JPH03186319A - Ozone decomposition method - Google Patents

Ozone decomposition method

Info

Publication number
JPH03186319A
JPH03186319A JP1326442A JP32644289A JPH03186319A JP H03186319 A JPH03186319 A JP H03186319A JP 1326442 A JP1326442 A JP 1326442A JP 32644289 A JP32644289 A JP 32644289A JP H03186319 A JPH03186319 A JP H03186319A
Authority
JP
Japan
Prior art keywords
ozone
nox
decomposition
nitrogen oxides
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1326442A
Other languages
Japanese (ja)
Other versions
JPH0829221B2 (en
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
永野 一彦
Masahiro Tanaka
正博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP1326442A priority Critical patent/JPH0829221B2/en
Publication of JPH03186319A publication Critical patent/JPH03186319A/en
Publication of JPH0829221B2 publication Critical patent/JPH0829221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To prevent ozone decomposition power from lowering even if nitrogen oxides coexist with ozone by removing NOx using an adsorbent or a NOx decomposition catalyst before ozone decomposition in the case of decomposition of ozone in a waste gas containing ozone as well as nitrogen oxides. CONSTITUTION:In a method for decomposing ozone in a waste gas containing ozone as well as nitrogen oxides, a NOx removal filter is put in a prior stage to an ozone decomposition catalyst. The filter may be an adsorbent which adsorbs NOx at the temperature of usage condition or a substance which decomposes NOx into N2 and O2 or into NO less reactive with metal oxides than NO2. Alkaline earth metal oxides, alkaline earth hydroxides, alkali metal- zeolite such as Na-X, perovskite compounds such as Y1, Ba2, Cu3, etc., are used as the NOx adsorbent. Ni, Fe, Cu-ZSM-5, etc., are used as the NOx decomposition catalyst. By this method, without the ozone decomposition power being lowered, ozone is decomposed even if nitrogen oxides coexist with ozone.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、気体等の中に含まれる、オゾンを分解除去す
るための触媒を用いたオゾン分解方法に間する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an ozone decomposition method using a catalyst for decomposing and removing ozone contained in a gas or the like.

〈従来の技術〉 従来、気体中に含まれる有害成分であるオゾンを除去す
る方法として、活性炭、ゼオライト等の多孔質物質を用
いる吸着法、MnO□などの触媒を用いる酸化分解法等
が提案されている。
<Prior art> Conventionally, as methods for removing ozone, which is a harmful component contained in gases, adsorption methods using porous materials such as activated carbon and zeolite, and oxidative decomposition methods using catalysts such as MnO□ have been proposed. ing.

〈発明が解決しようとする課題〉 しかしながら、上記従来のオゾンの除去方法はいずれも
、充分に満足のいく方法であるとは言い難い。
<Problems to be Solved by the Invention> However, none of the above conventional ozone removal methods can be said to be fully satisfactory.

すなわち、吸着法には、吸着剤が吸着能力を発揮する期
間が有限であるため、再生等することを要し、除去装置
のメンテナンスに多大の労力及び費用が必要となるとい
う問題がある。
That is, the adsorption method has a problem in that since the period during which the adsorbent exhibits its adsorption ability is limited, it requires regeneration, etc., and a great deal of labor and cost is required for maintenance of the removal device.

また、酸化分解法には、上記のような問題は無いものの
、オゾン分解用触媒が経時的に活性が劣化するという問
題があった。
Further, although the oxidative decomposition method does not have the above-mentioned problems, there is a problem in that the activity of the ozone decomposition catalyst deteriorates over time.

本発明は、既にこれらの改善方法として種々の発明を出
願しているが排ガス中に窒素酸化物が含有する場合、こ
れらの方法によっても、この問題を充分に解決すること
が出来ないことを見出した。
The present invention has already applied for various inventions as methods for improving these problems, but it has been found that even these methods cannot sufficiently solve this problem when nitrogen oxides are contained in the exhaust gas. Ta.

これらの問題を解決するためになされたものであって、
その目的とするところは、微量の窒素酸化物が存在する
場合においても、オゾン分解活性に低下が見られない方
法を提供することにある。
This was done to solve these problems,
The purpose is to provide a method in which ozonolysis activity does not decrease even when a trace amount of nitrogen oxides are present.

ところで、オゾン分解触媒の活性低下の原因の主な原因
について既に本発明者らが提案している。
By the way, the present inventors have already proposed the main cause of the decrease in the activity of the ozone decomposition catalyst.

それはオゾン気相バルクへの脱離が触媒種および反応温
度によって遅くなるため、触媒中に酸素が蓄積するため
反応生成系のバランスが崩れることによるものである。
This is because the desorption of ozone into the gas phase bulk is delayed depending on the catalyst species and the reaction temperature, and the balance of the reaction product system is disrupted due to the accumulation of oxygen in the catalyst.

しかし活性低下はこれによるばかりでなく、ガス中の共
存成分の影響を大きく受けることが明らかになった。と
りわけ窒素酸化物が共存する場合、窒素酸化物の濃度が
微量の場合においてもそれがオゾン分解触媒に吸着され
、場合によっては亜硝酸塩もしくは硝酸塩を生成するた
め活性点阻害もしくは活性点破壊が生ずるため活性が経
時適に変化することが明らかになった。
However, it has become clear that the decrease in activity is not only due to this, but is also greatly influenced by coexisting components in the gas. In particular, when nitrogen oxides coexist, even if the concentration of nitrogen oxides is minute, it will be adsorbed by the ozone decomposition catalyst, and in some cases, it will generate nitrites or nitrates, resulting in active site inhibition or active site destruction. It became clear that the activity changed over time.

本発明者は、かかる知見に基づきなされたものであって
その目的は、窒素酸化物の共存下においてオゾン分解性
能が低下しない方法を提供することにある。
The present inventor was made based on such knowledge, and the purpose thereof is to provide a method in which ozone decomposition performance does not deteriorate in the coexistence of nitrogen oxides.

これらの吸着剤あるいはNOx分解触媒はオゾン分解触
媒と同様にして種々の形状にして用いることができる。
These adsorbents or NOx decomposition catalysts can be used in various shapes in the same way as the ozone decomposition catalysts.

例えばハニカム状、ペレット状、フオーム状等である。For example, they are honeycomb-shaped, pellet-shaped, foam-shaped, etc.

またこの吸着剤あるいはNOx分解触媒は、含浸法、混
練法、共沈法、沈殿法、酸化物混合法等の既知の製法を
適宜選択して製造することができる。触媒の製造におい
ては、触媒に賦形性を与えるために成形助剤を添加した
り、機械強度等を向上させるkめに無機繊維等の補強剤
、有機バインダー等を適宜添加したりしてもよい。
The adsorbent or NOx decomposition catalyst can be manufactured by appropriately selecting a known manufacturing method such as an impregnation method, a kneading method, a coprecipitation method, a precipitation method, or an oxide mixing method. In the production of catalysts, shaping aids may be added to give the catalyst shapeability, and reinforcing agents such as inorganic fibers, organic binders, etc. may be added as appropriate to improve mechanical strength etc. good.

さらに吸着剤と反応ガスとの接触はガス中の窒素酸化物
濃度に依存するが、通常オゾンを含有する排ガス中に含
まれる窒素酸化物は1 ppm以下であるので、この吸
着操作は5V=100〜100000Hr ’で行うこ
とができる。
Furthermore, the contact between the adsorbent and the reaction gas depends on the concentration of nitrogen oxides in the gas, but since the nitrogen oxides normally contained in the ozone-containing exhaust gas are 1 ppm or less, this adsorption operation is performed at 5V=100 It can be carried out for ~100,000 Hr'.

また、NOx分解触媒についてはNiMetal、Fe
  Metal  Cu−ZSM−5などを用いること
ができる。これらの触媒は、吸着剤の様に取り替えを要
しないが、通常オゾン濃度が極めて低いので、吸着剤も
長期間取り替える必要がないのでいづれも本方法におい
て有効である。
In addition, for NOx decomposition catalysts, NiMetal, Fe
Metal Cu-ZSM-5 or the like can be used. These catalysts do not need to be replaced like adsorbents, but since the ozone concentration is usually extremely low, the adsorbents do not need to be replaced for a long period of time either, so they are all effective in this method.

また本方法において極めて有効な触媒系は、窒素酸化物
との吸着性反応性が高くしかも前述した生成酸素の脱離
困難による劣化が殆どみられないMnO2−Ag2O,
Mn02−Ag20−TiO2、Mn02−Ag20−
Ti02−5in、。
In addition, the catalyst system that is extremely effective in this method is MnO2-Ag2O, which has high adsorptive reactivity with nitrogen oxides and shows almost no deterioration due to the difficulty in desorbing the generated oxygen mentioned above.
Mn02-Ag20-TiO2, Mn02-Ag20-
Ti02-5in.

MnO2−Ag20−Ti02−ZrO2,Ag20−
TiO2など銀糸触媒である。
MnO2-Ag20-Ti02-ZrO2,Ag20-
Silver thread catalyst such as TiO2.

〈問題を解決するための手段〉 本発明で使用される触媒としては、従来よりオゾンの分
解能力を有するものとして公知である触媒例えばM n
 O2、Cu O+ F e 203 、 A g 2
0、Nip、Co3O4,Pt、Pd等の1種または2
種以上を組合せたもの、さらに本発明者がすでに出願し
いてるMn02−TiO2,MnO2−Ag20−Ti
O2,Mn02−WO2−Ti02.Mn02−Mo0
3−Ti02ねもnら2−アルカリ金属及び/またはア
ルカリ土類金属酸化物、酸化物生成エンタルピーが10
0Kcal/gff!素原子以下の金属を担持したゼオ
ライト触媒をあげることができる。しかし本発明方法は
これらに限定されるものではない。
<Means for Solving the Problem> As the catalyst used in the present invention, catalysts conventionally known as having ozone decomposition ability, such as M n
O2, Cu O+ F e 203 , A g 2
One or two of 0, Nip, Co3O4, Pt, Pd, etc.
Combinations of more than one species, as well as Mn02-TiO2 and MnO2-Ag20-Ti, which the present inventor has already applied for.
O2, Mn02-WO2-Ti02. Mn02-Mo0
3-Ti02 Nemo n et al. 2-Alkali metal and/or alkaline earth metal oxide, oxide formation enthalpy is 10
0Kcal/gff! Examples include zeolite catalysts that support subatomic metals. However, the method of the present invention is not limited thereto.

本発明に係る触媒の形状は特に限定されず、例えばハニ
カム状、ベレット状、円柱状、板状、フオーム状、パイ
プ状等種々の形状のものを用いることができる。
The shape of the catalyst according to the present invention is not particularly limited, and various shapes such as a honeycomb shape, a pellet shape, a columnar shape, a plate shape, a foam shape, and a pipe shape can be used.

本発明に用いるNOx除去フィルターは、使用条件温度
においてNOxを吸着する吸着剤もしくはN0xli:
N2と02に分解するあるいは金属酸化物との反応性が
NO2に対して劣るNoに転換するものであればよい。
The NOx removal filter used in the present invention is an adsorbent or NOxli which adsorbs NOx at the operating temperature.
Any material may be used as long as it decomposes into N2 and O2 or converts into No, which has inferior reactivity with metal oxides compared to NO2.

NOx吸着剤としては、以下の様なものを例示すること
ができる。MgO,Cub、SrO,BaOの様なアル
カリ土類金属酸化物、Mg(OH)2t Ca (OH
)2などの様なアルカリ土類水酸化物N a−X * 
N a−Y + N a−モルデナイト。
Examples of NOx adsorbents include the following. Alkaline earth metal oxides such as MgO, Cub, SrO, BaO, Mg(OH)2tCa(OH
)2, etc. Alkaline earth hydroxides N a-X *
Na-Y + Na-mordenite.

Na−ZSM−6などの様なアルカリ金属−ゼオライド
、Y1+ Ba2. Cu3* 07−!/+ LaS
r  CaO2などの様なペロブスカイト化合物などで
ある。
Alkali metal-zeolides such as Na-ZSM-6, Y1+ Ba2. Cu3*07-! /+LaS
r Perovskite compounds such as CaO2, etc.

比表面積130w1″/gの協和化学性活性酸化マグネ
シウム10kgと活性白土10kgを乾式混合し、適用
の水を加えニーダにより混練は、3、3ミリピツチ、壁
厚0.6msのダイスを装着した押出機にてハニカムを
押し出し、通風乾燥後、500℃×3時間焼成しNOx
吸着剤を得た。
10 kg of Kyowa Kagaku activated magnesium oxide with a specific surface area of 130w1''/g and 10 kg of activated clay were dry mixed, the appropriate water was added, and the mixture was kneaded using a kneader. After extruding the honeycomb and drying it with ventilation, it was fired at 500°C for 3 hours to eliminate NOx.
An adsorbent was obtained.

(触媒の調製) 実施例1 比表面積48&/gのMn02704gをチタニアゾル
(Ti02含有量:150g/免)1034嘗父ζこ加
え、これζこさらにガラスピーズ250gを加えて、3
0分間撹拌混合してスラリーを得た。このスラリーを空
隙率81%、ピッチ4.0間セラミックファイバー製の
コルゲート状ハニカムに含浸させて、MnO2−TiO
2(重量比82:18)を担持率95%で担持した二元
触媒を得た。
(Preparation of catalyst) Example 1 1034 g of titania sol (Ti02 content: 150 g/min) was added to 2704 g of Mn0 with a specific surface area of 48 &/g, and 250 g of glass peas was further added to this.
A slurry was obtained by stirring and mixing for 0 minutes. This slurry was impregnated into a corrugated honeycomb made of ceramic fibers with a porosity of 81% and a pitch of 4.0.
A two-way catalyst was obtained in which 2 (weight ratio: 82:18) was supported at a loading rate of 95%.

実施例2 酢酸マンガン(四本塩)17.8g、硝酸コバメルト(
六本塩)282g及び硝酸!!1.5gの500sll
水溶液を調製した。次いで、撹拌しつつこの水溶液に炭
酸アンモニウム水溶液を加えて中和し、スラリー状の沈
殿物を生成させた。このときの最終pHは7.0であっ
た。このスラリー1034++1に二酸化マンガン(M
nO*)250g及び酸化銀(Ag20)103gを加
え、さらにガラスピーズ250gを加えて撹拌混合し、
スラリー状の沈殿物を生成させた。このスラリーを実施
例1で用いたものと同仕様のコルゲート状ハニカムに含
浸させ、MnO,−Ag20−Ti02(重量比50:
20:30)を担持率101%で担持した三元触媒を得
た。
Example 2 Manganese acetate (four salt) 17.8g, nitrate cobamelt (
Ropponshio) 282g and nitric acid! ! 1.5g of 500sll
An aqueous solution was prepared. Next, an ammonium carbonate aqueous solution was added to this aqueous solution while stirring to neutralize it, thereby producing a slurry-like precipitate. The final pH at this time was 7.0. Manganese dioxide (M
Add 250 g of nO*) and 103 g of silver oxide (Ag20), and further add 250 g of glass peas and mix with stirring.
A slurry-like precipitate was formed. This slurry was impregnated into a corrugated honeycomb having the same specifications as that used in Example 1. MnO, -Ag20-Ti02 (weight ratio 50:
A three-way catalyst was obtained in which 20:30) was supported at a loading rate of 101%.

旦、触媒活性試験 上記実施例1〜2で得た各触媒について、第1図にその
フローシートを示すような試験装置を用いて、下記反応
条件で触媒活性試験を行った0図において、(1)はオ
ゾン発生器であり、該オゾンを発生させ、窒素酸化物は
No−N 2ガスをNOxが所定濃度となる様にオゾン
発生器後流に加えた。このオゾンお及び窒素酸化物を含
有エアーをNOx吸着層もしくは分解層(2)、触媒層
(3)に導く、オゾン分解率(%)は、オゾン分析計(
4)にて測定される触媒N(2)の入口及び出口におけ
るオゾン濃度値より次式を用いて算出される。
First, catalytic activity test For each of the catalysts obtained in Examples 1 and 2 above, a catalytic activity test was conducted under the following reaction conditions using the test apparatus whose flow sheet is shown in FIG. 1) is an ozone generator that generates ozone, and nitrogen oxides include No-N 2 gas added to the downstream stream of the ozone generator so that NOx reaches a predetermined concentration. This air containing ozone and nitrogen oxides is guided to the NOx adsorption layer or decomposition layer (2) and the catalyst layer (3), and the ozone decomposition rate (%) is measured using an ozone analyzer (
It is calculated using the following formula from the ozone concentration values at the inlet and outlet of catalyst N(2) measured in step 4).

オゾン分解率(%)= SV:100,000Hr’ 入口オゾン濃度:1OppHl 入口NOx濃度:1pp+w 反応温度:20℃ この条件下において、NOx吸着剤を用いた場合と用い
ない場合の初期、1時間経過後、10時間経過後、10
0時間経過後の各オゾン分解率を測定し、各触媒の劣化
を調べた。またこの時NOx吸収剤後のNOx濃度は試
験中20〜50PPbの範囲にあった。
Ozone decomposition rate (%) = SV: 100,000Hr' Inlet ozone concentration: 1 OppHl Inlet NOx concentration: 1pp+w Reaction temperature: 20°C Under these conditions, initial and 1 hour elapsed with and without NOx adsorbent After 10 hours, 10
The ozone decomposition rate of each catalyst after 0 hours was measured and the deterioration of each catalyst was investigated. Further, at this time, the NOx concentration after the NOx absorbent was in the range of 20 to 50 PPb during the test.

第1図 1 手 続 補 正 書 (方式) %式% 発明の名称 オゾン分解方法 3゜ 補正をする者 事件との関係Figure 1 1 hand Continued Supplementary Positive book (method) %formula% name of invention Ozone decomposition method 3゜ person who makes corrections Relationship with the incident

Claims (1)

【特許請求の範囲】[Claims] オゾン及び窒素酸化物を含有する排ガス中のオゾンを分
解する方法において、オゾン分解触媒の前段にNOx除
去フィルターを設置することを特徴とするオゾン分解方
法。
An ozone decomposition method for decomposing ozone in exhaust gas containing ozone and nitrogen oxides, the method comprising installing a NOx removal filter upstream of an ozone decomposition catalyst.
JP1326442A 1989-12-15 1989-12-15 Ozone decomposition method Expired - Fee Related JPH0829221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326442A JPH0829221B2 (en) 1989-12-15 1989-12-15 Ozone decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326442A JPH0829221B2 (en) 1989-12-15 1989-12-15 Ozone decomposition method

Publications (2)

Publication Number Publication Date
JPH03186319A true JPH03186319A (en) 1991-08-14
JPH0829221B2 JPH0829221B2 (en) 1996-03-27

Family

ID=18187850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326442A Expired - Fee Related JPH0829221B2 (en) 1989-12-15 1989-12-15 Ozone decomposition method

Country Status (1)

Country Link
JP (1) JPH0829221B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467526A2 (en) * 1990-07-16 1992-01-22 Sakai Chemical Industry Co., Ltd., Method for ozone decomposition
EP0707178A3 (en) * 1994-10-13 1997-05-02 Alexander Dr Med Balkanyi Process and device for air treatment
JP2008163872A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109806882A (en) * 2019-03-18 2019-05-28 山东大业联合新能源设备有限公司 A kind of SCO denitration new energy composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124872A (en) * 1974-03-20 1975-10-01
JPS5233890A (en) * 1975-09-11 1977-03-15 Shinkichi Akimoto Method of producing nox removing agent and apparatus for removing nox by dry process
JPS5256088A (en) * 1975-11-01 1977-05-09 Kogyo Kaihatsu Kenkyusho Kk Removal of nitrogen oxides
JPS5361560A (en) * 1976-11-16 1978-06-02 Matsushita Electric Ind Co Ltd Air cleaning apparatus
JPH0252021A (en) * 1988-05-20 1990-02-21 Brother Seimitsu Kogyo Kk Gas treatment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124872A (en) * 1974-03-20 1975-10-01
JPS5233890A (en) * 1975-09-11 1977-03-15 Shinkichi Akimoto Method of producing nox removing agent and apparatus for removing nox by dry process
JPS5256088A (en) * 1975-11-01 1977-05-09 Kogyo Kaihatsu Kenkyusho Kk Removal of nitrogen oxides
JPS5361560A (en) * 1976-11-16 1978-06-02 Matsushita Electric Ind Co Ltd Air cleaning apparatus
JPH0252021A (en) * 1988-05-20 1990-02-21 Brother Seimitsu Kogyo Kk Gas treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467526A2 (en) * 1990-07-16 1992-01-22 Sakai Chemical Industry Co., Ltd., Method for ozone decomposition
EP0707178A3 (en) * 1994-10-13 1997-05-02 Alexander Dr Med Balkanyi Process and device for air treatment
JP2008163872A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0829221B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
KR20080077163A (en) Exhaust gas purifying device
JPH0474514A (en) Ozone decomposing method
JPH08229404A (en) Exhaust gas purifying catalyst and apparatus
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
JPH03193117A (en) Ozone decomposition
JPH03186319A (en) Ozone decomposition method
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3031823B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP2002102700A (en) Normal temperature catalyst
JP2003225568A (en) Catalyst for purifying volatile organic compound and production method therefor
JPH03193118A (en) Ozone decomposition
JP3546766B2 (en) Deodorizing catalyst
JPH0824579A (en) Treatment of low concentration nox containing gas
JP2002295241A (en) Purification method of marine structure exhaust gas and purifying device
WO2007091669A1 (en) Catalyst for oxidizing mercury metal, exhaust gas purifying catalyst comprising catalyst for oxidizing mercury metal, and method for producing same
JPH10128105A (en) Nitrogen oxide adsorbent and removal of nitrogen oxide
JPH04222631A (en) Ozone decomposing catalyst
JPH0471644A (en) Catalyst for decomposing ozone
JP2896912B2 (en) Catalyst regeneration method
JPH03213145A (en) Ozone decomposing catalyst
JPH0564654A (en) Deodorizing method
JPH0699028A (en) Filter for purifying gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees