は2〜16゜R,R,
R3は低級アルキル基(ただし、R1とR2が一体とな
ってテトラメチレン鎖、ペンタメチレン鎖を形成しても
よい。) R2は水素原子または低級アルキル基(ただし、RとR
4が一体となってエチレン鎖、トリメチレン鎖を形成し
てもよい。) Z○=ハロゲン陰イオン、aは2〜10の整数]で表わ
される繰り返し単位の共重合体よりなるフッ素系陰イオ
ン交換膜を意味している。
p and q are positive numbers, and their ratio is 2 to 16°R, R,
R3 is a lower alkyl group (However, R1 and R2 may be combined to form a tetramethylene chain or a pentamethylene chain.) R2 is a hydrogen atom or a lower alkyl group (However, R and R
4 may be combined to form an ethylene chain or a trimethylene chain. ) Z○=halogen anion, a is an integer from 2 to 10] refers to a fluorine-based anion exchange membrane made of a copolymer of repeating units represented by the following formula.

これらのフッ素系陰イオン交換膜の陰イオン交換基とし
ては、以下のような構造式として例示することができる
The anion exchange group of these fluorine-based anion exchange membranes can be exemplified by the following structural formula.

0   C)It−CHt   (J13OCH,−C
H,−CH2CH3 OCH,−CH,CH,−CH。
0 C)It-CHt (J13OCH,-C
H, -CH2CH3 OCH, -CH, CH, -CH.

本発明に用いる特殊な構造を有すフッ素系陰イオン交換
膜の交換容量は、0.16+neQ/り −乾燥樹脂〜
3. Qmeq/g ・乾燥樹脂の範囲のものを用いる
ことができるが、好ましくは、0.5ffleQ/!:
l ・乾燥樹脂〜2.81eQ/III ・乾燥樹脂の
範囲のものが用いられる。
The exchange capacity of the fluorine-based anion exchange membrane with a special structure used in the present invention is 0.16 + neQ/ri - dry resin ~
3. Qmeq/g - A range of dry resin can be used, but preferably 0.5ffleQ/! :
1 - Dry resin to 2.81eQ/III - Dry resin is used.

交換容量が上記範囲未満の場合は、膜の抵抗が高く、電
解電圧が上昇し、電力コストの上昇をまねき、交換容量
が上記範囲を越える場合は、膜の膨潤、崩壊等の問題が
生じ、安定した電解運転を妨げる原因となる。
If the exchange capacity is less than the above range, the resistance of the membrane will be high and the electrolytic voltage will rise, leading to an increase in electricity costs.If the exchange capacity exceeds the above range, problems such as swelling and collapse of the membrane will occur. This may disturb stable electrolysis operation.

本発明に用いるフッ素系陰イオン交換膜の膜厚は通常4
0μ〜500μの範囲で使用できるが、好ましくは10
0μ〜300μの範囲のものが用いられる。さらに、本
発明に用いるフッ素系陰イオン交換膜は、膜の強度を上
昇させるために、補強材を導入することもできる。
The thickness of the fluorine-based anion exchange membrane used in the present invention is usually 4
It can be used in the range of 0μ to 500μ, but preferably 10
Those having a diameter in the range of 0μ to 300μ are used. Furthermore, a reinforcing material may be introduced into the fluorine-based anion exchange membrane used in the present invention in order to increase the strength of the membrane.

本発明に用いるフッ素系陰イオン交換膜は、交換基が均
一に存在する陰イオン交換膜を用いることも出来るが、
一方の面と他方の面の交換膜ωが異なる陰イオン交換膜
を用いることもできる。
As the fluorine-based anion exchange membrane used in the present invention, an anion exchange membrane in which exchange groups are uniformly present can also be used.
Anion exchange membranes having different exchange membranes ω on one side and the other side can also be used.

この様な陰イオン交換膜は、陰イオン交換膜中のH+イ
オンの透過を抑制するために効果がある。
Such an anion exchange membrane is effective in suppressing the permeation of H+ ions through the anion exchange membrane.

陰イオン交換膜中のH+イオンの透過の抑制は、以下に
説明する陽イオンに、本発明の塩の水溶液からの酸、ア
ルカリの分離方法における電流効率の増大をもたらす。
Suppression of the permeation of H + ions through the anion exchange membrane brings about an increase in current efficiency in the method for separating acids and alkalis from aqueous solutions of salts according to the present invention.

即ち、本発明のイオン交換WA電解法においては、電解
槽は通常、陽極室2中間室、陰極室の3室よりなり、陽
極室と中間室の間に陰イオン交換膜を配置し、中間室と
陰極室の間に陽イオン交換膜を配置して、陽極室に酸、
陰極室にアルカリ水溶液を生成する電解プロセスとなっ
ている。
That is, in the ion-exchange WA electrolysis method of the present invention, the electrolytic cell usually consists of three chambers: an anode chamber, two intermediate chambers, and a cathode chamber. An anion exchange membrane is disposed between the anode chamber and the intermediate chamber, and A cation exchange membrane is placed between the anode chamber and the cathode chamber, and acid is placed in the anode chamber.
It is an electrolytic process that produces an alkaline aqueous solution in the cathode chamber.

一般に除イオン交換膜は、膜に接する液中の酸濃度、即
ち、本発明のイオン交換膜電解法においては、陽極室中
の酸濃度が高くなればなる程、陽極室から中間室へH+
イオンが通過し易くなり、従って、この様な電解プロセ
スにおいては、陰イオン交換膜中の陰イオンの輸率が低
下し、結果的に電流効率が低下する様になる。
In general, in the ion exchange membrane, the higher the acid concentration in the liquid in contact with the membrane, that is, in the ion exchange membrane electrolysis method of the present invention, the higher the acid concentration in the anode chamber, the more H +
It becomes easier for ions to pass through, and therefore, in such an electrolytic process, the transport number of anions in the anion exchange membrane decreases, resulting in a decrease in current efficiency.

ところが、前述した一方の面と他方の面の交換膜」が異
なるフッ素系陰イオン交換膜を用いることにより、H+
イオンの透過を抑制し、電流効率の増大をもたらす。
However, by using a fluorine-based anion exchange membrane with different exchange membranes on one side and the other side, H+
Suppresses ion transmission and increases current efficiency.

一方の面と他方の面の異なる陰イオン交換膜とは例えば
、一方の面と他方の面の交換容置の比が1.1〜6.0
の範囲、好ましくは1,3〜4.0の範囲で用いられる
For example, an anion exchange membrane with one side and the other side having different ratios of exchange vessels on one side and the other side is 1.1 to 6.0.
, preferably in the range of 1.3 to 4.0.

交換容量の比が上記範囲未満の場合は、H+イオン透過
の抑制効果が不充分であり、交換膜量の比が上記範囲を
越える場合は、膜の電気抵抗が増大する傾向がある。
When the exchange capacity ratio is less than the above range, the effect of suppressing H+ ion permeation is insufficient, and when the exchange membrane amount ratio exceeds the above range, the electrical resistance of the membrane tends to increase.

なお、一方の面と他方の面の交換容量が異なるフッ素系
陰イオン交換膜の向きは、強酸側、即ち、本発明のイオ
ン交換膜電解法においては、陽極室側に交換膜量の小さ
い面を向け、中間室側に交換膜量の大きい面を向けるこ
とが好ましく、大巾な電流効率の増大が期待できる。
Note that the direction of the fluorine-based anion exchange membrane, which has different exchange capacities on one side and the other side, is the strong acid side, that is, in the ion exchange membrane electrolysis method of the present invention, the side with a smaller exchange membrane amount is placed on the anode chamber side. It is preferable to face the side with a large amount of exchange membrane toward the intermediate chamber side, and a large increase in current efficiency can be expected.

以上の様な、特殊な構造を有すフッ素系陰イオン交換膜
は、優れた耐熱性、耐酸性および耐酸化性を示すもので
あり、さらに、この特殊な構造を有すフッ素系陰イオン
交換膜と、後述するフッ素系陽イオン交換膜を用いる電
解操作により、多種。
The fluorine-based anion exchange membrane with the above-mentioned special structure exhibits excellent heat resistance, acid resistance, and oxidation resistance. A wide variety of products can be produced by electrolysis using membranes and fluorine-based cation exchange membranes, which will be described later.

多様な塩の水溶液から効率良く高濃度の酸、アルカリを
分離する方法が可能となる。
It becomes possible to efficiently separate highly concentrated acids and alkalis from aqueous solutions of various salts.

本発明に用いるフッ素系陽イオン交換膜は従来公知の陽
イオン交換膜(例えば、Dupont社のNafion
II)を用いることができる。
The fluorine-based cation exchange membrane used in the present invention is a conventionally known cation exchange membrane (for example, DuPont's Nafion
II) can be used.

本発明に用いる電解槽の陽極及び陰極としては、従来公
知の電極材料を用いることができるが、目的とする電解
プロセスの電極反応に対し、安価で低過電圧を示し、か
つ耐食性の優れた電極材料が適宜選択される。
Conventionally known electrode materials can be used as the anode and cathode of the electrolytic cell used in the present invention, but electrode materials that are inexpensive, exhibit low overvoltage, and have excellent corrosion resistance for the electrode reaction of the intended electrolytic process can be used. is selected as appropriate.

この様な電極材料は、例えば陽極としては、■+、Ta
、zn、 Nd等の耐食性基材ノ表面ニ、pt、ir、
 Rh等の白金族金属及び/又は白金族金属の酸化物を
被覆した陽極が用いられ、陰極としては、Fe、 Ni
、 Cu等の金兄、又はこれらの合金や、これらの表面
に低過電圧を示す物質(例えば、ラネーニッケル等)を
被覆した陰極を用いることができる。
Such electrode materials include, for example, ■+, Ta as an anode.
, Zn, Nd, etc. on the surface of a corrosion-resistant base material, pt, ir,
An anode coated with a platinum group metal such as Rh and/or an oxide of a platinum group metal is used, and the cathode is made of Fe, Ni
A cathode made of a metal such as , Cu, or an alloy thereof, or whose surface is coated with a substance exhibiting a low overvoltage (eg, Raney nickel, etc.) can be used.

本発明のイオン交換膜電解法においては、前述した様に
、原理的には3室型電解槽で構成することができるが、
さらに、大口の塩溶液を処理する場合は、積層セルを用
い効率の良い電解方法を実施することも可能である。
In the ion-exchange membrane electrolysis method of the present invention, as mentioned above, it can be configured with a three-chamber electrolytic cell in principle, but
Furthermore, when processing a large amount of salt solution, it is also possible to implement an efficient electrolysis method using a laminated cell.

中間室には塩の水溶液を供給するが、この濃度は、例え
ば廃液処理においては、前工程の塩の濃縮度合に左右さ
れるが、通常0.111101/l〜飽和濃度のvA@
で供給することができる。
An aqueous salt solution is supplied to the intermediate chamber, and its concentration, for example in waste liquid treatment, depends on the degree of salt concentration in the previous step, but is usually 0.111101/l to a saturation concentration vA@
can be supplied with

さらに、陽極室及び陰極室の酸、アルカリの濃度は、本
発明に用いる陰イオン交換膜の優れた耐久性により、0
.6mol/I以上の濃度まので上昇する事が可能で有
り、通常1 mol/1以上の高濃度領域とすることが
できる。
Furthermore, the concentration of acid and alkali in the anode chamber and cathode chamber can be reduced to 0 due to the excellent durability of the anion exchange membrane used in the present invention.
.. It is possible to increase the concentration up to 6 mol/I or more, and it is usually possible to achieve a high concentration region of 1 mol/1 or more.

さらに、本発明のイオン交換膜電解法においては、電解
温度は室温から100℃迄可能であり、電流密度は、通
常、5A/(jydから50A/d yd)2i囲で実
施することができる。
Furthermore, in the ion exchange membrane electrolysis method of the present invention, the electrolysis temperature can range from room temperature to 100°C, and the current density can usually be carried out at a range of 5 A/(jyd to 50 A/dyd)2i.

[本発明の効果コ 以上述べた様に、特殊な構造を有すフッ素系陰イオン交
換膜とフッ素系陽イオン交換膜を用いたイオン交換膜電
解法により、多種、多様な塩の水溶液から、効率よく高
濃度の酸、アルカリを分離することが可能となる。
[Effects of the present invention] As described above, by the ion exchange membrane electrolysis method using a fluorine-based anion exchange membrane and a fluorine-based cation exchange membrane with a special structure, aqueous solutions of various kinds of salts can be It becomes possible to efficiently separate highly concentrated acids and alkalis.

本発明の方法は、各種の利用分野が考えられるが、特に
廃液処理分野において極めて工業的価値の高いものであ
る。
Although the method of the present invention can be used in various fields, it has extremely high industrial value, particularly in the field of waste liquid treatment.

[実施例] 以下、実施例を述べるが本発明は、これに限定されるも
のではない。
[Example] Examples will be described below, but the present invention is not limited thereto.

実施例1.比較例1 イオン交換膜電解法により、硝酸ナトリウム水溶液から
、硝酸とカセイソーダを生成する電解プロセスを実施し
た。
Example 1. Comparative Example 1 An electrolysis process was carried out to produce nitric acid and caustic soda from an aqueous sodium nitrate solution using an ion exchange membrane electrolysis method.

陰イオン交換膜としては、下記のgt造+CF、−CF
2←CF2−CF) S OF。
As the anion exchange membrane, the following gt construction +CF, -CF
2←CF2-CF) SOF.

F、C−CF 「 II        1 0       CH。F, C-CF " II 1 0 CH.

を示すフッ素系陰イオン交換III(交換容量0 、9
1 meq/g乾燥樹脂、膜厚175μ)を用い、陽イ
オン交a llとしてはDupont社のNafion
WAを使用した。
Fluorinated anion exchange III (exchange capacity 0, 9
1 meq/g dry resin, film thickness 175μ) was used, and the cation exchanger was Nafion from DuPont.
WA was used.

この電解プロセスを図1に示す。電解槽は、陽極室1.
中間室3.陰極室2よりなる3室型電解冶である。
This electrolytic process is shown in FIG. The electrolytic cell has an anode chamber 1.
Intermediate room 3. This is a three-chamber electrolyzer consisting of two cathode chambers.

陰極室1と中間室3の間は、陰イオン交換膜16で仕切
られ、中間室3と陰極室2の間は、陽イオン交換膜17
で仕切られている。
The cathode chamber 1 and the intermediate chamber 3 are separated by an anion exchange membrane 16, and the intermediate chamber 3 and the cathode chamber 2 are separated by a cation exchange membrane 17.
It is separated by

陰極室液中では、陽極反応である酸素ガス発生反応によ
り生成されるH イオンと陰イオン交換膜を通過してく
るNo″S イオンにより硝酸が生成されるが水の供給
ライン5より水を供給することにより陽極液中の硝酸濃
度を一定に維持することができる。
In the cathode chamber liquid, nitric acid is produced by H ions generated by the oxygen gas generation reaction, which is an anode reaction, and No''S ions passing through the anion exchange membrane, but water is supplied from the water supply line 5. By doing so, the nitric acid concentration in the anolyte can be maintained constant.

同様に陰極液中では、陰極反応である水素ガス発生反応
により生成されるOH−イオンと陽イオン交換膜を通過
してくるNa+イオンによりカセイソーダが生成される
が、水の供給ライン10より水を供給することにより陰
極液中のカセイソーダ濃度を一定に維持することができ
る。
Similarly, in the catholyte, caustic soda is produced by OH- ions produced by the hydrogen gas generation reaction, which is the cathode reaction, and Na+ ions passing through the cation exchange membrane. By supplying the solution, the concentration of caustic soda in the catholyte can be maintained constant.

陽極として、TiのExpanded Metal基材
上に貴金属酸化物を被覆した電極を使用し、陰極として
NiのExpanded Metalを用イタ。電極面
積は各々0.126尻、陽、陰極間距離は、2 era
とした。
An electrode made of a Ti expanded metal base coated with a noble metal oxide was used as the anode, and a Ni expanded metal was used as the cathode. The electrode area is 0.126 mm each, and the distance between positive and negative electrodes is 2 era.
And so.

電流密度30A/d TIt、電解温度70℃として中
間室に!Mol/Iの硝酸ナトリウム水溶液を供給し、
陰極室の硝酸濃度を2mol/I 、陰極室のカセイソ
ーダ水溶液の濃度を3mol/Iとして、1ケ月の電解
テストを実施した。
Current density 30A/d TIt, electrolysis temperature 70℃ in the middle chamber! Supplying a Mol/I sodium nitrate aqueous solution,
An electrolytic test was carried out for one month with the concentration of nitric acid in the cathode chamber being 2 mol/I and the concentration of the caustic soda aqueous solution in the cathode chamber being 3 mol/I.

電解電圧は約6.OV、硝酸生成の電流効率は、約58
%、カセイソーダ生成の電流効率は、約80%であった
The electrolysis voltage is approximately 6. OV, the current efficiency for nitric acid production is approximately 58
%, the current efficiency for caustic soda production was about 80%.

一方、比較例1として、実施例1のフッ素系陰イオン交
換膜のかわりに、炭化水素系の陰イオン交換膜を用い、
他は実施例1と全く同様な電解テストを実施した所、電
解電圧は初期5.8Vであったが電解時間の経過と共に
徐々に電解電圧は上昇し、12V以上となり、硝酸生成
の電流効率は、約53%、カセイソーダ生成の電流効率
は約82%であった。
On the other hand, as Comparative Example 1, a hydrocarbon-based anion exchange membrane was used instead of the fluorine-based anion exchange membrane of Example 1,
An electrolytic test was conducted in the same manner as in Example 1, and the electrolytic voltage was initially 5.8 V, but as the electrolysis time progressed, the electrolytic voltage gradually increased to 12 V or more, and the current efficiency of nitric acid production was , about 53%, and the current efficiency for caustic soda production was about 82%.

実施例2 陰イオン交換膜として、一方の面の交換会aが、0 、
62 meqlo−乾燥樹脂、膜厚50μ、他方の面の
交換容量が0.91111eq/g ・乾燥樹脂、膜厚
125μで、実施例1と同一の構造を示すフッ素系陰イ
オン交換膜を用い、実施例1と同一の電解条件で硝酸ナ
トリウム水溶液から、硝酸とカセイソーダを生成する電
解プロセスを実施した。
Example 2 As an anion exchange membrane, the exchange group a on one side is 0,
62 meqlo - Dry resin, film thickness 50μ, exchange capacity on the other side 0.91111eq/g ・Dry resin, film thickness 125μ, using a fluorine-based anion exchange membrane having the same structure as Example 1. An electrolytic process was carried out to produce nitric acid and caustic soda from an aqueous sodium nitrate solution under the same electrolytic conditions as in Example 1.

なお、陰イオン交換膜の向きは、交換容量の小さい面を
陽極室側に向け、交換容量の大きい面を中間室側へ向け
た。
The anion exchange membrane was oriented such that the side with a smaller exchange capacity faced the anode chamber and the side with a larger exchange capacity faced the intermediate chamber.

実施例1と同様の電解テストの結果、電解電圧は、6.
7V、硝酸生成の電流効率は、約81%、カセイソーダ
生成の電流効率は、約86%であった。
As a result of the same electrolytic test as in Example 1, the electrolytic voltage was 6.
7V, the current efficiency for nitric acid production was about 81%, and the current efficiency for caustic soda production was about 86%.

実施例3 陰イオン交換膜として、一方の而の交換容量が、0 、
67 meq/c+ ・乾燥樹脂、膜厚40μ、他方の
面の交換容量が1 、 OOmeqlo ・乾燥樹脂、
f!J厚130μで、下記の構造 +CF2− CF2+−4CF2− CF +rt 3C−CF 署 を示すフッ素系陰イオン交換膜を用い、硫酸ナトリウム
水溶液から、硫酸とカセイソーダを生成する電解プロセ
スを実施した。
Example 3 As an anion exchange membrane, one of the membranes has an exchange capacity of 0,
67 meq/c+ ・Dry resin, film thickness 40μ, exchange capacity on the other side is 1, OOmeqlo ・Dry resin,
f! An electrolytic process for producing sulfuric acid and caustic soda from an aqueous sodium sulfate solution was carried out using a fluorine-based anion exchange membrane having a J thickness of 130 μm and having the following structure: +CF2- CF2+-4CF2- CF +rt 3C-CF.

なお、陰イオン交換膜の向きは、交換容量の小さい面を
陽極空調に向け、交換容量の大きい面を中間室側に向け
た。
The anion exchange membrane was oriented such that the side with a smaller exchange capacity faced the anode air conditioning, and the side with a larger exchange capacity faced the intermediate chamber side.

フッ素系陰イオン交換膜と、塩の種類を変更した以外は
、実施例1と同様の条件で1ケ月電解テストを実施した
所、電解電圧は約6.8V、硫酸生成の電流効率は約8
0%、カセイソーダ生成の電流効率は約85%であった
An electrolytic test was conducted for one month under the same conditions as in Example 1, except that the fluorine-based anion exchange membrane and the type of salt were changed, and the electrolytic voltage was approximately 6.8 V, and the current efficiency for sulfuric acid generation was approximately 8.
0%, and the current efficiency for caustic soda production was about 85%.

【図面の簡単な説明】 図1は、本発明の電解プロセスの一例を示す概念図であ
る。 1、li極室 2、陰極室 3、中間室 4、硝酸の回収タンク 5、水の供給ライン 6、酸素ガスの扱き出しライン 7、酸素ガスタンク 8、硝酸の回収ライン 9、水酸化ナトリウムの回収タンク 10、水の供給ライン 11、水素ガス抜き出しライン 12、水素ガスタンク 13、水酸化ナトリウムの回収ライン 14、硝酸ナトリウムの供給ライン 15、硝酸ナトリウムの排出ライン 16、陰イオン交換膜 17、l!iイオン交換膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing an example of the electrolysis process of the present invention. 1, Li electrode chamber 2, cathode chamber 3, intermediate chamber 4, nitric acid recovery tank 5, water supply line 6, oxygen gas handling line 7, oxygen gas tank 8, nitric acid recovery line 9, sodium hydroxide recovery Tank 10, water supply line 11, hydrogen gas extraction line 12, hydrogen gas tank 13, sodium hydroxide recovery line 14, sodium nitrate supply line 15, sodium nitrate discharge line 16, anion exchange membrane 17, l! i ion exchange membrane

Claims (3)

【特許請求の範囲】[Claims] (1)陰イオン交換膜と陽イオン交換膜を隔膜として用
いるイオン交換膜電解法により塩の水溶液から、陽極室
に酸、陰極室にアルカリ水溶液を生成せしめる、塩の水
溶液からの酸、アルカリの分離方法において、陽イオン
交換膜としてフッ素系陽イオン交換膜を用い、かつ、陰
イオン交換膜として、下記一般式 ▲数式、化学式、表等があります▼ [ただし、XはFまたはCF_3、lは0または1〜5
の整数、mは0または1、nは1〜5の整数、p、qは
正の数であって、その比は2〜16、R_1、R_2、
R_3は低級アルキル基(ただし、R_1とR_2が一
体となってテトラメチレン鎖、ペンタメチレン鎖を形成
してもよい。) R_4は水素原子または低級アルキル基(ただし、R_
3とR_4が一体となってエチレン鎖、トリメチレン鎖
を形成してもよい。) Z^■=ハロゲン陰イオン、aは2〜10の整数] で表わされる繰り返し単位の共重合体よりなるフッ素系
陰イオン交換膜を用いることを特徴とする塩の水溶液か
らの酸、アルカリの分離方法。
(1) Using an ion exchange membrane electrolysis method using an anion exchange membrane and a cation exchange membrane as diaphragms, an acid and alkali aqueous solution are generated from an aqueous salt solution in an anode chamber and an alkali aqueous solution in a cathode chamber. In the separation method, a fluorine-based cation exchange membrane is used as the cation exchange membrane, and as the anion exchange membrane, the following general formula ▲ Numerical formula, chemical formula, table, etc. ▼ [However, X is F or CF_3, l is 0 or 1-5
m is an integer of 0 or 1, n is an integer of 1 to 5, p and q are positive numbers, and the ratio is 2 to 16, R_1, R_2,
R_3 is a lower alkyl group (However, R_1 and R_2 may be combined to form a tetramethylene chain or a pentamethylene chain.) R_4 is a hydrogen atom or a lower alkyl group (However, R_
3 and R_4 may be combined to form an ethylene chain or a trimethylene chain. ) Z^■ = halogen anion, a is an integer of 2 to 10] Separation method.
(2)フッ素系陰イオン交換膜として、均一な交換容量
を示す陰イオン交換膜を用いることを特徴とする特許請
求の範囲第1項記載の方法。
(2) The method according to claim 1, characterized in that an anion exchange membrane exhibiting a uniform exchange capacity is used as the fluorine-based anion exchange membrane.
(3)フッ素系陰イオン交換膜として、一方の面と他方
の面の交換容量が異なる陰イオン交換膜を用い、交換容
量の小さい面を陽極室側へむけ交換容量の大きい面を中
間室側へむけるように配置することを特徴とする特許請
求の範囲第1項記載の方法。
(3) As a fluorine-based anion exchange membrane, use an anion exchange membrane with different exchange capacities on one side and the other side, with the side with the smaller exchange capacity facing the anode chamber and the side with the larger exchange capacity facing the intermediate chamber. The method according to claim 1, characterized in that the method is arranged so as to face downward.
JP61189537A 1985-10-25 1986-08-14 Method for separating acid and alkali from aqueous salt solution Expired - Lifetime JPH0816275B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61189537A JPH0816275B2 (en) 1986-08-14 1986-08-14 Method for separating acid and alkali from aqueous salt solution
US06/922,727 US4707234A (en) 1985-10-25 1986-10-24 Method for separating an acid and an alkali from an aqueous solution of a salt
EP86308357A EP0221751B1 (en) 1985-10-25 1986-10-27 Method for separating an acid and an alkali from an aqueous solution of a salt
DE8686308357T DE3677463D1 (en) 1985-10-25 1986-10-27 METHOD FOR SEPARATING ACID AND LYE FROM AN AQUEOUS SALT SOLUTION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189537A JPH0816275B2 (en) 1986-08-14 1986-08-14 Method for separating acid and alkali from aqueous salt solution

Publications (2)

Publication Number Publication Date
JPS6347386A true JPS6347386A (en) 1988-02-29
JPH0816275B2 JPH0816275B2 (en) 1996-02-21

Family

ID=16242967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189537A Expired - Lifetime JPH0816275B2 (en) 1985-10-25 1986-08-14 Method for separating acid and alkali from aqueous salt solution

Country Status (1)

Country Link
JP (1) JPH0816275B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538851A (en) * 2007-09-14 2010-12-16 イクストルード ホーン ゲーエムベーハー Devices and methods for electrochemical processing
CN114703493A (en) * 2022-03-30 2022-07-05 西安热工研究院有限公司 System and method for coupling application of hydrogen production by new energy and carbon dioxide capture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538851A (en) * 2007-09-14 2010-12-16 イクストルード ホーン ゲーエムベーハー Devices and methods for electrochemical processing
US8771492B2 (en) 2007-09-14 2014-07-08 Kennametal Inc. Device and method for electrochemical treatment
CN114703493A (en) * 2022-03-30 2022-07-05 西安热工研究院有限公司 System and method for coupling application of hydrogen production by new energy and carbon dioxide capture

Also Published As

Publication number Publication date
JPH0816275B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US9890062B2 (en) Electrolytic enrichment method for heavy water
US6444107B2 (en) Method and device for the simultaneous production of acid and base of high purity
US4312722A (en) Process for preparing nitrites
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
CN111268771A (en) Electrochemical method for dechlorinating and removing heavy metals from incineration fly ash water washing liquid
JPH04224689A (en) Electrolytic method of alkali metal sulfate
AU5412590A (en) Electrodialytic water splitter
Chiao et al. Bipolar membranes for purification of acids and bases
EP3041598B1 (en) Apparatus and method for product recovery and electrical energy generation
CN112281180A (en) Method for preparing chlorine by electrolyzing concentrated seawater through bipolar membrane
JPS62110704A (en) Method for recovering acid from acid-metallic salt mixture using fluorine series anionic ion exchange membrane
JPS6347386A (en) Separation of acid and alkali from aqueous salt solution
Venkatesh et al. Chlor-alkali technology
JPS6299487A (en) Separation of acid and alkali from aqueous salt solution
JPS62105922A (en) Recovery of metal and acid
Grot Nafion® membrane and its applications
JPH01234585A (en) Method and device for electrolysis using gas diffusion electrode
JPS5837596A (en) Method of processing radioactive liquid waste containing nitrate
JPS6297609A (en) Method for separating acid and alkali from aqueous solution of salt
JPS6297610A (en) Method for separating acid and alkali from aqueous solution of salt
JP4494612B2 (en) Method for producing hydroxyl group-containing salt
JP3201854B2 (en) Method for electrolytic separation of salt
JPS602393B2 (en) Amino acid production method
JPH01123606A (en) Method for recovering hydrofluoric acid
JPS62294189A (en) Production of metal salt