JPH0615140A - Deodorizing method - Google Patents

Deodorizing method

Info

Publication number
JPH0615140A
JPH0615140A JP4214462A JP21446292A JPH0615140A JP H0615140 A JPH0615140 A JP H0615140A JP 4214462 A JP4214462 A JP 4214462A JP 21446292 A JP21446292 A JP 21446292A JP H0615140 A JPH0615140 A JP H0615140A
Authority
JP
Japan
Prior art keywords
catalyst
ozone
component
mno
odorous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4214462A
Other languages
Japanese (ja)
Inventor
Tadao Nakatsuji
忠夫 仲辻
Kimihiko Yoshida
公彦 吉田
Masafumi Yoshimoto
雅文 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP4214462A priority Critical patent/JPH0615140A/en
Publication of JPH0615140A publication Critical patent/JPH0615140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a deodorizing method by which an odorous component in exhaust gas can be efficiently removed for a long time on a catalyst by using ozone. CONSTITUTION:The catalyst used consists of oxides of manganese as the first component and oxides, hydroxides or carbonates of nickel as the second component. An odorous component is decomposed with ozone by using this catalyst. By this method, excellent effect can be obtd. without leaving hamful ozone after deodorization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、気体等の中に含まれ
る、臭気を発生する成分(以下、「有臭成分」という)
を除去するための脱臭方法に関する。
FIELD OF THE INVENTION The present invention relates to an odor generating component contained in a gas or the like (hereinafter referred to as "odorous component").
The present invention relates to a deodorizing method for removing.

【従来の技術】従来、気体中に含まれる有臭成分を除去
する方法として、活性炭、ゼオライト等の多孔質物質を
用いる吸着脱臭法、酸化剤又は還元剤を用いる湿式処理
脱臭法、オゾン分解脱臭法等の種々の脱臭方法が提案さ
れている。
2. Description of the Related Art Conventionally, as a method for removing odorous components contained in a gas, an adsorption deodorization method using a porous substance such as activated carbon or zeolite, a wet treatment deodorization method using an oxidizing agent or a reducing agent, and ozone decomposition deodorization Various deodorizing methods such as the method have been proposed.

【発明が解決しようとする課題】しかしながら、上記従
来の各脱臭方法(以下、「従来方法」という)はいずれ
も、充分に満足のいく脱臭方法であるとは言い難い。す
なわち、吸着脱臭法には、吸着剤が吸着能力を発揮する
期間が有限であるため、再生等することを要し、脱臭装
置のメンテナンスに多大の労力及び費用が必要となると
いう問題がある。また、湿式処理脱臭法には、酸化剤等
の薬液の処理が煩雑であるという問題がある。最後のオ
ゾン分解脱臭法には、上記のような問題は無いものの、
有臭成分の酸化分解による除去が充分でないこと及び呼
吸器障害等の公害を防止する上で、脱臭処理後の気体中
に含まれるオゾンを分解する必要があること等の問題が
あった。本発明は、従来のオゾン分解脱臭法が有してい
たこれらの問題を解決するためで、従来方法に比べて有
臭成分の分解除去能力に優れると共に、脱臭処理後に未
反応のオゾンが殆ど残留しないオゾン分解脱臭触媒を既
に種々提案している。しかしながらこれらの触媒を用い
てもガス中に微量の窒素酸化物や低級脂肪酸などの酸性
物質が含まれる時、これが触媒中に蓄積もしくは触媒成
分と反応し、触媒が劣化するあるいは蓄積した臭気物質
が処理ガス中に含まれるなどという問題点を本発明者ら
が見出した。本発明は、これらの問題点を解決するため
になされたものである。
However, it cannot be said that each of the above-mentioned conventional deodorizing methods (hereinafter referred to as "conventional method") is a sufficiently satisfactory deodorizing method. That is, the adsorption deodorization method has a problem that since the adsorbent exerts an adsorption capacity for a limited period of time, the adsorbent needs to be regenerated and the like, and a great deal of labor and cost are required for maintenance of the deodorization device. Further, the wet treatment deodorization method has a problem that treatment of a chemical solution such as an oxidizing agent is complicated. Although the last ozone decomposition deodorization method does not have the above problems,
There have been problems such as insufficient removal of odorous components by oxidative decomposition and the need to decompose ozone contained in the gas after deodorizing treatment in order to prevent pollution such as respiratory disorders. The present invention is to solve these problems that the conventional ozone decomposition deodorization method has, and is superior in the ability to decompose and remove odorous components as compared with the conventional method, and almost all unreacted ozone remains after the deodorization treatment. Various ozone deodorizing catalysts that do not have already been proposed. However, even if these catalysts are used, when the gas contains a small amount of acidic substances such as nitrogen oxides and lower fatty acids, these accumulate in the catalyst or react with the catalyst components, and the catalyst deteriorates or the accumulated odorous substances are generated. The present inventors have found the problem that they are contained in the processing gas. The present invention has been made to solve these problems.

【問題を解決するための手段】上記目的を達成するため
の本発明に係る脱臭方法(以下、「本発明方法」)は、
触媒が第1成分としてマンガンの酸化物、第2成分とし
てニッケルの酸化物、水酸化物もしくは炭酸塩から構成
されるものを用いることを特徴としている。またこれら
の触媒の構成において第1成分と第2成分の重量比が1
0:90〜90:10が好ましく、より好ましくは4
0:60〜80:20である。これらの範囲において好
ましい結果が得られる理由については定かではない。こ
うした触媒としては、第1成分のマンガンの酸化物と、
第2成分のニッケルの酸化物、水酸化物あるいは炭酸化
物との組合わせからなる二元触媒、例えば、MnO
NiO,MnO−Ni(OH),MnO−NiC
などを例示することが出来る。これらのうち、好ま
しい触媒としては、MnO−NiOである。これらの
触媒成分は、公知の担体であるアルミナ、チタニア、シ
リカ−チタニア、シリカ、ジルコニア、ゼオライトなど
に担持してもよい。とりわけ耐酸性に優れたチタニア、
シリカ、ジルコニア、ゼオライト担体に担持することに
よって窒素酸化物や低級脂肪酸などの酸性物質による劣
化を防止するとともに、触媒への臭気物質の蓄積を防止
し、大幅にその脱臭効果を維持することが可能となっ
た。また触媒成分の担持率は通常0.1〜50wt%で
ある。0.1wt%以下では充分な脱臭効果が得られ
ず、50wt%以上では細孔閉塞などによってオゾン分
解能力が低下するからである。又、上記発明方法により
除去せんとする有臭成分としては、アンモニア、トリメ
チルアミン、硫化水素、メチルメルカプタン、硫化メチ
ル、二硫化メチル、アセトアルデヒド、スチレン、メチ
ルエチルケトン、アクロレイン、プロピオンアルデヒ
ド、ブチルアルコール、フェノール、クレゾール、ジフ
ェニルエーテル、酢酸、プロピオン酸、吉草酸、メチル
アミン、ジメチルアミン、スカトール、ジメチルチオエ
ーテル、ジメチルメルカプタン、塩化水素、塩化アルカ
リが例示される。また、本発明方法が実施される分野と
しては、例えば、人間もしくは動物の生活空間、し尿処
理場、下水処理場、ゴミ焼却処理場、印刷工場、メッキ
工場、一般化学工場等から排出される排気ガスの脱臭処
理が挙げられる。本発明方法において用いられる触媒の
形状は特に限定されず、例えばハニカム状、ペレット
状、円柱状、板状、パイプ状等、種々の形状のものを用
いることが出来る。触媒中の活性成分含有率(担体成分
を含む)は、50%以上が好ましく、75%以上がより
好ましい。触媒は、含浸法、混練法、共沈法、沈殿法、
酸化物混合法等の既知の製法を適宜選択して製造するこ
とが出来る。触媒の製造においては、触媒に賦形性を与
えるために成形助剤を添加したり、機械強度等を向上さ
せるために無機繊維等の補強剤、有機バインダー等を適
宜添加したりしてもよい。脱臭の際に上記触媒と共存さ
せるオゾン(O)は、除去せんとする有臭成分の種類
及び濃度、その他反応温度、触媒の種類及び量等によっ
て適宜量用いられる。例えば、有臭成分としてHSを
含有する被脱臭気体の場合は、HS1モルあたりO
1〜2モルを共存させることが好ましく、NHを含有
する被脱臭気体の場合は、NH1モルあたりO1〜
3モルを共存させることが好ましい。また、メチルメル
カプタンを含有する被脱臭気体の場合は、メチルメルカ
プタン1モルあたりO1〜4モルを共存させることが
好ましい。被脱臭気体中に含まれる有臭成分の濃度が高
い場合、除去率を向上させるためにOを上記好適量を
超えて共存させても良い。但し、多すぎる場合には、脱
臭処理後に余剰のOが残留する場合があるのでこの様
なことが無いように過剰のOを共存させないように配
慮する必要がある。脱臭の際の反応温度は、0〜40℃
が好ましく、10〜30℃がより好ましい。0℃未満の
場合、反応速度が遅くなるからであり、40℃を超える
場合、新たに昇温のためのエネルギーを必要とし不経済
である。しかしガス温度が40℃以上の場合、本発明方
法がこれらのガスを処理することができるのは当然であ
る。また、触媒と反応ガスとの接触は、5〜50の面積
速度(AV:area Velocity)で行うこと
が好ましい。これは、面積速度が5未満であると触媒が
多く必要になるからであり、面積速度が50を超えると
効率が低く所定の分解率が得られないからである。ここ
で、面積速度とは、反応量(Nm/u、u:Hr)を
単位容積の触媒あたりのガス接触面積(m/m)で
除した値である。
The deodorizing method according to the present invention (hereinafter, referred to as "the present method") for achieving the above object is
The catalyst is characterized by using a manganese oxide as the first component and a nickel oxide, hydroxide or carbonate as the second component. Further, in the constitution of these catalysts, the weight ratio of the first component and the second component is 1
0:90 to 90:10 is preferable, and more preferably 4
It is 0:60 to 80:20. The reason why favorable results are obtained in these ranges is not clear. As such a catalyst, the first component of manganese oxide,
A binary catalyst composed of a combination with a second component nickel oxide, hydroxide or carbonate, for example, MnO 2 −.
NiO, MnO 2 -Ni (OH) 2, MnO 2 -NiC
O 3 and the like can be exemplified. Of these, a preferred catalyst is MnO 2 —NiO. These catalyst components may be supported on known carriers such as alumina, titania, silica-titania, silica, zirconia and zeolite. Especially, titania with excellent acid resistance,
By supporting it on silica, zirconia, or zeolite support, it is possible to prevent deterioration due to acidic substances such as nitrogen oxides and lower fatty acids, and to prevent the accumulation of odorous substances on the catalyst, and to maintain its deodorizing effect significantly. Became. The loading rate of the catalyst component is usually 0.1 to 50 wt%. This is because if it is 0.1 wt% or less, a sufficient deodorizing effect cannot be obtained, and if it is 50 wt% or more, the ozone decomposing ability is lowered due to pore clogging or the like. The odorous components to be removed by the method of the invention include ammonia, trimethylamine, hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide, acetaldehyde, styrene, methyl ethyl ketone, acrolein, propionaldehyde, butyl alcohol, phenol, cresol. , Diphenyl ether, acetic acid, propionic acid, valeric acid, methylamine, dimethylamine, skatole, dimethylthioether, dimethylmercaptan, hydrogen chloride, and alkali chloride. Further, as a field in which the method of the present invention is carried out, for example, exhaust gas discharged from living spaces of humans or animals, human waste treatment plants, sewage treatment plants, refuse incineration plants, printing plants, plating plants, general chemical plants, etc. A gas deodorizing process can be mentioned. The shape of the catalyst used in the method of the present invention is not particularly limited, and various shapes such as honeycomb shape, pellet shape, columnar shape, plate shape, pipe shape and the like can be used. The active component content (including the carrier component) in the catalyst is preferably 50% or more, more preferably 75% or more. The catalyst is an impregnation method, a kneading method, a coprecipitation method, a precipitation method,
It can be manufactured by appropriately selecting a known manufacturing method such as an oxide mixing method. In the production of the catalyst, a molding aid may be added to impart shapeability to the catalyst, or a reinforcing agent such as inorganic fiber, an organic binder or the like may be appropriately added to improve mechanical strength and the like. . Ozone (O 3 ) coexisting with the catalyst at the time of deodorization is used in an appropriate amount depending on the type and concentration of the odorous component to be removed, the reaction temperature, the type and amount of the catalyst, and the like. For example, in the case of a deodorized gas containing H 2 S as an odorous component, O 3 per mole of H 2 S
It is preferable to coexist 1 to 2 moles, and in the case of a deodorized gas containing NH 3 , O 3 1 to 1 mole of NH 3
It is preferable to coexist 3 mol. Further, in the case of a deodorized gas containing methyl mercaptan, it is preferable that 1 to 4 mol of O 3 coexist with 1 mol of methyl mercaptan. When the concentration of the odorous component contained in the gas to be deodorized is high, O 3 may be allowed to coexist in an amount exceeding the above preferable amount in order to improve the removal rate. However, when the amount is too large, excess O 3 may remain after the deodorizing treatment, and therefore it is necessary to take care not to allow excess O 3 to coexist in order to prevent such a situation. The reaction temperature for deodorization is 0 to 40 ° C.
Is preferable, and 10-30 degreeC is more preferable. This is because if the temperature is lower than 0 ° C, the reaction rate becomes slow, and if the temperature exceeds 40 ° C, new energy is required for raising the temperature, which is uneconomical. However, it goes without saying that the method of the present invention can process these gases when the gas temperature is 40 ° C. or higher. Further, the contact between the catalyst and the reaction gas is preferably performed at an area velocity (AV: area Velocity) of 5 to 50. This is because if the area velocity is less than 5, a large amount of catalyst is required, and if the area velocity exceeds 50, the efficiency is low and a predetermined decomposition rate cannot be obtained. Here, the area velocity is a value obtained by dividing the reaction amount (Nm 3 / u, u: Hr) by the gas contact area (m 2 / m 3 ) per unit volume of the catalyst.

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。但し、本発明は下記の実施例に限定されるもので
はない。A.触媒の調製 実施例1 比表面積135m/gのMnO100gと比表面積
187m/gのNiO100gに水とさらにガラスビ
ーズを加えて、30分間撹拌混合してスラリーとした。
このスラリーを空隙率81%、ピッチ4.0mmのセラ
ミックスファイバ製のコルゲート状ハニカムに含浸させ
て、MnO−NiO(重量比50:50)を担持率6
8%で担持した二元触媒を得た。 実施例2 実施例1において、NiO100gにかえてNi(O
H)100gとする以外は、実施例1と同様にしてN
iO−Ni(OH)(重量比50:50)を担持率7
1%で担持した二元触媒を得た。 実施例3 実施例1において、NiO100gにかえてNiCO
100gとする以外は、実施例1と同様にしてMnO
−NiCO(重量比50:50)を担持率76%で担
持した二元触媒を得た。 実施例4 実施例1において、MnO100gにかえて20g、
NiO100gにかえて180gとする以外は、実施例
1と同様にしてMnO−NiO(重量比10:90)
を担持率66%で担持した二元触媒を得た。 実施例5 実施例1において、MnO100gにかえて60g、
NiO100gにかえて140gとする以外は、実施例
1と同様にしてMnO−NiO(重量比30:70)
を担持率65%で担持した二元触媒を得た。 実施例6 実施例1において、MnO100gにかえて180
g、NiO100gにかえて20gとする以外は、実施
例1と同様にしてMnO−NiO(重量比90:1
0)を担持率72%で担持した二元触媒を得た。 実施例7 実施例1において、MnO100gにかえて140
g、NiO100gにかえて60gとする以外は、実施
例1と同様にしてMnO−NiO(重量比70:3
0)を担持率72%で担持した二元触媒を得た。 実施例8 実施例7において、NiO60gにかえてNi(OH)
60gとする以外は、実施例7と同様にしてMnO
−Ni(OH)(重量比70:30)を担持率72%
で担持した二元触媒を得た。 実施例9 実施例7において、NiO60gにかえてNiCO
0gとする以外は、実施例7と同様にしてMnO−N
iCO(重量比70:30)を担持率68%で担持し
た二元触媒を得た。 比較例1 実施例1においてMnO200gとし、NiOを添加
しないこと以外は、実施例1と同様にしてMnOを担
持率76%で担持した一元触媒を得た。B.触媒活性試験 上記実施例1〜9及び比較例1で得た触媒について、第
1図にそのフローシートを示すような試験装置を用いて
下記反応条件で触媒活性試験を行った。図に於いて、
(1)は触媒層であり、該触媒層(1)に導入された被
脱臭気体中に含まれる有臭成分は、オゾン発生器(2)
から触媒層(1)に導かれたオゾン(O)によって分
解される。分解脱臭後の気体の一部はオゾン分析計
(3)に導かれて、そこで残留オゾン(O)の定量分
析がなされる。また、分解脱臭後の気体の残部は有臭成
分分析計(4)に導かれる。有臭成分分析計(4)は、
ガスクロマトグラフからなり、これらの機器にて前記各
有臭成分の定量分析がなされるようになっている。オゾ
ン分解率(%)及び有臭成分分解率(%)は、それぞれ
オゾン分析計(3)、有臭成分分析計(4)にて測定さ
れる触媒層(2)の入口及び出口における濃度より次式
を用いて算出される。 (反応条件) 空間速度:20000/Hr 反応温度:20℃ 入口オゾン濃度:10ppm 有臭成分 メチルカプタン,メチルアミン,アセトアルデヒド,ア
ンモニア,硫化水素:各5ppm プロピオン酸:1ppm この条件下において、初期、100時間、1000時間
経過後の各オゾン及び有臭成分分解率を測定し、触媒の
劣化を調べた。結果を表−1に示す。 上記表より明らかなように、実施例1〜9で得た触媒
は、比較例1に比べて長時間にわたり、高いオゾン及び
有臭成分分解率(%)を維持している。以上の試験結果
より、本発明方法はオゾン及び有臭成分分解率(%)を
長時間にわたり、高い水準に維持することが可能な脱臭
方法であることが分かる。
EXAMPLES The present invention will be described in detail below based on examples. However, the present invention is not limited to the following examples. A. Preparation of Catalyst Example 1 Water and glass beads were added to 100 g of MnO 2 having a specific surface area of 135 m 2 / g and 100 g of NiO having a specific surface area of 187 m 2 / g, and the mixture was stirred and mixed for 30 minutes to form a slurry.
A corrugated honeycomb made of ceramic fibers having a porosity of 81% and a pitch of 4.0 mm was impregnated with this slurry to carry MnO 2 —NiO (weight ratio 50:50) at a supporting rate of 6
A binary catalyst supported at 8% was obtained. Example 2 In Example 1, Ni (O) was used instead of 100 g of NiO.
H) 2 N in the same manner as in Example 1 except that 100 g is used.
iO—Ni (OH) 2 (weight ratio 50:50) was loaded on a support ratio of 7
A binary catalyst supported at 1% was obtained. Example 3 In Example 1, NiCO 3 was replaced with NiO 100 g.
MnO 2 was prepared in the same manner as in Example 1 except that the amount was 100 g.
A two-way catalyst supporting NiCo 3 (weight ratio 50:50) at a supporting rate of 76% was obtained. Example 4 In Example 1, 20 g instead of 100 g of MnO 2 ,
MnO 2 —NiO (weight ratio 10:90) was performed in the same manner as in Example 1 except that the amount of NiO was changed to 180 g instead of 180 g.
Thus, a two-way catalyst having a supported ratio of 66% was obtained. Example 5 In Example 1, 60 g instead of 100 g of MnO 2 ,
MnO 2 —NiO (weight ratio 30:70) was carried out in the same manner as in Example 1 except that the amount of NiO was changed to 140 g instead of 100 g.
Thus, a two-way catalyst supporting 65% of was obtained. Example 6 In Example 1, 180 g instead of 100 g of MnO 2 .
g, NiO 100 g, and 20 g instead of NiO 100 g in the same manner as in Example 1 MnO 2 —NiO (weight ratio 90: 1
A binary catalyst carrying 0) at a loading rate of 72% was obtained. Example 7 In Example 1, 140 g was used instead of 100 g of MnO 2.
g, MnO 2 —NiO (weight ratio 70: 3) in the same manner as in Example 1 except that 60 g was used instead of NiO 100 g.
A binary catalyst carrying 0) at a loading rate of 72% was obtained. Example 8 In Example 7, Ni (OH) was used instead of NiO 60 g.
Except that the 2 60 g, in the same manner as in Example 7 MnO 2
-Ni (OH) 2 (weight ratio 70:30) is supported 72%
A two-way catalyst supported by was obtained. Example 9 Example 7, NiCO 3 6 instead of NiO60g
MnO 2 —N was prepared in the same manner as in Example 7 except that the amount was 0 g.
A two-way catalyst supporting iCO 3 (weight ratio 70:30) at a supporting rate of 68% was obtained. Comparative Example 1 A one-way catalyst carrying MnO 2 at a loading rate of 76% was obtained in the same manner as in Example 1 except that 200 g of MnO 2 was used in Example 1 and NiO was not added. B. Catalyst activity test The catalysts obtained in the above Examples 1 to 9 and Comparative Example 1 were subjected to a catalyst activity test under the following reaction conditions using a test apparatus whose flow sheet is shown in FIG. In the figure,
(1) is a catalyst layer, and the odorous component contained in the deodorized gas introduced into the catalyst layer (1) is an ozone generator (2).
It is decomposed by ozone (O 3 ) guided to the catalyst layer (1). A part of the gas after the decomposition and deodorization is guided to the ozone analyzer (3) where the residual ozone (O 3 ) is quantitatively analyzed. The rest of the gas after decomposition and deodorization is led to the odorous component analyzer (4). The odorous component analyzer (4)
It is composed of a gas chromatograph, and the quantitative analysis of each of the odorous components is performed by these instruments. The ozone decomposition rate (%) and the odorous component decomposition rate (%) are calculated from the concentrations at the inlet and outlet of the catalyst layer (2) measured by the ozone analyzer (3) and the odorous component analyzer (4), respectively. It is calculated using the following formula. (Reaction conditions) Space velocity: 20000 / Hr Reaction temperature: 20 ° C. Inlet ozone concentration: 10 ppm Odorous components Methylcaptan, methylamine, acetaldehyde, ammonia, hydrogen sulfide: 5 ppm each, propionic acid: 1 ppm Under these conditions, initial 100 hours After 1,000 hours, the decomposition rate of each ozone and odorous component was measured to examine the deterioration of the catalyst. The results are shown in Table-1. As is clear from the above table, the catalysts obtained in Examples 1 to 9 maintain high ozone and odorous component decomposition rates (%) over a long period of time, as compared with Comparative Example 1. From the above test results, it is understood that the method of the present invention is a deodorizing method capable of maintaining the ozone and odorous component decomposition rate (%) at a high level for a long time.

【発明の効果】本発明に係るオゾン分解脱臭法は、長時
間にわたり有臭成分を効率良く除去することができ、し
かも脱臭処理後に呼吸器系統等に有害なオゾンが殆ど残
留しない等、本発明は優れた特有の効果を奏する。
The ozone decomposing and deodorizing method according to the present invention is capable of efficiently removing odorous components for a long time, and has almost no harmful ozone remaining in the respiratory system after the deodorizing treatment. Has an excellent and unique effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は触媒活性試験のフローシートである。 (1)……触媒層 (2)……オゾン発生器 (3)……オゾン分析計 (4)……有臭成分分析計 FIG. 1 is a flow sheet of the catalyst activity test. (1) …… Catalyst layer (2) …… Ozone generator (3) …… Ozone analyzer (4) …… Odor component analyzer

Claims (1)

【特許請求の範囲】[Claims] 有臭成分をオゾンを用いて触媒上で接触酸化分解する方
法において、触媒が第1成分としてマンガンの酸化物、
第2成分としてニッケルの酸化物、水酸化物もしくは炭
酸塩から構成されるものを用いることを特徴とする脱臭
方法。
In the method of catalytically oxidatively decomposing an odorous component on a catalyst using ozone, the catalyst is a manganese oxide as a first component,
A deodorizing method characterized by using, as the second component, one composed of nickel oxide, hydroxide or carbonate.
JP4214462A 1992-07-01 1992-07-01 Deodorizing method Pending JPH0615140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4214462A JPH0615140A (en) 1992-07-01 1992-07-01 Deodorizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4214462A JPH0615140A (en) 1992-07-01 1992-07-01 Deodorizing method

Publications (1)

Publication Number Publication Date
JPH0615140A true JPH0615140A (en) 1994-01-25

Family

ID=16656140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4214462A Pending JPH0615140A (en) 1992-07-01 1992-07-01 Deodorizing method

Country Status (1)

Country Link
JP (1) JPH0615140A (en)

Similar Documents

Publication Publication Date Title
EP0275620B1 (en) Method and catalyst for purification of gas
US5214014A (en) Deodorizing catalyst
EP0361385B1 (en) Deodorizing method and deodorizing catalyst
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
EP0525761B1 (en) A catalytic composite for deodorizing odorous gases and a method for preparing the same
US6267941B1 (en) Catalyst system for deodorization of a mixture of sulfur compounds and compounds such as aldehydes, alcohols and/or hydrocarbons
JPH0564654A (en) Deodorizing method
JPH0549863A (en) Method for deodorization
JPH0290923A (en) Deodorizing method
JPH0615140A (en) Deodorizing method
JPH04231059A (en) Method for deodorizing
JPH06142455A (en) Deodorizing method
JP3546766B2 (en) Deodorizing catalyst
JPH07155611A (en) Catalyst and method for removing malodorous substance
JP2002263449A (en) Activated carbon filter
JPH02251226A (en) Air cleaning apparatus
JP2903731B2 (en) Deodorizing method of gas in living environment containing lower fatty acids together with odorous components
JPH04322726A (en) Deodorizing method
JPH04187215A (en) Deodorization method
JPH0618613B2 (en) Ozone deodorization method
JPH1033646A (en) Toilet deodorizing catalyst
JP2004024472A (en) Deodorizer and deodorizing method
JPH04277014A (en) Deodorizing method
JP2003290621A (en) Two-stage removal method for malodorous substance generated from composting apparatus
JPH02180638A (en) Deodorizing catalyst