JPH0564654A - Deodorizing method - Google Patents

Deodorizing method

Info

Publication number
JPH0564654A
JPH0564654A JP3087162A JP8716291A JPH0564654A JP H0564654 A JPH0564654 A JP H0564654A JP 3087162 A JP3087162 A JP 3087162A JP 8716291 A JP8716291 A JP 8716291A JP H0564654 A JPH0564654 A JP H0564654A
Authority
JP
Japan
Prior art keywords
activated carbon
catalyst
component
mno
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3087162A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
雅文 吉本
Tadao Nakatsuji
忠夫 仲辻
Kimihiko Yoshida
公彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP3087162A priority Critical patent/JPH0564654A/en
Publication of JPH0564654A publication Critical patent/JPH0564654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To provide a deodorizing method which decomposes an odorous component in an exhaust gas on a catalyst using ozone. CONSTITUTION:Catalyst herein used is composed of one or more of oxides of Mn, Fe, Co, Ni, Cu and Ag as first component, oxide, hydroxide or carbonate of alkali or alkaline earth metal as second component and activated charcoal as third component. The catalyst is used to decompose an odorous component by ozone. This enables efficient deodorizing of the odorous component in an exhaust gas thereby achieving excellent effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、気体等の中に含まれ
る、臭気を発生する成分(以下、「有臭成分」という)
を除去するための脱臭方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an odor generating component contained in a gas or the like (hereinafter referred to as "odorous component").
The present invention relates to a deodorizing method for removing.

【従来の技術】従来、気体中に含まれる有臭成分を除去
する方法として、活性炭、ゼオライト等の多孔質物質を
用いる吸着脱臭法、酸化剤又は還元剤を用いる湿式処理
脱臭法、オゾン分解脱臭法等の種々の脱臭方法が提案さ
れている。
2. Description of the Related Art Conventionally, as a method for removing odorous components contained in a gas, an adsorption deodorization method using a porous substance such as activated carbon or zeolite, a wet treatment deodorization method using an oxidizing agent or a reducing agent, ozone decomposition deodorization Various deodorizing methods such as a method have been proposed.

【発明が解決しようとする課題】しかしながら、上記従
来の各脱臭方法(以下、「従来方法」という)はいずれ
も、充分に満足のいく脱臭方法であるとは言い難い。す
なわち、吸着脱臭法には、吸着剤が吸着能力を発揮する
期間が有限であるため、再生等することを要し、脱臭装
置のメンテナンスに多大の労力及び費用が必要となると
いう問題がある。また、湿式処理脱臭法には、酸化剤等
の薬液の処理が煩雑であるという問題がある。最後のオ
ゾン分解脱臭法には、上記のような問題は無いものの、
有臭成分の酸化分解による除去が充分でないこと及び呼
吸器障害等の公害を防止する上で、脱臭処理後の気体中
に含まれるオゾンを分解する必要があること等の問題が
あった。本発明は、従来のオゾン分解脱臭法が有してい
たこれらの問題を解決するためで、従来方法に比べて有
臭成分の分解除去能力に優れると共に、脱臭処理後に未
反応のオゾンが殆ど残留しないオゾン分解脱臭触媒を既
に種々提案している。しかしながらこれらの触媒を用い
てもガス中に微量の窒素酸化物や低級脂肪酸などの酸性
物質が含まれる時、これが触媒中に蓄積もしくは触媒成
分と反応し、触媒が劣化するあるいは蓄積した臭気物質
が処理ガス中に含まれるなどという問題点を本発明者ら
が見出した。本発明は、これらの問題点を解決するため
になされたものである。
However, it is hard to say that any of the above conventional deodorizing methods (hereinafter referred to as "conventional methods") are sufficiently satisfactory deodorizing methods. That is, the adsorption deodorization method has a problem that since the adsorbent exhibits a limited adsorption capacity for a limited period of time, the adsorbent needs to be regenerated, and a great deal of labor and cost is required for maintenance of the deodorization device. Further, the wet treatment deodorization method has a problem that treatment of a chemical solution such as an oxidizing agent is complicated. Although the last ozone decomposition deodorization method does not have the above problems,
There have been problems such as insufficient removal of odorous components by oxidative decomposition and the need to decompose ozone contained in the gas after the deodorizing treatment in order to prevent pollution such as respiratory disorders. The present invention is to solve these problems that the conventional ozone decomposition deodorization method has, and is superior in the ability to decompose and remove odorous components as compared with the conventional method, and almost all unreacted ozone remains after the deodorization treatment. Various ozone decomposing deodorizing catalysts have already been proposed. However, even if these catalysts are used, when a small amount of acidic substances such as nitrogen oxides and lower fatty acids are contained in the gas, these are accumulated in the catalyst or react with the catalyst components to deteriorate the catalyst or generate odorous substances. The present inventors have found the problem that they are contained in the processing gas. The present invention has been made to solve these problems.

【問題を解決するための手段】上記目的を達成するため
の本発明に係る脱臭方法(以下、「本発明方法」)は、
触媒が第1成分としてMn,Fe,Co,Ni,Cu,
Agの酸化物から選ばれる少なくとも1種以上、第2成
分としてアルカリもしくはアルカリ土類金属の酸化物、
水酸化物もしくは炭酸塩、第3成分として活性炭から構
成されるものを用いることを特徴としている。またこれ
らの触媒の構成において第1成分と第2成分の重量比が
100:0.1〜50が好ましく、より好ましくは10
0:0.5〜25であり、第1成分と第2成分の合計と
第3成分との重量比が5〜100:100より好ましく
は20〜50:100である。これらの範囲において好
ましい結果が得られる理由については定かではない。こ
うした触媒としては、第1成分のそれぞれの酸化物と、
第2成分のそれぞれの酸化物、水酸化物あるいは炭酸化
物との組合わせからなる二元触媒と第3成分の活性炭を
主成分とするもの例えば、MnO−CaO−活性炭,
MnO−Ca(OH)−活性炭,MnO−CaC
−活性炭,NiO−MgO−活性炭,NiO−Mg
(OH)−活性炭,NiO−MgCO−活性炭,N
−SrO−活性炭,NiO−Sr(OH)
−活性炭,Ni−SrCO−活性炭,Co
−BaO−活性炭,Co−Li(OH)−活
性炭,Co−LiCO−活性炭など及び第1成
分のそれぞれの酸化物の2種あるいはそれ以上と、第2
成分のそれぞれの酸化物、水酸化物あるいは炭酸化物の
1種あるいはそれ以上と第3成分である活性炭との組合
わせからなる多元触媒を主成分とするもの、例えばMn
−AgO−CaCO−活性炭,MnO−Ag
O−Ca(OH)−活性炭,MnO−NiO−K
O−活性炭,MnO−NiO−KOH−活性炭,M
nO−NiO−KCO−活性炭,MnO−Co
−BaO−活性炭,MnO−Co−Ba
(OH)−活性炭,MnO−Co−BaCO
−活性炭,Ni−AgO−NaO−活性
炭,Ni−AgO−NaOH−活性炭,Ni
−AgO−NaCO−活性炭などを例示する
ことが出来る。これらのうち、好ましい触媒とては、M
nO−LiCO−活性炭,MnO−CaCO
−活性炭,AgO−CaCO−活性炭,MnO
SrCO−活性炭,MnO−BaCO−活性炭,
Ni−CaCO−活性炭,MnO−Ag
−CaCO−活性炭,Ni−AgO−CaC
−活性炭などが挙げられる。これらの触媒成分は、
公知の担体であるアルミナ、チタニア、シリカ−チタニ
ア、シリカ、ジルコニア、ゼオライトなどに担持しても
よい。とりわけ耐酸性に優れたチタニア、シリカ−チタ
ニア、シリカ、ジルコニア、ゼオライト担体に担持する
ことによって窒素酸化物や低級脂肪酸などの酸性物質に
よる劣化を防止するとともに、触媒への臭気物質の蓄積
を防止し、大幅にその脱臭効果を維持することが可能と
なった。また触媒成分の担持率は通常0.1〜50wt
%である。0.1wt%以下では充分な脱臭効果が得ら
れず、50wt%以上では細孔閉塞などによってオゾン
分解能力が低下するからである。又、上記発明方法によ
り除去せんとする有臭成分としては、アンモニア、トリ
メチルアミン、硫化水素、メチルメルカプタン、硫化メ
チル、二硫化メチル、アセトアルデヒド、スチレン、メ
チルエチルケトン、アクロレイン、プロピオンアルデヒ
ド、ブチルアルコール、フェノール、クレゾール、ジフ
ェニルエーテル、酢酸、プロピオン酸、吉草酸、メチル
アミン、ジメチルアミン、スカトール、ジメチルチオエ
ーテル、ジメチルメルカプタン、塩化水素、塩化アルカ
リが例示される。また、本発明方法が実施される分野と
しては、例えば、人間もしくは動物の生活空間、し尿処
理場、下水処理場、ゴミ焼却処理場、印刷工場、メッキ
工場、一般化学工場等から排出される排気ガスの脱臭処
理が挙げられる。本発明方法において用いられる触媒の
形状は特に限定されず、例えばハニカム状、ペレット
状、円柱状、板状、パイプ状等、種々の形状のものを用
いることが出来る。触媒中の活性成分含有率(担体成分
を含む)は、50%以上が好ましく、75%以上がより
好ましい。触媒は、含浸法、混練法、共沈法、沈殿法、
酸化物混合法等の既知の製法を適宜選択して製造するこ
とが出来る。触媒の製造においては、触媒に賦形性を与
えるために成形助剤を添加したり、機械強度等を向上さ
せるために無機繊維等の補強剤、有機バインダー等を適
宜添加したりしてもよい。脱臭の際に上記触媒と共存さ
せるオゾン(O)は、除去せんとする有臭成分の種類
及び濃度、その他反応温度、触媒の種類及び量等によっ
て適宜量用いられる。例えば、有臭成分としてHSを
含有する被脱臭気体の場合は、HS1モルあたりO
1〜2モルを共存させることが好ましく、NHを含有
する被脱臭気体の場合は、NH1モルあたりO1〜
3モルを共存させることが好ましい。また、メチルメル
カプタンを含有する被脱臭気体の場合は、メチルメルカ
プタン1モルあたりO1〜4モルを共存させることが
好ましい。被脱臭気体中に含まれる有臭成分の濃度が高
い場合、除去率を向上させるためにOを上記好適量を
超えて共存させても良い。但し、多すぎる場合には、脱
臭処理後に余剰のOが残留する場合があるのでこの様
なことが無いように過剰のOを共存させないように配
慮する必要がある。脱臭の際の反応温度は、0〜40℃
が好ましく、10〜30℃がより好ましい。0℃未満の
場合、反応速度が遅くなるからであり、40℃を超える
場合、新たに昇温のためのエネルギーを必要とし不経済
である。しかしガス温度が40℃以上の場合、本発明方
法がこれらのガスを処理することができるのは当然であ
る。また、触媒と反応ガスとの接触は、5〜50の面積
速度(AV:area velocity)で行うこと
が好ましい。これは、面積速度が5未満であると触媒が
多く必要になるからであり、面積速度が50を超えると
効率が低く所定の分解率が得られないからである。ここ
で、面積速度とは、反応量(Nm/u、u:Hr)を
単位容積の触媒あたりのガス接触面積(m/m)で
除した値である。
The deodorizing method according to the present invention (hereinafter, referred to as "the method of the present invention") for achieving the above object is as follows:
The first component of the catalyst is Mn, Fe, Co, Ni, Cu,
At least one selected from oxides of Ag, an oxide of an alkali or alkaline earth metal as the second component,
It is characterized by using a hydroxide or a carbonate, and a third component composed of activated carbon. In the constitution of these catalysts, the weight ratio of the first component and the second component is preferably 100: 0.1-50, more preferably 10: 0.1-50.
0: 0.5 to 25, and the total weight ratio of the first component and the second component to the third component is 5 to 100: 100, preferably 20 to 50: 100. The reason why favorable results are obtained in these ranges is not clear. As such a catalyst, each oxide of the first component,
A binary catalyst composed of a combination of respective oxides, hydroxides or carbonates of the second component and an active carbon of the third component as a main component, for example, MnO 2 -CaO-activated carbon,
MnO 2 -Ca (OH) 2 - activated carbon, MnO 2 -CaC
O 3 - activated carbon, NiO-MgO- activated carbon, NiO-Mg
(OH) 2 - activated carbon, NiO-MgCO 3 - activated carbon, N
i 2 O 3 -SrO- activated carbon, Ni 2 O-Sr (OH ) 2
- activated carbon, Ni 2 O 3 -SrCO 3 - activated carbon, Co 2 O
3 -BaO- activated carbon, Co 2 O 3 -Li (OH ) 2 - activated carbon, Co 2 O 3 -LiCO 3 - and two or more of the respective oxides of the activated carbon and the like, and the first component, the second
Those containing as a main component a multi-way catalyst consisting of a combination of one or more of respective oxides, hydroxides or carbonates of the components and activated carbon as the third component, for example Mn.
O 2 -Ag 2 O-CaCO 3 - activated carbon, MnO 2 -Ag
2 O-Ca (OH) 2 - activated carbon, MnO 2 -NiO-K
2 O-activated carbon, MnO 2 -NiO-KOH-activated carbon, M
nO 2 -NiO-K 2 CO 3 - active carbon, MnO 2 -Co
2 O 3 -BaO- activated carbon, MnO 2 -Co 2 O 3 -Ba
(OH) 2 - activated carbon, MnO 2 -Co 2 O 3 -BaCO
3 - activated carbon, Ni 2 O 3 -Ag 2 O -Na 2 O- activated carbon, Ni 2 O 3 -Ag 2 O -NaOH- activated carbon, Ni 2
O 3 -Ag 2 O-Na 2 CO 3 - activated carbon or the like can be exemplified. Among these, preferred catalysts are M
nO 2 -Li 2 CO 3 - active carbon, MnO 2 CaCO 3
- activated carbon, Ag 2 O-CaCO 3 - active carbon, MnO 2 -
SrCO 3 - activated carbon, MnO 2 -BaCO 3 - activated carbon,
Ni 2 O 3 -CaCO 3 - activated carbon, MnO 2 -Ag 2 O
-CaCO 3 - activated carbon, Ni 2 O 3 -Ag 2 O -CaC
O 3 -activated carbon and the like can be mentioned. These catalyst components are
It may be supported on known carriers such as alumina, titania, silica-titania, silica, zirconia, and zeolite. In particular, by supporting it on titania, silica-titania, silica, zirconia, or zeolite carrier, which has excellent acid resistance, to prevent deterioration due to acidic substances such as nitrogen oxides and lower fatty acids, and to prevent the accumulation of odorous substances on the catalyst. , It became possible to maintain its deodorizing effect significantly. The loading rate of the catalyst component is usually 0.1 to 50 wt.
%. This is because if it is 0.1 wt% or less, a sufficient deodorizing effect cannot be obtained, and if it is 50 wt% or more, the ozone decomposing ability is lowered due to pore clogging or the like. The odorous components to be removed by the method of the invention are ammonia, trimethylamine, hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide, acetaldehyde, styrene, methyl ethyl ketone, acrolein, propionaldehyde, butyl alcohol, phenol, cresol. , Diphenyl ether, acetic acid, propionic acid, valeric acid, methylamine, dimethylamine, skatole, dimethylthioether, dimethylmercaptan, hydrogen chloride, and alkali chloride. Further, as a field in which the method of the present invention is carried out, for example, exhaust gas discharged from living spaces of humans or animals, human waste treatment plants, sewage treatment plants, waste incineration plants, printing plants, plating plants, general chemical plants, etc. A gas deodorizing process may be mentioned. The shape of the catalyst used in the method of the present invention is not particularly limited, and various shapes such as honeycomb shape, pellet shape, columnar shape, plate shape, pipe shape and the like can be used. The active ingredient content (including the carrier component) in the catalyst is preferably 50% or more, more preferably 75% or more. The catalyst is an impregnation method, a kneading method, a coprecipitation method, a precipitation method,
It can be manufactured by appropriately selecting a known manufacturing method such as an oxide mixing method. In the production of the catalyst, a molding aid may be added to impart shapeability to the catalyst, or a reinforcing agent such as an inorganic fiber, an organic binder or the like may be appropriately added to improve mechanical strength and the like. .. Ozone (O 3 ) coexisting with the catalyst during deodorization is used in an appropriate amount depending on the type and concentration of the odorous component to be removed, the reaction temperature, the type and amount of the catalyst, and the like. For example, in the case of a deodorized gas containing H 2 S as an odorous component, O 3 per mol of H 2 S
It is preferable to coexist with 1 to 2 mol, and in the case of a deodorized gas containing NH 3 , O 3 1 to 1 mol of NH 3
It is preferable to coexist 3 mol. Further, in the case of a deodorized gas containing methyl mercaptan, it is preferable to coexist 1 to 4 mol of O 3 per 1 mol of methyl mercaptan. When the concentration of the odorous component contained in the deodorized gas is high, O 3 may be allowed to coexist in an amount exceeding the above-mentioned preferable amount in order to improve the removal rate. However, if the amount is too large, excess O 3 may remain after the deodorization process, so it is necessary to take care not to allow excess O 3 to coexist in order to prevent such a situation. The reaction temperature for deodorization is 0 to 40 ° C.
Is preferable, and 10-30 degreeC is more preferable. This is because if the temperature is lower than 0 ° C, the reaction rate becomes slow, and if the temperature exceeds 40 ° C, new energy is required for raising the temperature, which is uneconomical. However, it goes without saying that the method of the present invention can process these gases when the gas temperature is 40 ° C. or higher. Further, the contact between the catalyst and the reaction gas is preferably performed at an area velocity (AV: area velocity) of 5 to 50. This is because if the area velocity is less than 5, a large amount of catalyst is required, and if the area velocity exceeds 50, the efficiency is low and a predetermined decomposition rate cannot be obtained. Here, the area velocity is a value obtained by dividing the reaction amount (Nm 3 / u, u: Hr) by the gas contact area (m 2 / m 3 ) per unit volume of the catalyst.

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。但し、本発明は下記の実施例に限定されるもので
はない。A・触媒の調製 実施例1 比表面積127m/gのNiO70gとCaO20g
と武田薬品製白鷺A活性炭180gに水とさらにガラス
ビーズを加えて、30分間撹拌混合してスラリーとし
た。このスラリ−を空隙率81%、ピッチ4.0mmの
セラミックスファイバ製のコルゲート状ハニカムに含浸
させて、NiO−CaO−活性炭(重量比70:20:
180)を担持率72%で担持した三元触媒を得た。 実施例2 実施例1において、CaO20gにかえてCa(OH)
20gとする以外は、実施例1と同様にしてNiO−
Ca(OH)−活性炭(重量比70:20:180)
を担持率64%で担持した三元触媒を得た。 実施例3 実施例1において、CaO20gにかえてCaCO
0gとする以外は、実施例1と同様にしてNiO−Ca
CO−活性炭(重量比70:20:180)を担持率
67%で担持した三元触媒を得た。 実施例4 実施例1において、CaO20gにかえてNaCO
10gとする以外は、実施例1と同様にしてNiO−N
CO−活性炭(重量比70:10:180)を担
持率55%で担持した三元触媒を得た。 実施例5 実施例1において、CaO20gにかえてKCO
0gとする以外は、実施例1と同様にしてNiO−K
CO−活性炭(重量比70:10:180)を担持率
63%で担持した三元触媒を得た。 実施例6 実施例1において、CaO20gにかえてMgCO
0gとする以外は、実施例1と同様にしてNiO−Mg
CO−活性炭(重量比70:20:180)を担持率
69%で担持した三元触媒を得た。 実施例7 実施例1において、CaO20gにかえてSrCO
0gとする以外は、実施例1と同様にしてNiO−Sr
CO−活性炭(重量比70:20:180)を担持率
72%で担持した三元触媒を得た。 実施例8 実施例1において、CaO20gにかえてBaCO
0gとする以外は、実施例1と同様にしてNiO−Ba
CO−活性炭(重量比70:20:180)を担持率
69%で担持した三元触媒を得た。 実施例9 実施例3において、NiO70gにかえて比表面積48
/gのMnO70gとする以外は、実施例3と同
様にしてMnO−CaCO−活性炭(重量比70:
20:180)を担持率71%で担持した三元触媒を得
た。 実施例10 実施例3において、NiO70gにかえてCo
0gとする以外は、実施例3と同様にしてCo
CaCO−活性炭(重量比70:20:180)を担
持率68%で担持した三元触媒を得た。 実施例11 実施例3において、NiO70gにかえてMnO35
g、NiO35gとする以外は、実施例3と同様にして
MnO−NiO−CaCO−活性炭(重量比35:
35:20:180)を担持率72%で担持した四元触
媒を得た。 実施例12 実施例3において、NiO70gにかえてMnO60
g、AgO10gとする以外は、実施例3と同様にし
てMnO−AgO−CaCO−活性炭(重量比6
0:10:20:180)を担持率65%で担持した四
元触媒を得た。 実施例13 実施例9の方法においてMnO、炭酸カルシウム、活
性炭のそれぞれの重量を80g、5g、170gとする
以外は、実施例3と同様にしてMnO−CaCO
活性炭(重量比100:6.25:212.5)を担持
率78%で担持した三元触媒を得た。 実施例14 実施例9の方法においてMnO、炭酸カルシウム、活
性炭のそれぞれの重量を8g、0.5g、170gとす
る以外は、実施例3と同様にしてMnO−CaCO
−活性炭(重量比1:0.0625:21.25)を担
持率53%で担持した三元触媒を得た。 実施例15 実施例9の方法においてMnO、炭酸カルシウム、活
性炭のそれぞれの重量を80g、5g、80gとする以
外は、実施例3と同様にしてMnO−CaCO−活
性炭(重量比100:6.25:100)を担持率81
%で担持した三元触媒を得た。 比較例1 実施例1においてNiO100gとし、CaO、活性炭
を添加しないこと以外は、実施例1と同様にしてNiO
を担持率95%で担持した一元触媒を得た。 比較例2 実施例9においてMnO100gとし、CaCO
活性炭を添加しないこと以外は、実施例1と同様にして
MnOを担持率100%で担持した一元触媒を得た。 比較例3 実施例10においてCo100gとし、CaCO
、活性炭を添加しないこと以外は、実施例10と同様
にしてCoを担持率100%で担持した一元触媒
を得た。 比較例4 実施例11においてMnO50g、NiO50gと
し、CaCO、活性炭を添加しないこと以外は、実施
例11と同様にしてMnO−NiO(重量比50:5
0)を担持率99%で担持した二元触媒を得た。 比較例5 実施例12においてMnO90g、AgO10gと
し、CaCO、活性炭を添加しないこと以外は、実施
例12と同様にしてMnO−AgO(重量比90:
10)を担持率103%で担持した二元触媒を得た。 比較例6 実施例9の方法においてMnO、炭酸カルシウム、活
性炭のそれぞれの重量を80g、5g、42.5gとす
る以外は、実施例3と同様にしてMnO−CaCO
−活性炭(重量比100:6.25:53.125)を
担持率65%で担持した三元触媒を得た。 比較例7 実施例9の方法においてMnO、炭酸カルシウム、活
性炭のそれぞれの重量を80g、40g、240gとす
る以外は、実施例3と同様にしてMnO−CaCO
−活性炭(重量比10:5:30)を担持率65%で担
持した三元触媒を得た。 比較例8 実施例9の方法においてMnO、炭酸カルシウム、活
性炭のそれぞれの重量を80g、0.07g、160g
とする以外は、実施例3と同様にしてMnO−CaC
−活性炭(重量比100:0.0875:200)
を担持率61%で担持した三元触媒を得た。B.触媒活性試験 上記実施例1〜15で得た触媒について、第1図にその
フローシートを示すような試験装置を用いて下記反応条
件で触媒活性試験を行った。図に於いて、(1)は触媒
層であり、該触媒層(1)に導入された被脱臭気体中に
含まれる有臭成分は、オゾン発生器(2)から触媒層
(1)に導かれたオゾン(O)によって分解される。
分解脱臭後の気体の一部はオゾン分析計(3)に導かれ
て、そこで残留オゾン(O)の定量分析がなされる。
また、分解脱臭後の気体の残部は有臭成分分析計(4)
に導かれる。有臭成分分析計(4)は、ガスクロマトグ
ラフからなり、これらの機器にて前記各有臭成分の定量
分析がなされるようになっている。オゾン分解率(%)
及び有臭成分分解率(%)は、それぞれオゾン分析計
(3)、有臭成分分析計(4)にて測定される触媒層
(2)の入口及び出口における濃度より次式を用いて算
出される。 (反応条件) 空間速度:20000/Hr 反応温度:20℃ 入口オゾン濃度:10ppm 有臭成分 メチルカプタン,メチルアミン,アセトアルデヒド,ア
ンモニア,硫化水素:各5ppm プロピオン酸:1ppm この条件下において、初期、100時間、1000時間
経過後の各オゾン及び有臭成分分解率を測定し、触媒の
劣化を調べた。結果を表−1に示す。 上記表より明らかなように、実施例1〜15で得た触媒
は、比較例1〜8に比べて長時間にわたり、高いオゾン
及び有臭成分分解率(%)を維持している。以上の試験
結果より、本発明方法はオゾン及び有臭成分分解率
(%)を長時間にわたり、高い水準に維持することが可
能な脱臭方法であることが分かる。
EXAMPLES The present invention will be described in detail below based on examples. However, the present invention is not limited to the following examples. A. Preparation of catalyst Example 1 70 g of NiO and 20 g of CaO having a specific surface area of 127 m 2 / g
To 180 g of Shirasagi A activated carbon manufactured by Takeda Pharmaceutical Co., Ltd., water and glass beads were added, and the mixture was stirred and mixed for 30 minutes to form a slurry. This slurry was impregnated into a corrugated honeycomb made of ceramic fibers having a porosity of 81% and a pitch of 4.0 mm, and NiO-CaO-activated carbon (weight ratio 70:20:
180) with a loading rate of 72% to obtain a three-way catalyst. Example 2 In Example 1, Ca (OH) was used instead of 20 g of CaO.
Except that the 2 20 g, in the same manner as in Example 1 NiO
Ca (OH) 2 -activated carbon (weight ratio 70: 20: 180)
To give a three-way catalyst carrying 64%. Example 3 In Example 1, CaCO 3 2 was used instead of CaO 20 g.
NiO-Ca in the same manner as in Example 1 except that the amount is 0 g.
A three-way catalyst supporting CO 3 -activated carbon (weight ratio 70: 20: 180) at a supporting rate of 67% was obtained. Example 4 In Example 1, 20 g of CaO was replaced with Na 2 CO 3.
NiO—N in the same manner as in Example 1 except that the amount is 10 g.
A two- way catalyst carrying a 2 CO 3 -activated carbon (weight ratio 70: 10: 180) at a loading rate of 55% was obtained. Example 5 In Example 1, K 2 CO 3 1 was used instead of CaO 20 g.
NiO-K 2 was prepared in the same manner as in Example 1 except that the amount was 0 g.
A three-way catalyst carrying CO 3 -activated carbon (weight ratio 70: 10: 180) at a loading rate of 63% was obtained. Example 6 In Example 1, MgCO 3 2 was used instead of CaO 20 g.
NiO-Mg was prepared in the same manner as in Example 1 except that the amount was 0 g.
A three-way catalyst supporting CO 3 -activated carbon (weight ratio 70: 20: 180) at a supporting rate of 69% was obtained. Example 7 In Example 1, SrCO 3 2 was used instead of CaO 20 g.
NiO-Sr was prepared in the same manner as in Example 1 except that the amount was 0 g.
A three-way catalyst supporting CO 3 -activated carbon (weight ratio 70: 20: 180) at a supporting rate of 72% was obtained. Example 8 In Example 1, instead of CaO 20 g, BaCO 3 2
NiO-Ba was manufactured in the same manner as in Example 1 except that the amount was 0 g.
A three-way catalyst supporting CO 3 -activated carbon (weight ratio 70: 20: 180) at a supporting rate of 69% was obtained. Example 9 In Example 3, the specific surface area 48 was changed to 70 g of NiO.
MnO 2 -CaCO 3 -activated carbon (weight ratio 70: 70: m 2 / g of MnO 2 70 g) was used in the same manner as in Example 3.
20: 180) with a loading rate of 71% to obtain a three-way catalyst. Example 10 In Example 3, Co 2 O 3 7 was used instead of NiO 70 g.
Co 2 O 3 − in the same manner as in Example 3 except that the amount was 0 g.
A three-way catalyst carrying CaCO 3 -activated carbon (weight ratio 70: 20: 180) at a loading rate of 68% was obtained. Example 11 In Example 3, MnO 2 35 was used instead of NiO 70 g.
g, NiO 35 g, MnO 2 —NiO—CaCO 3 —activated carbon (weight ratio 35:
35: 20: 180) with a loading rate of 72% to obtain a four-way catalyst. Example 12 In Example 3, MnO 2 60 was used instead of NiO 70 g.
g, Ag 2 O 10 g, MnO 2 —Ag 2 O—CaCO 3 —activated carbon (weight ratio 6).
0: 10: 20: 180) was obtained at a loading rate of 65% to obtain a four-way catalyst. Example 13 MnO 2 —CaCO 3 — was prepared in the same manner as in Example 3 except that the weights of MnO 2 , calcium carbonate and activated carbon were 80 g, 5 g and 170 g, respectively.
A three-way catalyst carrying activated carbon (weight ratio 100: 6.25: 212.5) at a loading rate of 78% was obtained. Example 14 MnO 2 —CaCO 3 was performed in the same manner as in Example 3 except that the weights of MnO 2 , calcium carbonate, and activated carbon were changed to 8 g, 0.5 g, and 170 g, respectively.
-A three-way catalyst carrying activated carbon (weight ratio 1: 0.0625: 21.25) at a loading rate of 53% was obtained. Example 15 MnO 2 —CaCO 3 -activated carbon (weight ratio 100: 100) was obtained in the same manner as in Example 3 except that the weights of MnO 2 , calcium carbonate, and activated carbon were changed to 80 g, 5 g, and 80 g, respectively. 6.25: 100) carrying rate 81
% Of the supported three-way catalyst was obtained. Comparative Example 1 NiO was set in the same manner as in Example 1 except that 100 g of NiO was used and CaO and activated carbon were not added.
To obtain a one-way catalyst supporting 95% of the catalyst. Comparative Example 2 100 g of MnO 2 in Example 9, CaCO 3 ,
A one-way catalyst supporting MnO 2 at a supporting rate of 100% was obtained in the same manner as in Example 1 except that activated carbon was not added. Comparative Example 3 In Example 10, 100 g of Co 2 O 3 was used, and CaCO
3 , except that the activated carbon was not added, in the same manner as in Example 10 to obtain a one-way catalyst carrying Co 2 O 3 at a loading rate of 100%. Comparative Example 4 MnO 2 —NiO (weight ratio 50: 5 was used in the same manner as in Example 11) except that 50 g of MnO 2 and 50 g of NiO were used in Example 11, and CaCO 3 and activated carbon were not added.
A binary catalyst carrying 0) at a loading rate of 99% was obtained. Comparative Example 5 MnO 2 -Ag 2 O (weight ratio 90: 90) was used in the same manner as in Example 12 except that 90 g of MnO 2 and 10 g of Ag 2 O were used in Example 12, and CaCO 3 and activated carbon were not added.
A two-way catalyst supporting 10) at a supporting rate of 103% was obtained. Comparative Example 6 MnO 2 —CaCO 3 was performed in the same manner as in Example 3 except that the weights of MnO 2 , calcium carbonate, and activated carbon were changed to 80 g, 5 g, and 42.5 g in the method of Example 9.
-A three-way catalyst carrying activated carbon (weight ratio 100: 6.25: 53.125) at a loading rate of 65% was obtained. Comparative Example 7 MnO 2 —CaCO 3 was performed in the same manner as in Example 3 except that the weights of MnO 2 , calcium carbonate, and activated carbon were 80 g, 40 g, and 240 g, respectively, in the method of Example 9.
-A three-way catalyst carrying activated carbon (weight ratio 10: 5: 30) at a loading rate of 65% was obtained. Comparative Example 8 In the method of Example 9, the weights of MnO 2 , calcium carbonate, and activated carbon were 80 g, 0.07 g, and 160 g, respectively.
MnO 2 —CaC as in Example 3 except that
O 3 -activated carbon (weight ratio 100: 0.0875: 200)
To obtain a three-way catalyst supporting 61%. B. Catalyst activity test The catalysts obtained in the above Examples 1 to 15 were subjected to a catalyst activity test under the following reaction conditions using a test apparatus whose flow sheet is shown in FIG. In the figure, (1) is a catalyst layer, and the odorous components contained in the deodorized gas introduced into the catalyst layer (1) are conducted from the ozone generator (2) to the catalyst layer (1). It is decomposed by the burned ozone (O 3 ).
A part of the gas after the decomposition and deodorization is guided to the ozone analyzer (3), where the residual ozone (O 3 ) is quantitatively analyzed.
The remaining gas after decomposition and deodorization is the odorous component analyzer (4).
Be led to. The odorous component analyzer (4) is composed of a gas chromatograph, and the odorous components are quantitatively analyzed by these instruments. Ozone decomposition rate (%)
And the odorous component decomposition rate (%) are calculated from the concentrations at the inlet and outlet of the catalyst layer (2) measured by the ozone analyzer (3) and the odorous component analyzer (4) using the following formulas. To be done. (Reaction conditions) Space velocity: 20000 / Hr Reaction temperature: 20 ° C. Inlet ozone concentration: 10 ppm Odorous component Methylcaptan, methylamine, acetaldehyde, ammonia, hydrogen sulfide: 5 ppm each Propionic acid: 1 ppm Under these conditions, initial 100 hours After 1,000 hours, the decomposition rate of each ozone and odorous component was measured to examine the deterioration of the catalyst. The results are shown in Table-1. As is clear from the above table, the catalysts obtained in Examples 1 to 15 maintain high ozone and odorous component decomposition rates (%) over a long period of time as compared with Comparative Examples 1 to 8. From the above test results, it is understood that the method of the present invention is a deodorizing method capable of maintaining the ozone and odorous component decomposition rate (%) at a high level for a long time.

【発明の効果】本発明に係るオゾン分解脱臭法は、長時
間にわたり有臭成分を効率良く除去することができ、し
かも脱臭処理後に呼吸器系統等に有害なオゾンが殆ど残
留しない等、本発明は優れた特有の効果を奏する。
The ozone decomposing / deodorizing method according to the present invention can efficiently remove odorous components for a long period of time, and hardly leaves harmful ozone in the respiratory system after deodorizing treatment. Has an excellent and unique effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は触媒活性試験のフローシートである。 (1)……触媒層 (2)……オゾン発生器 (3)……オゾン分析計 (4)…有臭成分分析計 FIG. 1 is a flow sheet of the catalyst activity test. (1) …… Catalyst layer (2) …… Ozone generator (3) …… Ozone analyzer (4)… Odor component analyzer

Claims (1)

【特許請求の範囲】[Claims] 有臭成分をオゾンを用いて触媒上で接触酸化分解する方
法において、触媒が第1成分としてMn,Fe,Co,
Ni,Cu,Agの酸化物から選ばれる少なくとも1種
以上、第2成分としてアルカリもしくはアルカリ土類金
属の酸化物、水酸化物もしくは炭酸塩、第3成分として
活性炭から構成されるものを用いることを特徴とする脱
臭方法。
In the method of catalytically oxidatively decomposing an odorous component on a catalyst using ozone, the catalyst uses Mn, Fe, Co, and
Use of at least one selected from oxides of Ni, Cu and Ag, an oxide or hydroxide or carbonate of an alkali or alkaline earth metal as the second component, and activated carbon as the third component. Deodorizing method characterized by.
JP3087162A 1991-01-24 1991-01-24 Deodorizing method Pending JPH0564654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087162A JPH0564654A (en) 1991-01-24 1991-01-24 Deodorizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087162A JPH0564654A (en) 1991-01-24 1991-01-24 Deodorizing method

Publications (1)

Publication Number Publication Date
JPH0564654A true JPH0564654A (en) 1993-03-19

Family

ID=13907292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087162A Pending JPH0564654A (en) 1991-01-24 1991-01-24 Deodorizing method

Country Status (1)

Country Link
JP (1) JPH0564654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338910A (en) * 2000-05-26 2001-12-07 Showa Denko Kk Abatement agent for halogen type gas, abatement method and its use
JP2015134318A (en) * 2014-01-17 2015-07-27 東洋紡株式会社 Acidic gas adsorption and removal filter
JP2019534159A (en) * 2016-11-03 2019-11-28 コロンバス・インダストリーズ・インコーポレイテッドCOLUMBUS INDUSTRIES, Incorporated Surface modified carbon and adsorbents for improved efficiency in the removal of gaseous pollutants
CN111001417A (en) * 2018-02-25 2020-04-14 彭万喜 Preparation method of catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338910A (en) * 2000-05-26 2001-12-07 Showa Denko Kk Abatement agent for halogen type gas, abatement method and its use
JP2015134318A (en) * 2014-01-17 2015-07-27 東洋紡株式会社 Acidic gas adsorption and removal filter
JP2019534159A (en) * 2016-11-03 2019-11-28 コロンバス・インダストリーズ・インコーポレイテッドCOLUMBUS INDUSTRIES, Incorporated Surface modified carbon and adsorbents for improved efficiency in the removal of gaseous pollutants
CN111001417A (en) * 2018-02-25 2020-04-14 彭万喜 Preparation method of catalyst
CN111001417B (en) * 2018-02-25 2022-06-28 彭万喜 Preparation method of catalyst

Similar Documents

Publication Publication Date Title
EP0275620B1 (en) Method and catalyst for purification of gas
EP0361385B1 (en) Deodorizing method and deodorizing catalyst
JPH05317717A (en) Catalyzer and preparation of catalyzer
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
EP0467526A2 (en) Method for ozone decomposition
JPH10296087A (en) Deodorizing catalyst and its manufacture
JPH0564654A (en) Deodorizing method
JPH0549863A (en) Method for deodorization
WO1996022827A1 (en) Deodorant material, process for producing the same, and method of deodorization
JPH0290923A (en) Deodorizing method
JP3546766B2 (en) Deodorizing catalyst
JPH04231059A (en) Method for deodorizing
JPH0523590A (en) Catalyst for decomposing ozone
JPH07155611A (en) Catalyst and method for removing malodorous substance
JPH06142455A (en) Deodorizing method
JPH0615140A (en) Deodorizing method
JPH04322726A (en) Deodorizing method
JP2903731B2 (en) Deodorizing method of gas in living environment containing lower fatty acids together with odorous components
JPH04187215A (en) Deodorization method
JPH0663356A (en) Deodorizing method
JPH0618613B2 (en) Ozone deodorization method
JPH04277014A (en) Deodorizing method
JPH1033646A (en) Toilet deodorizing catalyst
JP2004024472A (en) Deodorizer and deodorizing method
KR101216398B1 (en) Deodorizing Catalyst Comprising Metal Oxide of Manganese Dioxide for the Refrigerator