JPH02180638A - Deodorizing catalyst - Google Patents
Deodorizing catalystInfo
- Publication number
- JPH02180638A JPH02180638A JP63334349A JP33434988A JPH02180638A JP H02180638 A JPH02180638 A JP H02180638A JP 63334349 A JP63334349 A JP 63334349A JP 33434988 A JP33434988 A JP 33434988A JP H02180638 A JPH02180638 A JP H02180638A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ozone
- component
- deodorizing
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、気体等の中に含まれる、臭気を発生する成分
く以下、「有臭成分」という)をオゾンにより酸化分解
することによって除去するための脱臭用触媒に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention removes odor-producing components contained in gases (hereinafter referred to as "odorous components") by oxidizing and decomposing them with ozone. This invention relates to a deodorizing catalyst for deodorizing.
〈従来の技術〉
従来、気体中に含まれる有臭成分を除去する方法として
、活性炭、ゼオライト等の多孔質物質を用いる吸着脱臭
法、酸化剤又は還元剤を用いる湿式処理脱臭法、オゾン
分解脱臭法等の種々の脱臭方法が提案されている。<Prior art> Conventional methods for removing odorous components contained in gas include adsorption deodorization using porous materials such as activated carbon and zeolite, wet processing deodorization using oxidizing agents or reducing agents, and ozonolysis deodorization. Various deodorizing methods have been proposed.
〈発明が解決しようとする問題点〉
しかしながら、上記1に来の各脱臭方法(以下、「従来
方法」という)はいずれも、充分に満足のいく脱臭方法
であるとは言い難い。<Problems to be Solved by the Invention> However, it is difficult to say that each of the deodorizing methods described in 1 above (hereinafter referred to as "conventional methods") is a fully satisfactory deodorizing method.
すなわち、吸着脱臭法には、吸着剤が吸着能力を発揮す
る期間が有限であるため、再生等することを要し、吸着
装置のメンテナンスに多大の労力及び費用が必要となる
という問題がある。That is, the adsorption deodorization method has a problem in that since the period during which the adsorbent exhibits its adsorption capacity is limited, it requires regeneration, etc., and maintenance of the adsorption device requires a great deal of labor and cost.
又、湿式処理脱臭法には、酸化剤等の薬液の処理が煩雑
であるという問題がある。In addition, the wet deodorization method has a problem in that processing of chemical solutions such as oxidizing agents is complicated.
最後のオゾン分解脱臭法には、上記のような問題は無い
ものの、有臭成分の酸化分解による除去が充分でないこ
と及び呼吸器障害等の公害を防止する上で、脱臭処理後
の気体中に含まれるオゾンを分解する必要があること等
の問題がある。Although the last ozonolysis deodorization method does not have the above-mentioned problems, the removal of odorous components by oxidative decomposition is insufficient, and in order to prevent pollution such as respiratory disorders, there are some problems in the gas after deodorization. There are problems such as the need to decompose the ozone contained.
本発明者らは既にオゾンを用いた脱臭用触媒を種々提案
している。それらは触媒活性成分としてこの反応に有効
であるが、反応条件が変動するオゾン脱臭反応において
、従来用いられてきたソリラド型触媒は悪臭成分の吸着
飽和量が多く、■反応温度が上がる、■臭気濃度の高い
条件から低い条件に変わるなど条件変動に際し悪臭分解
能を上回った悪臭成分をガス中に放出し、逆に悪臭を発
するという問題点を有してきた。The present inventors have already proposed various deodorizing catalysts using ozone. They are effective in this reaction as catalytic active components, but in ozone deodorization reactions where reaction conditions vary, the Solirad-type catalysts conventionally used adsorb and saturate a large amount of malodorous components, resulting in: ■ an increase in the reaction temperature; There has been a problem in that when conditions change, such as from a high concentration condition to a low concentration condition, malodorous components exceeding the malodor resolving power are released into the gas, causing a malodor.
本発明は、従来のオゾン分解脱臭法が有していたこれら
の問題を解決するためになされたものであって、その目
的とするところは、従来方法ζこ比べて有臭成分の分解
除去能力に廃れると共に、脱臭処理後に未反応のオゾン
が殆ど残留しないオゾン分解脱臭法を提供することにあ
る。The present invention was made to solve these problems that the conventional ozonolysis deodorization method had, and its purpose is to improve the ability to decompose and remove odorous components compared to the conventional method. It is an object of the present invention to provide an ozone decomposition deodorization method that is obsolete and leaves almost no unreacted ozone after deodorization treatment.
く問題を解決するための手段〉
上記目的を達成するための本発明に係るオゾン脱臭反応
に用いられる触媒は、既に本発明者らが種/7提案して
いるものも含め、この反応に有効な触媒活性成分を、不
活性担体上に10μ〜200μ担持することを特徴とし
ている。Means for Solving the Problem> Catalysts used in the ozone deodorization reaction according to the present invention to achieve the above object are effective for this reaction, including those already proposed by the present inventors. It is characterized by supporting 10 to 200 μ of a catalytically active component on an inert carrier.
上記本発明方法により除去せんとする有臭成分としては
、アンモニア、トリメチルアミン、硫化水素、メチルメ
ルカプタン、硫化メチル、二硫化メチル、アセトアルデ
ヒド、スチレン、メチルエチルケトン、アクロレイン、
プロピオンアルデヒド、ブチルアルコール、フェノール
、クレゾール、ジフェニルエーテル、酢酸、プロピオン
酸、吉草酸、メチルアミン、ジメチルアミン、スカトー
ル、ジメチルチオエーテル、ジメチルメルカプタン、塩
化水素、塩化アリルが例示される。The odorous components to be removed by the method of the present invention include ammonia, trimethylamine, hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide, acetaldehyde, styrene, methyl ethyl ketone, acrolein,
Examples include propionaldehyde, butyl alcohol, phenol, cresol, diphenyl ether, acetic acid, propionic acid, valeric acid, methylamine, dimethylamine, skatole, dimethylthioether, dimethylmercaptan, hydrogen chloride, and allyl chloride.
また、本発明方法が実施される分野としては、例えばし
尿処理場、下水処理場、ゴミ焼却処理場、印刷工場、メ
ツキ工場、一般化学工場等から排出される排気ガスの脱
臭処理が挙げられる。Fields in which the method of the present invention is implemented include, for example, deodorizing treatment of exhaust gas discharged from human waste treatment plants, sewage treatment plants, garbage incineration plants, printing factories, Metsuki factories, general chemical factories, etc.
次に、上記本発明に用いられる触媒の活性成分としては
、既に本発明者らが種々提案しているように、Mn02
−TiO2,MnO2−5i02、CuO−TiO2、
Co30.−Tie2、Fe203−Tie。、F e
203−Au等の二元触媒を主成分とするもの及びM
n02−Co30a−Tie2、MnO2−Co 30
a −Ag 20、Ni0−Mn0□−TiO□等の
三元触媒を主成分とするものが例示される。Next, as the active component of the catalyst used in the present invention, as already proposed by the present inventors, Mn02
-TiO2, MnO2-5i02, CuO-TiO2,
Co30. -Tie2, Fe203-Tie. , F e
203-Those whose main component is a binary catalyst such as Au and M
n02-Co30a-Tie2, MnO2-Co30
Examples include those whose main component is a three-way catalyst such as a-Ag 20, Ni0-Mn0□-TiO□.
また、これら活性成分を担持する不活性担体としては、
セラミックスファイバー製のコルゲート状ハニカム、コ
ージェライト製ハニカム及び粘土etcを用いて種々の
形に成形したものが用いられろ。この成形体の形状は特
に限定されず、例えばハニカム状、ベレット状、円柱状
、板状、バイブ状等、種々の形状のものを用いることが
できる。In addition, as inert carriers supporting these active ingredients,
Corrugated honeycombs made of ceramic fibers, honeycombs made of cordierite, clay etc. molded into various shapes may be used. The shape of this molded body is not particularly limited, and various shapes such as a honeycomb shape, a pellet shape, a cylindrical shape, a plate shape, and a vibrator shape can be used.
又、この際、担体に賦形性を与えるために成形助剤を添
加したり、機械的強度等を向上させるために無機繊維等
の補強剤、有機バインダー等を適宜添加したりしてもよ
い。こうして成形された担体に刻して、上記した活性成
分を10μ〜200μ担持することによって本発明にお
いて用いられる触媒が得られるが、担持量が上記範囲に
あるときには、この触媒に対する悪臭成分の吸着飽和量
がa切に調整され、■反応温度が上がる、■臭気1度の
高い条件から低い条件に変わるなどの条件変動に対する
安定性が向上し、悪臭分解能を上回った悪臭成分をガス
中に放出するなどの問題点が回選される。担持量が上記
範囲以上になると、悪臭成分の吸着飽和量が多くなり、
上述したような条件変動に際し、悪臭成分をガス中に放
出し、逆に悪臭の発生源となる場合があり好ましくない
。又担持量が上記範囲以下になると、悪臭分解能そのも
のが低下し、同様に好ましくない。In addition, at this time, a molding aid may be added to give the carrier shapeability, and reinforcing agents such as inorganic fibers, organic binders, etc. may be added as appropriate to improve mechanical strength etc. . The catalyst used in the present invention can be obtained by cutting the carrier formed in this way and supporting 10 μ to 200 μ of the above-mentioned active ingredient. When the supported amount is within the above range, the adsorption saturation of malodorous components on this catalyst The amount of malodor is adjusted to the optimum level, improving stability against fluctuations in conditions such as: (1) raising the reaction temperature, (2) changing from a high odor condition to a low odor condition, and releasing malodorous components that exceed the malodor resolution into the gas. Issues such as: When the supported amount exceeds the above range, the adsorption saturation amount of malodorous components increases,
When conditions fluctuate as described above, malodorous components may be released into the gas, which may conversely become a source of malodor, which is undesirable. Furthermore, if the supported amount is below the above range, the malodor decomposition ability itself will be lowered, which is also undesirable.
脱臭の際に上記触媒と共存させるオゾン(03)は、除
去せんとする有臭成分の種類及び強度、その他反応温度
、触媒の種類及び量等によって適宜は用いられる。例え
ば、有臭成分としてH2Sを含有する被脱臭気体の場合
は、H2S1モルあたり031〜2モルを共存させるこ
とが好ましく、NH3を含有する被脱臭気体の場合は、
NH,1モルあたり031〜3モルを共存させることが
好ましい。また、メチルメルカプタンを含有する被脱臭
気体の場合は、メチルメルカプタン1モルあたり031
〜4モルを共存させることが好ましい。Ozone (03), which is allowed to coexist with the above catalyst during deodorization, is used as appropriate depending on the type and strength of the odorous component to be removed, the reaction temperature, the type and amount of the catalyst, etc. For example, in the case of a gas to be deodorized containing H2S as an odorous component, it is preferable to allow 031 to 2 mol per mol of H2S to coexist, and in the case of a gas to be deodorized containing NH3,
It is preferable to coexist in an amount of 0.31 to 3 moles per mole of NH. In addition, in the case of a gas to be deodorized containing methyl mercaptan, 031 per mole of methyl mercaptan
It is preferable to coexist in an amount of 4 mol to 4 mol.
被脱臭気体中に含まれる有臭成分の濃度が高い場合、除
去率を向上させるために03を上記好適量を越えて共存
させても良い。但し、多すぎる場合には、脱臭処理後に
余剰の03が残留する場合があるのでこの様なことが無
いように過剰の03を共存させないように配慮する必要
がある。When the concentration of odorous components contained in the gas to be deodorized is high, 03 may be present in an amount exceeding the above-mentioned suitable amount in order to improve the removal rate. However, if there is too much 03, excess 03 may remain after the deodorizing treatment, so care must be taken not to allow excess 03 to coexist to prevent this from happening.
脱臭の際の反応温度は、0〜40℃が好ましく、10〜
30℃がより好ましい。0℃未満の場合、反応速度が遅
くなるからであり、40℃を越える場合、新たに昇温の
ためのエネルギーを必要とし不経済であるからである。The reaction temperature during deodorization is preferably 0 to 40°C, and 10 to 40°C.
30°C is more preferred. This is because if the temperature is less than 0°C, the reaction rate becomes slow, and if it exceeds 40°C, additional energy is required to raise the temperature, which is uneconomical.
また、触媒と反応ガスとの接触は、5〜50の面積速度
(AV ; area velocity )で行うこ
とが好ましい。これは、面積速度がS未満であると触媒
が多く必要になるからであり、面積速度が50を越える
と効率が低く所定の分解率が得られないからである。こ
こで、面積速度とは、反応ffi(Nm’/u、u :
Hr)を単位容積の触媒あたりのガス接触面積(1n’
/m’)で除した値である。Further, the contact between the catalyst and the reaction gas is preferably performed at an area velocity (AV) of 5 to 50. This is because if the areal velocity is less than S, a large amount of catalyst is required, and if the areal velocity exceeds 50, the efficiency is low and a predetermined decomposition rate cannot be obtained. Here, the areal velocity is the reaction ffi (Nm'/u, u:
Hr) is the gas contact area per unit volume of catalyst (1n'
/m').
〈実施例〉
以下、本発明を実施例に基づいて詳細に説明する。但し
、本発明は下記の実施例に限定されるものではない。<Examples> Hereinafter, the present invention will be described in detail based on Examples. However, the present invention is not limited to the following examples.
A、触媒Ω皿型
実施例1
木節粘土を100℃にて18時間乾燥後、スクリーンが
0.5mmφであるサンプルミルにて粉砕した。これら
の粉砕物を20kg、メチルセルロース系バインダー(
ニー乃゛ン工業YB−32)1kgと水を加え混合後ニ
ーダ−で充分に混練を行った。A. Catalyst Ω dish type Example 1 After drying Kibushi clay at 100° C. for 18 hours, it was pulverized in a sample mill with a screen of 0.5 mmφ. 20 kg of these pulverized materials were added to a methyl cellulose binder (
1 kg of Nihon Kogyo YB-32) and water were added, mixed, and thoroughly kneaded in a kneader.
これらの坏土な、ハニカム理出用ダイスを装着したオー
ガスクリユー式押出機に投入し、ハニカム状物を押出し
た。この時の圧力が30〜35kg/C♂となるように
水分調節を行った。得られたハニカム状物を常温にて通
風乾燥後、5°C/時間の昇温速度で500°Cまて昇
温し、昇温後3時間キープした後10°C/時間の降温
速度で冷却し、開口率64%、ピッチ4.0mmのハニ
カム状担体を得た。These clay materials were put into an auger screw type extruder equipped with a die for honeycomb extrusion, and a honeycomb-like product was extruded. Moisture was adjusted so that the pressure at this time was 30 to 35 kg/C♂. After drying the obtained honeycomb-like material at room temperature with ventilation, the temperature was raised to 500 °C at a temperature increase rate of 5 °C / hour, and after being kept for 3 hours, the temperature was lowered at a temperature decrease rate of 10 °C / hour. After cooling, a honeycomb-shaped carrier having an aperture ratio of 64% and a pitch of 4.0 mm was obtained.
次に、比表面積48+tl’/gのMnO2,704g
をチタニアゾル(T10□含有n:150g/u)10
34w+Qに加え、これにさらにガラスピーズ250g
を加えて、30分間撹拌混合した後、ビーズを分離し、
スラリーを得た。このスラリーに、水300献を加えて
希釈した後、上述したハニカム状担体を適切な大きさに
切り出したものを浸漬し、過剰のスラリーを除去して乾
燥した後、500℃で3時間焼成し、Mn02−TiO
2層(重量比82:18)を、平均厚み10μ担持した
二元触媒を得た。尚、この担持層の厚みは、XPSにて
測定してた。この触媒の開口率は63%、単位容積当た
りのガス接触面積(以下rApJという)は、795T
11”/−であった。Next, 704 g of MnO2 with a specific surface area of 48+tl'/g
Titania sol (T10□ containing n: 150g/u) 10
34w+Q plus 250g of glass peas
After stirring and mixing for 30 minutes, separate the beads.
Got slurry. After diluting this slurry by adding 300 g of water, the above-mentioned honeycomb-shaped carrier cut into an appropriate size was immersed in the slurry, excess slurry was removed, and after drying, it was calcined at 500°C for 3 hours. , Mn02-TiO
A binary catalyst was obtained in which two layers (weight ratio 82:18) were supported with an average thickness of 10 μm. Note that the thickness of this support layer was measured by XPS. The aperture ratio of this catalyst is 63%, and the gas contact area per unit volume (hereinafter referred to as rApJ) is 795T.
It was 11"/-.
実施例2
実施例1において、Mn02−TiO9の担持層を平均
50μとした以外は、実施例1と同様にして、開口率6
0%、Ap775m’/−の二元触媒を得た。Example 2 In Example 1, the opening ratio was 6 in the same manner as in Example 1 except that the Mn02-TiO9 supporting layer was 50μ on average.
A binary catalyst with Ap 775m'/- was obtained.
実施例3
実施例1において、Mn02−TiO2ゾルスラリーの
水による希釈を行わずして、rvInO2−TiO2の
担持層を平均100μとした以外は、実施例1と同様に
して、開口率56%、Ap750 tn’ /−の二元
触媒を得た。Example 3 In the same manner as in Example 1, except that the Mn02-TiO2 sol slurry was not diluted with water and the rvInO2-TiO2 support layer was made to have an average of 100μ, the aperture ratio was 56% and Ap750 A binary catalyst of tn'/- was obtained.
実施例4
実施例1において、MnO2−T i O。ゾルスラリ
ーの水による希釈を行わずして、Mn02−TiO□の
担持層を平均200μとした以外は、実施1ff111
と同様にして、開口率49%、Ap7001TI’ /
n?の二元触媒を得た。Example 4 In Example 1, MnO2-T i O. Run 1ff111 except that the sol slurry was not diluted with water and the Mn02-TiO□ support layer was made to have an average thickness of 200μ.
Similarly, the aperture ratio is 49% and Ap7001TI'/
n? A two-way catalyst was obtained.
比較例1
実施例1において、MnO□−TiO2の担持層を平均
5μとした以外は、実施例1と同様にして、開口率64
%、Ap798m’/m’の二元触媒をilた。Comparative Example 1 In Example 1, the opening ratio was 64 in the same manner as in Example 1 except that the MnO□-TiO2 supporting layer was 5μ on average.
%, Ap 798 m'/m' of the binary catalyst.
比較例2
実施例1において、Mn02−TiO□ゾルスラリーの
水による希釈を行わずして、Mn02−TiO3の担持
層を平均250μとした以外は、実施例1と同様にして
、開口率46%、Ap675 t112/ T11’の
二元触媒を得た。Comparative Example 2 In the same manner as in Example 1, except that the Mn02-TiO□ sol slurry was not diluted with water and the Mn02-TiO3 support layer was made to have an average of 250 μm, the opening ratio was 46%, A binary catalyst of Ap675 t112/T11' was obtained.
率100%て担持した三元触媒を得た。A three-way catalyst supported at 100% was obtained.
比較例3
比表面TUssm7gのMn 0220kgを、チタニ
アゾル(150g/込’)29.27躬こ加え、充分に
混練した後ドライアップし、500°Cて3時間焼成し
、冷却後、スクリーンが0.5mmφのサンプルミルに
て粉砕し、MnO,、−Tie、、重量比が82:18
の焼成粉を得た。これらの粉砕物を20kg、メチルセ
ルロース系バインダー(ユケンエ、ff1YB−32)
11.gと水を加え、混合後ニーダ−で充分混練を行っ
た。これらの坏土を、ハニカム押出用ダイスを装着した
オーガスクリユー式押出機に投入し、ハニカム状触媒を
押出した。Comparative Example 3 29.27 kg of Mn with specific surface TUssm of 7 g was added with 29.27 g of titania sol (150 g/inclusive), thoroughly kneaded, dried up, fired at 500°C for 3 hours, and after cooling, the screen became 0. Grinded with a 5 mmφ sample mill, MnO, -Tie, weight ratio 82:18
A fired powder was obtained. 20 kg of these pulverized materials, methyl cellulose binder (YUKENE, ff1YB-32)
11. g and water were added, mixed, and thoroughly kneaded using a kneader. These clays were put into an auger screw type extruder equipped with a die for honeycomb extrusion, and a honeycomb-shaped catalyst was extruded.
このときの圧力が30〜35!g/cm’となるように
水分調節を行った。得られたハニカム状触媒を常温にて
通風乾燥後、5°C/時間の昇温速度で500°C迄昇
温し、昇温後3時間キープした後10℃/時間の降温速
度で冷却し、開口率63%、Ap795+n’/背の二
元触媒を得た。The pressure at this time is 30-35! Moisture content was adjusted so that it was g/cm'. After drying the obtained honeycomb-shaped catalyst at room temperature with ventilation, the temperature was raised to 500 °C at a temperature increase rate of 5 °C / hour, kept at a temperature increase rate of 3 hours, and then cooled at a temperature decrease rate of 10 °C / hour. A two-way catalyst with an aperture ratio of 63% and Ap795+n'/back was obtained.
B、触媒活性試験
上記実施例1〜4及び比較例1〜3て得た各触媒につい
て、第1図にそのフローシートを示すような試験方式を
用いて下記反応条件で触媒活性試験を行った。図に於い
て、(1)はオゾン発生器であり、該触媒層(2)に導
入された被脱臭気体中に含まれる有臭成分H2S、NH
3及びメチルアミンは、オゾン発生器(1)から触媒層
(2)に導かれたオゾン(03)によって分解される。B. Catalytic activity test Each of the catalysts obtained in Examples 1 to 4 and Comparative Examples 1 to 3 above was subjected to a catalytic activity test under the following reaction conditions using the test method whose flow sheet is shown in Figure 1. . In the figure, (1) is an ozone generator, and odorous components H2S and NH contained in the gas to be deodorized introduced into the catalyst layer (2).
3 and methylamine are decomposed by ozone (03) introduced from the ozone generator (1) to the catalyst layer (2).
分解脱臭後の気体中の一部はオゾン分析計(3)に導か
れて、そこで残留オゾン(03)の定量分析がなされる
。また、分解脱臭後の気体の残部は有臭成分分析計(4
)に導かれる。有臭成分分析計(4)は、ガスクロマト
グラフ(H2S又はメチルアミン分析計)2基及びNH
3メータ1基からなり、これらの機器にて前記各有臭成
分の定量分析がなされるようになっている。A portion of the gas after decomposition and deodorization is led to an ozone analyzer (3), where residual ozone (03) is quantitatively analyzed. In addition, the remaining gas after decomposition and deodorization is collected using an odorous component analyzer (4
). The odor component analyzer (4) consists of two gas chromatographs (H2S or methylamine analyzer) and NH
It consists of one 3-meter unit, and quantitative analysis of each of the above-mentioned odorous components is performed using these devices.
(反応条件I)
空間速度:20000/Hr
反応温度:20°C
有臭成分濃度/オゾン濃度
H2S103 : 10/ 20ppmNHalo 3
: 10/30ppmメチルメルカプタン103:
5/ 10ppm(反応条件■)
反応条件Iで24時間経過後、反応温度を20°Cから
50°Cに昇温し、昇温後5分後に測定する。(Reaction conditions I) Space velocity: 20000/Hr Reaction temperature: 20°C Odorous component concentration/ozone concentration H2S103: 10/20ppmNHalo 3
: 10/30ppm methyl mercaptan 103:
5/10 ppm (reaction condition ■) After 24 hours under reaction condition I, the reaction temperature was raised from 20°C to 50°C, and measured 5 minutes after the temperature was raised.
(反応条件■)
反応条件■て24時間経過後、有臭成分濃度をそれぞれ
下記のように変化させ、5分後に測定ずろ。(Reaction Conditions ■) After 24 hours under the reaction conditions (■), the concentrations of odorous components were changed as shown below, and the measurements were taken after 5 minutes.
H2S1a度:1ppm N H35度:lppm メチルメルカプタン:1pp+n 上記試験結果を表1に示す。H2S1a degree: 1ppm N H35 degrees: lppm Methyl mercaptan: 1pp+n The above test results are shown in Table 1.
第1表
上記結果より明らかなように、実施例1〜4で得たいず
れの触媒も、比較例1〜3て得た触媒に比べて、反応条
件■及びInなどの条件変動に対して、高くかつ安定し
た有臭成分除去率を有している。これらの結果より、本
発明に係る脱臭触媒は■反応温度が上がる、■臭気成分
濃度の高い条件から低い条件に変わるなどの条件変動に
対しても高くかつ安定した有臭成分除去率を有している
ことがわかる。As is clear from the above results in Table 1, all the catalysts obtained in Examples 1 to 4 were more sensitive to reaction conditions (1) and condition fluctuations such as In, compared to the catalysts obtained in Comparative Examples 1 to 3. It has a high and stable odor component removal rate. From these results, the deodorizing catalyst according to the present invention has a high and stable odorous component removal rate even when conditions change, such as (1) an increase in reaction temperature, (2) a change from a high odor component concentration condition to a low odor component concentration condition. You can see that
〈発明の効果〉
本発明に係るオゾン分解脱臭法は、有臭成分を効率良く
除去することができ、しかも脱臭処理後に呼吸器系統等
に有害なオゾンが殆と残留しない等、本発明は優れた特
有の効果を奏する。<Effects of the Invention> The ozone decomposition and deodorization method according to the present invention can efficiently remove odor components, and the present invention has excellent advantages such as almost no ozone harmful to the respiratory system remaining after the deodorization treatment. It has a unique effect.
第1図は触媒活性試験のフローシートである。 (1) オゾン発生器 (2) 触媒層 (3) オゾン分析計 (4) 有臭成分分析計 第1図 FIG. 1 is a flow sheet of the catalyst activity test. (1) Ozone generator (2) Catalyst layer (3) Ozone analyzer (4) Odorous component analyzer Figure 1
Claims (1)
臭成分を除去することを特徴とする脱臭方法において、
当該触媒の活性成分が、不活性担体上に10μ〜200
μ担持されていることを特徴とする脱臭用触媒。In a deodorizing method characterized by removing odorous components by oxidative decomposition with ozone in the presence of a catalyst,
The active component of the catalyst is deposited on an inert support in an amount of 10μ to 200μ
A deodorizing catalyst characterized by supporting μ.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63334349A JPH02180638A (en) | 1988-12-28 | 1988-12-28 | Deodorizing catalyst |
EP19890117739 EP0361385B1 (en) | 1988-09-26 | 1989-09-26 | Deodorizing method and deodorizing catalyst |
DE1989604276 DE68904276T2 (en) | 1988-09-26 | 1989-09-26 | DEODORIZING METHOD AND DESODORIZING CATALYST. |
US07/684,093 US5214014A (en) | 1988-09-26 | 1991-04-12 | Deodorizing catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63334349A JPH02180638A (en) | 1988-12-28 | 1988-12-28 | Deodorizing catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02180638A true JPH02180638A (en) | 1990-07-13 |
Family
ID=18276374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63334349A Pending JPH02180638A (en) | 1988-09-26 | 1988-12-28 | Deodorizing catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02180638A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002529225A (en) * | 1998-11-09 | 2002-09-10 | シーメンス アクチエンゲゼルシヤフト | Catalyst body and method for reducing halogenated hydrocarbons |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63182032A (en) * | 1987-01-21 | 1988-07-27 | Nippon Shokubai Kagaku Kogyo Co Ltd | Deodorizing catalyst |
JPS63267440A (en) * | 1987-04-24 | 1988-11-04 | Nippon Shokubai Kagaku Kogyo Co Ltd | Deodorizing catalyst |
-
1988
- 1988-12-28 JP JP63334349A patent/JPH02180638A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63182032A (en) * | 1987-01-21 | 1988-07-27 | Nippon Shokubai Kagaku Kogyo Co Ltd | Deodorizing catalyst |
JPS63267440A (en) * | 1987-04-24 | 1988-11-04 | Nippon Shokubai Kagaku Kogyo Co Ltd | Deodorizing catalyst |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002529225A (en) * | 1998-11-09 | 2002-09-10 | シーメンス アクチエンゲゼルシヤフト | Catalyst body and method for reducing halogenated hydrocarbons |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5214014A (en) | Deodorizing catalyst | |
EP0361385B1 (en) | Deodorizing method and deodorizing catalyst | |
KR100632591B1 (en) | Catalyst composition for dioxin removal and preparation method thereof | |
JP3722866B2 (en) | Hydrophobic deodorizing material and method for regenerating the same | |
CN108295640A (en) | A kind of odor treatment method and equipment | |
JPH02180638A (en) | Deodorizing catalyst | |
JPH1071331A (en) | ZnO-Pd composite catalyst and method for producing the same | |
JPH0290923A (en) | Deodorizing method | |
JPH07155611A (en) | Catalyst and method for removing malodorous substance | |
JPH04231059A (en) | Method for deodorizing | |
JPS60212234A (en) | Honeycomb shaped deodorizing catalyst | |
JPH0549863A (en) | Method for deodorization | |
JPH02251226A (en) | Air cleaning apparatus | |
JPH0564654A (en) | Deodorizing method | |
JP2903731B2 (en) | Deodorizing method of gas in living environment containing lower fatty acids together with odorous components | |
JPH06142455A (en) | Deodorizing method | |
JPH04277014A (en) | Deodorizing method | |
JPH04187215A (en) | Deodorization method | |
JPH0618613B2 (en) | Ozone deodorization method | |
JP2004024472A (en) | Deodorizer and deodorizing method | |
JPH0615140A (en) | Deodorizing method | |
JP3509286B2 (en) | Decomposition method of chlorinated organic compounds | |
JP2827627B2 (en) | Deodorizing catalyst | |
JPH02149316A (en) | Deodorizing method | |
JPH03229645A (en) | Ozone decomposing catalyst |