JPS6299487A - Separation of acid and alkali from aqueous salt solution - Google Patents

Separation of acid and alkali from aqueous salt solution

Info

Publication number
JPS6299487A
JPS6299487A JP23765585A JP23765585A JPS6299487A JP S6299487 A JPS6299487 A JP S6299487A JP 23765585 A JP23765585 A JP 23765585A JP 23765585 A JP23765585 A JP 23765585A JP S6299487 A JPS6299487 A JP S6299487A
Authority
JP
Japan
Prior art keywords
exchange membrane
anion exchange
fluorine
acid
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23765585A
Other languages
Japanese (ja)
Inventor
Takashi Mori
隆 毛利
Kenichi Fukuda
福田 健市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP23765585A priority Critical patent/JPS6299487A/en
Priority to US06/922,727 priority patent/US4707234A/en
Priority to EP86308357A priority patent/EP0221751B1/en
Priority to DE8686308357T priority patent/DE3677463D1/en
Publication of JPS6299487A publication Critical patent/JPS6299487A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/366

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To separate and recover efficiently high concn. acid and alkali from an aqueous salt soln. by electrolyzing the soln. with an anion exchange membrane contg. fluorine and having a special structure and a cation exchange membrane contg. fluorine. CONSTITUTION:An aqueous salt soln. such as industrial waste liquor is electrolyzed in an electrolytic cell provided with an anion exchange membrane and a cation exchange membrane as diaphragms to produce an aqueous acid soln. in the anode chamber and an aqueous alkali soln. in the cathode chamber. When the acid and alkali are separated from the aqueous salt soln. as mentioned above, a cation exchange membrane contg. fluorine is used as the cation exchange membrane and an anion exchange membrane contg. fluorine and made of a copolymer having repeating units represented by the formula is used as the anion exchange membrane. In the formula, X is F or CF3, l is 0 or an integer of 1-5, m is 0 or 1, n is an integer of 1-5, each of p and q is a positive number, the ratio of p/q is 2-16 and Y is a quat. ammonium group. The durability of the anion exchange membrane is increased and restrictions on the kind of salt, the concn. of acid and the electrolytic temp. are eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン交換膜′wL解法により、塩の水溶液
から、酸、アルカリを分離する方法に関するものであり
、さらに詳しくは、特殊なフッ素系陰イオン交換膜と、
フッ素系陽イオン交換膜を隔膜として用いるイオン交換
膜電解法により、塩の水溶液から、酸、アルカリを分離
する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for separating acids and alkalis from an aqueous salt solution using an ion exchange membrane 'wL solution method. system anion exchange membrane,
The present invention relates to a method for separating acids and alkalis from an aqueous salt solution by an ion exchange membrane electrolysis method using a fluorine-based cation exchange membrane as a diaphragm.

本発明の方法は、各種の利用分野が考えられるが、特に
廃液処理分野に於て、極めて有効な方法を揚足するもの
である。
Although the method of the present invention can be used in various fields, it is particularly effective in the field of waste liquid treatment.

化学工場、メッキ工場、半導体工場など、多種。A wide variety of plants, including chemical factories, plating factories, semiconductor factories, etc.

多様の工場において中和工程は無数に有り、そこから排
出される塩は、種類、量とも莫大なものである。これら
の塩を無処理のまま、廃棄することは、環境上の問題が
ある。特に、原子力関連設備の様に、放射性質物等の有
害物質を含む塩廃液の処理に於ては、設備敷地内で完全
に処理を行う必要があり、廃液中の放射性物質などの有
害物質を濃縮すると共に塩廃液から、酸、アルカリを分
離回収して再利用することの可能な処理システムの開発
が強く望まれている。
There are countless neutralization processes in various factories, and the salt discharged from these processes is huge in both type and quantity. Disposing of these salts without treatment poses environmental problems. In particular, when treating salt wastewater containing radioactive substances and other harmful substances, such as in nuclear power-related facilities, it is necessary to completely treat the wastewater on the premises of the facility, concentrating the radioactive substances and other harmful substances in the wastewater. At the same time, there is a strong desire to develop a treatment system that can separate and recover acids and alkalis from salt waste liquid and reuse them.

〔従来技術〕[Prior art]

塩の酸、アルカリの分離は、通常の化学反応では不可能
であり、イオン交換樹脂又はイオン交換膜を利用する必
要がある。イオン交換膜電解法は、イオン交換樹脂法に
比較して、原理上、大量の塩を、簡単な操作により、効
率よく、酸、アルカリに分離可能なプロセスとして注目
を集めている。
Separation of acids and alkalis from salts is not possible through normal chemical reactions and requires the use of ion exchange resins or ion exchange membranes. Compared to the ion exchange resin method, the ion exchange membrane electrolysis method is attracting attention as a process that, in principle, allows a large amount of salt to be efficiently separated into acids and alkalis through simple operations.

例えば、近年、火力発電所の排煙中の亜硫酸ガス(so
、)7)除去方法は、カセイソーダを用いてSo。
For example, in recent years, sulfur dioxide gas (so
,) 7) The removal method is So using caustic soda.

ガスを吸収する湿式法が一般的であるが、このプロセス
に於て生成するボウ硝(Nal OA Xイオン交換膜
電解により、カセイソーダと硫酸に分離回収する方法が
提案されている。このプロセスは、ボウ硝の水溶液を供
給する中間室と、陰極室の間にフッ素系陽イオン交換膜
(例えば、Dupont社のNafiOn膜)を使用し
、中間室と陽極室の間には、微孔性の隔膜、もしくは、
微孔性の隔膜及び炭化水素系の陰イオン交換膜を用い、
陰極室でカセイソーダ、陽極室に硫酸を生成するプロセ
スとなっている。このプロセスは、塩の酸、アルカリの
分離方法として、有効な方法ではあるが幾つかの問題点
を含んでいる。即ち、中間室と陽極室の間に、微多孔性
の隔膜を用いる場合は、陽極室にて生成される硫酸中へ
の硫酸ソーダの混入をさけることができず、又、微多孔
性隔膜と炭化水素系の陰イオン交換膜を組み合わせた場
合も、炭化水素系の陰イオン交換膜の耐久性(耐熱、耐
酸、耐酸化性)が問題となる。
A wet method that absorbs gas is common, but a method has been proposed in which the Nal OAX produced in this process is separated and recovered into caustic soda and sulfuric acid using ion exchange membrane electrolysis. A fluorine-based cation exchange membrane (for example, DuPont's NafiOn membrane) is used between the intermediate chamber that supplies the aqueous solution of sulfur salt and the cathode chamber, and a microporous diaphragm is used between the intermediate chamber and the anode chamber. ,or,
Using a microporous diaphragm and a hydrocarbon-based anion exchange membrane,
The process produces caustic soda in the cathode chamber and sulfuric acid in the anode chamber. Although this process is an effective method for separating acids and alkalis from salts, it has several problems. That is, if a microporous diaphragm is used between the intermediate chamber and the anode chamber, it is impossible to avoid mixing of sodium sulfate into the sulfuric acid produced in the anode chamber, and the microporous diaphragm and Even when a hydrocarbon-based anion exchange membrane is combined, the durability (heat resistance, acid resistance, oxidation resistance) of the hydrocarbon-based anion exchange membrane becomes a problem.

この炭化水素系の陰イオン交換膜の耐久性は、60℃以
上の高温電解、或いは、硫酸よりもより酸化力の強い酸
、例えば、硝酸、塩酸、フッ酸。
The durability of this hydrocarbon-based anion exchange membrane is determined by high-temperature electrolysis at 60°C or higher, or by acids with stronger oxidizing power than sulfuric acid, such as nitric acid, hydrochloric acid, and hydrofluoric acid.

クロム酸等々の酸が、分離される系では一層深刻な問題
となり、イオン交換膜電解法により、塩の酸、アルカリ
の分離プロセスの経済性を消失させることになる。
This becomes a more serious problem in systems where acids such as chromic acid are separated, and the economic efficiency of the process of separating acids and alkalis from salts using ion exchange membrane electrolysis is lost.

例えば、特開昭58−57596号には、原子力関連施
設において生成する硝酸塩含有放射性廃液の濃縮処理方
法に関し、イオン交換膜電解法を用いてプロセスが提案
されている。
For example, Japanese Patent Application Laid-Open No. 58-57596 proposes a process using ion exchange membrane electrolysis with respect to a method for concentrating nitrate-containing radioactive waste liquid produced in nuclear facilities.

このプロセスも、中間室に硝酸塩溶液を供給し、陽極室
に硝酸、陰極室に水酸化アルカリ又は水酸化アンモニウ
ムを生成するプロセスであるが、中間室と陽極室の間に
炭化水素系の陰イオン交換膜、中間室と陽イオン交換膜
の間にフッ素系陽イオン交換膜(例えば、DupOnt
社のNafion膜)を配置した5室型の電解槽を用い
ている。
This process also supplies a nitrate solution to the intermediate chamber, producing nitric acid in the anode chamber and alkali hydroxide or ammonium hydroxide in the cathode chamber, but between the intermediate chamber and the anode chamber hydrocarbon-based anions are produced. Exchange membrane, fluorine-based cation exchange membrane (for example, DupOnt) between the intermediate chamber and the cation exchange membrane
A five-chamber electrolytic cell equipped with a Nafion membrane (manufactured by Nafion, Inc.) is used.

このプロセスに於いては、経済的な電解方法として、陽
極室、陰極室の濃度が15M/を以下とすることが述べ
られており、この理由は、経済的な電流効率の維持のた
めであると述べられているが、炭化水素系の陰イオン交
換膜自体の耐久性にも問題があると推察される。
In this process, as an economical electrolysis method, it is stated that the concentration in the anode and cathode chambers should be 15M/or less, and the reason for this is to maintain economical current efficiency. However, it is presumed that there is also a problem with the durability of the hydrocarbon-based anion exchange membrane itself.

電解効率も含めたプロセス全体の効率を考えた場合、塩
の酸、アルカリの分離方法に於ては、出来るだけ高濃度
の塩を、高濃度の酸、アルカリに分離回収することが望
ましいことは当然であるが、高温、高濃度の硝酸溶液中
での炭化水素系の陰イオン交換膜の耐久性は決して満足
できるものではない。
When considering the efficiency of the entire process including electrolytic efficiency, it is desirable to separate and recover the salt with the highest concentration possible into acids and alkalis in the method of separating acid and alkali from salt. Naturally, the durability of hydrocarbon-based anion exchange membranes in high-temperature, high-concentration nitric acid solutions is by no means satisfactory.

高温、高濃度の酸溶液中では、炭化水素系の陰イオン交
換膜は、1ケ月以内の短期間で膜の電気抵抗の著しい増
大をきたし、電解電圧を上昇させることになる。
In a high-temperature, high-concentration acid solution, a hydrocarbon-based anion exchange membrane causes a significant increase in the electrical resistance of the membrane within a short period of one month, resulting in an increase in electrolytic voltage.

従って、高温、高濃度の酸溶液中で、従来の炭化水素系
の陰イオン交換膜を用いて、この様な、プロセスを実施
しようとすれば、陰イオン交換膜の頻繁な取換えを余儀
なくされ結果的にプロセス自体の経済性を乏しいものと
することになる。
Therefore, if you try to carry out such a process using a conventional hydrocarbon-based anion exchange membrane in a high temperature, high concentration acid solution, you will be forced to frequently replace the anion exchange membrane. As a result, the economic efficiency of the process itself becomes poor.

さらに言及すれば、塩が塩化物塩の場合は、陽極では、
塩素ガスを発生するが、塩素ガスの様な強酸化性ガスに
対して炭化水素系の陰イオン交換膜は全くといって良い
程、耐久性を示さず、2週間程の短期間で、膜が崩壊す
ることもある。従って、イオン交換膜電解法による塩化
物塩からの酸、アルカリの分離方法は、事実上、実現し
ないと考えられる。
To further mention, if the salt is a chloride salt, at the anode,
Hydrocarbon-based anion exchange membranes do not show any durability against strongly oxidizing gases such as chlorine gas, and the membranes will fail in a short period of about two weeks. may collapse. Therefore, it is considered that a method for separating acids and alkalis from chloride salts by ion exchange membrane electrolysis will not be realized in practice.

以上述べた様に、イオン交換膜電解法による、塩の水溶
液からの酸、アルカリの分離方法は、公知の技術であり
、かつ、工業プロセスとして実用化の要望の極めて高い
ものであるにもかかわらず、プロセス上の制約条件や、
解決を必要とする多くの問題点のため、未だ満足すべき
工業プロセスとして確立されていない現状にある。
As mentioned above, although the method for separating acids and alkalis from aqueous salt solutions using ion exchange membrane electrolysis is a well-known technology and there is an extremely high demand for its practical application as an industrial process, First, process constraints,
Due to the many problems that need to be solved, it has not yet been established as a satisfactory industrial process.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明の目的は、従来のイオン交換膜電解法の塩の酸、
アルカリの分離方法の欠点であった、塩の種類、酸濃度
、電解温度等の制約条件を取り除き、塩の水溶液を効率
よく、高濃度の酸、アルカリに分離1回収する、イオン
交換膜電解法を提供するものである。
The purpose of the present invention is to solve the problem of salt acid of conventional ion exchange membrane electrolysis method,
The ion-exchange membrane electrolysis method eliminates the limitations of salt type, acid concentration, electrolysis temperature, etc., which were shortcomings of alkali separation methods, and efficiently separates and recovers aqueous salt solutions into high-concentration acids and alkalis. It provides:

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、イオン交換膜電解法による塩の酸、アル
カリの分離方法に関し、特に従来問題とされていた陰イ
オン交換膜に関し、鋭意検討を重ねた結果、特殊な構造
を有すフッ素系陰イオン交換膜が、極めて優れた特性を
示すことを見いだしさらKこの特殊な構造を有すフッ素
系陰イオン交換膜とフッ素系陽イオン交換膜を用いる電
解操作により、多種、多様な塩の水溶液から効率良く、
高濃度の酸、アルカリを分離回収し得ることを見いだし
、本発明を完成するに到ったものである。
The inventors of the present invention have conducted extensive studies regarding the method of separating acids and alkalis from salts using ion-exchange membrane electrolysis, especially regarding anion-exchange membranes, which had been a problem in the past. Sarak discovered that anion exchange membranes exhibit extremely excellent properties. Through electrolytic operation using fluorine-based anion exchange membranes and fluorine-based cation exchange membranes with this special structure, aqueous solutions of a wide variety of salts can be produced. efficiently from
It was discovered that highly concentrated acids and alkalis can be separated and recovered, leading to the completion of the present invention.

本発明に用いる特殊な構造を有すフッ素系陰イオン交換
膜とは、下記一般式 木 CF。
The fluorine-based anion exchange membrane having a special structure used in the present invention has the following general formula: CF.

■ モ CF。■ Mo C.F.

〉 更に、本発明に用いるフッ素系陰イオン交換膜は、第4
級アンモニウム基を含む基として、下記一般式 或いは、下記一般式 の第4級アンモニウム基を含む基を有すフッ素系陰イオ
ン交換膜を用いることが望ましい。
>Furthermore, the fluorine-based anion exchange membrane used in the present invention has a fourth
As the group containing a quaternary ammonium group, it is desirable to use a fluorine-based anion exchange membrane having the following general formula or a group containing a quaternary ammonium group of the following general formula.

これらのフッ素系陰イオン交換膜としては、具体的には
以下のような構造の重合体膜を例示するととができる。
Specific examples of these fluorine-based anion exchange membranes include polymer membranes having the following structures.

OF。OF.

F、0−CF ■ OH。F, 0-CF ■ Oh.

OF。OF.

F、0−OF 0H。F, 0-OF 0H.

コ at。Ko at.

■ 0F−OF。■ 0F-OF.

■ 醤 (3F。■ sauce (3F.

■ OH。■ Oh.

CF。C.F.

F、0−OF 0H。F, 0-OF 0H.

CF。C.F.

F、0−OF OF。F, 0-OF OF.

F、0−CF ■ OH。F, 0-CF ■ Oh.

■ OF。■ OF.

c’p−aF。c'p-aF.

OF。OF.

0H8 OF。0H8 OF.

3O−CF 0H。3O-CF 0H.

CF! F、O−(!F ■ 0M3      CHs OF。CF! F, O-(!F ■ 0M3 CHs OF.

F、0−OF ■ 0F。F, 0-OF ■ 0F.

CHs      C!H3 ■ CF。CHs    C! H3 ■ C.F.

F、O−(!F 0T(、OH,CHs 本発明に用いる特殊な構造を有すフッ素系陰イオン交換
膜の交換容量は、CL 16 meq/9・乾燥樹脂〜
!LOmeq/9・乾燥樹脂の範囲のものを用いること
ができるが、好ましくは、α5 meq/9・乾燥樹脂
〜2.8 meq/9・乾燥樹脂の範囲のものが用いら
れる。
F, O- (!
! A material in the range of LOmeq/9/dry resin can be used, but preferably a material in the range of α5 meq/9/dry resin to 2.8 meq/9/dry resin is used.

交換容量が上記範囲未満の場合は、膜の抵抗が高く、電
解電圧が上昇し、電力コストの上昇をまねき、交換容量
が上記範囲を越える場合は、膜の膨潤、崩壊等の問題が
生じ、安定した電解運転を妨げる原因となる。
If the exchange capacity is less than the above range, the resistance of the membrane will be high and the electrolytic voltage will rise, leading to an increase in electricity costs.If the exchange capacity exceeds the above range, problems such as swelling and collapse of the membrane will occur. This may disturb stable electrolysis operation.

本発明に用いるフッ素系陰イオン交換膜の膜厚は通常4
0μ〜500μの範囲で使用できるが、好ましくは、1
00μ〜300μの範囲のものが用いられる。さらに、
本発明に用いるフッ素系陰イオン交換膜は、膜の強度を
上昇させるために1補強材を導入することもできる。
The thickness of the fluorine-based anion exchange membrane used in the present invention is usually 4
It can be used in the range of 0μ to 500μ, but preferably 1
Those having a diameter in the range of 00μ to 300μ are used. moreover,
A reinforcing material can also be introduced into the fluorine-based anion exchange membrane used in the present invention in order to increase the strength of the membrane.

以上の様な、特殊な構造を有すフッ素系陰イオン交換膜
は、優れた耐熱性、耐酸性および耐酸化性を示すもので
あり、さらに、この特殊な構造を有すフッ素系陰イオン
交換膜と、後述するフッ素系陽イオン交換膜を用いる電
解操作により、多種。
The fluorine-based anion exchange membrane with the above-mentioned special structure exhibits excellent heat resistance, acid resistance, and oxidation resistance. A wide variety of products can be produced by electrolysis using membranes and fluorine-based cation exchange membranes, which will be described later.

多様な塩の水溶液から効率良(高濃度の酸、アルカリを
分離する方法が可能となる。
It becomes possible to efficiently separate (highly concentrated acids and alkalis) from aqueous solutions of various salts.

本発明に用いるフッ素系陽イオン交換膜は従来公知の陽
イオン交換膜(例えば、Dupont社のNafion
膜)を用いることができろ。
The fluorine-based cation exchange membrane used in the present invention is a conventionally known cation exchange membrane (for example, DuPont's Nafion
membrane).

本発明に用いる電解槽の陽極及び陰極としては、従来公
知の電極材料を用いることができるが、目的とする電解
プロセスの電極反応に対し、安価で低過電圧を示し、か
つ耐食性の優れた電極材料が適宜選択される。
Conventionally known electrode materials can be used as the anode and cathode of the electrolytic cell used in the present invention, but electrode materials that are inexpensive, exhibit low overvoltage, and have excellent corrosion resistance for the electrode reaction of the intended electrolytic process can be used. is selected as appropriate.

この様な電極材料は、例えば陰極としては、Ti。Such an electrode material is, for example, Ti as a cathode.

Ta、 Zn、 Nb等の耐食性基材の表面に、pt+
工r、 Rh等の白金族金属及び/又は白金族金属の酸
化物を被覆した陽極が用いられ、陰極としては、Fθ、
N1゜Cu等の金属、又はこれらの合金や、これらの表
面に低過電圧を示す物質(例えば、ラネーニッケル等)
を被覆した陰極を用いることができる。
pt+ on the surface of a corrosion-resistant base material such as Ta, Zn, Nb, etc.
An anode coated with a platinum group metal and/or an oxide of a platinum group metal such as Fθ, Rh, etc. is used as a cathode.
Metals such as N1゜Cu, or their alloys, or substances that exhibit low overvoltage on their surfaces (e.g. Raney nickel, etc.)
A cathode coated with can be used.

本発明のイオン交換膜電解法においては、電解槽は通常
、陽極室、中間室、陰極室の3室よりなり、陽極室と中
間室の間に陰イオン交換膜を配置し、中間室と陰極室の
間に陽イオン交換膜を配置する構造となっている。さら
に1大量の塩溶液を処理する場合は、積層セルを用い効
率の良い電解方法を実施することも可能である。
In the ion exchange membrane electrolysis method of the present invention, the electrolytic cell usually consists of three chambers: an anode chamber, an intermediate chamber, and a cathode chamber. The structure is such that a cation exchange membrane is placed between the chambers. Furthermore, when processing a large amount of salt solution, it is also possible to implement an efficient electrolysis method using a laminated cell.

中間室には塩の水溶液を供給するが、この濃度は、例え
ば廃液処理においては、前工程の塩の濃縮度合に左右さ
れるが通常Q、 1 rno4/l〜飽和濃度の範囲で
供給することができる。
An aqueous solution of salt is supplied to the intermediate chamber, and this concentration depends on the degree of concentration of salt in the previous step, for example in waste liquid treatment, but it is usually supplied in the range of Q, 1 rno4/l to saturation concentration. I can do it.

さらに1陽極室及び陰極室の酸、アルカリの濃度は、本
発明に用いる陰イオン交換膜の優れた耐久性により、1
6 moνを以上の濃度迄上昇する事が可能で有り、通
常1 mo!71以上の高濃度領域とすることができる
Furthermore, the concentration of acid and alkali in the anode chamber and cathode chamber is reduced to 1 due to the excellent durability of the anion exchange membrane used in the present invention.
It is possible to increase the concentration to more than 6 moν, and usually 1 mo! It can be a high concentration region of 71 or more.

さらに、本発明のイオン交換膜電解法においては、電解
温度は室温から100°C迄可能であり、電流密度は、
通常、5A/υから50A/υの範囲で実施することが
できる。
Furthermore, in the ion exchange membrane electrolysis method of the present invention, the electrolysis temperature can range from room temperature to 100°C, and the current density is
Usually, it can be carried out in the range of 5A/υ to 50A/υ.

〔本発明の効果〕[Effects of the present invention]

以上述べた様に1特殊な構造を有すフッ素隙イオン交換
膜と、フッ素系陽イオン交換膜を用いたイオン交換膜電
解法により、多種、多様な塩の水溶液から、効率よく高
濃度の酸、アルカリを分離することが可能となる。
As mentioned above, the ion-exchange membrane electrolysis method using a fluorine-porous ion-exchange membrane with a special structure and a fluorine-based cation exchange membrane efficiently extracts high-concentration acid from aqueous solutions of various salts. , it becomes possible to separate alkali.

本発明の方法は、各種の利用分野が考えられるが、特に
廃液処理分野において極めて工業的価値の高いものであ
る。
Although the method of the present invention can be used in various fields, it has extremely high industrial value, particularly in the field of waste liquid treatment.

〔実施例〕〔Example〕

以下、実施例を述べるが本発明は、これに限定されるも
のではない。
Examples will be described below, but the present invention is not limited thereto.

実施例1.比較例1 イオン交換膜電解法により、硝酸ナトリウム水溶液から
、硝酸とカセイソーダを生成する電解プロセスを実施し
た。
Example 1. Comparative Example 1 An electrolysis process was carried out to produce nitric acid and caustic soda from an aqueous sodium nitrate solution using an ion exchange membrane electrolysis method.

陰イオン交換膜としては、下記の構造 (−ay、cFd−(aF、cFう− OF。The anion exchange membrane has the following structure. (-ay, cFd-(aF, cFu- OF.

■ F、0−OF 0H。■ F, 0-OF 0H.

を示すフッ素系陰イオン交換膜(交換容量1.10m 
e q/9乾燥樹脂、膜厚140μ)を用い、陽イオン
交換膜としてはDupOnt社のNafion膜を使用
した。
Fluorinated anion exchange membrane (exchange capacity 1.10 m)
eq/9 dry resin, film thickness 140μ), and the cation exchange membrane used was a Nafion membrane manufactured by DupOnt.

この電解プロセスを図1に示す。電解槽は、陽極室1.
中間室3.陰極室2よりなる3室型電解槽である。
This electrolytic process is shown in FIG. The electrolytic cell has an anode chamber 1.
Intermediate room 3. This is a three-chamber electrolytic cell consisting of two cathode chambers.

陽極室1と中間室3の間は、陰イオン交換膜16オン交
換膜17で仕切られている。
The anode chamber 1 and the intermediate chamber 3 are separated by an anion exchange membrane 16 and an on-exchange membrane 17.

陽極室液中では、陽極反応である酸素ガス発生反応によ
り生成されるHイオンと陰イオン交換膜を通過してくる
NO;イオンにより硝酸が生成されるが水の供給ライン
5より水を供給することKより陽極液中の硝酸濃度を一
定に維持することができる0 同様に陰極液中では、陰極反応である水素ガス発生反応
により生成されるOH−イオンと陽イオン交換膜を通過
してくるNa+イオンによりカセイソーダが生成される
が、水の供給ライン10より水を供給することにより陰
極液中のカセイソーダ濃度を一定に維持することができ
る。
In the anode chamber liquid, H ions are generated by the oxygen gas generation reaction that is the anode reaction, and NO passes through the anion exchange membrane; nitric acid is generated by the ions, but water is supplied from the water supply line 5. This allows the concentration of nitric acid in the anolyte to be maintained constant. Similarly, in the catholyte, OH- ions generated by the hydrogen gas generation reaction, which is the cathode reaction, pass through the cation exchange membrane. Caustic soda is generated by Na+ ions, and by supplying water from the water supply line 10, the concentration of caustic soda in the catholyte can be maintained constant.

陽極として、T1のExpanded Metal基材
上に貴金属酸化物を被覆した電極を使用し、陰極として
1(1のExpandθdMθtalを用いた。電極面
積は各々a12ムハ陽、園極間距離は、2cpsとした
As an anode, an electrode coated with noble metal oxide on a T1 Expanded Metal base material was used, and as a cathode, an ExpandθdMθtal of 1 was used.The electrode area was a12mm, and the distance between the electrodes was 2cps. .

電流密度50A/υ、電解温度70℃として中間室に5
 rno4/Lの硝酸ナトリウム水溶液を供給し、陽極
室の硝酸濃度を2 mo!7’t s陰極室のカセイソ
ーダ水溶液の濃度を3 mo171として、1ケ月の電
解テストを実施した。
5 in the intermediate chamber with a current density of 50 A/υ and an electrolytic temperature of 70°C.
Supply an aqueous sodium nitrate solution of rno4/L to raise the nitric acid concentration in the anode chamber to 2 mo! An electrolytic test was conducted for one month with the concentration of the caustic soda aqueous solution in the 7's cathode chamber set to 3 mo171.

電解電圧は約7.5V、硝酸生成の電流効率は、約63
チ、カセイソーダ生成の電流効率は、約81チであった
The electrolysis voltage is approximately 7.5V, and the current efficiency for nitric acid generation is approximately 63V.
The current efficiency for generating caustic soda was approximately 81 h.

一方、比較例1として、実施例1のフッ素系陰イオン交
換膜のかわりに、炭化水素系の陰イオン交換膜を用い、
他は実施例1と全(同様な電解テストを実施した所、電
解電圧は初期7vであったが電解時間の経過と共に徐々
に電解電圧は上昇し、12V以上となり、硝酸生成の電
流効率は、約53%、カセイソーダ生成の電流効率は約
82チであった。
On the other hand, as Comparative Example 1, a hydrocarbon-based anion exchange membrane was used instead of the fluorine-based anion exchange membrane of Example 1,
The rest was as in Example 1 (a similar electrolytic test was carried out, and the electrolytic voltage was 7 V initially, but as the electrolysis time progressed, the electrolytic voltage gradually increased to 12 V or more, and the current efficiency of nitric acid production was The current efficiency for caustic soda production was about 82%.

実施例2 陰イオン交換膜として、下記の構造 モc F、a F、Mc Ft c F−)−CF。Example 2 As an anion exchange membrane, the following structure Moc F, a F, Mc Ft c F-)-CF.

F、C!−OF CIF。F, C! -OF C.I.F.

an。an.

を示すフッ素系陰イオン交換膜(交換容量1.00m 
eq/’9乾燥樹脂、膜厚150μ)を用い、硫酸ナト
リウム水溶液から、硫酸とカセイソーダを生成する電解
プロセスを実施した。
Fluorine-based anion exchange membrane (exchange capacity 1.00 m
An electrolytic process was carried out to produce sulfuric acid and caustic soda from an aqueous sodium sulfate solution using eq/'9 dry resin, film thickness 150μ.

フッ素系陰イオン交換膜と、塩の種類を変更した以外は
、実施例1と同様の条件で1ケ月電解テストを実施した
所、電解電圧は約7V、硫酸生成の電流効率は約62チ
、カセイソーダ生成の電流効率は約86チであった。
An electrolytic test was conducted for one month under the same conditions as in Example 1, except that the fluorine-based anion exchange membrane and the type of salt were changed, and the electrolytic voltage was approximately 7 V, the current efficiency for sulfuric acid generation was approximately 62 cm, The current efficiency for caustic soda production was approximately 86 cm.

参考例 本発明で用いる特殊な構造を有すフッ素系陰イオン交換
膜と炭化水素系陰イオン交換膜の耐久性テストの結果を
表1に示す。
Reference Example Table 1 shows the results of a durability test of a fluorine-based anion exchange membrane and a hydrocarbon-based anion exchange membrane having a special structure used in the present invention.

耐久性の評価方法は、それぞれの溶液に一定時間膜を浸
漬し、その後、01 mol/lの塩化ナトリウム水溶
液中で電気抵抗を測定し、電気抵抗値が急激に上昇した
日数をもって膜が劣化したとした。
The durability was evaluated by immersing the membrane in each solution for a certain period of time, and then measuring the electrical resistance in a 0.1 mol/l sodium chloride aqueous solution. And so.

表より明らかな様に本発明で用いる特殊な構造を表1As is clear from the table, Table 1 shows the special structure used in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の電解プロセスの一例を示す概念図である
。 1、陽極室 λ陰極室 五中開室 東硝酸の回収タンク &水の供給ライン &酸素ガスの抜き出しライン 2酸素ガスタンク a硝酸の回収ライン 9水酸化ナトリウムの回収タンク 1r1.水の供給ライン 11、水素ガス抜き出しライン 12、水素ガスタンク 1五水酸化ナトリウムの回収ライン 14硝酸ナトリウムの供給ライン 15、硝酸ナトリウムの排出ライン 1&陰イオン交換膜 1z陽イオン交換膜 1a硝酸ナトリウムの循環タンク 特許出願人  東洋曹達工業株式会社 図1
FIG. 1 is a conceptual diagram showing an example of the electrolysis process of the present invention. 1. Anode chamber λ Cathode chamber 5 Middle open chamber East Nitric acid recovery tank & water supply line & oxygen gas extraction line 2 Oxygen gas tank a Nitric acid recovery line 9 Sodium hydroxide recovery tank 1r1. Water supply line 11, hydrogen gas extraction line 12, hydrogen gas tank 1 sodium pentahydroxide recovery line 14 sodium nitrate supply line 15, sodium nitrate discharge line 1 & anion exchange membrane 1z cation exchange membrane 1a circulation of sodium nitrate Tank patent applicant Toyo Soda Kogyo Co., Ltd. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)陰イオン交換膜と陽イオン交換膜を隔膜として用
いるイオン交換膜電解法により塩の水溶液から、陽極室
に酸、陰極室にアルカリ水溶液を生成せしめる。塩の水
溶液からの酸、アルカリの分離方法において、陽イオン
交換膜としてフッ素系陽イオン交換膜を用い、かつ、陰
イオン交換膜として、下記一般式 ▲数式、化学式、表等があります▼ 〔X=FまたはCF_3 l=0または1〜5の整数 m=0または1 n=1〜5の整数 p、qは正の数であって、その比p/qは2〜16であ
る。 Yは第4級アンモニウム基〕 で表わされる繰り返し単位の共重合体よりなるフッ素系
陰イオン交換膜を用いることを特徴とする塩の水溶液か
らの酸、アルカリの分離方法。
(1) An acid in the anode chamber and an alkaline aqueous solution in the cathode chamber are generated from an aqueous salt solution by an ion exchange membrane electrolysis method using an anion exchange membrane and a cation exchange membrane as diaphragms. In the method for separating acids and alkalis from aqueous salt solutions, a fluorine-based cation exchange membrane is used as the cation exchange membrane, and as the anion exchange membrane, the following general formula▲Mathematical formula, chemical formula, table, etc.▼ [X =F or CF_3 l=0 or an integer from 1 to 5 m=0 or 1 n=an integer from 1 to 5 p and q are positive numbers, and the ratio p/q is from 2 to 16. Y is a quaternary ammonium group] A method for separating acids and alkalis from an aqueous salt solution, characterized by using a fluorine-based anion exchange membrane made of a copolymer of repeating units represented by the following.
(2)フッ素系陰イオン交換膜の第4級アンモニウム基
を含む基として下記一般式 ▲数式、化学式、表等があります▼ 〔R^1、R^2、R^3は低級アルキル基(ただし、
R^1とが一体となってテトラメチレン鎖、ペンタメチ
レン鎖を形成してもよい)、 Zはハロゲン陰イオン〕 で表わされる陰イオン交換膜を用いる特許請求の範囲第
1項記載の方法。
(2) Groups containing quaternary ammonium groups in fluorine-based anion exchange membranes include the following general formula ▲ Numerical formulas, chemical formulas, tables, etc. ▼ [R^1, R^2, R^3 are lower alkyl groups (but ,
The method according to claim 1, which uses an anion exchange membrane represented by the following formula: Z is a halogen anion.
(3)フッ素系陰イオン交換膜の第4級アンモニウム基
を含む基として下記一般式 ▲数式、化学式、表等があります▼ 〔R^1、R^2、R^3は低級アルキル基(ただし、
R^1とR^2が一体となってテトラメチレン鎖、ペン
タメチレン鎖を形成してもよい。) R^4は水素原子または低級アルキル基 Zはハロゲンイオン〕 で表わされる陰イオン交換膜を用いる特許請求の範囲第
1項記載の方法。
(3) Groups containing quaternary ammonium groups in fluorine-based anion exchange membranes include the following general formula ▲ Numerical formulas, chemical formulas, tables, etc. ▼ [R^1, R^2, R^3 are lower alkyl groups (but ,
R^1 and R^2 may be combined to form a tetramethylene chain or a pentamethylene chain. ) R^4 is a hydrogen atom or a lower alkyl group Z is a halogen ion] The method according to claim 1, using an anion exchange membrane represented by the following formula.
(4)フッ素系陰イオン交換膜の第4級アンモニウム基
を含む基として、下記一般式▲数式、化学式、表等があ
ります▼ 〔R^1、R^2、R^3は低級アルキル基(ただし、
R^1とR^2が一体となってテトラメチレン鎖、ペン
タメチレン鎖を形成してもよい。) R^4、R^5は水素原子または低級アルキル基Zは、
ハロゲン陰イオン aは3〜7の整数〕 で表わされる陰イオン交換膜を用いる特許請求の範囲第
1項記載の方法。
(4) As a group containing a quaternary ammonium group in a fluorine-based anion exchange membrane, there are the following general formula ▲ mathematical formula, chemical formula, table, etc. ▼ [R^1, R^2, R^3 are lower alkyl groups ( however,
R^1 and R^2 may be combined to form a tetramethylene chain or a pentamethylene chain. ) R^4 and R^5 are hydrogen atoms or lower alkyl group Z is
Halogen anion a is an integer of 3 to 7.] The method according to claim 1, using an anion exchange membrane represented by:
JP23765585A 1985-10-25 1985-10-25 Separation of acid and alkali from aqueous salt solution Pending JPS6299487A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23765585A JPS6299487A (en) 1985-10-25 1985-10-25 Separation of acid and alkali from aqueous salt solution
US06/922,727 US4707234A (en) 1985-10-25 1986-10-24 Method for separating an acid and an alkali from an aqueous solution of a salt
EP86308357A EP0221751B1 (en) 1985-10-25 1986-10-27 Method for separating an acid and an alkali from an aqueous solution of a salt
DE8686308357T DE3677463D1 (en) 1985-10-25 1986-10-27 METHOD FOR SEPARATING ACID AND LYE FROM AN AQUEOUS SALT SOLUTION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23765585A JPS6299487A (en) 1985-10-25 1985-10-25 Separation of acid and alkali from aqueous salt solution

Publications (1)

Publication Number Publication Date
JPS6299487A true JPS6299487A (en) 1987-05-08

Family

ID=17018540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23765585A Pending JPS6299487A (en) 1985-10-25 1985-10-25 Separation of acid and alkali from aqueous salt solution

Country Status (1)

Country Link
JP (1) JPS6299487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133007A (en) * 2008-11-06 2010-06-17 Japan Organo Co Ltd Electrolysis tank, electrolysis apparatus, method for producing electrolyzed acidic water, and method for producing electrolyzed alkaline water
JP2014509694A (en) * 2011-03-29 2014-04-21 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Cell for depolarization electrodialysis of salt solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837596A (en) * 1981-08-29 1983-03-04 旭化成株式会社 Method of processing radioactive liquid waste containing nitrate
JPS60121289A (en) * 1983-12-06 1985-06-28 Toyo Soda Mfg Co Ltd Method for synthesizing organic compound by electrolysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837596A (en) * 1981-08-29 1983-03-04 旭化成株式会社 Method of processing radioactive liquid waste containing nitrate
JPS60121289A (en) * 1983-12-06 1985-06-28 Toyo Soda Mfg Co Ltd Method for synthesizing organic compound by electrolysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133007A (en) * 2008-11-06 2010-06-17 Japan Organo Co Ltd Electrolysis tank, electrolysis apparatus, method for producing electrolyzed acidic water, and method for producing electrolyzed alkaline water
JP2014509694A (en) * 2011-03-29 2014-04-21 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Cell for depolarization electrodialysis of salt solution

Similar Documents

Publication Publication Date Title
US4707240A (en) Method and apparatus for improving the life of an electrode
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
US4312722A (en) Process for preparing nitrites
JPH04224689A (en) Electrolytic method of alkali metal sulfate
US3402115A (en) Preparation of quaternary ammonium hydroxides by electrodialysis
Chiao et al. Bipolar membranes for purification of acids and bases
TW434329B (en) Synthesis of onium hydroxides from onium salts
US5242552A (en) System for electrolytically generating strong solutions by halogen oxyacids
US4253923A (en) Electrolytic process for producing potassium hydroxide
JP3236315B2 (en) Pure water electrolysis tank with an intermediate chamber
JPS6299487A (en) Separation of acid and alkali from aqueous salt solution
JPH07171353A (en) Electric dialysis
JP3280382B2 (en) Method for producing an acidified process stream
JPS62105922A (en) Recovery of metal and acid
JPS6347386A (en) Separation of acid and alkali from aqueous salt solution
JPS5837596A (en) Method of processing radioactive liquid waste containing nitrate
Grot Nafion® membrane and its applications
JPH01234585A (en) Method and device for electrolysis using gas diffusion electrode
JPS6297609A (en) Method for separating acid and alkali from aqueous solution of salt
JPS6297610A (en) Method for separating acid and alkali from aqueous solution of salt
JP4494612B2 (en) Method for producing hydroxyl group-containing salt
EP0122775A1 (en) Method for making a cathode, and method for lowering hydrogen overvoltage in a chloralkali cell
JPS602393B2 (en) Amino acid production method
JPS6296685A (en) Method for recovering halogen from aqueous solution containing halogen ion
JPH01123606A (en) Method for recovering hydrofluoric acid