WO2023042783A1 - Core-shell zeolite - Google Patents

Core-shell zeolite Download PDF

Info

Publication number
WO2023042783A1
WO2023042783A1 PCT/JP2022/034031 JP2022034031W WO2023042783A1 WO 2023042783 A1 WO2023042783 A1 WO 2023042783A1 JP 2022034031 W JP2022034031 W JP 2022034031W WO 2023042783 A1 WO2023042783 A1 WO 2023042783A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
core
shell
fau
powder
Prior art date
Application number
PCT/JP2022/034031
Other languages
French (fr)
Japanese (ja)
Inventor
優太郎 辻
泰之 武田
伸司 岩本
Original Assignee
ユミコア日本触媒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユミコア日本触媒株式会社 filed Critical ユミコア日本触媒株式会社
Publication of WO2023042783A1 publication Critical patent/WO2023042783A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y

Definitions

  • the present invention relates to core-shell zeolites.
  • HCT hydrocarbon trap
  • Japanese Patent Application Laid-Open No. 2-135126 discloses that an exhaust system is provided with an exhaust gas purification catalyst, and one or more kinds of catalyst metals are supported on a part of a zeolite-coated monolith carrier on the upstream side of the catalyst.
  • An automobile exhaust gas purifier is disclosed, which is characterized by comprising an adsorbent of
  • the document also describes that H-type mordenite (MOR) or HY-type zeolite (FAU) is preferable as the zeolite from the viewpoint of adsorption performance. According to this document, it is possible to improve the purification performance of HC at a relatively low temperature at which HC begins to desorb from the adsorbent by using the automobile exhaust gas purifier.
  • the FAU zeolite has a relatively large amount of hydrocarbon adsorption, the temperature range in which hydrocarbons are desorbed is lower than the temperature range in which the three-way catalyst is sufficiently activated, and the amount of hydrocarbon emissions is sufficiently reduced. There is a problem that it may not be possible to reduce it.
  • the object of the present invention is to provide means for increasing the desorption temperature of hydrocarbons in a hydrocarbon adsorbent made of zeolite.
  • the inventors have conducted intensive research to solve the above problems. As a result, the present inventors have found that the above problems can be solved by a core-shell zeolite having a zeolite with a large channel diameter as a core and a zeolite with a small channel diameter as a shell, and have completed the present invention.
  • one aspect of the present invention has a core made of a first zeolite and a shell made of a second zeolite, wherein the channel diameter of the first zeolite is larger than the channel diameter of the second zeolite.
  • FIG. 1 is an SEM image of powder d.
  • FIG. 2 is an SEM image of powder h.
  • One form of the invention is a core-shell having a core made of a first zeolite and a shell made of a second zeolite, wherein the channel diameter of the first zeolite is greater than the channel diameter of the second zeolite.
  • type zeolite According to the core-shell type zeolite according to the present invention, the desorption temperature of hydrocarbons can be increased in the hydrocarbon adsorbent made of zeolite.
  • the present invention can desorb hydrocarbons at a higher temperature than conventional zeolites, the present inventors speculate as follows.
  • the present invention is not limited to the following mechanism.
  • Zeolite is a crystalline aluminosilicate, and more than 245 types of skeletal structures are known.
  • a zeolite has a specific channel diameter due to its framework structure, and hydrocarbons enter and exit through these channels (tubular pores), thereby exerting its function as a hydrocarbon adsorbent.
  • channel diameter due to its framework structure, and hydrocarbons enter and exit through these channels (tubular pores), thereby exerting its function as a hydrocarbon adsorbent.
  • channel diameter the smaller the adsorption amount of hydrocarbons, and the more difficult it is for hydrocarbons to enter and exit, so the desorption temperature is higher.
  • the larger the channel diameter the larger the adsorption amount of hydrocarbons, and the easier the entrance and exit of hydrocarbons, and the lower the desorption temperature.
  • the core-shell zeolite according to the present invention the core with a large channel diameter adsorbs a large amount of hydrocarbons, while the shell with a small channel diameter suppresses the desorption of hydrocarbons. Also, the existence of crystal interfaces between the core and the shell makes the channels discontinuous and prevents the hydrocarbons adsorbed on the core from migrating to the shell. As a result, it is possible to increase the desorption temperature of hydrocarbons. In addition, since the hydrocarbon adsorbent consisting only of zeolite with a small channel diameter adsorbs a small amount of hydrocarbons as described above, all hydrocarbons are desorbed within a short time after the start of desorption when the exhaust gas temperature rises. detached.
  • the core-shell type zeolite according to the present invention hydrocarbons are desorbed over a longer period of time from the start of desorption. can be supplied to the catalyst.
  • the catalyst using the core-shell type zeolite according to the present invention it is possible to improve the purification performance of hydrocarbons.
  • the core-shell zeolite according to the present invention contains at least two types of zeolite (first zeolite and second zeolite) with different channel diameters.
  • first zeolite and second zeolite zeolite
  • the present invention will be described mainly taking as an example a core-shell zeolite in which the core is composed of one type of first zeolite and the shell is composed of one type of second zeolite.
  • the present invention is not limited to such a form, and is a core-shell type zeolite in which the core is composed of two or more first zeolites and/or the shell is composed of two or more second zeolites. It also includes certain forms.
  • the channel diameter of each zeolite is determined by identifying the type of zeolite contained in the core-shell zeolite by X-ray diffraction analysis, and then identifying the identified zeolite indicated by the International Zeolite Association (IZA). Adopt the value of Maximum diameter of a sphere that can be included.
  • the zeolite with the larger channel diameter is defined as the first zeolite
  • the zeolite with the smaller channel diameter is defined as the second zeolite.
  • the core is composed of two or more first zeolites and/or the shell is composed of two or more second zeolites
  • the smallest channel diameter of the first zeolites is the second larger than the largest channel diameter among the zeolites.
  • the specific types and combinations of the first zeolite and the second zeolite are not particularly limited, but the following types and combinations are preferred.
  • the type of zeolite means the skeleton structure of the zeolite.
  • the types of zeolites (skeletal structures) in this specification are expressed in three-letter codes defined by the International Zeolite Association (IZA).
  • the first zeolite preferably has a channel diameter larger than any hydrocarbon species contained in the exhaust gas and retains a large amount of hydrocarbons in a low temperature range of less than 110 ° C., such as FAU, LEV, MWW and It is preferably at least one selected from the group consisting of LTA, more preferably FAU and/or LEV, and even more preferably FAU.
  • the second zeolite preferably has a channel diameter equal to or smaller than that of any hydrocarbon species contained in the exhaust gas, and is capable of retaining the adsorbed hydrocarbon species even in a high temperature range of 110°C or higher.
  • BEA, CHA, MFI, MOR, SZR, FER and TON preferably at least one selected from the group consisting of BEA, CHA, MFI, MOR and SZR. more preferably, BEA and/or MFI, and particularly preferably BEA.
  • the combination is FAU (11.24 ⁇ )/BEA (6.68 ⁇ ) or FAU (11.24 ⁇ )/MFI (6.36 ⁇ ).
  • the core-shell zeolite according to the present invention has a core-shell structure in which the first zeolite (the zeolite with the larger channel diameter) is arranged in the core and the second zeolite (the zeolite with the smaller channel diameter) is arranged in the shell. .
  • whether or not zeolite has a core-shell structure is determined by the following method.
  • the zeolite is identified by confirming whether the 2 ⁇ of each peak seen in the XRD pattern after analysis matches the diffraction angle described in the JCPDS card. When all the diffraction angles match, it can be identified as the zeolite, and at least the 2 ⁇ of the three peaks in descending order of intensity can be seen at an angle of 0.02° before and after the diffraction angle. , can be identified as the zeolite. This is because error factors and the like are included when the goniometer moves.
  • P 1 represents the zeta potential (mV) of the particles composed of the first zeolite.
  • P2 represents the zeta potential (mV) of the particles consisting of the second zeolite.
  • P x represents the zeta potential (mV) of the zeolite particles of interest.
  • the zeta potential adopts the value obtained by the measuring method described in the examples below.
  • the zeta potential is a value that depends on the charge on the surface of the particles
  • the zeta potential of the particles when the first zeolite is completely covered with the second zeolite is theoretically equal to that of particles consisting only of the second zeolite.
  • the value of the zeta potential of the particles when the first zeolite is not covered with the second zeolite has a value of The zeta potential value of the particle shifts toward the value of A larger shift ratio (
  • the first zeolite is completely covered with the second zeolite, or there is a portion that is not covered with the second zeolite. Even so, the percentage is likely to be low. Therefore, such a case is regarded as "the zeolite has a core-shell structure".
  • is essentially 0 or more and less than 0.10 (0.00 or more and less than 0.10), preferably 0 or more and 0.09 or less. , more preferably 0 or more and 0.05 or less, and still more preferably 0 or more and 0.03 or less. If the value is within the above range, it is considered that the first zeolite is well coated with the second zeolite (the proportion of the first zeolite exposed is low), so the effect of the present invention (carbonization increasing the desorption temperature of hydrogen) is further exhibited.
  • the proportions of the first zeolite and the second zeolite contained in the core-shell zeolite are not particularly limited.
  • the mass (percentage) of the second zeolite with respect to the total mass of the core-shell zeolite is preferably more than 62% by mass and 95% by mass or less. , more preferably 71% by mass or more and 91% by mass or less, and still more preferably 71% by mass or more and 87% by mass or less.
  • the second zeolite is present in a sufficient amount, so that the first zeolite can be satisfactorily coated with the second zeolite.
  • the mass (percentage) of the first zeolite with respect to the total mass of the core-shell zeolite is a value obtained by subtracting the mass (percentage) of the second zeolite from the total mass of 100% by mass.
  • the core may contain components other than the first zeolite, and the shell may contain components other than the second zeolite, as long as the effects of the present invention can be exhibited.
  • the amount of the first zeolite contained in the core is preferably 90% by mass or more with respect to the total mass of the core, and 95% by mass or more. It is more preferably 98% by mass or more, particularly preferably 99% by mass or more, and most preferably 100% by mass.
  • the amount of the second zeolite contained in the shell is preferably 90% by mass or more, more preferably 95% by mass or more, and 98% by mass or more with respect to the total mass of the shell. is more preferable, 99% by mass or more is particularly preferable, and 100% by mass is most preferable.
  • the method for producing the core-shell type zeolite according to the present invention is not particularly limited, and methods for producing zeolite that can be used in this technical field can be appropriately combined. According to a preferred example, after preparing the particles made of the first zeolite as the core, the particles made of the first zeolite are coated with the precursor of the second zeolite, and the precursor of the second zeolite is crystallized. A method for producing a core-shell type zeolite is exemplified.
  • a method for producing a core-shell zeolite comprises a step of preparing particles made of a first zeolite (hereinafter also referred to as “step 1”), and preparing a precursor of a second zeolite. a step of coating the first zeolite particles with the second zeolite precursor, and then crystallizing the second zeolite precursor (hereinafter also referred to as “step 2”); hereinafter also referred to as “step 3”). Each step will be described in detail below.
  • Step 1 particles of the first zeolite are prepared. Since the specific method for preparing the particles made of the first zeolite differs depending on the type (skeletal structure) of the first zeolite, the following description will be given for particles made of FAU zeolite when the first zeolite is FAU zeolite ( Hereinafter, a method for preparing FAU particles) will be described as an example. As for the method for preparing particles made of zeolite other than FAU zeolite, known techniques can be appropriately adopted.
  • a method for preparing FAU particles includes, for example, a method of hydrothermally crystallizing a mixture of a silica source, an alumina source and an alkali source (hereinafter also referred to as a "raw material mixture").
  • silica sources include colloidal silica (silica sol), amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like.
  • alumina sources include aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, and metal aluminum.
  • Alkali sources include, for example, various salts such as sodium, potassium and ammonium hydroxides, halides, sulfates, nitrates and carbonates, alkali components in aluminates, silicates and aluminosilicate gels. etc. can be used.
  • the method of mixing these raw materials is also not particularly limited, but a method of dissolving the alumina source and alkali source in water as a solvent and then adding the silica source dropwise to the aqueous solution and mixing is preferred.
  • the first zeolite may be crystallized or partially amorphous in the crystallized zeolite, but is preferably crystallized zeolite only. Crystallization conditions vary depending on raw materials, scales, and the like, and can be appropriately set by those skilled in the art.
  • the temperature for crystallization is preferably 70-250°C, more preferably 120-180°C.
  • the crystallization time varies depending on the type of first zeolite. For example, FAU can be crystallized preferably in 15 hours to 6 days, more preferably in 2 to 4 days. Crystallization can be performed either by standing still or under stirring.
  • the FAU particles can be obtained by drying the water adhering to the particles.
  • the average particle size of the particles made of the first zeolite is not particularly limited, but is preferably 3-15 ⁇ m, more preferably 5-8 ⁇ m. If the average particle diameter is within such a range, the particles made of the first zeolite can be satisfactorily coated with the precursor of the second zeolite (for example, the precursor of BEA zeolite) in step 2 described later. . As a result, it is possible to obtain a core-shell zeolite having excellent hydrocarbon adsorption/desorption performance.
  • the median diameter (D50) measured by a laser diffraction/scattering particle size distribution analyzer is used as the average particle size of particles.
  • a precursor of the second zeolite is prepared.
  • the precursor of the second zeolite means a substance in an amorphous state before becoming the second zeolite by crystallization. Since the second zeolite is amorphous, it can be coated on the surface of the first zeolite. When the second zeolite is crystallized, the surface of each crystal of the first and second zeolites is stable, so the surface of the first zeolite is not coated and the second zeolite exists alone as the second zeolite. I don't like it because it's easy. Whether or not the target substance is a precursor (amorphous state) can be determined by X-ray diffraction analysis.
  • the precursor of BEA zeolite (also referred to as "BEA precursor") will be described as an example.
  • a known technique can be appropriately adopted as for the method for preparing a precursor made of zeolite other than BEA zeolite.
  • a mixture of a silica source, an alumina source, an alkali source, and an optional template molecule (also referred to as a structure-directing agent (OSDA)) (hereinafter referred to as a “raw material mixture ”) is hydrothermally treated.
  • OSDA structure-directing agent
  • silica source alumina source
  • alkali source alumina source
  • silica source alumina source
  • alkali source alumina source
  • template molecules include tetraethylammonium hydroxide, tetraethylammonium bromide, hexamethyleneimine, and the like.
  • the method of mixing these raw materials is also not particularly limited, but after dissolving the alumina source, the alkali source, and the optionally used template molecule in water as a solvent, the silica source is added dropwise to the aqueous solution and mixed. A method is preferred.
  • Examples of methods for amorphizing the raw material mixture under hydrothermal treatment include a method using an autoclave.
  • Amorphization conditions vary depending on raw materials, scales, and the like, and can be appropriately set by those skilled in the art.
  • the temperature for amorphization is preferably 70-250°C, more preferably 120-150°C.
  • Amorphization time is preferably from 2 hours to less than 6 days, more preferably from 1 to 3 days.
  • Amorphization can be carried out either by standing still or under stirring. Thereby, a BEA precursor, which is a white gel-like product, can be obtained.
  • Step 3 After the particles of the first zeolite are coated with the precursor of the second zeolite, the precursor of the second zeolite is crystallized.
  • the precursor of the second zeolite is crystallized.
  • a method for producing a core-shell zeolite in which the first zeolite is FAU zeolite and the second zeolite is BEA zeolite will be described as an example.
  • FAU zeolite particles As a method of coating FAU zeolite particles with a BEA zeolite precursor, there is a method of adding FAU particles to the BEA precursor, which is the aforementioned white gel-like product, and stirring if necessary.
  • the mixing ratio of the FAU particles and the BEA precursor is such that the mass of the first zeolite and the mass of the second zeolite in the core-shell zeolite are within the range described above.
  • the FAU particles may be subjected to an ion exchange treatment in advance in order to align the cations of the FAU particles with the cations of the BEA precursor.
  • proton-type FAU particles are subjected to an ion exchange treatment with tetraethylammonium ions in order to align them with tetraethylammonium ions, which are cations of the BEA precursor.
  • the BEA precursor coating the FAU particles is crystallized under hydrothermal conditions.
  • a method of crystallization under hydrothermal conditions includes, for example, a method using an autoclave. Crystallization conditions vary depending on raw materials, scales, and the like, and can be appropriately set by those skilled in the art.
  • the temperature for crystallization is preferably 70-250°C, more preferably 120-180°C. Crystallization time is preferably 6-14 days, more preferably 8-10 days. Crystallization can be performed either by standing still or under stirring.
  • the core-shell type zeolite according to the present invention can be obtained by drying the water adhering to the particles.
  • the average particle size of the core-shell zeolite is not particularly limited, but is preferably 4-20 ⁇ m, more preferably 7-10 ⁇ m. If the average particle size is within such a range, the cordierite three-dimensional structure can be washcoated without any problem.
  • the core-shell type zeolite according to the present invention can raise the desorption temperature of hydrocarbons, it can improve the purification performance of hydrocarbons in exhaust gas by applying it to an exhaust gas purification catalyst. Therefore, according to another aspect of the present invention, there is provided an exhaust gas purifying catalyst in which the core-shell type zeolite according to the present invention and a noble metal are supported on a three-dimensional structure.
  • the exhaust gas purifying catalyst (hereinafter also referred to as "catalyst") according to the present invention can appropriately employ known techniques, except that it contains the core-shell type zeolite according to the present invention. Therefore, the present invention is not limited to the following embodiments.
  • the catalyst according to the present invention essentially contains core-shell zeolite.
  • the content of the core-shell type zeolite is preferably 10 to 200 g, more preferably 30 to 120 g, and even more preferably 55 to 85 g per liter of the three-dimensional structure.
  • the catalyst according to the present invention essentially contains a noble metal.
  • Precious metals catalyze oxidation-reduction reactions to purify exhaust gases.
  • the type of noble metal is not particularly limited, but platinum (Pt), palladium (Pd), rhodium (Rh) and the like can be mentioned. These noble metals may be used alone or in combination of two or more.
  • the noble metal is preferably at least one selected from platinum, palladium and rhodium, more preferably palladium alone; a combination of platinum and/or palladium and rhodium, particularly preferably palladium alone, palladium and rhodium.
  • the content of platinum is preferably 0.01 to 20 g, more preferably 0.05 to 10 g, and more than 0.5 g and less than 5 g per 1 L of the three-dimensional structure, considering the exhaust gas purification performance. is more preferred.
  • the content of palladium is preferably 0.01 to 20 g, more preferably 0.05 to 5 g, more preferably 0.3 to 3 g is more preferred.
  • the content of rhodium is preferably 0.01 to 20 g, more preferably 0.05 to 5 g, more preferably 0.1 to 3 g is more preferred.
  • the catalyst according to the present invention may optionally contain a refractory inorganic oxide (excluding core-shell zeolite).
  • a refractory inorganic oxide has a function as a carrier for supporting catalyst components such as noble metals, rare earth metals, and other metal elements.
  • the refractory inorganic oxide has a high specific surface area, and by supporting the catalyst component on this, it is possible to increase the contact area between the catalyst component and the exhaust gas and to adsorb the reactant. . As a result, it is possible to further increase the reactivity of the catalyst as a whole.
  • refractory inorganic oxides examples include alumina, zeolite (excluding core-shell zeolite), titania, zirconia, and silica. These refractory inorganic oxides may be used alone or in combination of two or more. Among these, alumina and zirconia are preferred, and alumina is more preferred, from the viewpoint of high-temperature durability and high specific surface area.
  • the alumina that is preferably used as the refractory inorganic oxide is not particularly limited as long as it contains an oxide of aluminum.
  • the content of the refractory inorganic oxide is preferably 10-300 g, more preferably 40-200 g, per 1 L of the three-dimensional structure.
  • the content of the refractory inorganic oxide is 10 g/L or more, the precious metal can be sufficiently dispersed in the refractory inorganic oxide, resulting in a catalyst with more sufficient durability.
  • the content of the refractory inorganic oxide is 300 g/L or less, the state of contact between the noble metal and the exhaust gas is improved, and exhaust gas purification performance can be exhibited more fully.
  • the catalyst according to the present invention may optionally contain a ceria-zirconia composite oxide (CeO 2 —ZrO 2 ) as an oxygen storage material.
  • the oxygen storage material also referred to as "oxygen storage/release material” stores oxygen in an oxidizing atmosphere (lean) in response to fluctuations in the air-fuel ratio (A/F) that changes according to operating conditions. In a reducing atmosphere (rich), it has the function of stably advancing the oxidation/reduction reaction by releasing oxygen.
  • the ceria-zirconia composite oxide may contain at least one metal selected from the group consisting of lanthanum (La), yttrium (Y), neodymium (Nd), and praseodymium (Pr). Specific examples include ceria-zirconia-lanthana composite oxides, ceria-zirconia-lanthana-yttria composite oxides, and the like.
  • the content of the ceria-zirconia composite oxide is not particularly limited, but is preferably 5 to 200 g, more preferably 5 to 100 g, and even more preferably 10 to 90 g per 1 L of the three-dimensional structure. By including the ceria-zirconia composite oxide in such a content, the oxidation/reduction reaction can proceed stably.
  • the catalyst according to the invention may further contain other components.
  • Other components include Group 2 elements such as magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). These elements can be contained in the exhaust gas purifying catalyst in the form of oxides, nitrates or carbonates. Among them, barium and/or strontium are preferred, and strontium oxide (SrO), barium sulfate (BaSO 4 ) and/or barium oxide (BaO) are more preferred. These other components may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the content of the other components (especially SrO, BaSO 4 , BaO) (in terms of oxide) is preferably 0 to 50 g per liter of the three-dimensional structure. Yes, more preferably 0.1 to 30 g, still more preferably 0.5 to 20 g.
  • the three-dimensional structure functions as a carrier that supports core-shell zeolite, noble metals, refractory inorganic oxides, ceria-zirconia composite oxides, and other components.
  • the three-dimensional structure can appropriately adopt a fire-resistant three-dimensional structure known in this technical field.
  • a heat-resistant carrier such as a honeycomb carrier having triangular, quadrangular, or hexagonal through-holes (gas passage openings, cell shape) can be used.
  • the catalyst according to the present invention can be produced by appropriately referring to known knowledge.
  • a method for producing a catalyst according to the present invention will be briefly described below.
  • a core-shell zeolite, a noble metal source, and, if necessary, other components such as those described above (e.g., refractory inorganic oxides, ceria-zirconia composite oxides, other components) and an aqueous medium are added to a desired composition.
  • the materials are appropriately weighed, mixed, and stirred at 5 to 95° C. for 0.5 to 24 hours (if necessary, wet pulverization is performed after stirring) to prepare a slurry.
  • the aqueous medium water (pure water, ultrapure water, deionized water, distilled water, etc.), lower alcohols such as ethanol and 2-propanol, organic alkaline aqueous solutions, and the like can be used. Among them, it is preferable to use water and lower alcohols, and it is more preferable to use water.
  • the amount of the aqueous medium is not particularly limited, but it is preferably such that the proportion of solids in the slurry (mass concentration of solids) is 10 to 60% by mass, more preferably 30 to 50% by mass.
  • the slurry prepared above is applied to the three-dimensional structure.
  • a known method such as wash coating can be appropriately employed.
  • the amount of slurry to be applied can be appropriately determined by those skilled in the art according to the amount of solid matter in the slurry and the thickness of the catalyst layer to be formed.
  • the amount of the slurry to be applied is preferably such that each component has the content (supported amount) as described above.
  • the three-dimensional structure to which the slurry has been applied is dried in the air, preferably at a temperature of 70-200°C, for 5 minutes to 5 hours.
  • the dried slurry coating film (catalyst precursor layer) thus obtained is calcined in air at a temperature of 400° C. to 900° C. for 10 minutes to 3 hours. Under such conditions, catalyst components (core-shell zeolite, noble metals, etc.) can be efficiently adhered to the three-dimensional structure.
  • the catalyst according to the present invention can be obtained.
  • the catalyst according to the present invention may have only one catalyst layer, or may have a structure in which two or more catalyst layers are laminated, as long as it has a core-shell type zeolite and a noble metal. may have.
  • the core-shell zeolite and the noble metal may be contained in the same layer or in different layers.
  • the core-shell zeolite and the noble metal are contained in different layers, more preferably with the core-shell zeolite in the lower layer and the noble metal in the upper layer. With such arrangement, the ability of the core-shell zeolite according to the present invention can be maximized.
  • the catalyst according to the present invention can exhibit high purification performance for exhaust gas containing hydrocarbons. Therefore, according to still another aspect of the present invention, there is provided a method for purifying exhaust gas, comprising bringing an exhaust gas purifying catalyst according to the present invention into contact with exhaust gas containing hydrocarbons.
  • the temperature of the exhaust gas may be the temperature of the exhaust gas during normal gasoline engine operation, preferably 0 to 1500°C, more preferably 25 to 700°C.
  • exhaust gas temperature means the temperature of the exhaust gas at the catalyst inlet.
  • catalyst inlet refers to a portion 15 cm from the exhaust gas inflow side end face of the catalyst.
  • the catalyst according to the present invention can exhibit sufficient catalytic activity by itself, but a similar or different exhaust gas purifying catalyst may be added to the front stage (inflow side) or rear stage (outflow side) of the catalyst according to the present invention. may be placed. That is, the catalyst according to the present invention is arranged alone, or the catalyst according to the present invention is arranged both in the front stage (inflow side) and the rear stage (outflow side), or the catalyst according to the present invention is arranged in the front stage (inflow side) and the rear stage. (outflow side), and it is preferable to arrange a conventionally known exhaust gas purifying catalyst on the other side.
  • the present invention includes the following aspects and forms: 1. having a core made of a first zeolite and a shell made of a second zeolite, a core-shell zeolite, wherein the channel diameter of the first zeolite is greater than the channel diameter of the second zeolite; 2. 1.
  • the first zeolite is at least one selected from the group consisting of FAU, LEV, MWW and LTA.
  • the core-shell zeolite according to any one of; 7. preparing particles of the first zeolite; preparing a precursor of the second zeolite; After coating the particles of the first zeolite with the precursor of the second zeolite, crystallizing the precursor of the second zeolite; A method for producing a core-shell zeolite having 8. 1 above. to the above 6.
  • a catalyst for purifying exhaust gas wherein the core-shell type zeolite according to any one of 1 and a noble metal are supported on a three-dimensional structure; 9. 8 above.
  • a method for purifying exhaust gas comprising contacting the exhaust gas purifying catalyst according to 1 to exhaust gas containing hydrocarbons.
  • XRD measurement The crystal structure of powder a was confirmed using an X-ray diffraction (XRD) method. The measurement was performed using an X-ray diffraction measurement device (RINT2200VF, manufactured by Rigaku Corporation). The measurement conditions are as follows: measurement angle range (2 ⁇ ): 3° to 80°, step interval: 0.02°, measurement time: 1.2 seconds/step, radiation source: CuK ⁇ ray, tube voltage: 40 kV, current: 20mA.
  • powder a (BEA only) has a zeta potential of ⁇ 25.75 mV and powder h (FAU only) has a zeta potential of 32.06 mV.
  • Theoretical value of zeta potential (mV) -25.75 (mV) x percentage of BEA (% by mass)/100 + 32.06 (mV) x percentage of FAU (% by mass)/100.
  • the measured zeta potentials of powders c and d were both similar to the zeta potential of powder a (only BEA) (
  • the measured zeta potential for powder e was significantly different from the zeta potential for powder a (BEA only) (
  • are 0.23 and 0.30, respectively. From this result as well, the higher the ratio of particles composed only of the first zeolite (FAU) (the larger the area of the first zeolite (FAU) on the surface of the particles), the more
  • HC adsorption/desorption performance The HC adsorption/desorption performance of each powder was evaluated by toluene TPD (Temperature Programmed Desorption). The measurement was carried out using a catalyst analyzer (BELCAT II manufactured by Microtrac Bell). As the measurement gas, helium gas containing 3000 ppmC of toluene gas and water vapor (3% by volume) was used. The sample amount was 0.050 g, and the measurement was performed from 50°C to 400°C at a temperature elevation rate of 10°C/min. The gas after the reaction was analyzed using a quadrupole mass spectrometer (BELMASS, manufactured by Microtrack Bell).
  • BELMASS quadrupole mass spectrometer
  • the temperature at which the detected amount of toluene first coincides with 3000 ppmC which is the toluene concentration in the circulation, was defined as the desorption start temperature
  • the temperature at which the detected amount of toluene was maximized was defined as the peak top temperature for analysis.
  • the higher the desorption start temperature and peak top temperature the better the zeolite's ability to adsorb and desorb hydrocarbons.
  • this evaluation was not performed. The results are shown in Table 2 below.
  • Table 2 shows that powders b to d according to the present invention have significantly high desorption start temperatures and peak top temperatures. Therefore, it was shown that the core-shell zeolite according to the present invention can increase the desorption temperature of HC.
  • Slurry a1 was wash-coated on a cordierite three-dimensional structure (diameter 25.4 mm, length 30 mm, cylindrical, 0.0157 L, 400 cells/square inch) so that the amount supported after firing was 80 g/L. bottom. Next, after drying in the air at 150° C. for 5 minutes, it was calcined in the air at 550° C. for 30 minutes.
  • the slurry a2 was wash-coated on the three-dimensional structure that had been wash-coated with the slurry a1 so that the load after firing was 59.58 g/L.
  • the catalyst A was obtained by calcining in the air at 550° C. for 30 minutes.
  • Example 3-2 A catalyst D was obtained in the same manner as in Comparative Example 1-2, except that powder d was used instead of powder a.
  • HC purification rate (HC purification rate)
  • a gas having a composition shown in Table 3 below (spatial velocity: 50000 hr ⁇ 1 , gas linear velocity: 0.42 m/sec) was passed through the end face of the catalyst on the gas inflow side.
  • Table 4 shows the HC purification rate when the temperature at the position 1 cm from the center is set to 110°C.
  • Table 4 shows that catalyst D according to the present invention has a significantly higher desorption start temperature and peak top temperature.
  • HC can be desorbed in a temperature range where HC can be purified by Pd by increasing the desorption temperature of HC.
  • the catalyst containing the core-shell zeolite according to the present invention has a high HC purification rate even at a low temperature of 110°C.

Abstract

Provided is a means for increasing the hydrocarbon desorption temperature in a hydrocarbon adsorbent made of zeolite. Provided is a core-shell zeolite having a core made of a first zeolite and a shell made of a second zeolite, wherein the channel diameter of the first zeolite is larger than the channel diameter of the second zeolite.

Description

コアシェル型ゼオライトcore-shell zeolite
 本発明はコアシェル型ゼオライトに関する。 The present invention relates to core-shell zeolites.
 近年、自動車の排気ガス規制が強化されてきている。ガソリンエンジン車では、エンジン始動直後の三元触媒がまだ活性化していない低温域において排出される炭化水素(HC)の排出量低減が求められている。この要求に対して、炭化水素を低温域で吸着し、高温域で脱離することができる、炭化水素吸着剤(Hydrocarbon trap;HCT)を含む触媒が用いられている。これにより、低温域で排出される炭化水素を、浄化可能な高温域まで一時的に吸着することが可能となるため、炭化水素の排出量を低減できる。 In recent years, automobile exhaust gas regulations have been tightened. Gasoline engine vehicles are required to reduce the amount of hydrocarbons (HC) emitted in a low-temperature region immediately after the engine is started, where the three-way catalyst has not yet been activated. To meet this demand, a catalyst containing a hydrocarbon trap (HCT) is used, which is capable of adsorbing hydrocarbons in a low temperature range and desorbing them in a high temperature range. As a result, it is possible to temporarily adsorb hydrocarbons discharged in a low temperature range up to a high temperature range where purification is possible, so that the amount of hydrocarbons discharged can be reduced.
 従来、炭化水素吸着剤として、ゼオライトが広く使用されてきた。例えば、特開平2-135126号公報には、排気系に、排気ガス浄化触媒を備え、該触媒の上流側に、ゼオライトをコートしたモノリス担体の一部に1種類以上の触媒金属を担持してなる吸着剤を備えたことを特徴とする自動車排気ガス浄化装置が開示されている。また、当該文献には、ゼオライトとしては、吸着性能の観点から、H型モルデナイト(MOR)あるいはH-Y型ゼオライト(FAU)が好ましいことが記載されている。当該文献によると、上記自動車排気ガス浄化装置により、HCが吸着剤から脱離し始める比較的低い温度におけるHCの浄化性能を向上させることができるとされている。 Conventionally, zeolites have been widely used as hydrocarbon adsorbents. For example, Japanese Patent Application Laid-Open No. 2-135126 discloses that an exhaust system is provided with an exhaust gas purification catalyst, and one or more kinds of catalyst metals are supported on a part of a zeolite-coated monolith carrier on the upstream side of the catalyst. An automobile exhaust gas purifier is disclosed, which is characterized by comprising an adsorbent of The document also describes that H-type mordenite (MOR) or HY-type zeolite (FAU) is preferable as the zeolite from the viewpoint of adsorption performance. According to this document, it is possible to improve the purification performance of HC at a relatively low temperature at which HC begins to desorb from the adsorbent by using the automobile exhaust gas purifier.
 しかしながら、FAUゼオライトは、炭化水素の吸着量は比較的多いものの、炭化水素を脱離する温度域が、三元触媒が充分に活性化する温度域よりも低く、炭化水素の排出量を充分に低減できない場合があるという問題がある。 However, although the FAU zeolite has a relatively large amount of hydrocarbon adsorption, the temperature range in which hydrocarbons are desorbed is lower than the temperature range in which the three-way catalyst is sufficiently activated, and the amount of hydrocarbon emissions is sufficiently reduced. There is a problem that it may not be possible to reduce it.
 そこで本発明は、ゼオライトからなる炭化水素吸着剤において、炭化水素の脱離温度を上昇させる手段を提供することを目的とする。 Therefore, the object of the present invention is to provide means for increasing the desorption temperature of hydrocarbons in a hydrocarbon adsorbent made of zeolite.
 本発明者らは、上記課題を解決すべく、鋭意研究を行った。その結果、チャンネル直径が大きなゼオライトをコアとし、チャンネル直径が小さなゼオライトをシェルとしたコアシェル型のゼオライトにより、上記課題が解決できることを見出し、本発明を完成させるに至った。 The inventors have conducted intensive research to solve the above problems. As a result, the present inventors have found that the above problems can be solved by a core-shell zeolite having a zeolite with a large channel diameter as a core and a zeolite with a small channel diameter as a shell, and have completed the present invention.
 すなわち、本発明の一形態は、第1のゼオライトからなるコアと、第2のゼオライトからなるシェルと、を有し、前記第1のゼオライトのチャンネル直径が前記第2のゼオライトのチャンネル直径より大きい、コアシェル型ゼオライトである。 That is, one aspect of the present invention has a core made of a first zeolite and a shell made of a second zeolite, wherein the channel diameter of the first zeolite is larger than the channel diameter of the second zeolite. , which are core-shell zeolites.
図1は、粉体dのSEM画像である。FIG. 1 is an SEM image of powder d. 図2は、粉体hのSEM画像である。FIG. 2 is an SEM image of powder h.
 以下、本発明の実施形態を説明する。なお、本明細書中の数値範囲「A~B」は、「A以上B以下」を意味する。また、「Aおよび/またはB」とは、「AまたはBのいずれか一方」または「AおよびBの両方」を意味する。また、本明細書中の各種物性は、特記しない限り、後述する実施例に記載の方法により測定した値を意味する。 Embodiments of the present invention will be described below. The numerical range "A to B" in this specification means "A or more and B or less". In addition, "A and/or B" means "either A or B" or "both A and B." In addition, unless otherwise specified, various physical properties in the present specification mean values measured by the methods described in Examples described later.
 <コアシェル型ゼオライト>
 本発明の一形態は、第1のゼオライトからなるコアと、第2のゼオライトからなるシェルと、を有し、前記第1のゼオライトのチャンネル直径が前記第2のゼオライトのチャンネル直径より大きい、コアシェル型ゼオライトである。本発明に係るコアシェル型ゼオライトによると、ゼオライトからなる炭化水素吸着剤において、炭化水素の脱離温度を上昇させることができる。
<Core-shell type zeolite>
One form of the invention is a core-shell having a core made of a first zeolite and a shell made of a second zeolite, wherein the channel diameter of the first zeolite is greater than the channel diameter of the second zeolite. type zeolite. According to the core-shell type zeolite according to the present invention, the desorption temperature of hydrocarbons can be increased in the hydrocarbon adsorbent made of zeolite.
 本発明に係るコアシェル型ゼオライトが従来のゼオライトよりも高温で炭化水素を脱離できる理由は定かではないが、本発明者らは以下のように推測している。なお、本発明は下記メカニズムに限定されるものではない。 Although it is not clear why the core-shell zeolite according to the present invention can desorb hydrocarbons at a higher temperature than conventional zeolites, the present inventors speculate as follows. In addition, the present invention is not limited to the following mechanism.
 ゼオライトは、結晶性アルミノケイ酸塩であり、245種類以上の骨格構造が知られている。ゼオライトは骨格構造により固有のチャンネル直径を有し、このチャンネル(管状細孔)に炭化水素が出入りすることで、炭化水素吸着剤としての機能を発揮する。チャンネル直径と、炭化水素の吸着量および脱離温度との間には相関関係があることが知られている。すなわち、チャンネル直径が小さいほど、炭化水素の吸着量は少なく、炭化水素が出入りしにくいため脱離温度は高い。一方、チャンネル直径が大きいほど、炭化水素の吸着量が多く、炭化水素が出入りしやすいため脱離温度は低い。 Zeolite is a crystalline aluminosilicate, and more than 245 types of skeletal structures are known. A zeolite has a specific channel diameter due to its framework structure, and hydrocarbons enter and exit through these channels (tubular pores), thereby exerting its function as a hydrocarbon adsorbent. It is known that there is a correlation between channel diameter and hydrocarbon adsorption and desorption temperatures. That is, the smaller the channel diameter, the smaller the adsorption amount of hydrocarbons, and the more difficult it is for hydrocarbons to enter and exit, so the desorption temperature is higher. On the other hand, the larger the channel diameter, the larger the adsorption amount of hydrocarbons, and the easier the entrance and exit of hydrocarbons, and the lower the desorption temperature.
 本発明に係るコアシェル型ゼオライトによると、チャンネル直径の大きなコアで多くの炭化水素が吸着されつつ、チャンネル直径の小さなシェルにより炭化水素の脱離が抑制される。また、コアとシェルとの結晶界面が存在することによってチャンネルが不連続となり、コアに吸着された炭化水素がシェルへと移動することが妨げられることも一因でありうる。その結果、炭化水素の脱離温度を上昇させることが可能となる。なお、チャンネル直径の小さなゼオライトのみからなる炭化水素吸着剤では、前述のように炭化水素の吸着量が少ないため、排気ガス温度の上昇時において脱離開始から短時間のうちに全ての炭化水素が脱離してしまう。しかしながら、本発明に係るコアシェル型ゼオライトによると、脱離開始からより長い時間をかけて炭化水素が脱離されるため、排気ガス温度が高い状態、すなわち触媒が充分に活性化した状態で、炭化水素を触媒に供給することが可能となる。その結果、本発明に係るコアシェル型ゼオライトを用いた触媒によると、炭化水素の浄化性能を向上させることが可能となる。 According to the core-shell zeolite according to the present invention, the core with a large channel diameter adsorbs a large amount of hydrocarbons, while the shell with a small channel diameter suppresses the desorption of hydrocarbons. Also, the existence of crystal interfaces between the core and the shell makes the channels discontinuous and prevents the hydrocarbons adsorbed on the core from migrating to the shell. As a result, it is possible to increase the desorption temperature of hydrocarbons. In addition, since the hydrocarbon adsorbent consisting only of zeolite with a small channel diameter adsorbs a small amount of hydrocarbons as described above, all hydrocarbons are desorbed within a short time after the start of desorption when the exhaust gas temperature rises. detached. However, according to the core-shell type zeolite according to the present invention, hydrocarbons are desorbed over a longer period of time from the start of desorption. can be supplied to the catalyst. As a result, according to the catalyst using the core-shell type zeolite according to the present invention, it is possible to improve the purification performance of hydrocarbons.
 本発明に係るコアシェル型ゼオライトは、チャンネル直径の異なる少なくとも2種のゼオライト(第1のゼオライトおよび第2のゼオライト)を含む。以下では、主に、コアが1種の第1のゼオライトから構成され、シェルが1種の第2ゼオライトから構成されるコアシェル型ゼオライトを例に挙げて本発明を説明する。ただし、本発明はこのような形態に制限されず、コアが2種以上の第1のゼオライトから構成される、および/または、シェルが2種以上の第2ゼオライトから構成されるコアシェル型ゼオライトである形態をも包含する。 The core-shell zeolite according to the present invention contains at least two types of zeolite (first zeolite and second zeolite) with different channel diameters. Hereinafter, the present invention will be described mainly taking as an example a core-shell zeolite in which the core is composed of one type of first zeolite and the shell is composed of one type of second zeolite. However, the present invention is not limited to such a form, and is a core-shell type zeolite in which the core is composed of two or more first zeolites and/or the shell is composed of two or more second zeolites. It also includes certain forms.
 本明細書において、各ゼオライトのチャンネル直径は、X線回折分析によりコアシェル型ゼオライトに含まれるゼオライトの種類を同定した上で、国際ゼオライト学会(International Zeolite Association;IZA)により示されている当該同定ゼオライトについてのMaximum diameter of a sphere that can be includedの値を採用する。そして、本明細書においては、2種のゼオライトのうち、チャンネル直径が大きい方のゼオライトを第1のゼオライト、チャンネル直径の小さい方のゼオライトを第2のゼオライトと定義する。コアが2種以上の第1のゼオライトから構成される、および/または、シェルが2種以上の第2ゼオライトから構成される場合は、第1のゼオライトのうちの最小のチャンネル直径が、第2のゼオライトのうちの最大のチャンネル直径よりも大きければよい。 In this specification, the channel diameter of each zeolite is determined by identifying the type of zeolite contained in the core-shell zeolite by X-ray diffraction analysis, and then identifying the identified zeolite indicated by the International Zeolite Association (IZA). Adopt the value of Maximum diameter of a sphere that can be included. In this specification, of the two zeolites, the zeolite with the larger channel diameter is defined as the first zeolite, and the zeolite with the smaller channel diameter is defined as the second zeolite. When the core is composed of two or more first zeolites and/or the shell is composed of two or more second zeolites, the smallest channel diameter of the first zeolites is the second larger than the largest channel diameter among the zeolites.
 本発明において、第1のゼオライトおよび第2のゼオライトの具体的な種類および組み合わせは、特に制限されないが、以下の種類および組み合わせが好ましい形態として挙げられる。なお、本明細書において、ゼオライトの種類とは、ゼオライトの骨格構造を意味するものとする。そして、本明細書中のゼオライトの種類(骨格構造)は、国際ゼオライト学会(International Zeolite Association;IZA)により規定されている3文字コードにて表記される。 In the present invention, the specific types and combinations of the first zeolite and the second zeolite are not particularly limited, but the following types and combinations are preferred. In this specification, the type of zeolite means the skeleton structure of the zeolite. The types of zeolites (skeletal structures) in this specification are expressed in three-letter codes defined by the International Zeolite Association (IZA).
 第1のゼオライトとしては、排気ガス中に含まれる任意の炭化水素種よりも大きなチャンネル直径を有し、110℃未満の低温域において炭化水素保持量が多いものが好ましく、FAU、LEV、MWWおよびLTAからなる群から選択される少なくとも1種であることが好ましく、FAUおよび/またはLEVであることがより好ましく、FAUであることがさらに好ましい。 The first zeolite preferably has a channel diameter larger than any hydrocarbon species contained in the exhaust gas and retains a large amount of hydrocarbons in a low temperature range of less than 110 ° C., such as FAU, LEV, MWW and It is preferably at least one selected from the group consisting of LTA, more preferably FAU and/or LEV, and even more preferably FAU.
 第2のゼオライトとしては、排気ガス中に含まれる任意の炭化水素種と同程度もしくはそれ以下のチャンネル直径を有し、110℃以上の高温域においても吸着した炭化水素種を保持できるものが好ましく、BEA、CHA、MFI、MOR、SZR、FERおよびTONからなる群から選択される少なくとも1種であることが好ましく、BEA、CHA、MFI、MORおよびSZRからなる群から選択される少なくとも1種であることがより好ましく、BEAおよび/またはMFIであることがさらに好ましく、BEAであることが特に好ましい。 The second zeolite preferably has a channel diameter equal to or smaller than that of any hydrocarbon species contained in the exhaust gas, and is capable of retaining the adsorbed hydrocarbon species even in a high temperature range of 110°C or higher. , BEA, CHA, MFI, MOR, SZR, FER and TON, preferably at least one selected from the group consisting of BEA, CHA, MFI, MOR and SZR. more preferably, BEA and/or MFI, and particularly preferably BEA.
 第1のゼオライトと第2のゼオライトとの組み合わせとしては、「第1のゼオライト(チャンネル直径)/第2のゼオライト(チャンネル直径)」の表記で記載すると、FAU(11.24Å)/BEA(6.68Å)、FAU(11.24Å)/MFI(6.36Å)、FAU(11.24Å)/MOR(6.70Å)等が挙げられる。中でも、炭化水素の脱離温度をより向上させる観点から、当該組み合わせは、FAU(11.24Å)/BEA(6.68Å)またはFAU(11.24Å)/MFI(6.36Å)であることが好ましく、FAU(11.24Å)/BEA(6.68Å)がより好ましい。すなわち、本発明の好ましい一形態に係るコアシェル型ゼオライトは、第1のゼオライトがFAUであり、第2のゼオライトがBEAである。 As a combination of the first zeolite and the second zeolite, when described in the notation of "first zeolite (channel diameter) / second zeolite (channel diameter)", FAU (11.24 Å) / BEA (6 .68 Å), FAU (11.24 Å)/MFI (6.36 Å), FAU (11.24 Å)/MOR (6.70 Å), and the like. Among them, from the viewpoint of further improving the desorption temperature of hydrocarbons, the combination is FAU (11.24 Å)/BEA (6.68 Å) or FAU (11.24 Å)/MFI (6.36 Å). Preferred is FAU(11.24 Å)/BEA(6.68 Å). That is, in the core-shell zeolite according to a preferred embodiment of the present invention, the first zeolite is FAU and the second zeolite is BEA.
 本発明に係るコアシェル型ゼオライトは、第1のゼオライト(チャンネル直径が大きい方のゼオライト)がコアに、第2のゼオライト(チャンネル直径の小さい方のゼオライト)がシェルに配置された、コアシェル構造を有する。本明細書においては、ゼオライトがコアシェル構造を有しているか否かについては、以下の手法により判断する。 The core-shell zeolite according to the present invention has a core-shell structure in which the first zeolite (the zeolite with the larger channel diameter) is arranged in the core and the second zeolite (the zeolite with the smaller channel diameter) is arranged in the shell. . In this specification, whether or not zeolite has a core-shell structure is determined by the following method.
 まず、作製したゼオライトのX線回折分析を行い、少なくとも2つの異なるゼオライトが検出されることを確認する。ゼオライトの同定は、分析後のXRDパターンに見られる各ピークの2θがJCPDSカードに記載の回折角度に一致するかどうかを確認することにより行う。すべての回折角度が一致した場合は当然に当該ゼオライトであると同定できるとともに、少なくとも強度が高い順に3つのピークの2θが、回折角度の前後0.02°の角度に回折ピークが見られる場合も、当該ゼオライトであると同定できる。これはゴニオメーターが移動する時の誤差要因等を含むためである。 First, perform X-ray diffraction analysis of the produced zeolite and confirm that at least two different zeolites are detected. The zeolite is identified by confirming whether the 2θ of each peak seen in the XRD pattern after analysis matches the diffraction angle described in the JCPDS card. When all the diffraction angles match, it can be identified as the zeolite, and at least the 2θ of the three peaks in descending order of intensity can be seen at an angle of 0.02° before and after the diffraction angle. , can be identified as the zeolite. This is because error factors and the like are included when the goniometer moves.
 次に、第1のゼオライトのみからなる粒子および第2のゼオライトのみからなる粒子についてのpH=3におけるそれぞれのゼータ電位を測定する。次に、これと同様の方法で、対象のゼオライト粒子についてのpH=3におけるそれぞれのゼータ電位を測定する。そして、これらの値が式:|P-P|/|P-P|<0.10(0.1)の関係を満たしていれば、コアシェル構造を有しているものとする。ここで、Pは、第1のゼオライトからなる粒子のゼータ電位(mV)を表す。Pは、第2のゼオライトからなる粒子のゼータ電位(mV)を表す。Pは、対象のゼオライト粒子のゼータ電位(mV)を表す。なお、本明細書において、ゼータ電位は、後述の実施例に記載の測定方法により得られる値を採用する。 Next, the respective zeta potentials at pH=3 for the first zeolite-only particles and the second zeolite-only particles are measured. Then, in a similar manner, the respective zeta potentials at pH=3 are measured for the zeolite particles of interest. If these values satisfy the relationship of the formula: |P 2 −P x |/|P 2 −P 1 |<0.10 (0.1), it is assumed to have a core-shell structure. . Here, P 1 represents the zeta potential (mV) of the particles composed of the first zeolite. P2 represents the zeta potential (mV) of the particles consisting of the second zeolite. P x represents the zeta potential (mV) of the zeolite particles of interest. In addition, in this specification, the zeta potential adopts the value obtained by the measuring method described in the examples below.
 ゼータ電位は粒子表面の電荷に依存する値であるため、第1のゼオライトが第2のゼオライトにより完全に被覆されている場合における粒子のゼータ電位は、理論上、第2のゼオライトのみからなる粒子のゼータ電位と同じ値となる(|P-P|/|P-P|=0)。一方、第1のゼオライトが第2のゼオライトにより被覆されていない部分が存在する場合における粒子のゼータ電位の値は、第2のゼオライトのみからなる粒子のゼータ電位の値から第1のゼオライトのみからなる粒子のゼータ電位の値の方向にシフトする。シフトする割合(|P-P|/|P-P|)が大きいほど、第1のゼオライトが表面に露出している割合が高いことを意味する。また、|P-P|/|P-P|<0.10を満たす場合は、第1のゼオライトが第2のゼオライトにより完全に被覆されているか、被覆されていない部分が存在するとしても、その割合は低いと考えられる。そのため、このような場合を「ゼオライトがコアシェル構造を有している」とみなす。 Since the zeta potential is a value that depends on the charge on the surface of the particles, the zeta potential of the particles when the first zeolite is completely covered with the second zeolite is theoretically equal to that of particles consisting only of the second zeolite. (|P 2 −P x |/|P 2 −P 1 |=0). On the other hand, the value of the zeta potential of the particles when the first zeolite is not covered with the second zeolite has a value of The zeta potential value of the particle shifts toward the value of A larger shift ratio (|P 2 −P x |/|P 2 −P 1 |) means a higher proportion of the first zeolite exposed to the surface. Further, when |P 2 −P x |/|P 2 −P 1 |<0.10 is satisfied, the first zeolite is completely covered with the second zeolite, or there is a portion that is not covered with the second zeolite. Even so, the percentage is likely to be low. Therefore, such a case is regarded as "the zeolite has a core-shell structure".
 なお、|P-P|/|P-P|の値は、必須に0以上0.10未満(0.00以上0.10未満)であり、好ましくは0以上0.09以下であり、より好ましくは0以上0.05以下であり、さらに好ましくは0以上0.03以下である。当該値が上記範囲であれば、第1のゼオライトが第2のゼオライトによって良好に被覆されている(第1のゼオライトが露出している割合が低い)と考えられるため、本発明の効果(炭化水素の脱離温度を上昇させる)がより一層発揮される。 The value of |P 2 −P x |/|P 2 −P 1 | is essentially 0 or more and less than 0.10 (0.00 or more and less than 0.10), preferably 0 or more and 0.09 or less. , more preferably 0 or more and 0.05 or less, and still more preferably 0 or more and 0.03 or less. If the value is within the above range, it is considered that the first zeolite is well coated with the second zeolite (the proportion of the first zeolite exposed is low), so the effect of the present invention (carbonization increasing the desorption temperature of hydrogen) is further exhibited.
 本発明において、コアシェル型ゼオライトに含まれる第1のゼオライトと第2のゼオライトとのそれぞれの割合は、特に制限されない。ただし、第1のゼオライトを第2のゼオライトで良好に被覆することを考慮すると、コアシェル型ゼオライトの総質量に対する、第2のゼオライトの質量(百分率)は、好ましくは62質量%超95質量%以下であり、より好ましくは71質量%以上91質量%以下であり、さらに好ましくは71質量%以上87質量%以下である。このような範囲であれば、第2のゼオライトが充分な量存在するため、第1のゼオライトを第2のゼオライトで良好に被覆することができる。その結果、本発明の効果(炭化水素の脱離温度を上昇させる)がより一層発揮される。なお、コアシェル型ゼオライトの総質量に対する、第1のゼオライトの質量(百分率)は、総質量100質量%から上記第2のゼオライトの質量(百分率)を引いた値となる。 In the present invention, the proportions of the first zeolite and the second zeolite contained in the core-shell zeolite are not particularly limited. However, considering that the first zeolite is well coated with the second zeolite, the mass (percentage) of the second zeolite with respect to the total mass of the core-shell zeolite is preferably more than 62% by mass and 95% by mass or less. , more preferably 71% by mass or more and 91% by mass or less, and still more preferably 71% by mass or more and 87% by mass or less. Within this range, the second zeolite is present in a sufficient amount, so that the first zeolite can be satisfactorily coated with the second zeolite. As a result, the effect of the present invention (increasing the desorption temperature of hydrocarbons) is exhibited even more. The mass (percentage) of the first zeolite with respect to the total mass of the core-shell zeolite is a value obtained by subtracting the mass (percentage) of the second zeolite from the total mass of 100% by mass.
 なお、コアシェル型ゼオライトは、本発明の効果を発揮できる限りにおいて、コアが第1のゼオライト以外の成分を含んでもよく、シェルが第2のゼオライト以外の成分を含んでもよい。ただし、炭化水素の脱離温度をよりいっそう上昇する観点から、コアに含まれる第1のゼオライトの量は、コアの総質量に対して90質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましく、99質量%以上であることが特に好ましく、100質量%であることが最も好ましい。同様に、シェルに含まれる第2のゼオライトの量は、シェルの総質量に対して90質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることがさらに好ましく、99質量%以上であることが特に好ましく、100質量%であることが最も好ましい。 In the core-shell zeolite, the core may contain components other than the first zeolite, and the shell may contain components other than the second zeolite, as long as the effects of the present invention can be exhibited. However, from the viewpoint of further increasing the desorption temperature of hydrocarbons, the amount of the first zeolite contained in the core is preferably 90% by mass or more with respect to the total mass of the core, and 95% by mass or more. It is more preferably 98% by mass or more, particularly preferably 99% by mass or more, and most preferably 100% by mass. Similarly, the amount of the second zeolite contained in the shell is preferably 90% by mass or more, more preferably 95% by mass or more, and 98% by mass or more with respect to the total mass of the shell. is more preferable, 99% by mass or more is particularly preferable, and 100% by mass is most preferable.
 <コアシェル型ゼオライトの製造方法>
 本発明に係るコアシェル型ゼオライトの製造方法は特に制限されず、本技術分野で使用されうるゼオライトの製造方法を適宜組み合わせることができる。好ましい一例によると、コアとなる第1のゼオライトからなる粒子を調製した後、当該第1のゼオライトからなる粒子を第2のゼオライトの前駆体で被覆し、当該第2のゼオライトの前駆体を結晶化することにより、コアシェル型ゼオライトを製造する方法が挙げられる。すなわち、本発明の好ましい一形態に係るコアシェル型ゼオライトの製造方法は、第1のゼオライトからなる粒子を調製する工程(以下、「工程1」とも称する)と、第2のゼオライトの前駆体を調製する工程(以下、「工程2」とも称する)と、前記第1のゼオライトからなる粒子を前記第2のゼオライトの前駆体で被覆した後、当該第2のゼオライトの前駆体を結晶化させる工程(以下、「工程3」とも称する)と、を有する。以下、各工程について詳細に説明する。
<Method for producing core-shell zeolite>
The method for producing the core-shell type zeolite according to the present invention is not particularly limited, and methods for producing zeolite that can be used in this technical field can be appropriately combined. According to a preferred example, after preparing the particles made of the first zeolite as the core, the particles made of the first zeolite are coated with the precursor of the second zeolite, and the precursor of the second zeolite is crystallized. A method for producing a core-shell type zeolite is exemplified. That is, a method for producing a core-shell zeolite according to a preferred embodiment of the present invention comprises a step of preparing particles made of a first zeolite (hereinafter also referred to as “step 1”), and preparing a precursor of a second zeolite. a step of coating the first zeolite particles with the second zeolite precursor, and then crystallizing the second zeolite precursor (hereinafter also referred to as “step 2”); hereinafter also referred to as “step 3”). Each step will be described in detail below.
 [工程1]
 工程1では、第1のゼオライトからなる粒子を調製する。第1のゼオライトからなる粒子の具体的な調製方法は、第1のゼオライトの種類(骨格構造)により異なるため、以下では、第1のゼオライトがFAUゼオライトである場合における、FAUゼオライトからなる粒子(以下、「FAU粒子」とも称する)の調製方法を例に挙げて説明する。なお、FAUゼオライト以外のゼオライトからなる粒子の調製方法は、公知技術を適宜採用することができる。
[Step 1]
In step 1, particles of the first zeolite are prepared. Since the specific method for preparing the particles made of the first zeolite differs depending on the type (skeletal structure) of the first zeolite, the following description will be given for particles made of FAU zeolite when the first zeolite is FAU zeolite ( Hereinafter, a method for preparing FAU particles) will be described as an example. As for the method for preparing particles made of zeolite other than FAU zeolite, known techniques can be appropriately adopted.
 FAU粒子の調製方法としては、例えば、シリカ源、アルミナ源およびアルカリ源との混合物(以下、「原料混合物」とも称する)を水熱下で結晶化する方法が挙げられる。 A method for preparing FAU particles includes, for example, a method of hydrothermally crystallizing a mixture of a silica source, an alumina source and an alkali source (hereinafter also referred to as a "raw material mixture").
 シリカ源としては、例えば、コロイダルシリカ(シリカゾル)、無定型シリカ、ケイ酸ナトリウム、テトラエチルオルトシリケート、アルミノシリケートゲル等が挙げられる。 Examples of silica sources include colloidal silica (silica sol), amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like.
 アルミナ源としては、例えば、硫酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、アルミノシリケートゲル、金属アルミニウム等が挙げられる。 Examples of alumina sources include aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, and metal aluminum.
 アルカリ源としては、例えば、ナトリウム、カリウム、アンモニウムの水酸化物、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩などの各種の塩、アルミン酸塩中、ケイ酸塩中、アルミノシリケートゲル中のアルカリ成分等を用いることができる。 Alkali sources include, for example, various salts such as sodium, potassium and ammonium hydroxides, halides, sulfates, nitrates and carbonates, alkali components in aluminates, silicates and aluminosilicate gels. etc. can be used.
 これらの原料を混合する方法も特に制限されないが、アルミナ源およびアルカリ源を溶媒としての水に溶解させた後、当該水溶液にシリカ源を滴下し混合する方法が好ましい。 The method of mixing these raw materials is also not particularly limited, but a method of dissolving the alumina source and alkali source in water as a solvent and then adding the silica source dropwise to the aqueous solution and mixing is preferred.
 原料混合物を、水熱下で結晶化する方法としては、例えば、オートクレーブを用いた方法が挙げられる。第1のゼオライトは、結晶化させてもよいし、結晶化させたゼオライトにアモルファスが一部含まれていてもよいが、好ましくは結晶化したゼオライトのみである。結晶化条件は、原料やスケール等によって異なるため、当業者により適宜設定されうる。結晶化の温度は、好ましくは70~250℃、より好ましくは120~180℃である。結晶化の時間は、第1のゼオライトの種類により異なる。たとえば、FAUの場合は、好ましくは15時間~6日間、より好ましくは2~4日間で結晶化させることができる。結晶化は静置、撹拌下のいずれでも行うことができる。 As a method of crystallizing the raw material mixture under hydrothermal conditions, for example, a method using an autoclave can be mentioned. The first zeolite may be crystallized or partially amorphous in the crystallized zeolite, but is preferably crystallized zeolite only. Crystallization conditions vary depending on raw materials, scales, and the like, and can be appropriately set by those skilled in the art. The temperature for crystallization is preferably 70-250°C, more preferably 120-180°C. The crystallization time varies depending on the type of first zeolite. For example, FAU can be crystallized preferably in 15 hours to 6 days, more preferably in 2 to 4 days. Crystallization can be performed either by standing still or under stirring.
 結晶化後は、固液分離を行い、余剰のアルカリ溶液を純水、温水などで洗浄する。その後、粒子に付着した水を乾燥させることにより、FAU粒子を得ることができる。 After crystallization, solid-liquid separation is performed, and excess alkaline solution is washed with pure water or warm water. After that, the FAU particles can be obtained by drying the water adhering to the particles.
 第1のゼオライト(例えば、FAUゼオライト)からなる粒子の平均粒子径は、特に制限されないが、好ましくは3~15μmであり、より好ましくは5~8μmである。このような範囲の平均粒子径であれば、後述の工程2において、第1のゼオライトからなる粒子を第2のゼオライトの前駆体(例えば、BEAゼオライトの前駆体)で良好に被覆することができる。その結果、優れた炭化水素吸着脱離性能を有するコアシェル型ゼオライトを得ることが可能となる。なお、本明細書において、粒子の平均粒子径は、レーザー回折/散乱式粒子径分布測定装置により測定されるメディアン径(D50)を採用する。 The average particle size of the particles made of the first zeolite (eg, FAU zeolite) is not particularly limited, but is preferably 3-15 μm, more preferably 5-8 μm. If the average particle diameter is within such a range, the particles made of the first zeolite can be satisfactorily coated with the precursor of the second zeolite (for example, the precursor of BEA zeolite) in step 2 described later. . As a result, it is possible to obtain a core-shell zeolite having excellent hydrocarbon adsorption/desorption performance. In this specification, the median diameter (D50) measured by a laser diffraction/scattering particle size distribution analyzer is used as the average particle size of particles.
 [工程2]
 工程2では、第2のゼオライトの前駆体を調製する。本明細書において、第2のゼオライトの前駆体とは、結晶化により第2のゼオライトとなる前のアモルファス状態の物質を意味する。第2ゼオライトがアモルファスであることで、第1のゼオライト表面上を被覆することができる。第2のゼオライトが結晶化していると、第1および第2のゼオライトのそれぞれの結晶の表面が安定であるため、第1のゼオライト表面上を被覆せず、単独で第2のゼオライトとして存在しやすいため好ましくない。前駆体(アモルファス状態)であるか否かは、対象の物質についてX線回折分析により判別することができる。第2のゼオライトからなる粒子の具体的な調製方法は、第2のゼオライトの種類(骨格構造)により異なるため、以下では、第2のゼオライトがBEAゼオライトである場合における、BEAゼオライトの前駆体(以下、「BEA前駆体」とも称する)の調製方法を例に挙げて説明する。なお、BEAゼオライト以外のゼオライトからなる前駆体の調製方法は、公知技術を適宜採用することができる。
[Step 2]
In step 2, a precursor of the second zeolite is prepared. As used herein, the precursor of the second zeolite means a substance in an amorphous state before becoming the second zeolite by crystallization. Since the second zeolite is amorphous, it can be coated on the surface of the first zeolite. When the second zeolite is crystallized, the surface of each crystal of the first and second zeolites is stable, so the surface of the first zeolite is not coated and the second zeolite exists alone as the second zeolite. I don't like it because it's easy. Whether or not the target substance is a precursor (amorphous state) can be determined by X-ray diffraction analysis. Since the specific method for preparing particles made of the second zeolite differs depending on the type (skeletal structure) of the second zeolite, the precursor of BEA zeolite ( Hereinafter, a method for preparing (also referred to as "BEA precursor") will be described as an example. As for the method for preparing a precursor made of zeolite other than BEA zeolite, a known technique can be appropriately adopted.
 BEA前駆体の調製方法としては、例えば、シリカ源、アルミナ源およびアルカリ源と、必要に応じて用いられるテンプレート分子(構造規定剤(OSDA)とも称される)との混合物(以下、「原料混合物」とも称する)を水熱処理する方法が挙げられる。 As a method for preparing the BEA precursor, for example, a mixture of a silica source, an alumina source, an alkali source, and an optional template molecule (also referred to as a structure-directing agent (OSDA)) (hereinafter referred to as a “raw material mixture ”) is hydrothermally treated.
 シリカ源、アルミナ源およびアルカリ源の具体例は、工程1に記載のものと同様であるため、ここでは説明を省略する。 Specific examples of the silica source, alumina source, and alkali source are the same as those described in Step 1, so descriptions are omitted here.
 テンプレート分子としては、例えば、テトラエチルアンモニウムヒドロキシド、テトラエチルアンモニウムブロミド、ヘキサメチレンイミン等が挙げられる。 Examples of template molecules include tetraethylammonium hydroxide, tetraethylammonium bromide, hexamethyleneimine, and the like.
 これらの原料を混合する方法も特に制限されないが、アルミナ源およびアルカリ源と、必要に応じて用いられるテンプレート分子とを溶媒としての水に溶解させた後、当該水溶液にシリカ源を滴下し混合する方法が好ましい。 The method of mixing these raw materials is also not particularly limited, but after dissolving the alumina source, the alkali source, and the optionally used template molecule in water as a solvent, the silica source is added dropwise to the aqueous solution and mixed. A method is preferred.
 原料混合物を、水熱下でアモルファス化する方法としては、例えば、オートクレーブを用いた方法が挙げられる。アモルファス化条件は、原料やスケール等によって異なるため、当業者により適宜設定されうる。アモルファス化の温度は、好ましくは70~250℃、より好ましくは120~150℃である。アモルファス化の時間は、好ましくは2時間~6日未満、より好ましくは1~3日間である。アモルファス化は静置、撹拌下のいずれでも行うことができる。これにより、白色ゲル状生成物である、BEA前駆体を得ることができる。 Examples of methods for amorphizing the raw material mixture under hydrothermal treatment include a method using an autoclave. Amorphization conditions vary depending on raw materials, scales, and the like, and can be appropriately set by those skilled in the art. The temperature for amorphization is preferably 70-250°C, more preferably 120-150°C. Amorphization time is preferably from 2 hours to less than 6 days, more preferably from 1 to 3 days. Amorphization can be carried out either by standing still or under stirring. Thereby, a BEA precursor, which is a white gel-like product, can be obtained.
 [工程3]
 工程3では、前記第1のゼオライトからなる粒子を前記第2のゼオライトの前駆体で被覆した後、当該第2のゼオライトの前駆体を結晶化させる。以下、第1のゼオライトがFAUゼオライトであり、第2のゼオライトがBEAゼオライトである場合におけるコアシェル型ゼオライトの製造方法を例に挙げて説明する。
[Step 3]
In step 3, after the particles of the first zeolite are coated with the precursor of the second zeolite, the precursor of the second zeolite is crystallized. Hereinafter, a method for producing a core-shell zeolite in which the first zeolite is FAU zeolite and the second zeolite is BEA zeolite will be described as an example.
 FAUゼオライトからなる粒子をBEAゼオライトの前駆体で被覆する方法としては、前述の白色ゲル状生成物であるBEA前駆体の中にFAU粒子を加えて必要に応じて攪拌する方法が挙げられる。なお、FAU粒子と、BEA前駆体との混合比は、コアシェル型ゼオライトにおける第1のゼオライトの質量と、第2のゼオライトの質量とが、前述した範囲内となるような値である。 As a method of coating FAU zeolite particles with a BEA zeolite precursor, there is a method of adding FAU particles to the BEA precursor, which is the aforementioned white gel-like product, and stirring if necessary. The mixing ratio of the FAU particles and the BEA precursor is such that the mass of the first zeolite and the mass of the second zeolite in the core-shell zeolite are within the range described above.
 この際、必要であればFAU粒子のカチオンをBEA前駆体のカチオンと揃えるために、予めFAU粒子にイオン交換処理を行ってもよい。後述の実施例では、BEA前駆体のカチオンであるテトラエチルアンモニウムイオンと揃えるために、プロトン型であるFAU粒子をテトラエチルアンモニウムイオンでイオン交換処理している。 At this time, if necessary, the FAU particles may be subjected to an ion exchange treatment in advance in order to align the cations of the FAU particles with the cations of the BEA precursor. In Examples described later, proton-type FAU particles are subjected to an ion exchange treatment with tetraethylammonium ions in order to align them with tetraethylammonium ions, which are cations of the BEA precursor.
 その後、FAU粒子を被覆しているBEA前駆体を水熱下で結晶化する。水熱下で結晶化する方法としては、例えば、オートクレーブを用いた方法が挙げられる。結晶化条件は、原料やスケール等によって異なるため、当業者により適宜設定されうる。結晶化の温度は、好ましくは70~250℃、より好ましくは120~180℃である。結晶化の時間は、好ましくは6~14日間、より好ましくは8~10日間である。結晶化は静置、撹拌下のいずれでも行うことができる。 After that, the BEA precursor coating the FAU particles is crystallized under hydrothermal conditions. A method of crystallization under hydrothermal conditions includes, for example, a method using an autoclave. Crystallization conditions vary depending on raw materials, scales, and the like, and can be appropriately set by those skilled in the art. The temperature for crystallization is preferably 70-250°C, more preferably 120-180°C. Crystallization time is preferably 6-14 days, more preferably 8-10 days. Crystallization can be performed either by standing still or under stirring.
 結晶化後は、固液分離を行い、余剰のアルカリ溶液を純水、温水などで洗浄する。その後、粒子に付着した水を乾燥させることにより、本発明に係るコアシェル型ゼオライトを得ることができる。 After crystallization, solid-liquid separation is performed, and excess alkaline solution is washed with pure water or warm water. After that, the core-shell type zeolite according to the present invention can be obtained by drying the water adhering to the particles.
 コアシェル型ゼオライトの平均粒子径は、特に制限されないが、好ましくは4~20μmであり、より好ましくは7~10μmである。このような範囲の平均粒子径であれば、コージェライト製の三次元構造体に問題なくウォッシュコートできる。 The average particle size of the core-shell zeolite is not particularly limited, but is preferably 4-20 μm, more preferably 7-10 μm. If the average particle size is within such a range, the cordierite three-dimensional structure can be washcoated without any problem.
 <排気ガス浄化用触媒>
 本発明に係るコアシェル型ゼオライトは、炭化水素の脱離温度を上昇させることができるため、これを排気ガス浄化用触媒に適用することにより、排気ガス中の炭化水素の浄化性能を向上できる。よって、本発明の他の一形態によると、本発明に係るコアシェル型ゼオライトと、貴金属と、が三次元構造体上に担持されてなる、排気ガス浄化用触媒が提供される。
<Catalyst for purifying exhaust gas>
Since the core-shell type zeolite according to the present invention can raise the desorption temperature of hydrocarbons, it can improve the purification performance of hydrocarbons in exhaust gas by applying it to an exhaust gas purification catalyst. Therefore, according to another aspect of the present invention, there is provided an exhaust gas purifying catalyst in which the core-shell type zeolite according to the present invention and a noble metal are supported on a three-dimensional structure.
 以下、本形態について説明する。なお、本発明に係る排気ガス浄化用触媒(以下、「触媒」とも称する)は、本発明に係るコアシェル型ゼオライトを含むこと以外は、公知技術を適宜採用することができる。このため、本発明は、以下の実施形態に限定されない。 This form will be described below. The exhaust gas purifying catalyst (hereinafter also referred to as "catalyst") according to the present invention can appropriately employ known techniques, except that it contains the core-shell type zeolite according to the present invention. Therefore, the present invention is not limited to the following embodiments.
 [コアシェル型ゼオライト]
 本発明に係る触媒は、コアシェル型ゼオライトを必須に含む。ここで、コアシェル型ゼオライトの含有量は、三次元構造体1L当たり、好ましくは10~200g、より好ましくは30~120g、さらに好ましくは55~85gである。このような含有量でコアシェル型ゼオライトが含まれることにより、炭化水素の浄化性能がより一層向上する。
[Core-shell type zeolite]
The catalyst according to the present invention essentially contains core-shell zeolite. Here, the content of the core-shell type zeolite is preferably 10 to 200 g, more preferably 30 to 120 g, and even more preferably 55 to 85 g per liter of the three-dimensional structure. By including the core-shell type zeolite in such a content, the hydrocarbon purification performance is further improved.
 [貴金属]
 本発明に係る触媒は、貴金属を必須に含む。貴金属は、排気ガスを浄化するための酸化・還元反応を触媒する。ここで、貴金属の種類は、特に制限されないが、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などが挙げられる。これらの貴金属は、単独でまたは2種以上を組み合わせて使用されてもよい。これらのうち、貴金属は、好ましくは白金、パラジウムおよびロジウムから選択される少なくとも1種であり、より好ましくはパラジウム単独;白金および/またはパラジウムとロジウムとの組み合わせであり、特に好ましくはパラジウム単独、パラジウムとロジウムとの組み合わせである。
[Precious metals]
The catalyst according to the present invention essentially contains a noble metal. Precious metals catalyze oxidation-reduction reactions to purify exhaust gases. Here, the type of noble metal is not particularly limited, but platinum (Pt), palladium (Pd), rhodium (Rh) and the like can be mentioned. These noble metals may be used alone or in combination of two or more. Among these, the noble metal is preferably at least one selected from platinum, palladium and rhodium, more preferably palladium alone; a combination of platinum and/or palladium and rhodium, particularly preferably palladium alone, palladium and rhodium.
 白金の含有量(金属換算)は、排気ガス浄化能を考慮すると、三次元構造体1L当たり、0.01~20gが好ましく、0.05~10gがより好ましく、0.5gを超えて5g未満がさらに好ましい。 The content of platinum (in terms of metal) is preferably 0.01 to 20 g, more preferably 0.05 to 10 g, and more than 0.5 g and less than 5 g per 1 L of the three-dimensional structure, considering the exhaust gas purification performance. is more preferred.
 パラジウムの含有量(金属換算)は、排気ガス(特にHC)浄化能を考慮すると、三次元構造体1L当たり、0.01~20gが好ましく、0.05~5gがより好ましく、0.3~3gさらに好ましい。 The content of palladium (in terms of metal) is preferably 0.01 to 20 g, more preferably 0.05 to 5 g, more preferably 0.3 to 3 g is more preferred.
 ロジウムの含有量(金属換算)は、排気ガス(特にNOx)浄化能を考慮すると、三次元構造体1L当たり、0.01~20gが好ましく、0.05~5gがより好ましく、0.1~3gがさらに好ましい。 The content of rhodium (in terms of metal) is preferably 0.01 to 20 g, more preferably 0.05 to 5 g, more preferably 0.1 to 3 g is more preferred.
 [耐火性無機酸化物]
 本発明に係る触媒は、必要に応じて、耐火性無機酸化物(ただし、コアシェル型ゼオライトを除く)を含みうる。耐火性無機酸化物は、貴金属、希土類金属、その他の金属元素などの触媒成分を担持する担体としての機能を有する。耐火性無機酸化物は、高い比表面積を有しており、これに触媒成分を担持させることで、触媒成分と排気ガスとの接触面積を増加させたり、反応物を吸着させたりすることができる。その結果、触媒全体の反応性をさらに高めることが可能となる。
[Refractory inorganic oxide]
The catalyst according to the present invention may optionally contain a refractory inorganic oxide (excluding core-shell zeolite). A refractory inorganic oxide has a function as a carrier for supporting catalyst components such as noble metals, rare earth metals, and other metal elements. The refractory inorganic oxide has a high specific surface area, and by supporting the catalyst component on this, it is possible to increase the contact area between the catalyst component and the exhaust gas and to adsorb the reactant. . As a result, it is possible to further increase the reactivity of the catalyst as a whole.
 耐火性無機酸化物としては、例えば、アルミナ、ゼオライト(ただし、コアシェル型ゼオライトを除く)、チタニア、ジルコニア、シリカなどを挙げることができる。これらの耐火性無機酸化物は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。これらのうち、高温耐久性および高比表面積の観点から、アルミナ、ジルコニアが好ましく、アルミナがより好ましい。ここで、耐火性無機酸化物として好ましく使用されるアルミナは、アルミニウムの酸化物が含まれるものであれば特に制限されず、γ、δ、η、θ-アルミナなどの活性アルミナ、ランタナ含有アルミナ、シリカ含有アルミナ、シリカ-チタニア含有アルミナ、シリカ-チタニア-ジルコニア含有アルミナなどが挙げられる。これらのアルミナは、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。これらのうち、高温耐久性および高比表面積の観点から、γ、δ、またはθ-アルミナ、ランタナ含有アルミナが好ましい。 Examples of refractory inorganic oxides include alumina, zeolite (excluding core-shell zeolite), titania, zirconia, and silica. These refractory inorganic oxides may be used alone or in combination of two or more. Among these, alumina and zirconia are preferred, and alumina is more preferred, from the viewpoint of high-temperature durability and high specific surface area. Here, the alumina that is preferably used as the refractory inorganic oxide is not particularly limited as long as it contains an oxide of aluminum. silica-containing alumina, silica-titania-containing alumina, silica-titania-zirconia-containing alumina, and the like. These aluminas may be used alone or in combination of two or more. Of these, γ, δ, or θ-alumina and lanthana-containing alumina are preferred from the viewpoint of high-temperature durability and high specific surface area.
 耐火性無機酸化物の含有量は、三次元構造体1L当たり、好ましくは10~300gであり、より好ましくは40~200gである。耐火性無機酸化物の含有量が10g/L以上であると、貴金属を充分に耐火性無機酸化物に分散でき、より充分な耐久性を有する触媒が得られる。一方、耐火性無機酸化物の含有量が300g/L以下であると、貴金属と排気ガスとの接触状態が良好となり、排気ガス浄化性能がより充分に発揮され得る。 The content of the refractory inorganic oxide is preferably 10-300 g, more preferably 40-200 g, per 1 L of the three-dimensional structure. When the content of the refractory inorganic oxide is 10 g/L or more, the precious metal can be sufficiently dispersed in the refractory inorganic oxide, resulting in a catalyst with more sufficient durability. On the other hand, when the content of the refractory inorganic oxide is 300 g/L or less, the state of contact between the noble metal and the exhaust gas is improved, and exhaust gas purification performance can be exhibited more fully.
 [セリア・ジルコニア複合酸化物]
 本発明に係る触媒は、必要に応じて、酸素吸蔵材としてセリア・ジルコニア複合酸化物(CeO-ZrO)を含みうる。ここで、酸素吸蔵材(「酸素吸蔵放出物質」とも称される)は、運転状況に応じて変化する空燃比(A/F)の変動に応じて、酸化雰囲気(リーン)では酸素を吸蔵し、還元雰囲気(リッチ)では酸素を放出することにより、酸化・還元反応を安定して進行させる機能を有する。
[Ceria-Zirconia Composite Oxide]
The catalyst according to the present invention may optionally contain a ceria-zirconia composite oxide (CeO 2 —ZrO 2 ) as an oxygen storage material. Here, the oxygen storage material (also referred to as "oxygen storage/release material") stores oxygen in an oxidizing atmosphere (lean) in response to fluctuations in the air-fuel ratio (A/F) that changes according to operating conditions. In a reducing atmosphere (rich), it has the function of stably advancing the oxidation/reduction reaction by releasing oxygen.
 セリア・ジルコニア複合酸化物は、ランタン(La)、イットリウム(Y)、ネオジム(Nd)、プラセオジム(Pr)からなる群より選択される少なくとも一種の金属を含んでもよい。具体的には、セリア-ジルコニア-ランタナ複合酸化物、セリア-ジルコニア-ランタナ-イットリア複合酸化物などが挙げられる。 The ceria-zirconia composite oxide may contain at least one metal selected from the group consisting of lanthanum (La), yttrium (Y), neodymium (Nd), and praseodymium (Pr). Specific examples include ceria-zirconia-lanthana composite oxides, ceria-zirconia-lanthana-yttria composite oxides, and the like.
 セリア・ジルコニア複合酸化物の含有量(酸化物換算)は、特に制限されないが、三次元構造体1L当たり、好ましくは5~200g、より好ましくは5~100g、さらに好ましくは10~90gである。このような含有量でセリア・ジルコニア複合酸化物が含まれることにより、酸化・還元反応を安定して進行させることができる。 The content of the ceria-zirconia composite oxide (in terms of oxide) is not particularly limited, but is preferably 5 to 200 g, more preferably 5 to 100 g, and even more preferably 10 to 90 g per 1 L of the three-dimensional structure. By including the ceria-zirconia composite oxide in such a content, the oxidation/reduction reaction can proceed stably.
 [その他の成分]
 本発明に係る触媒は、その他の成分をさらに含んでもよい。その他の成分としては、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等の2族元素が挙げられる。これらの元素は、排気ガス浄化用触媒中に、酸化物、硝酸塩または炭酸塩の形態で含有されうる。中でも、バリウムおよび/またはストロンチウムが好ましく、酸化ストロンチウム(SrO)、硫酸バリウム(BaSO)および/または酸化バリウム(BaO)がより好ましい。これらのその他の成分は、1種のみを単独で用いてもよいし、2種以上を組み合わせて使用しても構わない。
[Other ingredients]
The catalyst according to the invention may further contain other components. Other components include Group 2 elements such as magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). These elements can be contained in the exhaust gas purifying catalyst in the form of oxides, nitrates or carbonates. Among them, barium and/or strontium are preferred, and strontium oxide (SrO), barium sulfate (BaSO 4 ) and/or barium oxide (BaO) are more preferred. These other components may be used individually by 1 type, and may be used in combination of 2 or more types.
 本発明に係る触媒がその他の成分を含む場合の、その他の成分(特に、SrO、BaSO、BaO)の含有量(酸化物換算)は、三次元構造体1L当たり、好ましくは0~50gであり、より好ましくは0.1~30gであり、さらに好ましくは0.5~20gである。 When the catalyst according to the present invention contains other components, the content of the other components (especially SrO, BaSO 4 , BaO) (in terms of oxide) is preferably 0 to 50 g per liter of the three-dimensional structure. Yes, more preferably 0.1 to 30 g, still more preferably 0.5 to 20 g.
 [三次元構造体]
 三次元構造体は、コアシェル型ゼオライト、貴金属、耐火性無機酸化物、セリア・ジルコニア複合酸化物およびその他成分を担持する担体としての機能を有する。三次元構造体は、本技術分野で公知の耐火性三次元構造体を適宜採用することができる。三次元構造体としては、例えば、貫通口(ガス通過口、セル形状)が三角形、四角形、六角形を有するハニカム担体等の耐熱性担体が使用できる。セル密度(セル数/単位断面積)は、100~1200セル/平方インチであれば充分に使用可能であり、好ましくは200~900セル/平方インチ、より好ましくは400~900セル/平方インチ(1インチ=25.4mm)である。
[Three-dimensional structure]
The three-dimensional structure functions as a carrier that supports core-shell zeolite, noble metals, refractory inorganic oxides, ceria-zirconia composite oxides, and other components. The three-dimensional structure can appropriately adopt a fire-resistant three-dimensional structure known in this technical field. As the three-dimensional structure, for example, a heat-resistant carrier such as a honeycomb carrier having triangular, quadrangular, or hexagonal through-holes (gas passage openings, cell shape) can be used. A cell density (number of cells/unit cross-sectional area) of 100 to 1200 cells/square inch is sufficiently usable, preferably 200 to 900 cells/square inch, more preferably 400 to 900 cells/square inch ( 1 inch = 25.4 mm).
 本発明に係る触媒は、公知の知見を適宜参照し、製造することができる。以下、本発明に係る触媒の製造方法について、簡単に説明する。 The catalyst according to the present invention can be produced by appropriately referring to known knowledge. A method for producing a catalyst according to the present invention will be briefly described below.
 まず、コアシェル型ゼオライト、貴金属源、ならびに必要であれば、上記したような他の成分(例えば、耐火性無機酸化物、セリア・ジルコニア複合酸化物、その他の成分)および水性媒体を、所望の組成に応じて、適宜秤量、混合して、5~95℃で0.5~24時間攪拌し(必要であれば撹拌した後、湿式粉砕し)、スラリーを調製する。ここで、水性媒体としては、水(純水、超純水、脱イオン水、蒸留水等)、エタノール、2-プロパノールなどの低級アルコール、有機系のアルカリ水溶液などを使用することができる。中でも、水、低級アルコールを使用することが好ましく、水を使用することがより好ましい。水性媒体の量は、特に制限されないが、スラリー中の固形分の割合(固形分質量濃度)が10~60質量%、より好ましくは30~50質量%となるような量であることが好ましい。 First, a core-shell zeolite, a noble metal source, and, if necessary, other components such as those described above (e.g., refractory inorganic oxides, ceria-zirconia composite oxides, other components) and an aqueous medium are added to a desired composition. Depending on the situation, the materials are appropriately weighed, mixed, and stirred at 5 to 95° C. for 0.5 to 24 hours (if necessary, wet pulverization is performed after stirring) to prepare a slurry. Here, as the aqueous medium, water (pure water, ultrapure water, deionized water, distilled water, etc.), lower alcohols such as ethanol and 2-propanol, organic alkaline aqueous solutions, and the like can be used. Among them, it is preferable to use water and lower alcohols, and it is more preferable to use water. The amount of the aqueous medium is not particularly limited, but it is preferably such that the proportion of solids in the slurry (mass concentration of solids) is 10 to 60% by mass, more preferably 30 to 50% by mass.
 次に、上記にて調製したスラリーを三次元構造体に塗布する。スラリーを三次元構造体上に塗布する方法は、ウォッシュコートなどの公知の方法を適宜採用することができる。また、スラリーの塗布量は、スラリー中の固体物の量、および形成する触媒層の厚さに応じて当業者が適宜設定することができる。スラリーの塗布量は、好ましくは、各成分が上記したような含有量(担持量)となるような量である。 Next, the slurry prepared above is applied to the three-dimensional structure. As a method for applying the slurry onto the three-dimensional structure, a known method such as wash coating can be appropriately employed. The amount of slurry to be applied can be appropriately determined by those skilled in the art according to the amount of solid matter in the slurry and the thickness of the catalyst layer to be formed. The amount of the slurry to be applied is preferably such that each component has the content (supported amount) as described above.
 次に、上記にてスラリーを塗布した三次元構造体を、空気中で、好ましくは70~200℃の温度で、5分間~5時間乾燥させる。次に、このようにして得られた乾燥スラリー塗膜(触媒前駆層)を、空気中で、400℃~900℃の温度で、10分間~3時間焼成させる。このような条件であれば、触媒成分(コアシェル型ゼオライト、貴金属等)を効率よく三次元構造体に付着できる。以上の工程により、本発明に係る触媒を得ることができる。 Next, the three-dimensional structure to which the slurry has been applied is dried in the air, preferably at a temperature of 70-200°C, for 5 minutes to 5 hours. Next, the dried slurry coating film (catalyst precursor layer) thus obtained is calcined in air at a temperature of 400° C. to 900° C. for 10 minutes to 3 hours. Under such conditions, catalyst components (core-shell zeolite, noble metals, etc.) can be efficiently adhered to the three-dimensional structure. Through the steps described above, the catalyst according to the present invention can be obtained.
 なお、本発明に係る触媒は、上記したように、コアシェル型ゼオライトおよび貴金属を有するものであれば、触媒層1層のみを有していても、あるいは2層以上の触媒層が積層した構造を有するものであってもよい。触媒が2層以上の触媒層が積層した構造を有する場合において、コアシェル型ゼオライトおよび貴金属は同一の層に含まれていても、異なる層に含まれていてもよい。好ましくは、コアシェル型ゼオライトおよび貴金属は、異なる層に含まれ、より好ましくは、コアシェル型ゼオライトを下層に、貴金属を上層に配置する。このような配置により、本発明に係るコアシェル型ゼオライトの能力を最大限に発揮できる。 As described above, the catalyst according to the present invention may have only one catalyst layer, or may have a structure in which two or more catalyst layers are laminated, as long as it has a core-shell type zeolite and a noble metal. may have. When the catalyst has a structure in which two or more catalyst layers are laminated, the core-shell zeolite and the noble metal may be contained in the same layer or in different layers. Preferably, the core-shell zeolite and the noble metal are contained in different layers, more preferably with the core-shell zeolite in the lower layer and the noble metal in the upper layer. With such arrangement, the ability of the core-shell zeolite according to the present invention can be maximized.
 <排気ガスの浄化方法>
 本発明に係る触媒は、炭化水素を含む排気ガスに対して高い浄化性能を発揮できる。ゆえに、本発明のさらに他の一形態によると、本発明に係る排気ガス浄化用触媒を、炭化水素を含む排気ガスと接触させることを有する、排気ガスの浄化方法が提供される。
<Method for Purifying Exhaust Gas>
The catalyst according to the present invention can exhibit high purification performance for exhaust gas containing hydrocarbons. Therefore, according to still another aspect of the present invention, there is provided a method for purifying exhaust gas, comprising bringing an exhaust gas purifying catalyst according to the present invention into contact with exhaust gas containing hydrocarbons.
 排気ガスの温度は、通常のガソリンエンジンの運転時の排気ガスの温度であればよく、好ましくは0~1500℃であり、より好ましくは25~700℃である。本明細書において「排気ガスの温度」とは、触媒入口部における排気ガスの温度を意味する。ここで、「触媒入口部」とは、触媒の排気ガス流入側端面から15cmの部分を指す。 The temperature of the exhaust gas may be the temperature of the exhaust gas during normal gasoline engine operation, preferably 0 to 1500°C, more preferably 25 to 700°C. As used herein, the term "exhaust gas temperature" means the temperature of the exhaust gas at the catalyst inlet. Here, the "catalyst inlet" refers to a portion 15 cm from the exhaust gas inflow side end face of the catalyst.
 本発明に係る触媒は、単独で充分な触媒活性を発揮できるものであるが、本発明に係る触媒の前段(流入側)または後段(流出側)に同様の、または異なる排気ガス浄化用触媒を配置してもよい。すなわち、本発明に係る触媒を単独で配置する、または本発明に係る触媒を前段(流入側)および後段(流出側)双方に配置する、または本発明に係る触媒を前段(流入側)および後段(流出側)のいずれか一方に配置しかつ従来公知の排気ガス浄化触媒を他方に配置することが好ましい。 The catalyst according to the present invention can exhibit sufficient catalytic activity by itself, but a similar or different exhaust gas purifying catalyst may be added to the front stage (inflow side) or rear stage (outflow side) of the catalyst according to the present invention. may be placed. That is, the catalyst according to the present invention is arranged alone, or the catalyst according to the present invention is arranged both in the front stage (inflow side) and the rear stage (outflow side), or the catalyst according to the present invention is arranged in the front stage (inflow side) and the rear stage. (outflow side), and it is preferable to arrange a conventionally known exhaust gas purifying catalyst on the other side.
 本発明の実施形態を詳細に説明したが、これは説明的かつ例示的なものであって限定的ではなく、本発明の範囲は添付の特許請求の範囲によって解釈されるべきであることは明らかである。 While the embodiments of the invention have been described in detail, it is clear that this is to be considered illustrative and exemplary rather than limiting, and the scope of the invention is to be construed by the appended claims. is.
 本発明は、下記態様および形態を包含する:
 1.第1のゼオライトからなるコアと、第2のゼオライトからなるシェルと、を有し、
 前記第1のゼオライトのチャンネル直径が前記第2のゼオライトのチャンネル直径より大きい、コアシェル型ゼオライト;
 2.前記第1のゼオライトは、FAU、LEV、MWWおよびLTAからなる群から選択される少なくとも1種である、上記1.に記載のコアシェル型ゼオライト;
 3.前記第2のゼオライトは、BEA、CHA、MFI、MOR、SZR、FERおよびTONからなる群から選択される少なくとも1種である、上記1.または上記2.に記載のコアシェル型ゼオライト;
 4.式:|P-P|/|P-P|<0.1(Pは、第1のゼオライトからなる粒子のゼータ電位(mV)を表す。Pは、第2のゼオライトからなる粒子のゼータ電位(mV)を表す。Pは、対象のゼオライト粒子のゼータ電位(mV)を表す)を満たす、上記1.~上記3.のいずれかに記載のコアシェル型ゼオライト;
 5.前記第1のゼオライトはFAUであり、前記第2のゼオライトはBEAである、上記1.~上記4.のいずれかに記載のコアシェル型ゼオライト;
 6.前記第2のゼオライトは、前記コアシェル型ゼオライトに対して、62質量%超95質量%以下で含まれる、上記1.~上記5.のいずれかに記載のコアシェル型ゼオライト;
 7.第1のゼオライトからなる粒子を調製する工程と、
 第2のゼオライトの前駆体を調製する工程と、
 前記第1のゼオライトからなる粒子を前記第2のゼオライトの前駆体で被覆した後、当該第2のゼオライトの前駆体を結晶化させる工程と、
を有する、コアシェル型ゼオライトの製造方法;
 8.上記1.~上記6.のいずれかに記載のコアシェル型ゼオライトと、貴金属と、が三次元構造体上に担持されてなる、排気ガス浄化用触媒;
 9.上記8.に記載の排気ガス浄化用触媒を、炭化水素を含む排気ガスに接触させることを有する、排気ガスの浄化方法。
The present invention includes the following aspects and forms:
1. having a core made of a first zeolite and a shell made of a second zeolite,
a core-shell zeolite, wherein the channel diameter of the first zeolite is greater than the channel diameter of the second zeolite;
2. 1. The first zeolite is at least one selected from the group consisting of FAU, LEV, MWW and LTA. Core-shell zeolite according to;
3. 1. above, wherein the second zeolite is at least one selected from the group consisting of BEA, CHA, MFI, MOR, SZR, FER and TON; or 2. above. Core-shell zeolite according to;
4. Formula: |P 2 −P x |/|P 2 −P 1 |<0.1 (P 1 represents the zeta potential (mV) of the particles composed of the first zeolite, P 2 represents the second zeolite where P x represents the zeta potential (mV) of the zeolite particle of interest. ~ above 3. The core-shell zeolite according to any one of;
5. 1. above, wherein the first zeolite is FAU and the second zeolite is BEA; ~ above 4. The core-shell zeolite according to any one of;
6. 1. The second zeolite is contained in more than 62% by mass and not more than 95% by mass with respect to the core-shell zeolite. to the above 5. The core-shell zeolite according to any one of;
7. preparing particles of the first zeolite;
preparing a precursor of the second zeolite;
After coating the particles of the first zeolite with the precursor of the second zeolite, crystallizing the precursor of the second zeolite;
A method for producing a core-shell zeolite having
8. 1 above. to the above 6. A catalyst for purifying exhaust gas, wherein the core-shell type zeolite according to any one of 1 and a noble metal are supported on a three-dimensional structure;
9. 8 above. A method for purifying exhaust gas, comprising contacting the exhaust gas purifying catalyst according to 1 to exhaust gas containing hydrocarbons.
 以下、本発明を実施例および比較例を用いてさらに具体的に説明するが、本発明は、以下の実施例に限定されない。なお、特記しない限り、各操作は室温(25℃)/相対湿度40~50%RHの条件で行われた。また、特記しない限り、比は質量比を表す。 The present invention will be described in more detail below using examples and comparative examples, but the present invention is not limited to the following examples. Unless otherwise specified, each operation was performed under the conditions of room temperature (25° C.)/relative humidity of 40 to 50% RH. Also, unless otherwise specified, ratios represent mass ratios.
 <ゼオライトの作製>
 [比較例1-1]粉体a(BEAゼオライト(6.68Å))の合成
 水酸化ナトリウム(富士フイルム和光純薬社製、特級、以下同様)0.975gを精製水25mLに溶解させた。これに、アルミン酸ナトリウム(Al/NaOH(モル比)=0.78、富士フイルム和光純薬社製、1級)1.73gと、テトラエチルアンモニウムブロミド(東京化成工業社製、特級、以下同様)14.50gとを加え、溶解させた。この溶液に、アンモニア水(28%、富士フイルム和光純薬社製、特級、以下同様)12.86gを加え、攪拌した。その後、シリカゾル(LUDOX(登録商標)HS-30、Sigma-Aldrich社製、以下同様)42mLをピペットでゆっくり加え、この溶液を2時間攪拌した。生成した白色ゲル状生成物30gをテフロン(登録商標)製容器に入れ、密閉した。このテフロン(登録商標)製容器を150℃の恒温槽で8日間加熱することで、粉体a(平均粒子径5.25μm)を得た。
<Production of zeolite>
[Comparative Example 1-1] Synthesis of powder a (BEA zeolite (6.68 Å)) 0.975 g of sodium hydroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade, the same shall apply hereinafter) was dissolved in 25 mL of purified water. To this, sodium aluminate (Al / NaOH (molar ratio) = 0.78, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., first grade) 1.73 g and tetraethylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd., special grade, the same applies hereinafter) 14.50 g were added and allowed to dissolve. To this solution, 12.86 g of aqueous ammonia (28%, special grade manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., the same applies hereinafter) was added and stirred. After that, 42 mL of silica sol (LUDOX® HS-30, manufactured by Sigma-Aldrich, the same applies hereinafter) was added slowly with a pipette, and the solution was stirred for 2 hours. 30 g of the resulting white gel-like product was placed in a Teflon (registered trademark) container and sealed. The Teflon (registered trademark) container was heated in a constant temperature bath at 150° C. for 8 days to obtain powder a (average particle size: 5.25 μm).
 (XRD測定)
 粉体aについて、X線回折(XRD)法を用いて結晶構造を確認した。測定はX線回折測定装置(リガク社製、RINT2200VF)を用いて行った。測定条件は、測定角度範囲(2θ):3°~80°、ステップ間隔:0.02°、測定時間:1.2秒/ステップ、線源:CuKα線、管球の電圧:40kV、電流:20mAとした。
(XRD measurement)
The crystal structure of powder a was confirmed using an X-ray diffraction (XRD) method. The measurement was performed using an X-ray diffraction measurement device (RINT2200VF, manufactured by Rigaku Corporation). The measurement conditions are as follows: measurement angle range (2θ): 3° to 80°, step interval: 0.02°, measurement time: 1.2 seconds/step, radiation source: CuKα ray, tube voltage: 40 kV, current: 20mA.
 粉体aについてのXRDスペクトルからは、BEAゼオライトが検出され、他のタイプのゼオライトは検出されなかった。よって、粉体aはBEAゼオライトであることが確認された。 From the XRD spectrum of powder a, BEA zeolite was detected, and other types of zeolite were not detected. Therefore, powder a was confirmed to be BEA zeolite.
 [比較例2-1]粉体h(FAUゼオライト(11.24Å))の合成
 水酸化ナトリウム5.50gを42.40mLの精製水に溶解させた。この溶液に、アルミン酸ナトリウム(Al/NaOH(モル比)=0.78、富士フイルム和光純薬社製、1級)4.685gを加え、溶解させた。その後、シリカゾル(LUDOX(登録商標)HS-40、Sigma-Aldrich社製)22mLをゆっくり加え、この溶液を2時間攪拌した。この溶液をテフロン(登録商標)製容器に入れ、150℃の恒温槽で2日間加熱した。得られた白色粉末状の生成物を吸引ろ過にて回収した。その後、ろ液がpH=7となるまで水で洗浄しながら吸引ろ過を行った。ろ過後の粉末について3日間風乾を行うことで、粉体h(平均粒子径6.72μm)を得た。
[Comparative Example 2-1] Synthesis of powder h (FAU zeolite (11.24 Å)) 5.50 g of sodium hydroxide was dissolved in 42.40 mL of purified water. To this solution, 4.685 g of sodium aluminate (Al/NaOH (molar ratio) = 0.78, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., grade 1) was added and dissolved. After that, 22 mL of silica sol (LUDOX® HS-40, manufactured by Sigma-Aldrich) was slowly added and the solution was stirred for 2 hours. This solution was placed in a Teflon (registered trademark) container and heated in a constant temperature bath at 150° C. for two days. The resulting white powdery product was collected by suction filtration. Thereafter, suction filtration was performed while washing with water until the filtrate reached pH=7. The filtered powder was air-dried for 3 days to obtain powder h (average particle size: 6.72 µm).
 粉体hについて、X線回折(XRD)法を用いて結晶構造を確認したところ、粉体hについてのXRDスペクトルからは、FAUゼオライトが検出され、他のタイプのゼオライト由来のピークは検出されなかった。よって、粉体hはFAUゼオライトであることが確認された。 When the crystal structure of powder h was confirmed using the X-ray diffraction (XRD) method, FAU zeolite was detected from the XRD spectrum of powder h, and no peaks derived from other types of zeolites were detected. rice field. Therefore, powder h was confirmed to be FAU zeolite.
 [実施例1-1]粉体b(BEA/FAU=91/9)の合成
 テトラエチルアンモニウムブロミド47.25gを500mLビーカーに秤量した。ビーカーに450mLの精製水を加え、テトラエチルアンモニウムブロミドを完全に溶解させた。この溶液に比較例2-1で合成した粉体h(FAUゼオライト(プロトン型、Si/Al(モル比)=6.1))を19.997g加え、2時間攪拌した。その後、FAUゼオライトをろ過にて回収した。この操作を3回繰り返した後、100℃の恒温槽で一晩乾燥させた。これにより、FAUゼオライトをプロトン型からテトラエチルアンモニウム型にイオン交換した。
[Example 1-1] Synthesis of Powder b (BEA/FAU=91/9) 47.25 g of tetraethylammonium bromide was weighed into a 500 mL beaker. 450 mL of purified water was added to the beaker to completely dissolve the tetraethylammonium bromide. 19.997 g of powder h (FAU zeolite (proton type, Si/Al (molar ratio) = 6.1)) synthesized in Comparative Example 2-1 was added to this solution and stirred for 2 hours. After that, the FAU zeolite was collected by filtration. After repeating this operation three times, it was dried overnight in a constant temperature bath at 100°C. As a result, the FAU zeolite was ion-exchanged from the proton type to the tetraethylammonium type.
 水酸化ナトリウム0.992gを精製水25mLに溶解させた。これに、アルミン酸ナトリウム(Al/NaOH(モル比)=0.78、富士フイルム和光純薬社製、1級)1.74gと、テトラエチルアンモニウムブロミド14.52gとを加え、溶解させた。この溶液に、アンモニア水(28%、和光純薬、特級)12.9gを加え、攪拌した。その後、シリカゾル(LUDOX(登録商標)HS-30)42mLをピペットでゆっくり加え、この溶液を2時間攪拌した。生成した白色ゲル状生成物30gをテフロン(登録商標)製容器に入れ、密閉した。このテフロン(登録商標)製容器を150℃の恒温槽で3日間加熱した。これによりアモルファス状のBEAゼオライト前駆体9.746gを得た。当該前駆体についてX線回折分析を行ったところ、BEAゼオライトは検出されず、全体的なベースラインの上昇がみられたため、当該前駆体はアモルファスであることが確認された。これに、上記のイオン交換後のFAUゼオライトを0.98g加え、150℃の恒温槽でさらに8日間加熱した。得られた白色粉末状の生成物を吸引ろ過にて回収した。その後、ろ液がpH=7となるまで水で洗浄しながら吸引ろ過を行った。ろ過後の粉末について3日間風乾を行うことで、BEA/FAU=91/9の質量比で有する粉体b(平均粒子径8.36μm)を得た。 0.992 g of sodium hydroxide was dissolved in 25 mL of purified water. To this, 1.74 g of sodium aluminate (Al/NaOH (molar ratio) = 0.78, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., first class) and 14.52 g of tetraethylammonium bromide were added and dissolved. 12.9 g of ammonia water (28%, Wako Pure Chemical, special grade) was added to this solution and stirred. After that, 42 mL of silica sol (LUDOX® HS-30) was slowly added by pipette and the solution was stirred for 2 hours. 30 g of the resulting white gel-like product was placed in a Teflon (registered trademark) container and sealed. This Teflon (registered trademark) container was heated in a constant temperature bath at 150° C. for 3 days. As a result, 9.746 g of an amorphous BEA zeolite precursor was obtained. X-ray diffraction analysis of the precursor confirmed that it was amorphous as no BEA zeolite was detected and an overall baseline increase was observed. To this, 0.98 g of the FAU zeolite after ion exchange was added, and the mixture was further heated in a constant temperature bath at 150° C. for 8 days. The resulting white powdery product was collected by suction filtration. Thereafter, suction filtration was performed while washing with water until the filtrate reached pH=7. The filtered powder was air-dried for 3 days to obtain powder b (average particle size: 8.36 μm) having a mass ratio of BEA/FAU=91/9.
 粉体bについて、X線回折(XRD)法を用いて結晶構造を確認したところ、粉体bについてのXRDスペクトルからは、BEAゼオライトおよび、FAUゼオライトがともに検出され、他のタイプのゼオライトは検出されなかった。よって、上記で作製された粉体bは、BEAゼオライトおよびFAUゼオライトから構成されることが確認された。 When the crystal structure of powder b was confirmed using the X-ray diffraction (XRD) method, both BEA zeolite and FAU zeolite were detected from the XRD spectrum of powder b, and other types of zeolite were detected. it wasn't. Therefore, it was confirmed that the powder b produced above was composed of BEA zeolite and FAU zeolite.
 [実施例2-1]粉体c(BEA/FAU=87/13)の合成
 アモルファス状のBEAゼオライト前駆体9.746gに対して、イオン交換後のFAUゼオライトを1.49g加えたこと以外は、実施例1-1と同様の手法にて、BEA/FAU=87/13の質量比で有する粉体c(平均粒子径8.25μm)を得た。
[Example 2-1] Synthesis of powder c (BEA/FAU=87/13) A powder c (average particle size: 8.25 μm) having a BEA/FAU ratio by mass of 87/13 was obtained in the same manner as in Example 1-1.
 粉体cについて、X線回折(XRD)法を用いて結晶構造を確認したところ、粉体cについてのXRDスペクトルからは、BEAゼオライトおよび、FAUゼオライトがともに検出され、他のタイプのゼオライトは検出されなかった。よって、上記で作製された粉体cは、BEAゼオライトおよびFAUゼオライトから構成されることが確認された。 When the crystal structure of powder c was confirmed using the X-ray diffraction (XRD) method, both BEA zeolite and FAU zeolite were detected from the XRD spectrum of powder c, and other types of zeolite were detected. it wasn't. Therefore, it was confirmed that the powder c produced above was composed of BEA zeolite and FAU zeolite.
 [実施例3-1]粉体d(BEA/FAU=71/29)の合成
 アモルファス状のBEAゼオライト前駆体9.746gに対して、イオン交換後のFAUゼオライトを4g加えたこと以外は、実施例1-1と同様の手法にて、BEA/FAU=71/29の質量比で有する粉体d(平均粒子径7.94μm)を得た。
[Example 3-1] Synthesis of powder d (BEA/FAU = 71/29) Powder d (average particle diameter 7.94 μm) having a BEA/FAU=71/29 mass ratio was obtained in the same manner as in Example 1-1.
 粉体dについて、X線回折(XRD)法を用いて結晶構造を確認したところ、粉体dについてのXRDスペクトルからは、BEAゼオライトおよび、FAUゼオライトがともに検出され、他のタイプのゼオライトは検出されなかった。よって、上記で作製された粉体dは、BEAゼオライトおよびFAUゼオライトから構成されることが確認された。 When the crystal structure of powder d was confirmed using the X-ray diffraction (XRD) method, both BEA zeolite and FAU zeolite were detected from the XRD spectrum of powder d, and other types of zeolite were detected. it wasn't. Therefore, it was confirmed that the powder d produced above was composed of BEA zeolite and FAU zeolite.
 [比較例3-1]粉体e(BEA/FAU=62/38)の合成
 アモルファス状のBEAゼオライト前駆体9.746gに対して、イオン交換後のFAUゼオライトを5.92g加えたこと以外は、実施例1-1と同様の手法にて、BEA/FAU=62/38の質量比で有する粉体e(平均粒子径7.32μm)を得た。
[Comparative Example 3-1] Synthesis of powder e (BEA/FAU=62/38) A powder e (average particle size: 7.32 μm) having a mass ratio of BEA/FAU=62/38 was obtained in the same manner as in Example 1-1.
 粉体eについて、X線回折(XRD)法を用いて結晶構造を確認したところ、粉体eについてのXRDスペクトルからは、BEAゼオライトおよび、FAUゼオライトがともに検出され、他のタイプのゼオライトは検出されなかった。よって、上記で作製された粉体eは、BEAゼオライトおよびFAUゼオライトから構成されることが確認された。 When the crystal structure of powder e was confirmed using the X-ray diffraction (XRD) method, both BEA zeolite and FAU zeolite were detected from the XRD spectrum of powder e, and other types of zeolite were detected. it wasn't. Therefore, it was confirmed that the powder e produced above was composed of BEA zeolite and FAU zeolite.
 [比較例4-1]粉体f(混合粉体(BEA/FAU=80/20))の調製
 比較例1-1で得た粉体a(BEAゼオライト)0.801gと、比較例2-1で得た粉体h(FAUゼオライト)0.203gと混合することにより、BEAゼオライトと、FAUゼオライトとが、BEA/FAU=80/20の質量比で混合された粉体fを得た。
[Comparative Example 4-1] Preparation of powder f (mixed powder (BEA/FAU = 80/20)) 0.801 g of powder a (BEA zeolite) obtained in Comparative Example 1-1 and Comparative Example 2- By mixing with 0.203 g of the powder h (FAU zeolite) obtained in 1, a powder f in which BEA zeolite and FAU zeolite were mixed at a mass ratio of BEA/FAU=80/20 was obtained.
 粉体fについて、X線回折(XRD)法を用いて結晶構造を確認したところ、粉体fについてのXRDスペクトルからは、BEAゼオライトおよび、FAUゼオライトがともに検出され、他のタイプのゼオライトは検出されなかった。よって、上記で作製された粉体fは、BEAゼオライトおよびFAUゼオライトから構成されることが確認された。 When the crystal structure of powder f was confirmed using the X-ray diffraction (XRD) method, both BEA zeolite and FAU zeolite were detected from the XRD spectrum of powder f, and other types of zeolite were detected. it wasn't. Therefore, it was confirmed that the powder f produced above was composed of BEA zeolite and FAU zeolite.
 [比較例5-1]粉体g(混合粉体(BEA/FAU=70/30)の調製
 比較例1-1で得た粉体a(BEAゼオライト)0.705gと、比較例2-1で得た粉体h(FAUゼオライト)0.302gとを乳鉢にて混合することにより、BEAゼオライトと、FAUゼオライトとが、BEA/FAU=70/30の質量比で混合された粉体gを得た。
[Comparative Example 5-1] Preparation of powder g (mixed powder (BEA/FAU = 70/30) 0.705 g of powder a (BEA zeolite) obtained in Comparative Example 1-1, and By mixing 0.302 g of the powder h (FAU zeolite) obtained in 1. in a mortar, BEA zeolite and FAU zeolite were mixed at a mass ratio of BEA/FAU = 70/30 to obtain powder g. Obtained.
 粉体gについて、X線回折(XRD)法を用いて結晶構造を確認したところ、粉体gについてのXRDスペクトルからは、BEAゼオライトおよび、FAUゼオライトがともに検出され、他のタイプのゼオライトは検出されなかった。よって、上記で作製された粉体gは、BEAゼオライトおよびFAUゼオライトから構成されることが確認された。 When the crystal structure of powder g was confirmed using the X-ray diffraction (XRD) method, both BEA zeolite and FAU zeolite were detected from the XRD spectrum of powder g, and other types of zeolite were detected. it wasn't. Therefore, it was confirmed that the powder g produced above was composed of BEA zeolite and FAU zeolite.
 (ゼータ電位)
 各粉体について、ゼータ電位を測定することにより粒子の表面状態を確認した。測定は、ゼータ電位測定装置(大塚電子社製、ELSZ-2Plus)を用いてJIS Z8836:2017に準拠して行った。測定条件は、液温25℃、pH=3にて、レーザードップラー法を用いて行った。また、測定溶液は各種粉末を精製水に0.5%分散させた溶液を用いた。pHの調整は0.1mol/L塩酸および0.1mol/L水酸化ナトリウム水溶液を用いて行った。結果を下記表1に示す。
(Zeta potential)
For each powder, the surface state of the particles was confirmed by measuring the zeta potential. The measurement was performed in accordance with JIS Z8836:2017 using a zeta potential measuring device (ELSZ-2Plus, manufactured by Otsuka Electronics Co., Ltd.). Measurement conditions were a liquid temperature of 25° C. and a pH of 3, and the laser Doppler method was used. As the measurement solution, a solution obtained by dispersing 0.5% of various powders in purified water was used. The pH was adjusted using 0.1 mol/L hydrochloric acid and 0.1 mol/L sodium hydroxide aqueous solution. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、粉体a(BEAのみ)は-25.75mVのゼータ電位を有し、粉体h(FAUのみ)は32.06mVのゼータ電位を有する。表1の「ゼータ電位 理論値(mV)」の欄には、粉体aおよび粉体hについてのゼータ電位の実測値(mV)と、各粉体に含まれるBEAおよびFAUの各割合(質量%)とから、下記式により求められる理論値を記載している。
理論値(mV)=-25.75(mV)×BEAの割合(質量%)÷100+32.06(mV)×FAUの割合(質量%)÷100。
As shown in Table 1, powder a (BEA only) has a zeta potential of −25.75 mV and powder h (FAU only) has a zeta potential of 32.06 mV. In the column of "Theoretical value of zeta potential (mV)" in Table 1, the measured values of zeta potential (mV) for powder a and powder h, and the ratios of BEA and FAU contained in each powder (mass %), the theoretical value obtained by the following formula is described.
Theoretical value (mV) = -25.75 (mV) x percentage of BEA (% by mass)/100 + 32.06 (mV) x percentage of FAU (% by mass)/100.
 粉体fおよびg(混合粉体)についてのゼータ電位の実測値は、それぞれの理論値と近似していた。 The measured values of zeta potential for powders f and g (mixed powder) were close to their respective theoretical values.
 粉体cおよびdについてのゼータ電位の実測値は、いずれも粉体a(BEAのみ)のゼータ電位と近似していた(|P-P|/|P-P|<0.1を満たす)。なお、表1には示していないが、粉体bについてもこれと同様の結果が得られた。よって、粉体b~dは、表面がBEAから構成されるものであると判断された。さらに、上記XRD測定の結果を考慮すると、粉体b~dは、FAUゼオライトからなるコアと、BEAゼオライトからなるシェルとを有するコアシェル型ゼオライトであることが確認された。 The measured zeta potentials of powders c and d were both similar to the zeta potential of powder a (only BEA) (|P 2 −P x |/|P 2 −P 1 |<0. 1). Although not shown in Table 1, similar results were obtained with powder b. Therefore, it was determined that the surfaces of powders b to d were composed of BEA. Furthermore, considering the above XRD measurement results, powders b to d were confirmed to be core-shell zeolites having a core made of FAU zeolite and a shell made of BEA zeolite.
 粉体eについてのゼータ電位の実測値は、粉体a(BEAのみ)のゼータ電位と大きく異なっていた(|P-P|/|P-P|<0.1を満たさない)。当該結果より、粉体eは、表面にはBEAおよびFAUの両方が存在すると考えられることから、コアシェル構造を有していないと判断された。 The measured zeta potential for powder e was significantly different from the zeta potential for powder a (BEA only) (|P 2 −P x |/|P 2 −P 1 |<0.1 ). From the results, it was determined that the powder e did not have a core-shell structure because both BEA and FAU were present on the surface.
 また、粉体fおよびgは、第1のゼオライト(FAU)のみからなる粒子と、第2のゼオライト(BEA)のみからなる粒子とを、それぞれFAU:BEA=20:80および30:70の割合で混合して得た混合粉体であるが、|P-P|/|P-P|の値は、それぞれ0.23および0.30となる。この結果からも、第1のゼオライト(FAU)のみからなる粒子の割合が高いほど(粒子の表面における第1のゼオライト(FAU)の面積が広いほど)、|P-P|/|P-P|の値が大きくなるという相関関係があることが分かる。 Further, the powders f and g consisted of particles consisting only of the first zeolite (FAU) and particles consisting only of the second zeolite (BEA) at ratios of FAU:BEA = 20:80 and 30:70, respectively. The values of |P 2 -P x |/|P 2 -P 1 | are 0.23 and 0.30, respectively. From this result as well, the higher the ratio of particles composed only of the first zeolite (FAU) (the larger the area of the first zeolite (FAU) on the surface of the particles), the more |P 2 −P x |/|P It can be seen that there is a correlation that the value of 2 −P 1 | increases.
 [HC吸着脱離性能]
 各粉体のHC吸着脱離性能をトルエンTPD(Temperature Programmed Desorption)により評価した。測定には触媒分析装置(マイクロトラック・ベル社製、BELCAT II)を用いて行った。測定ガスとして、トルエンガス3000ppmCに水蒸気(3体積%)を含むヘリウムガスを用いた。サンプル量を0.050gとし、測定条件は、50℃から400℃まで昇温速度10℃/minで行った。反応後のガスを四重極質量分析計(BELMASS、マイクロトラック・ベル社製)を用いて分析した。この時、トルエンの検出量が流通させたトルエン濃度である3000ppmCと最初に一致する温度を脱離開始温度、またトルエンの検出量が極大となる温度をピークトップ温度とし、解析を行った。この脱離開始温度、ピークトップ温度が高温であるほど、ゼオライトは優れた炭化水素吸着脱離能力を有する。なお、粉体eについては、前述のようにコアシェル構造を有していないと判断されたため、本評価を行わなかった。結果を下記表2に示す。
[HC adsorption/desorption performance]
The HC adsorption/desorption performance of each powder was evaluated by toluene TPD (Temperature Programmed Desorption). The measurement was carried out using a catalyst analyzer (BELCAT II manufactured by Microtrac Bell). As the measurement gas, helium gas containing 3000 ppmC of toluene gas and water vapor (3% by volume) was used. The sample amount was 0.050 g, and the measurement was performed from 50°C to 400°C at a temperature elevation rate of 10°C/min. The gas after the reaction was analyzed using a quadrupole mass spectrometer (BELMASS, manufactured by Microtrack Bell). At this time, the temperature at which the detected amount of toluene first coincides with 3000 ppmC, which is the toluene concentration in the circulation, was defined as the desorption start temperature, and the temperature at which the detected amount of toluene was maximized was defined as the peak top temperature for analysis. The higher the desorption start temperature and peak top temperature, the better the zeolite's ability to adsorb and desorb hydrocarbons. In addition, since it was judged that the powder e did not have a core-shell structure as described above, this evaluation was not performed. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明に係る粉体b~dは、脱離開始温度およびピークトップ温度が有意に高いことが分かる。よって、本発明に係るコアシェル型ゼオライトによると、HCの脱離温度を上昇できることが示された。 Table 2 shows that powders b to d according to the present invention have significantly high desorption start temperatures and peak top temperatures. Therefore, it was shown that the core-shell zeolite according to the present invention can increase the desorption temperature of HC.
 [SEM画像]
 コアシェル型ゼオライト粉体dおよびFAUゼオライト粉体hについて、粉体表面をFE-SEM(電界放出形走査電子顕微鏡)にて観察した。観察は、日本電子社製 FE-SEM JSM-6700FSを用い、エミッション電流10μA、加速電圧12.5kVの条件にて行った。図1および2に粉体dおよび粉体hのSEM画像をそれぞれ示す。図2に示すように、FAUゼオライト粉体hの表面はなめらかであるが、図1のコアシェル型ゼオライト粉体dはBEAゼオライトのシェルを有することから、表面にBEAゼオライト特有の凹凸が観察され、FAUゼオライトとは外観が異なることがわかる。
[SEM image]
The powder surfaces of the core-shell zeolite powder d and the FAU zeolite powder h were observed with an FE-SEM (field emission scanning electron microscope). The observation was performed using FE-SEM JSM-6700FS manufactured by JEOL Ltd. under the conditions of an emission current of 10 μA and an acceleration voltage of 12.5 kV. SEM images of powder d and powder h are shown in FIGS. 1 and 2, respectively. As shown in FIG. 2, the surface of the FAU zeolite powder h is smooth, but since the core-shell type zeolite powder d in FIG. It can be seen that the appearance is different from FAU zeolite.
 <排気ガス浄化用触媒の作製>
 [比較例1-2]
 粉体aを70.4質量部、アルミナゾルを固形分量が9.6質量部となるように秤量した。アルミナゾルを蒸留水に加えて攪拌し、その後粉体aを加えて10分間攪拌した。次に、湿式粉砕を行い、スラリーa1を得た。
<Preparation of Exhaust Gas Purifying Catalyst>
[Comparative Example 1-2]
70.4 parts by mass of the powder a and 9.6 parts by mass of the alumina sol were weighed so as to have a solid content of 9.6 parts by mass. Alumina sol was added to distilled water and stirred, then powder a was added and stirred for 10 minutes. Next, wet pulverization was performed to obtain slurry a1.
 La含有アルミナ(La含有率が4質量%、平均粒径D50が5μm、BET表面積が172.4m/g)を36質量部、CeZrLa複合酸化物(CeO:ZrO:La=47:47:6(質量比))を18.5質量部、硫酸バリウムを4.62質量部秤量した。蒸留水にこれらを加えて10分間攪拌した後、硝酸パラジウム水溶液(濃度21質量%)2.19質量部を滴下しながら10分間攪拌した。攪拌後、湿式粉砕を行い、スラリーa2を得た。 36 parts by mass of La-containing alumina (La 2 O 3 content of 4% by mass, average particle size D50 of 5 μm, BET surface area of 172.4 m 2 /g), CeZrLa composite oxide (CeO 2 :ZrO 2 :La 2 18.5 parts by mass of O 3 =47:47:6 (mass ratio) and 4.62 parts by mass of barium sulfate were weighed. After adding these to distilled water and stirring for 10 minutes, 2.19 parts by mass of an aqueous palladium nitrate solution (concentration: 21% by mass) was added dropwise while stirring for 10 minutes. After stirring, wet pulverization was performed to obtain slurry a2.
 スラリーa1をコージェライト製の三次元構造体(直径25.4mm、長さ30mm、円筒形、0.0157L、400セル/平方インチ)に焼成後の担持量が80g/Lとなるようにウォッシュコートした。次に、空気中150℃で5分間乾燥した後、空気中550℃で30分間焼成した。 Slurry a1 was wash-coated on a cordierite three-dimensional structure (diameter 25.4 mm, length 30 mm, cylindrical, 0.0157 L, 400 cells/square inch) so that the amount supported after firing was 80 g/L. bottom. Next, after drying in the air at 150° C. for 5 minutes, it was calcined in the air at 550° C. for 30 minutes.
 次に、スラリーa1をウォッシュコートした後の三次元構造体に、スラリーa2を焼成後の担持量が59.58g/Lとなるようウォッシュコートした。次に、空気中150℃で5分間乾燥した後、空気中550℃で30分間焼成することで、触媒Aを得た。 Next, the slurry a2 was wash-coated on the three-dimensional structure that had been wash-coated with the slurry a1 so that the load after firing was 59.58 g/L. Next, after drying in the air at 150° C. for 5 minutes, the catalyst A was obtained by calcining in the air at 550° C. for 30 minutes.
 [比較例2-2]
 粉体aに代えて、粉体hを用いたこと以外は、比較例1-2と同様の手法にて、触媒Hを得た。
[Comparative Example 2-2]
Catalyst H was obtained in the same manner as in Comparative Example 1-2, except that powder h was used instead of powder a.
 [実施例3-2]
 粉体aに代えて、粉体dを用いたこと以外は、比較例1-2と同様の手法にて、触媒Dを得た。
[Example 3-2]
A catalyst D was obtained in the same manner as in Comparative Example 1-2, except that powder d was used instead of powder a.
 [比較例5-2]
 粉体aに代えて、粉体gを用いたこと以外は、比較例1-2と同様の手法にて、触媒Gを得た。
[Comparative Example 5-2]
Catalyst G was obtained in the same manner as in Comparative Example 1-2, except that powder g was used instead of powder a.
 <排気ガス浄化用触媒の評価>
 (HC脱離温度)
 触媒A、D、G、およびHについて、下記表3に示す組成を有するガス(空間速度50000hr-1、ガス線速0.42m/秒)を流通させながら、触媒のガス流入側端面から1cmの位置の温度を40℃/分の昇温速度で50℃から400℃まで昇温させた。この時に、トルエンの検出量が流通させたトルエン濃度である840ppmCと最初に一致する温度を脱離開始温度、またトルエンの検出量が極大となる温度をピークトップ温度とし、解析を行った。この脱離開始温度、ピークトップ温度がより高温であるほど、触媒は優れた炭化水素吸着脱離能力を有する。結果を下記表4に示す。
<Evaluation of exhaust gas purifying catalyst>
(HC desorption temperature)
For catalysts A, D, G, and H, a gas having a composition shown in Table 3 below (space velocity: 50000 hr −1 , gas linear velocity: 0.42 m/sec) was passed through the catalyst at a distance of 1 cm from the end surface of the catalyst on the gas inlet side. The temperature of the position was raised from 50°C to 400°C at a heating rate of 40°C/min. At this time, the temperature at which the detected amount of toluene first coincides with 840 ppmC, which is the toluene concentration in the circulation, was defined as the desorption start temperature, and the temperature at which the detected amount of toluene is maximized was defined as the peak top temperature for analysis. The higher the desorption start temperature and the peak top temperature, the better the hydrocarbon adsorption/desorption capacity of the catalyst. The results are shown in Table 4 below.
 (HC浄化率)
 また、触媒A、D、G、及びHについて、下記表3に示す組成を有するガス(空間速度50000hr-1、ガス線速0.42m/秒)を、流通させながら、触媒のガス流入側端面から1cmの位置の温度を110℃に設定した場合におけるHC浄化率を表4に示す。
(HC purification rate)
In addition, for catalysts A, D, G, and H, a gas having a composition shown in Table 3 below (spatial velocity: 50000 hr −1 , gas linear velocity: 0.42 m/sec) was passed through the end face of the catalyst on the gas inflow side. Table 4 shows the HC purification rate when the temperature at the position 1 cm from the center is set to 110°C.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、本発明に係る触媒Dは、脱離開始温度およびピークトップ温度が有意に高いことが分かる。本発明に係るコアシェル型ゼオライトを含む触媒によると、HCの脱離温度が上昇することにより、PdによるHCの浄化が可能な温度域でHCを脱離させることができる。その結果、触媒におけるHC浄化性能を向上させることが可能となる。本発明に係るコアシェル型ゼオライトを含む触媒によると、110℃という低温においても、HC浄化率が高いことがわかる。 Table 4 shows that catalyst D according to the present invention has a significantly higher desorption start temperature and peak top temperature. According to the catalyst containing the core-shell type zeolite according to the present invention, HC can be desorbed in a temperature range where HC can be purified by Pd by increasing the desorption temperature of HC. As a result, it is possible to improve the HC purification performance of the catalyst. It can be seen that the catalyst containing the core-shell zeolite according to the present invention has a high HC purification rate even at a low temperature of 110°C.
 本出願は、2021年9月15日に出願された日本国特許出願番号2021-149970に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2021-149970 filed on September 15, 2021, the disclosure of which is incorporated herein by reference.

Claims (9)

  1.  第1のゼオライトからなるコアと、第2のゼオライトからなるシェルと、を有し、
     前記第1のゼオライトのチャンネル直径が前記第2のゼオライトのチャンネル直径より大きい、コアシェル型ゼオライト。
    having a core made of a first zeolite and a shell made of a second zeolite,
    A core-shell zeolite, wherein the channel diameter of the first zeolite is greater than the channel diameter of the second zeolite.
  2.  前記第1のゼオライトは、FAU、LEV、MWWおよびLTAからなる群から選択される少なくとも1種である、請求項1に記載のコアシェル型ゼオライト。 The core-shell zeolite according to claim 1, wherein the first zeolite is at least one selected from the group consisting of FAU, LEV, MWW and LTA.
  3.  前記第2のゼオライトは、BEA、CHA、MFI、MOR、SZR、FERおよびTONからなる群から選択される少なくとも1種である、請求項1または2に記載のコアシェル型ゼオライト。 The core-shell zeolite according to claim 1 or 2, wherein the second zeolite is at least one selected from the group consisting of BEA, CHA, MFI, MOR, SZR, FER and TON.
  4.  式:|P-P|/|P-P|<0.1(Pは、第1のゼオライトからなる粒子のゼータ電位(mV)を表す。Pは、第2のゼオライトからなる粒子のゼータ電位(mV)を表す。Pは、対象のゼオライト粒子のゼータ電位(mV)を表す)を満たす、請求項1または2に記載のコアシェル型ゼオライト。 Formula: |P 2 −P x |/|P 2 −P 1 |<0.1 (P 1 represents the zeta potential (mV) of the particles composed of the first zeolite, P 2 represents the second zeolite 3. Core-shell zeolite according to claim 1 or 2, wherein P x represents the zeta potential (mV) of the zeolite particle in question.
  5.  前記第1のゼオライトはFAUであり、前記第2のゼオライトはBEAである、請求項1または2に記載のコアシェル型ゼオライト。 The core-shell zeolite according to claim 1 or 2, wherein the first zeolite is FAU and the second zeolite is BEA.
  6.  前記第2のゼオライトは、前記コアシェル型ゼオライトに対して、62質量%超95質量%以下で含まれる、請求項1または2に記載のコアシェル型ゼオライト。 The core-shell zeolite according to claim 1 or 2, wherein the second zeolite is contained in more than 62% by mass and not more than 95% by mass with respect to the core-shell zeolite.
  7.  第1のゼオライトからなる粒子を調製する工程と、
     第2のゼオライトの前駆体を調製する工程と、
     前記第1のゼオライトからなる粒子を前記第2のゼオライトの前駆体で被覆した後、当該第2のゼオライトの前駆体を結晶化させる工程と、
    を有する、コアシェル型ゼオライトの製造方法。
    preparing particles of the first zeolite;
    preparing a precursor of the second zeolite;
    After coating the particles of the first zeolite with the precursor of the second zeolite, crystallizing the precursor of the second zeolite;
    A method for producing a core-shell zeolite.
  8.  請求項1または2に記載のコアシェル型ゼオライトと、貴金属と、が三次元構造体上に担持されてなる、排気ガス浄化用触媒。 An exhaust gas purifying catalyst in which the core-shell type zeolite according to claim 1 or 2 and a noble metal are supported on a three-dimensional structure.
  9.  請求項8に記載の排気ガス浄化用触媒を、炭化水素を含む排気ガスに接触させることを有する、排気ガスの浄化方法。 A method for purifying exhaust gas, comprising bringing the exhaust gas purifying catalyst according to claim 8 into contact with exhaust gas containing hydrocarbons.
PCT/JP2022/034031 2021-09-15 2022-09-12 Core-shell zeolite WO2023042783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021149970 2021-09-15
JP2021-149970 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023042783A1 true WO2023042783A1 (en) 2023-03-23

Family

ID=85602175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034031 WO2023042783A1 (en) 2021-09-15 2022-09-12 Core-shell zeolite

Country Status (1)

Country Link
WO (1) WO2023042783A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144128A (en) * 1993-09-30 1995-06-06 Mazda Motor Corp Hydrocarbon adsorbent, catalyst and device for purifying exhaust gas
JPH07185325A (en) * 1993-12-27 1995-07-25 Idemitsu Kosan Co Ltd Hydrocarbon adsorbent
JPH09192486A (en) * 1996-01-24 1997-07-29 Mazda Motor Corp Exhaust gas purifying catalyst for engine
CN102910641A (en) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 Y-Beta composite molecular sieve having uniform mesopore structures and synthetic method thereof
CN104492481A (en) * 2015-01-02 2015-04-08 温州泓呈祥科技有限公司 Preparation method of composite molecular sieve catalyst
JP2020514039A (en) * 2017-03-20 2020-05-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Catalytic wall flow filter with ammonia slip catalyst
CN112694101A (en) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 Core-shell molecular sieve, synthesis method and application thereof
CN112978751A (en) * 2021-02-05 2021-06-18 中化学科学技术研究有限公司 Cu-SSZ-13@ Cu-SSZ-39 composite molecular sieve with core-shell structure and synthesis method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144128A (en) * 1993-09-30 1995-06-06 Mazda Motor Corp Hydrocarbon adsorbent, catalyst and device for purifying exhaust gas
JPH07185325A (en) * 1993-12-27 1995-07-25 Idemitsu Kosan Co Ltd Hydrocarbon adsorbent
JPH09192486A (en) * 1996-01-24 1997-07-29 Mazda Motor Corp Exhaust gas purifying catalyst for engine
CN102910641A (en) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 Y-Beta composite molecular sieve having uniform mesopore structures and synthetic method thereof
CN104492481A (en) * 2015-01-02 2015-04-08 温州泓呈祥科技有限公司 Preparation method of composite molecular sieve catalyst
JP2020514039A (en) * 2017-03-20 2020-05-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Catalytic wall flow filter with ammonia slip catalyst
CN112694101A (en) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 Core-shell molecular sieve, synthesis method and application thereof
CN112978751A (en) * 2021-02-05 2021-06-18 中化学科学技术研究有限公司 Cu-SSZ-13@ Cu-SSZ-39 composite molecular sieve with core-shell structure and synthesis method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIAJUN ZHENG ; XIWENG ZHANG ; YAN WANG ; YADONG BAI ; WANGFU SUN ; RUIFENG LI: "Synthesis and catalytic performance of a bi-phase core-shell zeolite composite", JOURNAL OF POROUS MATERIALS, KLUWER ACADEMIC PUBLISHERS, BO, vol. 16, no. 6, 25 November 2008 (2008-11-25), Bo , pages 731 - 736, XP019750850, ISSN: 1573-4854 *

Similar Documents

Publication Publication Date Title
US6699448B2 (en) SOx tolerant NOx trap catalysts and methods of making and using the same
JP5148268B2 (en) Zirconium and yttrium based compositions, processes for their preparation and their use in catalyst systems
KR100448611B1 (en) Exhaust Gas Purifying Catalyst and Method of Producing Same
EP0888815B1 (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
KR102251530B1 (en) Catalyst compositions comprising metal oxid support particles with specific particle size distributions
BRPI0808980A2 (en) PALADIO RADIO CATALYST SINGLE LAYER
KR20120029475A (en) Composition comprising cerium oxide and zirconium oxide having a specific porosity, preparation method thereof and use of same in catalysis
WO2008066275A1 (en) Hydrotalcite-zeolite composites and catalysts thereof by nox storage method
WO1998000223A1 (en) Nitrogen oxide adsorbing material
Peng et al. Alkali/alkaline-earth metal-modified MnOx supported on three-dimensionally ordered macroporous–mesoporous TixSi1-xO2 catalysts: Preparation and catalytic performance for soot combustion
EP3064270B1 (en) Carrier for exhaust gas purification catalyst, and exhaust gas purification catalyst
JP2020519436A (en) Mixed oxide with improved resistance and NOx storage capacity
JP6926459B2 (en) Hydrocarbon adsorbent containing SZR-type zeolite and method for adsorbing hydrocarbon
US10882033B2 (en) Slurry composition for catalyst and method for producing same, method for producing catalyst using this slurry composition for catalyst, and method for producing Cu-containing zeolite
CN112912340B (en) Process for preparing SSZ-13 zeolite with high acidity and low silica to alumina ratio (SAR)
JPH11216358A (en) Hydrocarbon adsorbent and catalyst for cleaning waste gas
WO2023042783A1 (en) Core-shell zeolite
JP2018079428A (en) Hydrocarbon adsorbent, and method of adsorbing and removing hydrocarbon
JP2021161019A (en) Composite material, nitrogen oxide adsorbent, nitrogen oxide adsorbing method, and nitrogen oxide removing device
EP1129774A1 (en) Adsorbent for hydrocarbon and catalyst for exhaust gas purification
JP5387269B2 (en) Hydrocarbon adsorbent in automobile exhaust gas comprising SUZ-4 zeolite and method for adsorbing and removing hydrocarbons
JPH11216359A (en) Ethylene adsorbent, adsorptive removal method and exhaust gas purifying method
JP2013111535A (en) Hydrocarbon adsorption agent and hydrocarbon adsorbent
US11666887B2 (en) Hydrocarbon adsorbent
JP2004169583A (en) Exhaust emission control device and exhaust gas purification method for gasoline engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869930

Country of ref document: EP

Kind code of ref document: A1