JPH08141362A - Nitrogen oxide removing method - Google Patents

Nitrogen oxide removing method

Info

Publication number
JPH08141362A
JPH08141362A JP6283148A JP28314894A JPH08141362A JP H08141362 A JPH08141362 A JP H08141362A JP 6283148 A JP6283148 A JP 6283148A JP 28314894 A JP28314894 A JP 28314894A JP H08141362 A JPH08141362 A JP H08141362A
Authority
JP
Japan
Prior art keywords
adsorbent
nitrogen oxides
nox
magnesium
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6283148A
Other languages
Japanese (ja)
Inventor
Toshikuni Sera
俊邦 世良
Shigeru Nojima
野島  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6283148A priority Critical patent/JPH08141362A/en
Publication of JPH08141362A publication Critical patent/JPH08141362A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To adsorb and remove NOX in a gas containing NOX in a low concentration by bringing the nitrogen oxides into contact with a specified crystalline silicate-based adsorbent carrying calcium or magnesium. CONSTITUTION: A crystalline silicate is used as a carrier and the silicate has a chemical formula, (1±0.8)R2 O.[aM2 O3 .bAl2 O3 ].cMeO.ySiO2 in a dehydrated state (wherein, R stands for an alkali metal ion and/or hydrogen ion; M is one or more elements selected from VIII-group elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, and gallium; Me is alkaline earth elements, a a>=0, b>=0, c>=0, a+b=1, y/c>12, y>12) and has an x-ray diffraction pattern shown in the table I. A gas is brought into contact with an adsorbent produced by carrying calcium or magnesium on the carrier to adsorb and remove nitrogen oxides at a normal temperature and the resulting adsorbent is heated in air to desorb the nitrogen oxides and to be reproduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として道路トンネル、
閉鎖系駐車場からの換気ガス等に含有される低濃度の一
酸化窒素(NO)、二酸化窒素(NO2 )等の窒素酸化
物(NOx)を吸着除去する方法に関する。
BACKGROUND OF THE INVENTION The present invention is mainly applied to road tunnels,
The present invention relates to a method for adsorbing and removing low-concentration nitrogen oxides (NOx) such as nitric oxide (NO) and nitrogen dioxide (NO 2 ) contained in ventilation gas from a closed parking lot.

【0002】[0002]

【従来の技術】道路トンネル内の換気設備は主として媒
塵に起因する明視距離の確保及び一酸化炭素(CO)、
窒素酸化物(NOx)等有害物質の許容値以下への低減
を目的に設置されている。現状の換気方式は新鮮な外気
をトンネル外から吸気し、必要に応じて媒塵を除去後、
トンネル外に強制換気する方式が一般的に用いられてい
る。しかし、この方式は有害物質を含む換気ガスを大気
に拡散しているだけであり、根本的な環境改善になって
いない。特に自動車排ガスによる大気汚染が深刻になっ
ている都市部では、高度の汚染地域を拡大させることに
なり、道路計画におけるトンネル化、シェルター設置に
支障を来す場合がある。そこで省エネルギで周辺環境へ
の影響がない新たな換気方式の開発が望まれている。
2. Description of the Related Art Ventilation equipment in a road tunnel is mainly used for securing a clear visual distance due to dust and carbon monoxide (CO),
It is installed for the purpose of reducing harmful substances such as nitrogen oxides (NOx) to below the allowable value. The current ventilation system takes in fresh air from the outside of the tunnel, removes dust if necessary, and
The method of forced ventilation outside the tunnel is generally used. However, this method only diffuses ventilation gas containing harmful substances into the atmosphere, and is not a fundamental environmental improvement. Particularly in urban areas where air pollution due to automobile exhaust gas is becoming serious, a highly polluted area is expanded, which may hinder tunneling and shelter installation in road planning. Therefore, it is desired to develop a new ventilation method that saves energy and does not affect the surrounding environment.

【0003】しかし、トンネル換気ガスは常温・大容量
でNOx濃度は10ppm以下と希薄であり、交通量に
よってNOx濃度変動が激しいという特異性があるた
め、ボイラ燃焼排ガスで既に実用化されているNH3
還元剤とするNOx浄化方法を、そのまま適用すること
は不可能である。
However, since the tunnel ventilation gas has a peculiarity that the NOx concentration is 10 ppm or less at room temperature and a large capacity and the NOx concentration fluctuates drastically depending on the traffic volume, the NH which has already been put to practical use in boiler combustion exhaust gas. It is impossible to directly apply the NOx purification method using 3 as a reducing agent.

【0004】そこで低濃度のNOx浄化方法として、乾
式法及び湿式法が種々提案されているが、湿式法は廃水
処理装置が必要とするために実用化が困難である。乾式
法としては以下の方法がある。
Therefore, various dry methods and wet methods have been proposed as low-concentration NOx purification methods, but the wet method is difficult to put into practical use because it requires a wastewater treatment apparatus. The following dry methods are available.

【0005】 トンネル換気ガスのNOxを吸着剤に
吸着させ、温度、圧力を変えて吸着剤から分離・濃縮
後、触媒の存在下で還元剤を添加しないでNOxを無害
な窒素に分解する接触分解法。
NOx of tunnel ventilation gas is adsorbed on an adsorbent, and after separating and concentrating from the adsorbent by changing temperature and pressure, catalytic decomposition is performed in the presence of a catalyst without adding a reducing agent to decompose NOx into harmless nitrogen. Law.

【0006】 トンネル換気ガスのNOxを吸着剤に
吸着させ、温度、圧力を変えて分離・濃縮後、NH3
還元剤として触媒で無害な窒素にして除去する吸着法。
吸着剤によっては、NO2 にすると高性能になるため、
予めオゾンで酸化する場合、還元剤としてNH3 の代わ
りにプロパンを使用する場合もある。
An adsorption method in which NOx of tunnel ventilation gas is adsorbed by an adsorbent, separated and concentrated by changing temperature and pressure, and then NH 3 is used as a reducing agent to make harmless nitrogen with a catalyst and removed.
Depending on the adsorbent, NO 2 will give high performance, so
When oxidizing with ozone beforehand, propane may be used as a reducing agent instead of NH 3 .

【0007】 トンネル換気ガスにNH3 を添加する
と同時に、電子線を照射してNOxを硝酸アンモニウム
に換え、電気集塵機で回収・除去する電子線照射法。
An electron beam irradiation method in which NH 3 is added to a tunnel ventilation gas, and at the same time, an electron beam is irradiated to replace NOx with ammonium nitrate, and is collected and removed by an electric dust collector.

【0008】本発明者はこのようなNOx浄化設備が都
会設置型であることを考慮し、有害物質のイメージが強
く、2次公害物質発生の恐れがあるNH3 、O3 の使
用、及び硝酸アンモニウムの如き固体副生物発生のない
浄化法を検討し、最初にの方式を提案した。すなわ
ち、ゼオライト系吸着剤により、PSA(圧力スイング
吸着)方式でNOxを分離・濃縮後、NOx分解触媒で
窒素と酸素に分解する方法であるが、NOx濃度を数千
倍(1%程度)濃縮しないと、NOx分解触媒が所定の
分解性能を発現しないため、NOx分離・濃縮部の占有
容積、設備コスト、所要動力などの面で実用性に劣る。
そこで、と同じ吸着剤を使用し、還元ガスの添加によ
る触媒作用により、窒素に転換するの方法を提案し
た。ここで、還元ガスとしては、万一の漏洩時に有害物
質としてのイメージの強いNH3 に代えて、家庭用燃料
のプロパンを選定した。しかしこの方法では、処理ガス
に含まれる飽和水分(2.6%程度)の影響があり、疎
水性ゼオライト系吸着剤に変更しても、吸脱着の繰り返
しによるNOx吸着容量の低減が認められた。従って、
処理ガスの水分をゼロにするか、吸着剤容量を増やすか
の手段が必要となり、NOx分離・濃縮部の改善効果は
少ないと言わざるを得ない。
In consideration of the fact that such NOx purification equipment is installed in the city, the inventor of the present invention has a strong image of harmful substances and uses NH 3 , O 3 , which may generate secondary pollutants, and ammonium nitrate. I examined the purification method without the generation of solid by-products like the above and proposed the first method. In other words, it is a method of separating and concentrating NOx by PSA (pressure swing adsorption) method using a zeolite-based adsorbent and then decomposing it into nitrogen and oxygen with a NOx decomposition catalyst, but concentrating the NOx concentration several thousand times (about 1%). Otherwise, the NOx decomposing catalyst does not exhibit a predetermined decomposing performance, so that it is inferior in practicality in terms of the occupied volume of the NOx separating / concentrating section, equipment cost, required power, and the like.
Therefore, using the same adsorbent as above, a method of converting to nitrogen by a catalytic action by adding a reducing gas was proposed. Here, as the reducing gas, propane, which is a household fuel, was selected in place of NH 3, which has a strong image as a harmful substance in the event of a leak. However, this method was affected by saturated water content (about 2.6%) contained in the treated gas, and even if the hydrophobic zeolite adsorbent was used, the NOx adsorption capacity was reduced by repeated adsorption and desorption. . Therefore,
It is necessary to say that a means for reducing the water content of the treated gas to zero or increasing the adsorbent capacity is required, and it cannot be said that the effect of improving the NOx separation / concentration section is small.

【0009】次に、水分共存下での吸脱着繰り返しで
も、NOx吸着容量の低下が少ない吸着剤の選定並びに
吸脱着条件の検討を行った結果、活性炭を吸着剤とし、
TSA(温度スイング吸着)方式で吸脱着させ、NH3
を還元剤として触媒で無害な窒素にするプロセスも有望
であるとの見通しを得た。しかし、通常の活性炭は吸着
速度が遅く、かつNO分圧の影響を受け、所定の吸着性
能発現には、処理ガス流速を0.1m/sec以下とし
なければならないこと、及び活性炭の加熱再生を空気中
で行うと、発火の危険性があるため、温度管理を充分に
行わなければならないことから、実用化するには万全と
は言えない。
[0009] Next, as a result of selecting an adsorbent having a small decrease in NOx adsorption capacity even after repeated adsorption / desorption in the presence of water and examining adsorption / desorption conditions, activated carbon was used as the adsorbent.
Adsorption and desorption by TSA (temperature swing adsorption) method, NH 3
We have also obtained the prospect that a process of using nitrogen as a reducing agent to produce harmless nitrogen with a catalyst is also promising. However, ordinary activated carbon has a slow adsorption rate and is affected by the NO partial pressure. To achieve a predetermined adsorption performance, the treatment gas flow rate must be 0.1 m / sec or less, and the activated carbon must be regenerated by heating. If it is carried out in the air, there is a risk of ignition, so temperature control must be carried out sufficiently, so it cannot be said to be perfect for practical use.

【0010】[0010]

【発明が解決しようとする課題】以上のようにトンネル
換気ガス中の希薄NOxを、効率よく経済的に除去する
方法は未だ見出せていないと言える。一方、トンネル換
気ガスには煤塵が含まれており、既に電気集塵機の如き
煤塵除去設備が設置されている。電気集塵機では加電圧
を大きくしていくと、NOがNO2 に転換するようにな
り、加電圧の増加と共に転化率は大きくなる。そこでこ
の現象を利用するか、あるいは系外からオゾンを添加し
てNOをNO2 に転換して、NO2 に対して選択的に吸
着する吸着剤を適用することにより、トンネル換気ガス
中の希薄NOxを効率よく除去できることが知られてい
る。このような技術水準に鑑み、本発明は低濃度のNO
x含有ガス中のNOxを合目的に吸着除去しうる方法を
提供しようとするものである。
As described above, it can be said that a method for efficiently and economically removing the lean NOx in the tunnel ventilation gas has not been found yet. On the other hand, the tunnel ventilation gas contains soot and dust, and soot and dust removing equipment such as an electric dust collector has already been installed. In the electrostatic precipitator, when the applied voltage is increased, NO is converted to NO 2, and the conversion rate increases as the applied voltage increases. Therefore, by utilizing this phenomenon, or by adding ozone from the outside of the system to convert NO to NO 2 and applying an adsorbent that selectively adsorbs NO 2 , lean gas in tunnel ventilation gas is diluted. It is known that NOx can be removed efficiently. In view of such a state of the art, the present invention provides a low concentration of NO.
An object of the present invention is to provide a method capable of adsorbing and removing NOx in an x-containing gas for the purpose.

【0011】[0011]

【課題を解決するための手段】本発明は希薄な窒素酸化
物、特に二酸化窒素を主成分とする排ガスを、カルシウ
ム又はマグネシウムを担持した特定の結晶性シリケート
系吸着剤と接触させて、窒素酸化物を常温で吸着除去
し、かつ窒素酸化物を吸着した吸着剤を加熱空気で脱離
して再生させることを特徴とする窒素酸化物の除去方法
である。
According to the present invention, a dilute exhaust gas containing nitrogen oxide, particularly nitrogen dioxide as a main component, is brought into contact with a specific crystalline silicate-based adsorbent carrying calcium or magnesium to effect nitrogen oxidation. It is a method for removing nitrogen oxides, which comprises adsorbing and removing a substance at room temperature, and desorbing an adsorbent having adsorbed nitrogen oxides with heated air to regenerate it.

【0012】なお、上記結晶性シリケートは脱水された
状態で、(1±0.8)R2 O・〔aM2 3 ・bAl
2 3 〕・cMeO・ySiO2 (式中、Rはアルカリ
金属イオン及び/又は水素イオン、MはVIII族元素、希
土類元素、チタン、バナジウム、クロム、ニオブ、アン
チモン、ガリウムからなる群から選ばれた1種以上の元
素、Meはアルカリ土類元素、a≧0、b≧0、c≧
0、a+b=1、y/c>12、y>12)の化学組成
を有し、かつ下記表Aで示されるX線回折パターンを有
する結晶性シリケートを用いる。
[0012] The crystalline silicate is dehydrated (1 ± 0.8) R 2 O. [aM 2 O 3 .bAl
2 O 3 ] .cMeO.ySiO 2 (wherein R is an alkali metal ion and / or a hydrogen ion, M is selected from the group consisting of Group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, and gallium. One or more elements, Me is an alkaline earth element, a ≧ 0, b ≧ 0, c ≧
A crystalline silicate having a chemical composition of 0, a + b = 1, y / c> 12, y> 12) and an X-ray diffraction pattern shown in Table A below is used.

【0013】また、カルシウム又はマグネシウムを、上
記結晶性シリケートに担持する担持量は、酸化物として
0.3〜40wt%、好ましくは0.5〜30wt%が
よい。カルシウム又はマグネシウムの結晶性シリケート
への担持方法はイオン交換法、含浸法等があげられる。
The amount of calcium or magnesium supported on the crystalline silicate is 0.3 to 40 wt% as an oxide, preferably 0.5 to 30 wt%. Examples of the method for supporting calcium or magnesium on the crystalline silicate include an ion exchange method and an impregnation method.

【0014】[0014]

【表1】 VS:非常に強い M:中級 S:強い W:弱い (X線源 Cu)[Table 1] VS: Very strong M: Intermediate S: Strong W: Weak (X-ray source Cu)

【0015】[0015]

【作用】本発明において使用される吸着剤は希薄なNO
2 を含有する空気からNO2 を常温で効率よく吸着する
作用を有し、400℃程度に加熱することにより吸着さ
れたNO2 が脱着される。従ってこの吸着、脱着反応を
繰り返すことにより、希薄なNO2 を含有する空気を効
率よく浄化できる。以下実施例により本発明をさらに詳
しく説明する。
The adsorbent used in the present invention is a diluted NO.
It has an effect of efficiently adsorbing NO 2 from the air containing 2 at room temperature, and the adsorbed NO 2 is desorbed by heating to about 400 ° C. Therefore, by repeating this adsorption / desorption reaction, the air containing the lean NO 2 can be efficiently purified. Hereinafter, the present invention will be described in more detail with reference to examples.

【0016】[0016]

【実施例】【Example】

【0017】(吸着剤の試作)(Prototype of adsorbent)

【0018】〇 粉末吸着剤1の調製 水ガラス1号(SiO2 :30%):5616gを水:
5429gに溶解して溶液Aとした。一方、水:417
5gに硫酸アルミニウム:718.9g、塩化第二鉄:
110g、酢酸カルシウム:47.2g、塩化ナトリウ
ム:262g及び濃塩酸:2020gを混合、溶解して
溶液Bとした。溶液Aと溶液Bを一定割合で供給して沈
殿を生成させ、十分攪拌してpH=8.0のスラリを得
た。そして、このスラリを20リットルのオートクレー
ブに仕込み、さらにテトラプロピルアンモニウムブロマ
イド:500gを添加し、160℃にて72時間水熱合
成を行い、合成後水洗して乾燥させ、さらに500℃に
て3時間焼成させて、結晶性シリケート1を得る。この
結晶性シリケート1は酸化物のモル比(脱水された形
態)で表して下記の組成式となり、結晶構造はX線回折
で前記表Aにて表示されるものであった。
Preparation of powder adsorbent 1 Water glass No. 1 (SiO 2 : 30%): 5616 g of water:
It was dissolved in 5429 g to prepare a solution A. On the other hand, water: 417
Aluminum sulfate: 718.9 g, ferric chloride:
110 g, calcium acetate: 47.2 g, sodium chloride: 262 g and concentrated hydrochloric acid: 2020 g were mixed and dissolved to prepare a solution B. Solution A and solution B were supplied at a constant ratio to generate a precipitate, which was sufficiently stirred to obtain a slurry having a pH of 8.0. Then, this slurry was charged into a 20 liter autoclave, tetrapropylammonium bromide: 500 g was further added, and hydrothermal synthesis was carried out at 160 ° C for 72 hours, followed by washing with water and drying, and further at 500 ° C for 3 hours. The crystalline silicate 1 is obtained by firing. This crystalline silicate 1 had the following composition formula expressed by the molar ratio of the oxide (dehydrated form), and the crystal structure was as shown in Table A above by X-ray diffraction.

【0019】[0019]

【化1】0.5Na2 O・0.5H2 O・〔0.8Al
2 3 ・0.2Fe2 3 ・0.25CaO〕・25S
iO2
[Chemical formula 1] 0.5Na 2 O ・ 0.5H 2 O ・ [0.8Al
2 O 3 · 0.2Fe 2 O 3 · 0.25CaO] · 25S
iO 2

【0020】上記結晶性シリケート1を4NのNH4
l水溶液(40℃)に3時間攪拌して、NH4 イオン交
換を実施した。イオン交換後洗浄して100℃にて24
時間乾燥後、400℃にて3時間焼成してH型の結晶性
シリケート1を得た。このH型の結晶性シリケート1
(100g)に塩化カルシウム水溶液(CaCl2 ・2
2 O:18.3g/水100cc)を含浸し、十分混
練後、200℃で蒸発乾固した。次いで500℃にて空
気雰囲気で12時間焼成することにより、CaOを7w
t%担持する粉末吸着剤1を得た。
The above crystalline silicate 1 was treated with 4N NH 4 C.
and stirred 3 hours l aqueous solution (40 ° C.), was carried out NH 4 ion exchange. After ion exchange, wash and wash at 100 ° C for 24 hours
After drying for an hour, it was baked at 400 ° C. for 3 hours to obtain H-type crystalline silicate 1. This H type crystalline silicate 1
(100 g) of calcium chloride solution (CaCl 2 · 2
H 2 O: 18.3 g / 100 cc of water) was impregnated, thoroughly kneaded, and then evaporated to dryness at 200 ° C. Then, by firing at 500 ° C. in an air atmosphere for 12 hours, 7 w of CaO is added.
A powder adsorbent 1 supporting t% was obtained.

【0021】〇 粉末吸着剤2〜30の調製 上記粉末吸着剤1の調製における結晶性シリケート1の
合成法において、塩化第二鉄の代わりに、塩化コバル
ト、塩化ルテニウム、塩化ロジウム、塩化ランタン、塩
化セリウム、塩化チタン、塩化バナジウム、塩化クロ
ム、塩化アンチモン、塩化ガリウム及び塩化ニオブを、
各々酸化物換算でFe2 3 と同じモル数だけ添加した
以外は結晶性シリケート1と同様の操作を繰り返して結
晶性シリケート2〜12を調製した。これらの結晶性シ
リケートの結晶構造はX線回折で前記表Aに表示される
ものであり、その組成は酸化物のモル比(脱水された形
態)で表わして0.5Na2 O・0.5H2 O・(0.
2M2 3 ・0.8Al2 3・0.25CaO)・2
5SiO2 である。ここでMはCo,Ru,Rh,L
a,Ce,Ti,V,Cr,Sb,Ga,Nbである。
Preparation of powder adsorbents 2 to 30 In the method for synthesizing crystalline silicate 1 in the preparation of powder adsorbent 1 above, instead of ferric chloride, cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, chloride Cerium, titanium chloride, vanadium chloride, chromium chloride, antimony chloride, gallium chloride and niobium chloride,
Crystalline silicates 2 to 12 were prepared by repeating the same operation as in crystalline silicate 1 except that the same molar number as Fe 2 O 3 was added in terms of oxide. The crystal structure of these crystalline silicates is shown in Table A above by X-ray diffraction, and its composition is expressed by the molar ratio of oxides (dehydrated form) of 0.5Na 2 O · 0.5H. 2 O ・ (0.
2M 2 O 3 · 0.8Al 2 O 3 · 0.25CaO) · 2
5SiO 2 . Where M is Co, Ru, Rh, L
a, Ce, Ti, V, Cr, Sb, Ga, Nb.

【0022】さらに、結晶性シリケート1の合成法にお
いて、酢酸カルシウムの代わりに、酢酸マグネシウム、
酢酸ストロンチウム、酢酸バリウムを、各々酸化物換算
でCaOと同じモル数だけ添加した以外は結晶性シリケ
ート1と同様の操作を繰り返して、結晶性シリケート1
3〜15を調製した。これらの結晶性シリケートの結晶
構造はX線回折で前記表Aに表示されるものであり、そ
の組成は酸化物のモル比(脱水された形態)で表して、
0.5Na2 O・0.5H2 O・(0.2Fe 2 3
0.8Al2 3 ・0.25MeO)・25SiO2
ある。ここでMeはMg,Sr,Baである。
Furthermore, in the method of synthesizing the crystalline silicate 1,
Instead of calcium acetate, magnesium acetate,
Strontium acetate and barium acetate converted to oxides
Except that the same molar number as CaO was added.
Crystalline silicate 1
3-15 were prepared. Crystals of these crystalline silicates
The structure is that shown in Table A above by X-ray diffraction.
The composition of is expressed by the molar ratio of oxide (dehydrated form),
0.5Na2O ・ 0.5H2O ・ (0.2Fe 2O3
0.8 Al2O3・ 0.25MeO) ・ 25SiO2so
is there. Here, Me is Mg, Sr, or Ba.

【0023】上記結晶性シリケート2〜15を用いて、
粉末吸着剤1と同様の方法でH型の結晶性シリケート2
〜15を得、このシリケートに塩化カルシウム水溶液
(CaCl2 ・2H2 O:18.3g/水100cc)
を含浸し、粉末吸着剤1と同様に粉末吸着剤2〜15を
得た。
Using the above crystalline silicates 2 to 15,
H-type crystalline silicate 2 in the same manner as the powder adsorbent 1
~ 15 were obtained, and this silicate had an aqueous calcium chloride solution (CaCl 2 · 2H 2 O: 18.3 g / 100 cc of water).
Were impregnated to obtain powder adsorbents 2 to 15 in the same manner as powder adsorbent 1.

【0024】また、塩化カルシウム水溶液の代わりに塩
化マグネシウム水溶液を用いて、上記H型の結晶性シリ
ケート1〜15(100g)に、塩化マグネシウム水溶
液(MgCl2 ・6H2 O:35.3g/水100c
c)を含浸し、十分混練後、200℃にて蒸発乾固し、
500℃にて12時間空気焼成することにより、MgO
を7wt%を担持する粉末吸着剤16〜30を得た。
An aqueous solution of magnesium chloride was used in place of the aqueous solution of calcium chloride, and an aqueous solution of magnesium chloride (MgCl 2 .6H 2 O: 35.3 g / 100 c of water) was added to the above H-type crystalline silicates 1 to 15 (100 g).
c) is impregnated, thoroughly kneaded, and then evaporated to dryness at 200 ° C.,
By firing in air at 500 ° C for 12 hours, MgO
Powder adsorbents 16 to 30 carrying 7 wt.

【0025】〇 スラリ調製 バインダとしてシリカゾル(日産化学製「スノーテック
ス0」、シリカ分:20%)とアルミナゾル(日産化学
製、アルミナ分:10%)を、粉末:100部に対して
各々60部、10部、さらに水300部を加えて混合
後、硝酸添加によりpHを4に調整して、ウォッシュコ
ート用スラリを調製した。
〇 60 parts of silica sol (Nissan Chemical's “Snowtex 0”, silica content: 20%) and alumina sol (Nissan Chemical, alumina content: 10%) were used as a slurry preparation binder for 100 parts of powder: 100 parts, respectively. After adding 10 parts and further 300 parts of water and mixing, the pH was adjusted to 4 by adding nitric acid to prepare a slurry for washcoat.

【0026】〇 コーティング及び焼成 コージェライト製モノリシス状ハニカム基材(400セ
ル/inch2 )を、上記スラリに浸漬し、取り出し後
余分なスラリを圧縮空気で吹き払い、120℃にて30
分間乾燥する。乾燥後さらにハニカム基材をスラリに浸
漬し、これらの操作を繰り返すことにより、所定量の吸
着剤粉末(約60g/m3 基材表面)をハニカム基材上
にコートして、600℃にて3時間電気炉で焼成し、ハ
ニカム吸着剤1〜30を得た。
Coating and firing A cordierite monolithic honeycomb substrate (400 cells / inch 2 ) was dipped in the above slurry, taken out, and the excess slurry was blown off with compressed air, and the temperature was increased to 30 ° C. at 30 ° C.
Dry for minutes. After drying, the honeycomb substrate is further dipped in a slurry, and these operations are repeated to coat a predetermined amount of adsorbent powder (about 60 g / m 3 substrate surface) on the honeycomb substrate, and at 600 ° C. The honeycomb adsorbents 1 to 30 were obtained by firing in an electric furnace for 3 hours.

【0027】また、H型結晶性シリケート1担体にカル
シウムとマグネシウムを各々CaO、MgOで0.5
%、2.0%、10.0%、30.0wt%担持した粉
末吸着剤31〜38を試作調製した。
Calcium and magnesium are added to the H-type crystalline silicate 1 carrier 0.5 times with CaO and MgO, respectively.
%, 2.0%, 10.0%, and 30.0 wt% of the powder adsorbents 31 to 38 were experimentally prepared.

【0028】さらに比較例として、活性炭粉末(武田薬
品工業製白鷺PHC−5)及び活性アルミナ(住友化学
製、日揮化学製)の粉末(100メッシュ以下)を準備
し、粉末吸着剤39〜41を得た。そしてこれら粉末吸
着剤31〜41も、上記と同一方法によりハニカム化を
行い、ハニカム吸着剤31〜41を得た。これらハニカ
ム吸着剤リストを表Bに示す。
Further, as a comparative example, powders (100 mesh or less) of activated carbon powder (Shirasagi PHC-5 manufactured by Takeda Pharmaceutical Co., Ltd.) and activated alumina (Sumitomo Chemical Co., Ltd., JGC Chemical Co., Ltd.) were prepared, and powder adsorbents 39 to 41 were used. Obtained. Then, these powder adsorbents 31 to 41 were also formed into a honeycomb by the same method as described above to obtain honeycomb adsorbents 31 to 41. A list of these honeycomb adsorbents is shown in Table B.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】(試作吸着剤の性能評価)試作吸着剤は吸
着及び脱着試験条件を以下の表Cのように設定して、吸
脱着性能を評価した。
(Evaluation of Performance of Prototype Adsorbent) The adsorption and desorption performance of the prototype adsorbent was evaluated by setting adsorption and desorption test conditions as shown in Table C below.

【0033】[0033]

【表5】 [Table 5]

【0034】吸脱着試験を1回実施後の2回目の吸着試
験結果をデータとし、破過時間(C/C0 =0.2とな
る時間、C0 :入口NOx濃度、C:出口NOx濃度)
及びNO2 吸着容量を求めた。試験結果を表Dに示すと
共に、試作した各吸着剤(ハニカム吸着剤1、16、3
9、40)の破過曲線(a)と脱着曲線(b)を図1〜
図4に示す。
Using the results of the second adsorption test after the first adsorption / desorption test as data, the breakthrough time (time when C / C 0 = 0.2, C 0 : inlet NOx concentration, C: outlet NOx concentration) )
And the NO 2 adsorption capacity were determined. The test results are shown in Table D, and the adsorbents that were prototyped (honeycomb adsorbents 1, 16, 3,
Fig. 1 shows the breakthrough curve (a) and desorption curve (b) of Fig.
As shown in FIG.

【0035】表Dは吸着時間60分において、C/C0
=0.2に達しない場合の破過時間は60分以上と記し
て、NO2 吸着容量は吸着時間60分までの吸着量を記
載した。
Table D shows C / C 0 at an adsorption time of 60 minutes.
= 0.2, the breakthrough time was described as 60 minutes or more, and the NO 2 adsorption capacity was the adsorption amount up to the adsorption time of 60 minutes.

【0036】[0036]

【表6】 [Table 6]

【0037】表Dから、カルシウム又はマグネシウムを
担持した結晶性シリケート吸着剤(ハニカム番号1〜3
0)は破過時間が長く、かつNO2 吸着容量も多い。こ
れに対して、活性炭(ハニカム番号39)はNO2 吸着
容量は多いものの、破過時間が極めて短く実用的でな
い。一方、活性アルミナ(ハニカム番号40、41)は
物性の差による若干の性能の違いはあるものの、カルシ
ウム又はマグネシウムを担持した結晶性シリケート吸着
剤に比べると、NO2 吸着容量、破過時間共劣っている
ことが分かる。
From Table D, the crystalline silicate adsorbent supporting calcium or magnesium (Honeycomb Nos. 1 to 3)
0) has a long breakthrough time and a large NO 2 adsorption capacity. On the other hand, although activated carbon (Honeycomb No. 39) has a large NO 2 adsorption capacity, it has a very short breakthrough time and is not practical. On the other hand, activated alumina (Honeycomb Nos. 40 and 41) has a slight difference in performance due to the difference in physical properties, but the NO 2 adsorption capacity and breakthrough time are inferior to those of the crystalline silicate adsorbent supporting calcium or magnesium. I understand that.

【0038】また、カルシウム又はマグネシウムの結晶
性シリケートへの担持量を変化させたハニカム吸着剤3
1〜38から以下のことが明らかとなった。カルシウム
及びマグネシウムの担持量が少なくなる程破過開始時間
は短くなり、それに連動して破過時間(C/C0 =0.
2となる時間)も短くなったが、本条件での全破過時間
は60分以上である。一方、カルシウム又はマグネシウ
ムの担持量を多くする程、吸着性能はよくなるが、酸化
物として2wt%以上ではほぼ同等である。
Further, the honeycomb adsorbent 3 in which the loading amount of calcium or magnesium on the crystalline silicate is changed
From 1 to 38, the following things became clear. The smaller the amount of calcium and magnesium carried, the shorter the breakthrough start time, and in conjunction with this, the breakthrough time (C / C 0 = 0.
2) was also shortened, but the total breakthrough time under these conditions was 60 minutes or longer. On the other hand, the higher the loading amount of calcium or magnesium, the better the adsorption performance, but it is almost the same at 2 wt% or more as an oxide.

【0039】[0039]

【発明の効果】本発明方法により得られるNOx吸着剤
は、常温で空気中の希薄なNOx、取り分けNO2 を選
択的に吸着除去するものであり、空気中の水分の影響を
受けることなく、効率よくNOxを吸着除去できる。
INDUSTRIAL APPLICABILITY The NOx adsorbent obtained by the method of the present invention selectively adsorbs and removes lean NOx in the air at room temperature, and in particular, NO 2 , and is not affected by moisture in the air. NOx can be efficiently adsorbed and removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用するハニカム吸着剤1のNOx吸
着破過曲線(a)とNOx脱着曲線(b)を示す図表。
FIG. 1 is a chart showing a NOx adsorption breakthrough curve (a) and a NOx desorption curve (b) of a honeycomb adsorbent 1 used in the present invention.

【図2】本発明で使用するハニカム吸着剤16のNOx
吸着破過曲線(a)とNOx脱着曲線(b)を示す図
表。
FIG. 2 NOx of the honeycomb adsorbent 16 used in the present invention
The chart which shows an adsorption breakthrough curve (a) and a NOx desorption curve (b).

【図3】比較吸着剤として示したハニカム吸着剤39の
NOx吸着破過曲線(a)とNOx脱着曲線(b)を示
す図表。
FIG. 3 is a chart showing a NOx adsorption breakthrough curve (a) and a NOx desorption curve (b) of a honeycomb adsorbent 39 shown as a comparative adsorbent.

【図4】比較吸着剤として示したハニカム吸着剤40の
NOx吸着破過曲線(a)とNOx脱着曲線(b)を示
す図表。
FIG. 4 is a chart showing a NOx adsorption breakthrough curve (a) and a NOx desorption curve (b) of the honeycomb adsorbent 40 shown as a comparative adsorbent.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 20/04 B 20/34 F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B01J 20/04 B 20/34 F

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希薄な窒素酸化物を含有するガスを、脱
水された状態で(1±0.8)R2 O・〔aM2 3
bAl2 3 〕・cMeO・ySiO2 (式中、Rはア
ルカリ金属イオン及び/又は水素イオン、MはVIII族元
素、希土類元素、チタン、バナジウム、クロム、ニオ
ブ、アンチモン、ガリウムからなる群から選ばれた1種
以上の元素、Meはアルカリ土類元素、a≧0、b≧
0、c≧0、a+b=1、y/c>12、y>12)の
化学組成を有し、かつ発明の詳細な説明の項に記載の表
Aで示されるX線回折パターンを有する結晶性シリケー
トよりなる担体に、カルシウム又はマグネシウムを担持
した吸着剤と接触させて、窒素酸化物を常温で吸着除去
し、かつ窒素酸化物を吸着した吸着剤を、加熱空気で脱
離して再生させることを特徴とする窒素酸化物の除去方
法。
1. A gas containing dilute nitrogen oxides in a dehydrated state (1 ± 0.8) R 2 O. [aM 2 O 3 ·.
bAl 2 O 3 ] .cMeO.ySiO 2 (wherein R is an alkali metal ion and / or a hydrogen ion, M is a group VIII element, a rare earth element, titanium, vanadium, chromium, niobium, antimony, or gallium. At least one element, Me is an alkaline earth element, a ≧ 0, b ≧
0, c ≧ 0, a + b = 1, y / c> 12, y> 12), and a crystal having the X-ray diffraction pattern shown in Table A in the Detailed Description of the Invention section. A carrier made of water-soluble silicate is brought into contact with an adsorbent supporting calcium or magnesium to adsorb and remove nitrogen oxides at room temperature, and the adsorbent adsorbing nitrogen oxides is desorbed with heated air to be regenerated. And a method for removing nitrogen oxides.
【請求項2】 結晶性シリケート担体に担持されるカル
シウム又はマグネシウム量が、0.3〜30重量%の範
囲である吸着剤を用いることを特徴とする請求項1項記
載の窒素酸化物の除去方法。
2. Removal of nitrogen oxides according to claim 1, wherein an adsorbent having an amount of calcium or magnesium supported on the crystalline silicate carrier in the range of 0.3 to 30% by weight is used. Method.
【請求項3】 希薄な窒素酸化物は二酸化窒素を主成分
とすることを特徴とする請求項1項又は2項記載の窒素
酸化物の除去方法。
3. The method for removing nitrogen oxides according to claim 1, wherein the dilute nitrogen oxide contains nitrogen dioxide as a main component.
JP6283148A 1994-11-17 1994-11-17 Nitrogen oxide removing method Withdrawn JPH08141362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6283148A JPH08141362A (en) 1994-11-17 1994-11-17 Nitrogen oxide removing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6283148A JPH08141362A (en) 1994-11-17 1994-11-17 Nitrogen oxide removing method

Publications (1)

Publication Number Publication Date
JPH08141362A true JPH08141362A (en) 1996-06-04

Family

ID=17661843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6283148A Withdrawn JPH08141362A (en) 1994-11-17 1994-11-17 Nitrogen oxide removing method

Country Status (1)

Country Link
JP (1) JPH08141362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093794A (en) * 1999-10-20 2000-04-04 Hitachi Ltd NOx ADSORPTION CATALYST FOR PURIFYING EXHAUST GAS FROM INTERNAL COMBUSTION ENGINE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093794A (en) * 1999-10-20 2000-04-04 Hitachi Ltd NOx ADSORPTION CATALYST FOR PURIFYING EXHAUST GAS FROM INTERNAL COMBUSTION ENGINE

Similar Documents

Publication Publication Date Title
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
WO1998005412A1 (en) Pollutant removal from air in closed spaces
JPH05192535A (en) Method and apparatus for purifying exhaust gas
JP4841379B2 (en) Metal oxide catalyst powder, method for producing the same, purification filter, method for decomposing volatile organic solvent, and method for decomposing nitrogen oxide
JP3137497B2 (en) Adsorbent and adsorption removal method for hydrocarbon
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JPH10118486A (en) Concentration of dilute nitrogen oxide
JPH08141362A (en) Nitrogen oxide removing method
JPH08299756A (en) Method for removing low-concentration nitrogen oxide
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3148155B2 (en) Adsorbent for nitrogen oxides and / or sulfur oxides and method of using the same
JP3157555B2 (en) Exhaust gas purification catalyst
JP3014733B2 (en) Engine exhaust gas purification apparatus and method of manufacturing the same
JPH0824579A (en) Treatment of low concentration nox containing gas
JPH07328382A (en) Denitration of exhaust gas containing dilute nitrogen oxide
JPH09248448A (en) Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide
WO2023042783A1 (en) Core-shell zeolite
JPH03186319A (en) Ozone decomposition method
JP3705955B2 (en) Regeneration method for adsorbents such as nitrogen oxides
JP3148203B2 (en) Adsorbent for nitrogen oxides and / or sulfur oxides and removal method using the adsorbent
JP2827627B2 (en) Deodorizing catalyst
JP2002210366A (en) PLASMA-ASSIST CATALYST FOR CLEANING NOx
JP2001038200A (en) Adsorbent for nitrogen oxide or the like, its production and method for removing nitrogen oxide or the like
JPH08257351A (en) System and process for treating low concentration nox-containing gas
JP3545029B2 (en) Exhaust gas purification method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205