JPH08257351A - System and process for treating low concentration nox-containing gas - Google Patents

System and process for treating low concentration nox-containing gas

Info

Publication number
JPH08257351A
JPH08257351A JP7067336A JP6733695A JPH08257351A JP H08257351 A JPH08257351 A JP H08257351A JP 7067336 A JP7067336 A JP 7067336A JP 6733695 A JP6733695 A JP 6733695A JP H08257351 A JPH08257351 A JP H08257351A
Authority
JP
Japan
Prior art keywords
nox
adsorbent
gas
concentration
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7067336A
Other languages
Japanese (ja)
Inventor
Takahiro Tate
隆広 舘
Akira Kato
加藤  明
Tsugita Yukitake
次太 雪竹
Hisao Yamashita
寿生 山下
Shigeru Azuhata
茂 小豆畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7067336A priority Critical patent/JPH08257351A/en
Publication of JPH08257351A publication Critical patent/JPH08257351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To purify NOx on an adsorbent and make the same harmless without adding a purifying catalyst by providing a dust removing device for removing a dust component in exhaust gas and an adsorption device for adsorbing and removing NOx , feeding a reducing agent at the time of regenerating the adsorption device and reduce, and decomposite desoluted NOx thus adsorbed in the device. CONSTITUTION: Exhaust gas 1 mixed with ozone synthesized by an ozonizer 3 in an oxidization process 2 to oxidize a part or the whole of NO and convert the same into NO2 . Exhaust gas is introduced into an adsorption layer 4 to adsorb and remove NOx and discharged 5 into atmosphere. In the case when a unit with lowered adsorption capability is regenerated on the adsorption layer 4 composed of a plurality of units, nitrogen 6 is introduced into the adsorbent regenerating process by a fan 7, and flowed into an adsorption unit 8 extracted from the adsorption layer 4. Then hydrocarbon 9 is introduced when the oxygen density in the unit 8 is lowered sufficiently, and heated by a heater 10 to reduce and decompose NOx by using hydrocarbon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は大気中に含まれる窒素酸
化物(NOx)の除去方法に関し、特に自動車用トンネ
ル,地下道路や屋内自動車駐車場からの換気ガス等に含
まれる低濃度のNOxを効率良く除去する低濃度NOx
含有ガスの処理システム及びその処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing nitrogen oxides (NOx) contained in the atmosphere, and particularly to a low concentration of NOx contained in ventilation gases from automobile tunnels, underground roads and indoor automobile parking lots. Concentration NOx that efficiently removes NOx
The present invention relates to a treatment system for contained gas and a treatment method thereof.

【0002】[0002]

【従来の技術】一般に排ガス中のNOxの無害化除去方
法としては、火力発電所においてはNOx含有排ガスに
アンモニアを添加し、触媒上で無害なN2 に分解する選
択接触還元法が主に適用されており、一方ガソリンエン
ジン車においては三元触媒上でNOxを還元分解する方
法が適用されている。
2. Description of the Related Art Generally, as a method for detoxifying and removing NOx in exhaust gas, a selective catalytic reduction method in which ammonia is added to NOx-containing exhaust gas and decomposed into harmless N 2 on a catalyst is mainly applied in a thermal power plant. On the other hand, in a gasoline engine vehicle, a method of reducing and decomposing NOx on a three-way catalyst is applied.

【0003】そのため大気中の稀薄なNOxの処理方法
としては、予め吸着剤によりNOxを濃縮した後、加熱
された高濃度のNOx含有ガスにアンモニアを添加し選
択接触還元法で無害なN2 に分解して放出する方法(特
公平5−78369号)などが提案されている。
Therefore, as a treatment method for dilute NOx in the atmosphere, after preliminarily concentrating NOx with an adsorbent, ammonia is added to a heated high-concentration NOx-containing gas to produce harmless N 2 by the selective catalytic reduction method. A method of decomposing and releasing (Japanese Patent Publication No. 5-78369) has been proposed.

【0004】一方、NOxの形態がNO2 であれば、水
分共存下でもNOxの吸着剤による除去あるいはアルカ
リによる吸収除去は比較的容易なので、低濃度のNOx
含有ガス中のNOをコロナ放電やオゾンの添加によりN
2 に酸化し、該NO2 をアルカリ性吸収液で吸収除去
する方法や、NOをオゾン酸化によりNO2 に酸化し、
該NO2 を吸着除去する方法などが提案されている(特
開平6−99030号)。
On the other hand, if the form of NOx is NO 2 , it is relatively easy to remove NOx with an adsorbent or with an alkali even in the presence of water, so that a low concentration of NOx is obtained.
NO in the contained gas is converted to N by corona discharge or addition of ozone.
A method of oxidizing to O 2 and absorbing and removing the NO 2 with an alkaline absorbent, or a method of oxidizing NO to NO 2 by ozone oxidation,
A method of adsorbing and removing the NO 2 has been proposed (JP-A-6-99030).

【0005】[0005]

【発明が解決しようとする課題】本発明は上記した従来
技術の欠点を解決し、自動車用トンネル,地下道路や屋
内自動車駐車場からの換気ガス等に含まれる低濃度のN
Oxを効率良く除去する方法である。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, and has a low concentration of N contained in ventilation gas from an automobile tunnel, an underground road or an indoor automobile parking lot.
This is a method of efficiently removing Ox.

【0006】従来技術はいずれも反応温度が通常200
℃以上であり、高温の排ガスを処理する場合には経済的
で優れた方法であるが、トンネル換気ガスのような常温
のしかも大量のガスを処理する場合には適応が難しい。
そのため大気中の稀薄なNOxの処理方法としては、予め
吸着剤によりNOxを濃縮した後、加熱された高濃度の
NOx含有ガスにアンモニアを添加し選択接触還元法で
無害なN2 に分解して放出する方法では、一般にこれら
大気中に排出されたNOxの90%以上は吸着性に乏し
いNOであり、しかも処理ガス中に水分が含有されると
NOの吸着性能が極端に悪くなるため、通常処理ガスか
ら予め除湿する必要がある。そのためNOx吸着剤以外
にも脱湿剤が必要になり、処理コスト上昇を招くという
問題点がある。
In all of the conventional techniques, the reaction temperature is usually 200.
This is an economical and excellent method for treating high-temperature exhaust gas, which is above ℃, but it is difficult to apply when treating a large amount of gas at room temperature, such as tunnel ventilation gas.
Therefore, as a treatment method for dilute NOx in the atmosphere, after NOx is previously concentrated by an adsorbent, ammonia is added to a heated high-concentration NOx-containing gas and decomposed into harmless N 2 by a selective catalytic reduction method. In the release method, 90% or more of NOx discharged into the atmosphere is generally NO with poor adsorptivity, and if the process gas contains water, the NO adsorption performance is extremely deteriorated. It is necessary to dehumidify the process gas in advance. Therefore, a dehumidifying agent is required in addition to the NOx adsorbent, which causes a problem of increasing the processing cost.

【0007】さらに、NOxの形態がNO2 であれば、
水分共存下でもNOxの吸着剤による除去あるいはアル
カリによる吸収除去は比較的容易なので、低濃度のNO
x含有ガス中のNOをコロナ放電やオゾンの添加により
NO2に酸化し、該NO2をアルカリ性吸収液で吸収除去
する方法や、NOをオゾン酸化によりNO2 に酸化し、
該NO2 を吸着除去する方法などがあるが、これらの方
法では、NOをNO2に酸化するためのエネルギーとし
て多量の電力を消費するという問題点がある。いずれに
しても、吸着剤による低濃度NOxの除去法では吸着剤
によるNOxの吸着能力が飽和し所定のNOx除去効率
を示さなくなった場合には、吸着剤の再生が必要とな
る。通常、この再生は吸着剤に再生ガスを流しながら加
熱することにより行われる。従って吸着剤の再生には加
熱のための多大なエネルギーが必要となり、経済的でな
い。吸着剤を通した再生ガスには高濃度のNOxが含有
されることになり、さらに必要に応じ所定温度に昇温し
て還元剤を添加し、脱硝触媒上で無害なN2 に分解して
放出したり、NO2 の場合はアルカリ溶液で吸収するこ
とになる。このため、新たに脱硝触媒塔が必要な場合も
ある。通常この脱硝反応の還元剤にはアンモニアや炭化
水素類が提案されている。
Further, if the form of NOx is NO 2 ,
Even in the presence of water, it is relatively easy to remove NOx with an adsorbent or with an alkali.
A method of oxidizing NO in the x-containing gas to NO 2 by corona discharge or addition of ozone, and absorbing and removing the NO 2 with an alkaline absorbent, or oxidizing NO to NO 2 by ozone oxidation,
Although there are methods of adsorbing and removing the NO 2 , there is a problem that these methods consume a large amount of electric power as energy for oxidizing NO to NO 2 . In any case, when the method for removing low-concentration NOx by the adsorbent is saturated with the NOx adsorption capacity by the adsorbent and the predetermined NOx removal efficiency is not exhibited, it is necessary to regenerate the adsorbent. Usually, this regeneration is performed by heating the adsorbent while flowing a regeneration gas. Therefore, regeneration of the adsorbent requires a large amount of energy for heating, which is not economical. The regenerated gas that has passed through the adsorbent contains a high concentration of NOx, and if necessary, the temperature is raised to a predetermined temperature to add a reducing agent, and decomposed into harmless N 2 on the denitration catalyst. It will be released, and in the case of NO 2 , it will be absorbed by an alkaline solution. Therefore, a new denitration catalyst tower may be needed. Usually, ammonia and hydrocarbons have been proposed as reducing agents for this denitration reaction.

【0008】[0008]

【課題を解決するための手段】上記問題点は下記の手段
によって達成できる。本発明による低濃度のNOxを効
率良く除去する処理システム及びその処理方法では、吸
着剤の再生を還元剤を含有するガスを流通させることに
よって行うことを特徴とする。通常、吸着剤により除去
されたNOxは、吸着剤の加熱再生により濃縮ガスとし
て脱離させ、還元分解工程でN2 に還元分解する。還元
分解工程には、濃縮NOx含有ガスに還元剤を添加した
後触媒上で分解する方法や、アルカリ化合物や溶液に吸
収させた後、還元処理する方法などが提案されている。
これらの還元分解工程は本発明の方法を適用すること
で、省略あるいは簡素化することが可能である。
The above problems can be achieved by the following means. The treatment system and the treatment method for efficiently removing low-concentration NOx according to the present invention are characterized in that the adsorbent is regenerated by circulating a gas containing a reducing agent. Usually, the NOx removed by the adsorbent is desorbed as a concentrated gas by heating and regenerating the adsorbent, and is reductively decomposed into N 2 in the reductive decomposition step. In the reductive decomposition step, a method of adding a reducing agent to a concentrated NOx-containing gas and then decomposing it on a catalyst, a method of absorbing it in an alkaline compound or a solution, and then performing a reduction treatment have been proposed.
These reduction decomposition steps can be omitted or simplified by applying the method of the present invention.

【0009】また、本発明による低濃度のNOxを含有
する排ガスの処理システムは、吸着装置によりNOxを
吸着除去し、該吸着装置の再生時には吸着NOxを、脱
着と同時に該吸着装置内で窒素に還元分解することを特
徴とする。吸着装置の性能をさらに向上させるため、吸
着装置の上流にNO酸化装置を設置し、排ガス中のNO
の一部または全てをNO2 に酸化しても良い。また、排
ガス中にダスト成分が多く含まれる場合には、吸着装置
の上流に除塵装置を設けても良い。本システムのNOx
除去性能を更に向上させるため、吸着装置の下流にNO
x還元分解装置を設けても良い。
Further, in the exhaust gas treatment system containing a low concentration of NOx according to the present invention, NOx is adsorbed and removed by the adsorber, and the adsorbed NOx is converted into nitrogen in the adsorber simultaneously with desorption when the adsorber is regenerated. It is characterized by reductive decomposition. In order to further improve the performance of the adsorption device, an NO oxidation device is installed upstream of the adsorption device,
Part or all of the above may be oxidized to NO 2 . Further, when the exhaust gas contains a large amount of dust components, a dust removing device may be provided upstream of the adsorption device. NOx of this system
In order to further improve the removal performance, NO is placed downstream of the adsorption device.
An x reduction decomposition device may be provided.

【0010】本発明の低濃度のNOx処理方法は用いる
還元剤種により2通りに大別できる。一つの方法は還元
剤に尿素あるいは尿素の分解生成物を用いる方法であ
り、もう一つの方法は炭化水素あるいはアルコール類を
用いる方法である。
The low-concentration NOx treatment method of the present invention can be roughly classified into two types depending on the reducing agent species used. One method is to use urea or a decomposition product of urea as a reducing agent, and the other method is to use hydrocarbons or alcohols.

【0011】本発明者等の詳細な検討によれば、再生ガ
ス中にNOxの還元剤として作用する化合物が含有され
ると、速やかに吸着剤の再生が行われることが分かっ
た。しかも通常の再生では、再生時に吸着剤から放出さ
れるガス中には高濃度のNOxが含有されるが、本発明
の方法では再生時に大部分のNOxが、脱離促進剤でも
ある還元剤により還元除去されるという特徴がある。
According to a detailed study by the present inventors, it was found that when the regeneration gas contains a compound that acts as a reducing agent for NOx, the adsorption agent is promptly regenerated. Moreover, in normal regeneration, the gas released from the adsorbent at the time of regeneration contains a high concentration of NOx, but in the method of the present invention, most of NOx is regenerated by the reducing agent which is also a desorption accelerator. It is characterized by being reduced and removed.

【0012】本発明に用いる吸着剤としてはNOx吸着
能以外に、脱離時に尿素,尿素の分解生成物,炭化水
素、あるいはアルコール類とNOxとの反応促進作用を
持つことが特徴である。例えば、アルミナ,シリカ,チ
タニア,シリカ−アルミナ,ゼオライト,活性炭などN
Ox吸着能をもつ各種の物質に還元剤とNOxとの反応
促進作用を持つ各種の物質を添加したものが使用され
る。これらの代表的なものとしては、還元剤に尿素、あ
るいは尿素の分解生成物を用いる場合にはPt,Rh,
Ru等の貴金属類、V,Mo,W,Cr,Mn,Fe,
Co,Ni,Ceなどの卑金属があげられる。また、還
元剤に炭化水素あるいはアルコール類を用いる場合には
Pt,Rh,Pd,Ru,Au,Ag等の貴金属類、C
o,Ni,Fe,Cu,Mn,Gaなどの卑金属があげ
られる。
The adsorbent used in the present invention is characterized in that, in addition to its ability to adsorb NOx, it has a function of promoting the reaction between urea, a decomposition product of urea, hydrocarbons, or alcohols and NOx during desorption. For example, alumina, silica, titania, silica-alumina, zeolite, activated carbon, etc. N
Various substances having an Ox adsorbing ability to which various substances having a reaction promoting action between a reducing agent and NOx are added are used. Typical examples of these include Pt, Rh, when urea or a decomposition product of urea is used as the reducing agent.
Noble metals such as Ru, V, Mo, W, Cr, Mn, Fe,
Base metals such as Co, Ni and Ce can be given. When hydrocarbon or alcohol is used as the reducing agent, precious metals such as Pt, Rh, Pd, Ru, Au and Ag, C
Examples include base metals such as o, Ni, Fe, Cu, Mn, and Ga.

【0013】また、NOxの吸着能を向上させるため
に、各種のアルカリ,アルカリ土類,希土類を添加する
のも好ましい方法である。たとえばLi,Na,K,M
g,Ca,Sr,Ba,La,Ce等である。
It is also a preferable method to add various alkalis, alkaline earths and rare earths in order to improve the NOx adsorption capacity. For example, Li, Na, K, M
g, Ca, Sr, Ba, La, Ce and the like.

【0014】さらに、NO酸化性能を持つ触媒成分を含
有させると、NOをより吸着しやすいNO2 に変換し吸
着することができるので吸着能力が向上するので好まし
い。通常、貴金属やCo,Mn等が好ましい。また、ペ
ロブスカイト化合物もNOxの吸着能があり、さらに炭
化水素あるいはアルコール類とNOxの反応に活性を示
すことが多いので好ましい吸着剤の候補である。
Further, it is preferable to contain a catalyst component having NO oxidation performance, since NO can be converted to NO 2 which is more easily adsorbed and adsorbed, and the adsorption capacity is improved. Usually, noble metals, Co, Mn, etc. are preferable. In addition, perovskite compounds have NOx adsorbing ability and are often active in the reaction of NOx with hydrocarbons or alcohols, and are therefore preferable adsorbent candidates.

【0015】本方法においては、低濃度NOx含有ガス
中のNOをコロナ放電またはオゾンの添加により、少な
くとも一部をNO2 に酸化した後、生成した該NOx
(NO+NO2 )含有ガスを吸着剤に接触させる方法も
NOxの吸着除去効果が高まるので有効な方法である。
吸着されたNOxはNOに限らず、NO2 の形態でもな
んら差し支えない。
In the present method, at least a part of NO in the low concentration NOx-containing gas is oxidized to NO 2 by corona discharge or addition of ozone, and then the generated NOx.
The method of bringing the (NO + NO 2 ) -containing gas into contact with the adsorbent is also an effective method because the NOx adsorption / removal effect is enhanced.
The adsorbed NOx is not limited to NO and may be in the form of NO 2 .

【0016】吸着剤を還元剤を含有するガスで再生する
場合、NOxの脱離と、NOxと炭化水素またはアルコ
ール類との反応を効率良く進行させるため、あらかじめ
加熱した再生用ガスを流通させることにより吸着剤が2
00〜500℃の温度に昇温されることが好ましい。も
ちろん、他の手段、例えば電気ヒータ等により直接吸着
剤を加熱してもよい。また再生用ガスを、吸着剤を含む
閉鎖系内で循環使用し、吸着剤に吸着したNOxを十分
に還元浄化することも好ましい方法である。この場合、
適宜還元剤を添加していくのも良い。
When the adsorbent is regenerated with a gas containing a reducing agent, a preheated regeneration gas is circulated in order to promote the desorption of NOx and the reaction of NOx with hydrocarbons or alcohols efficiently. The adsorbent is 2
The temperature is preferably raised to a temperature of 00 to 500 ° C. Of course, the adsorbent may be directly heated by other means such as an electric heater. It is also a preferable method to circulate the regeneration gas in a closed system containing an adsorbent to sufficiently reduce and purify NOx adsorbed on the adsorbent. in this case,
It is also possible to add a reducing agent appropriately.

【0017】本発明の還元剤として用いる尿素は、固体
のまま再生用ガス中に噴霧混合しても良いし、水溶液の
形態で供給しても良い。また、予め尿素の分解装置を設
けておき、尿素を加水分解して生成したガスを適宜供給
しても良い。尿素の分解生成物のうち、アンモニア,イ
ソシアン酸等のアミン類はNOxの還元剤として用い得
る。前記分解装置には、例えば加熱系内に水蒸気存在下
で尿素を供給する装置や、加熱した尿素分解用触媒上に
水蒸気存在下で尿素を供給する装置を用いることができ
る。
The urea used as the reducing agent of the present invention may be spray-mixed into the regeneration gas as a solid, or may be supplied in the form of an aqueous solution. Alternatively, a urea decomposing device may be provided in advance and a gas generated by hydrolyzing urea may be appropriately supplied. Of the decomposition products of urea, amines such as ammonia and isocyanic acid can be used as a reducing agent for NOx. As the decomposition device, for example, a device that supplies urea in the heating system in the presence of steam, or a device that supplies urea on the heated urea decomposition catalyst in the presence of steam can be used.

【0018】本発明の還元剤に用いる炭化水素として
は、メタン,エタン,プロパン,ブタン,エチレン,プ
ロピレン等の単体、あるいはLPGのような混合物でも
良い。もちろんより炭素数の多い高級炭化水素でも良
く、もちろんガソリン,灯油等の混合物でも良い。また
アルコール類としては、メチルアルコール,エチルアル
コール,プロピルアルコール等が使用出来、特にその種
類に限定されない。
The hydrocarbon used in the reducing agent of the present invention may be a simple substance such as methane, ethane, propane, butane, ethylene or propylene, or a mixture such as LPG. Of course, higher hydrocarbons having more carbon atoms may be used, and of course, a mixture of gasoline, kerosene, etc. may be used. As alcohols, methyl alcohol, ethyl alcohol, propyl alcohol and the like can be used, and the type is not particularly limited.

【0019】これらの炭化水素あるいはアルコールは、
気体の場合はそのまま再生ガス中に供給すればよい。ま
た、液体や固体の場合はその性状によって、再生ガス中
へそのまま噴霧したり、適当な溶媒に溶かした後に供給
することができる。
These hydrocarbons or alcohols are
In the case of gas, it may be supplied as it is into the regeneration gas. In the case of a liquid or a solid, depending on its properties, it can be directly sprayed into the regeneration gas or can be supplied after being dissolved in an appropriate solvent.

【0020】本発明の低濃度NOx除去方法において、
吸着剤の再生を炭化水素あるいはアルコール類を含有す
るガスを流通させることによって行う際には、ガス中の
酸素濃度を低くすることでより一層再生効率が向上する
場合がある。例えばPt,Rh,Pd,Ru等の貴金属
を含有する吸着剤によりNOxを吸着除去し、再生時に
炭化水素を含有する窒素ガスを流通させた場合には、貴
金属表面に吸着した酸素によってNOx還元反応が阻害
され、反応効率が低下する場合がある。しかし、ガス中
の酸素濃度を低くすると酸素による阻害が低減されるた
め、より効率良くNOxを還元し、吸着剤を再生するこ
とができる。
In the low concentration NOx removal method of the present invention,
When the adsorbent is regenerated by circulating a gas containing hydrocarbons or alcohols, the regeneration efficiency may be further improved by lowering the oxygen concentration in the gas. For example, when NOx is adsorbed and removed by an adsorbent containing a noble metal such as Pt, Rh, Pd, Ru and a nitrogen gas containing a hydrocarbon is circulated during regeneration, the NOx reduction reaction is caused by oxygen adsorbed on the surface of the noble metal. May be inhibited and the reaction efficiency may be reduced. However, when the oxygen concentration in the gas is lowered, the inhibition by oxygen is reduced, so that NOx can be reduced more efficiently and the adsorbent can be regenerated.

【0021】例えば一般に貴金属を含有する吸着剤の場
合、再生処理時の流通ガス中の酸素濃度が0.5 %以下
の場合に最も効率良くNOxを炭化水素で還元すること
ができる。また、流通ガス中の酸素濃度が0.5 %以上
の場合であっても、酸素濃度が低いほど効率良くNOx
を還元することが可能である。
For example, generally, in the case of an adsorbent containing a noble metal, NOx can be most efficiently reduced with hydrocarbons when the oxygen concentration in the flowing gas at the time of regeneration treatment is 0.5% or less. Even when the oxygen concentration in the flowing gas is 0.5% or more, the lower the oxygen concentration, the more efficiently NOx
Can be reduced.

【0022】また、貴金属を含有する吸着剤以外でも流
通ガス中の酸素濃度を低減することで効率良くNOxを
還元することができる場合がある。
In some cases, NOx can be efficiently reduced by reducing the oxygen concentration in the flowing gas other than the adsorbent containing a noble metal.

【0023】吸着剤再生時の流通ガス中の酸素濃度を低
減する方法には多様な方法がある。例えば炭化水素など
を燃焼して酸素濃度を低減する方法、PSA法等の吸着
剤を用いる方法、あるいは窒素ガスや炭酸ガスなどの不
活性ガスのタンクを設けておき、吸着剤再生時に炭化水
素と混合して流通させる方法等がある。
There are various methods for reducing the oxygen concentration in the flowing gas when the adsorbent is regenerated. For example, a method of burning a hydrocarbon or the like to reduce the oxygen concentration, a method of using an adsorbent such as the PSA method, or a tank of an inert gas such as nitrogen gas or carbon dioxide gas is provided so There is a method of mixing and circulating.

【0024】本発明の方法で還元剤として用いる化合物
は、吸着剤上でのNOxの還元分解を促進するだけでな
く、NOxの脱離も促進する。そのため、前記化合物を
吸着剤からのNOx脱離促進剤として用い、吸着剤の再
生をより低温で行うことも可能となる。この場合、一部
のNOxが還元されずに吸着剤から脱離する場合もあ
り、後流にNOx還元工程を設ける必要があるが、脱離
促進剤を使用しない場合に比較して還元工程を簡略化す
ることが可能である。
The compound used as the reducing agent in the method of the present invention not only promotes the reductive decomposition of NOx on the adsorbent, but also promotes the desorption of NOx. Therefore, it becomes possible to regenerate the adsorbent at a lower temperature by using the compound as an NOx desorption accelerator from the adsorbent. In this case, a part of NOx may be desorbed from the adsorbent without being reduced, and it is necessary to provide a NOx reduction step in the downstream, but the reduction step can be performed as compared with the case where no desorption accelerator is used. It is possible to simplify.

【0025】[0025]

【作用】本発明による方法ではNOxの吸着剤の再生時
に還元剤を含有するガスで再生するため、再生が容易に
進む。これらの成分を含有しない再生ガスを用いた場合
とは異なり、50〜200℃の比較的低い温度域でもN
Oxの放出が起こる。これは吸着剤に、NOxと還元剤
との反応を促進する触媒作用を持つ成分を添加している
ため、吸着されているNOxは単に脱離するのではな
く、吸着剤上である一定温度以上になると還元剤である
炭化水素またはアルコール類との反応によりN2 に分解
されるため、脱離しやすくなるものと考えられる。
In the method according to the present invention, since the NOx adsorbent is regenerated with the gas containing the reducing agent at the time of regeneration, the regeneration is facilitated. Unlike the case of using a regenerating gas that does not contain these components, N is maintained even in a relatively low temperature range of 50 to 200 ° C.
Ox release occurs. This is because the adsorbent is added with a component having a catalytic action that promotes the reaction between NOx and the reducing agent, so that the adsorbed NOx is not simply desorbed, but above a certain temperature above the adsorbent. Then, it is considered that the compound is decomposed into N 2 by the reaction with a reducing agent such as hydrocarbon or alcohol, and is easily desorbed.

【0026】本方法では脱離するNOxはその場でN2
に還元分解され、殆ど排ガスには含有されない。従っ
て、通常のNOx吸着剤の再生時には脱離する高濃度N
Oxの後処理装置が必要となるが、本発明による方法で
は不要となる。
In the present method, the desorbed NOx is converted to N 2 on the spot.
It is reduced and decomposed into and is hardly contained in exhaust gas. Therefore, when the normal NOx adsorbent is regenerated, the high concentration N desorbed.
An Ox aftertreatment device is required, but is not needed in the method according to the invention.

【0027】[0027]

【実施例】【Example】

(実施例1)本発明になるNOx除去システムの一例を
図1の全体フローにより説明する。低濃度NOxを含有
する排ガス1は、酸化工程2でオゾナイザ3により合成
されたオゾンと混合され、一部またはすべてのNOがN
2 に酸化される。酸化工程2を流出したガスは吸着層
4に導入され、NOxが吸着除去された後、換気塔5よ
り大気中に放出される。
(Embodiment 1) An example of the NOx removal system according to the present invention will be described with reference to the overall flow of FIG. The exhaust gas 1 containing a low concentration of NOx is mixed with ozone synthesized by the ozonizer 3 in the oxidation step 2, and some or all of the NO is converted into N 2.
Oxidized to O 2 . The gas flowing out of the oxidation step 2 is introduced into the adsorption layer 4, NOx is adsorbed and removed, and then released from the ventilation tower 5 into the atmosphere.

【0028】前記吸着層4は複数のユニットより成り、
NOxが多量に吸着して吸着能力の低下したユニットは
抜き出して後述する再生処理を実施する。
The adsorption layer 4 is composed of a plurality of units,
A unit in which a large amount of NOx is adsorbed and the adsorption capacity is lowered is extracted and a regeneration process described later is performed.

【0029】窒素6をファン7で吸着剤再生工程に導入
し、吸着層4より抜き出した吸着剤ユニット8を流通さ
せる。ユニット8内部の酸素濃度が充分に低下した時点
で炭化水素9を窒素気流中に導入し、加熱装置10で約
200℃に加熱,流通させる。ユニット8上でNOxは
炭化水素によりN2 に還元分解される。分解後のガスは
再び吸着層4の上流に導入される。分解後のガスに未反
応のNOx及び炭化水素が残留していた場合は吸着層4
で吸着処理された後換気塔5より大気放出される。再生
処理の終了したユニット8は再び吸着層4に組み込む。
Nitrogen 6 is introduced into the adsorbent regeneration process by the fan 7, and the adsorbent unit 8 extracted from the adsorption layer 4 is circulated. When the oxygen concentration inside the unit 8 is sufficiently lowered, the hydrocarbon 9 is introduced into the nitrogen stream, and heated by the heating device 10 to about 200 ° C. and circulated. On the unit 8, NOx is reductively decomposed into N 2 by hydrocarbons. The decomposed gas is again introduced upstream of the adsorption layer 4. If unreacted NOx and hydrocarbons remain in the decomposed gas, the adsorption layer 4
After being adsorbed, the air is released from the ventilation tower 5 into the atmosphere. The unit 8 that has completed the regeneration process is incorporated into the adsorption layer 4 again.

【0030】本システムにより低濃度のNOxを効率よ
く吸着除去し、また吸着剤に吸着したNOxも速やかに
還元して無害化することが可能となる。
With this system, it is possible to efficiently adsorb and remove low-concentration NOx, and also quickly reduce NOx adsorbed by the adsorbent to render it harmless.

【0031】(実施例2)本発明になるNOx除去シス
テムの一例を図2の全体フローにより説明する。低濃度
NOxを含有する排ガス1は吸着層4に導入され、ここ
でNOxが吸着除去された後換気塔5より大気放出され
る。吸着層4は複数のユニットより成り、NOxが多量
に吸着して吸着能力の低下したユニットは抜き出して後
述する再生処理を実施する。
(Embodiment 2) An example of the NOx removal system according to the present invention will be described with reference to the overall flow of FIG. The exhaust gas 1 containing a low concentration of NOx is introduced into the adsorption layer 4, where NOx is adsorbed and removed, and then released from the ventilation tower 5 to the atmosphere. The adsorption layer 4 is composed of a plurality of units, and a unit whose NOx is adsorbed in a large amount and whose adsorbability is lowered is extracted and subjected to a regeneration process described later.

【0032】窒素6をファン7によりユニット8に導入
し、さらに吸着層4の上流に導入する。ユニット8内部
の酸素濃度が充分に低下した時点で流路切り替えバルブ
11,12を、吸着剤ユニット8から流出したガスが循
環して再び8に流入するように切り替える。加熱装置1
0で約200℃に加熱したガスをファン7で循環流通さ
せ、8をNOxの還元分解に必要な温度まで加熱する。
同時に炭化水素9を循環系内に導入し、8より脱離する
NOxを、脱離と同時にN2 に還元分解する。NOxが
充分に還元浄化され、再生が完了した8は再度吸着層4
に組み込む。
Nitrogen 6 is introduced into the unit 8 by the fan 7 and further upstream of the adsorption layer 4. When the oxygen concentration inside the unit 8 is sufficiently reduced, the flow path switching valves 11 and 12 are switched so that the gas flowing out from the adsorbent unit 8 circulates and flows into the adsorbent unit 8 again. Heating device 1
A gas heated to about 200 ° C. at 0 is circulated through a fan 7 to heat 8 to a temperature required for NOx reduction decomposition.
At the same time, hydrocarbon 9 is introduced into the circulation system, and NOx desorbed from 8 is reduced and decomposed into N 2 simultaneously with desorption. NOx that has been sufficiently reduced and purified and regeneration is completed is again in the adsorption layer 4
Built in.

【0033】本方法により低濃度のNOxを効率よく吸
着除去でき、またNOx吸着後の吸着剤に循環系による
加熱再生処理を行うことで、NOxを吸着剤上で浄化す
ることができる。
By this method, low-concentration NOx can be efficiently adsorbed and removed, and NOx can be purified on the adsorbent by subjecting the adsorbent after the NOx adsorption to a heating regeneration treatment by a circulation system.

【0034】(実施例3)本発明で用いる窒素酸化物吸
着剤を下記のように調製した。
Example 3 A nitrogen oxide adsorbent used in the present invention was prepared as follows.

【0035】酸化イットリウム23g,酸化バリウム3
1g,酸化銅16gを、ライカイ機で1時間混練した。
混練生成物を150℃で2時間乾燥した後、500℃で
2時間予備焼成した。得られた酸化物を乳鉢で充分に粉
砕した後、さらに870℃で4時間焼成した。次に、得
られた粉末を直径45mmの円盤状にプレスし、これを破
砕して粒径0.5 〜1mmの粒状に整粒した。この化合物
は、YBaCuO7-xの組成を有し、X線回折測定の結
果、ペロブスカイト型の結晶構造を有する複合酸化物で
あることが分かった。
Yttrium oxide 23 g, barium oxide 3
1 g and 16 g of copper oxide were kneaded with a raikai machine for 1 hour.
The kneaded product was dried at 150 ° C. for 2 hours and then pre-baked at 500 ° C. for 2 hours. The obtained oxide was sufficiently crushed in a mortar and then calcined at 870 ° C. for 4 hours. Next, the obtained powder was pressed into a disk shape having a diameter of 45 mm, which was crushed to be granulated to have a particle size of 0.5 to 1 mm. This compound had a composition of YBaCuO 7-x , and as a result of X-ray diffraction measurement, it was found to be a complex oxide having a perovskite type crystal structure.

【0036】前記の粒状YBaCuO7-x に所定量のジ
ニトロジアミン白金酸水溶液を含浸した。これを150
℃で2時間乾燥した後500℃で2時間焼成して、吸着
剤1を得た。化学分析の結果、白金(Pt)はYBaC
uO7-xに対して0.1重量%担持されていた。
The granular YBaCuO 7-x was impregnated with a predetermined amount of dinitrodiamineplatinic acid aqueous solution. 150 this
After being dried at ℃ for 2 hours, it was baked at 500 ℃ for 2 hours to obtain an adsorbent 1. As a result of chemical analysis, platinum (Pt) is YBaC
The supported amount was 0.1% by weight based on uO 7-x .

【0037】(実施例4)吸着剤1のNOxの吸着性能
を測定した。吸着剤1の4mlを、内径20mm,長さ8
00mmの石英ガラス製円筒管の中央部に充填し、表1の
条件でNO含有ガスの処理を行った。なお、吸着剤の温
度は、熱電対を挿入して測定した。また、石英ガラス製
円筒管の入口及び出口ガス中のNOx(NO及びNO2
濃度は、化学発光式窒素酸化物分析計で連続計測した。
Example 4 The NOx adsorption performance of the adsorbent 1 was measured. 4 ml of adsorbent 1 with an inner diameter of 20 mm and a length of 8
It was filled in the center of a quartz glass cylindrical tube of 00 mm and treated with an NO-containing gas under the conditions shown in Table 1. The temperature of the adsorbent was measured by inserting a thermocouple. In addition, NOx (NO and NO 2 ) in the inlet and outlet gas of the quartz glass cylindrical tube
The concentration was continuously measured by a chemiluminescence type nitrogen oxide analyzer.

【0038】[0038]

【表1】 [Table 1]

【0039】NOx除去率は次式に従って算出した。The NOx removal rate was calculated according to the following equation.

【0040】[0040]

【数1】 [Equation 1]

【0041】ここでNOxはNOとNO2 の合計濃度(p
pm)を表す。
Here, NOx is the total concentration of NO and NO 2 (p
pm).

【0042】表2に各温度に設定した吸着剤1の、ガス
流通15時間後におけるNOx吸着除去率を示す。吸着
剤1は、室温付近の温度域で高いNOx吸着性能を有す
ることが分かった。
Table 2 shows the NOx adsorption removal rate of the adsorbent 1 set to each temperature after 15 hours of gas flow. It was found that the adsorbent 1 has a high NOx adsorption performance in the temperature range near room temperature.

【0043】[0043]

【表2】 [Table 2]

【0044】(実施例5)吸着剤1を用い、実施例4と
同様に25℃で15時間NOx含有ガスを流通させて吸
着処理を施した後、再生処理を以下の方法で行った。
(Example 5) Using the adsorbent 1, the NOx-containing gas was circulated at 25 ° C for 15 hours in the same manner as in Example 4 to perform the adsorption treatment, and then the regeneration treatment was performed by the following method.

【0045】NOx吸着処理後の吸着剤1を充填した石
英ガラス製円筒管内に、表3に示す、プロピレンを含有
する窒素ガスを充填し、循環ポンプを用いて円筒管の一
端から流出したガスを他端に戻して循環させた。円筒管
を200℃まで加熱して30分間再生処理をした。
A quartz glass cylindrical tube filled with the adsorbent 1 after the NOx adsorption treatment was filled with nitrogen gas containing propylene shown in Table 3, and the gas flowing out from one end of the cylindrical tube was circulated using a circulation pump. It was returned to the other end and circulated. The cylindrical tube was heated to 200 ° C. and regenerated for 30 minutes.

【0046】再生処理後に円筒管内のガスを採取してN
Ox濃度を計測した結果、0.1ppm以下であった。ま
た、再生処理後の吸着剤1を窒素気流中で700℃まで
昇温したが、吸着剤からのNOxの脱離は認められなか
った。これらの結果から、上記の再生処理により吸着剤
1に吸着したNOxは、ほとんど脱離して窒素に分解し
たことが分かった。
After the regeneration treatment, the gas in the cylindrical tube was sampled to obtain N
As a result of measuring the Ox concentration, it was 0.1 ppm or less. In addition, the adsorbent 1 after the regeneration treatment was heated to 700 ° C. in a nitrogen stream, but no desorption of NOx from the adsorbent was observed. From these results, it was found that most of the NOx adsorbed on the adsorbent 1 by the above regeneration treatment was desorbed and decomposed into nitrogen.

【0047】[0047]

【表3】 [Table 3]

【0048】(実施例6)吸着剤1を用い、実施例4と
同様に25℃で15時間NOx含有ガスを流通させて吸
着処理を施した後、再生処理を以下の方法で行った。
Example 6 Using the adsorbent 1, the NOx-containing gas was circulated at 25 ° C. for 15 hours in the same manner as in Example 4 to carry out the adsorption treatment, and then the regeneration treatment was carried out by the following method.

【0049】前記吸着剤1を充填した石英ガラス製円筒
管内に、表4に示すように還元剤を含有しない窒素を充
填し、循環ポンプを用いて円筒管の一端から流出したガ
スを他端に戻して循環させた。同時に円筒管を200℃
まで加熱して、30分間再生処理をした。
A quartz glass cylindrical tube filled with the adsorbent 1 was filled with nitrogen containing no reducing agent as shown in Table 4, and a gas discharged from one end of the cylindrical tube was supplied to the other end by using a circulation pump. It was returned and circulated. At the same time, the cylindrical tube
It was heated up to and regenerated for 30 minutes.

【0050】再生処理後に円筒管内のガスを採取してN
Ox濃度を計測した結果、約13ppm であった。この結
果、再生処理ガス中に炭化水素酸素が含まれないと一部
またはすべてのNOxは充分に還元されないまま吸着剤
1から脱離することが分かった。
After the regeneration treatment, the gas in the cylindrical tube is sampled and N
As a result of measuring the Ox concentration, it was about 13 ppm. As a result, it was found that some or all of NOx is desorbed from the adsorbent 1 without being sufficiently reduced unless hydrocarbon oxygen is contained in the regeneration treatment gas.

【0051】[0051]

【表4】 [Table 4]

【0052】(実施例7)本発明で用いるNOx吸着剤
を下記のように調製した。
Example 7 The NOx adsorbent used in the present invention was prepared as follows.

【0053】市販の粒状γ−Al23を乳鉢で破砕して
粒径0.5〜1mm の粒状に整粒した。これに所定量のジ
ニトロジアミン白金酸水溶液を含浸し、150℃で2時
間乾燥した。さらに500℃で2時間焼成して、吸着剤
2を得た。化学分析の結果、白金(Pt)はAl23
対して0.1 重量%担持されていた。
[0053] and sieved commercial particulate γ-Al 2 O 3 by crushing in a mortar into particles having a particle size of 0.5 to 1 mm. This was impregnated with a predetermined amount of dinitrodiamineplatinic acid aqueous solution and dried at 150 ° C. for 2 hours. Further, it was calcined at 500 ° C. for 2 hours to obtain an adsorbent 2. As a result of chemical analysis, platinum (Pt) was supported in an amount of 0.1% by weight based on Al 2 O 3 .

【0054】(実施例8)実施例7においてジニトロジ
アミン白金酸水溶液に代えて硝酸コバルト水溶液を用い
たほかは実施例7と同様にして吸着剤3を得た。硝酸コ
バルト水溶液の量及び濃度は、吸着剤3に含有されるコ
バルトが10重量%となるように調整した。
Example 8 An adsorbent 3 was obtained in the same manner as in Example 7 except that the aqueous solution of cobalt nitrate was used instead of the aqueous solution of dinitrodiamineplatinic acid in Example 7. The amount and concentration of the cobalt nitrate aqueous solution were adjusted so that the cobalt contained in the adsorbent 3 was 10% by weight.

【0055】(実施例9)市販の、Al23/SiO2
比が約30であるZSM−5ゼオライト粉末を所定量の
硝酸銅水溶液と乳鉢で混練し、150℃で2時間乾燥し
た後500℃で2時間焼成して、吸着剤4を得た。硝酸
銅水溶液の量及び濃度は、吸着剤4に含有される銅が1
0重量%となるように調整した。
Example 9 Commercially available Al 2 O 3 / SiO 2
A ZSM-5 zeolite powder having a ratio of about 30 was kneaded with a predetermined amount of an aqueous copper nitrate solution in a mortar, dried at 150 ° C. for 2 hours and then calcined at 500 ° C. for 2 hours to obtain an adsorbent 4. The amount and concentration of the copper nitrate aqueous solution is such that the copper contained in the adsorbent 4 is 1
It was adjusted to be 0% by weight.

【0056】(実施例10)吸着剤2〜4について、2
5℃において実施例4と同様の条件でNOの吸着実験を
15時間実施した結果を表5に示す。いずれの吸着剤も
高い吸着能を有していることが分かった。
(Example 10) Regarding the adsorbents 2 to 4, 2
Table 5 shows the results of an NO adsorption experiment carried out for 15 hours at 5 ° C. under the same conditions as in Example 4. It was found that all the adsorbents had high adsorption ability.

【0057】[0057]

【表5】 [Table 5]

【0058】(実施例11)実施例10でNOx吸着処
理を施した吸着剤2〜4について、プロピレンに代えて
エチレンを用いた他は実施例5と同様の条件で吸着剤の
再生実験を行った。再生処理後に石英ガラス製円筒管内
のガスを採取して、NOx濃度を測定した結果を表6に
示す。いずれの吸着剤も、吸着したNOxが脱離する際
に同時に分解して窒素に変換されていることが分かっ
た。
(Example 11) With respect to the adsorbents 2 to 4 which were subjected to the NOx adsorption treatment in Example 10, an adsorbent regeneration experiment was conducted under the same conditions as in Example 5 except that ethylene was used instead of propylene. It was Table 6 shows the results of measuring the NOx concentration by collecting the gas in the cylindrical tube made of quartz glass after the regeneration treatment. It was found that all the adsorbents were simultaneously decomposed and converted into nitrogen when the adsorbed NOx was desorbed.

【0059】[0059]

【表6】 [Table 6]

【0060】(実施例12)実施例10でNOx吸着処
理を施した吸着剤2〜4について、プロピレンに代えて
エチルアルコールを用い、窒素に代えて空気を用いた以
外は実施例5と同様の条件で吸着剤の再生実験を行っ
た。再生処理後に石英ガラス製円筒管内のガスを採取し
て、NOx濃度を測定した結果を表7に示す。いずれの
吸着剤も、吸着したNOxが脱離する際に同時に分解し
て窒素に変換されていることが分かった。
(Example 12) As to the adsorbents 2 to 4 which were subjected to the NOx adsorption treatment in Example 10, ethyl alcohol was used in place of propylene, and air was used in place of nitrogen, and the same operation as in Example 5 was performed. An adsorbent regeneration experiment was conducted under the conditions. Table 7 shows the results of measuring the NOx concentration by collecting the gas in the cylindrical tube made of quartz glass after the regeneration treatment. It was found that all the adsorbents were simultaneously decomposed and converted into nitrogen when the adsorbed NOx was desorbed.

【0061】[0061]

【表7】 [Table 7]

【0062】(実施例13)吸着剤1について、25℃
において、NOに代えてNO2 を使用した以外は実施例
4と同様の条件でNOの吸着実験を所定の時間実施した
結果を表8に示す。吸着剤1は高いNO2 吸着能を有し
ていることが分かった。
(Example 13) Regarding the adsorbent 1, 25 ° C
Table 8 shows the result of carrying out the NO adsorption experiment for a predetermined time under the same conditions as in Example 4 except that NO 2 was used instead of NO. It was found that the adsorbent 1 had a high NO 2 adsorption capacity.

【0063】[0063]

【表8】 [Table 8]

【0064】(実施例14)実施例13で、NO2 吸着
処理を25℃で15時間施した吸着剤1について、実施
例5と同一条件での再生実験を行った。再生処理後に石
英ガラス製円筒管内のガスを採取してNOx濃度を計測
した結果、約0.2ppmであった。また、再生処理後の吸
着剤1を窒素気流中で700℃まで昇温したが、NOx
の吸着剤からの脱離は認められなかった。この結果よ
り、NO2 が吸着した吸着剤も本発明の方法によって再
生処理が可能であり、NO2 をNOと同様に吸着剤上で
還元浄化できることが分かった。
(Example 14) With respect to the adsorbent 1 which was subjected to the NO 2 adsorption treatment at 25 ° C for 15 hours in Example 13, a regeneration experiment was conducted under the same conditions as in Example 5. After the regeneration treatment, the gas in the quartz glass cylindrical tube was sampled and the NOx concentration was measured. As a result, it was about 0.2 ppm. Further, the temperature of the adsorbent 1 after the regeneration treatment was raised to 700 ° C. in a nitrogen stream, but NOx
Was not desorbed from the adsorbent. This result adsorbent NO 2 is adsorbed also can be reproduced treated by the method of the present invention, it was found that the NO 2 can be reduced and purified on the adsorbent as well as NO.

【0065】(実施例15)実施例10においてNOを
吸着させた吸着剤4を用い、再生実験を行った。
Example 15 A regeneration experiment was conducted using the adsorbent 4 having NO adsorbed in Example 10.

【0066】吸着処理後の吸着剤4を充填した石英ガラ
ス製円筒管内に、表9に示す組成のガスを充填し、循環
ポンプを用いて円筒管の一端から流出したガスを他端に
戻して循環させた。円筒管を200℃まで加熱して30
分間再生処理をした。
Gas having the composition shown in Table 9 was filled in a quartz glass cylindrical tube filled with the adsorbent 4 after the adsorption treatment, and the gas flowing out from one end of the cylindrical tube was returned to the other end using a circulation pump. Circulated. Heat cylindrical tube to 200 ° C for 30
It was regenerated for a minute.

【0067】還元剤として用いた尿素は水溶液として保
管しておき、400℃に加熱した尿素分解用石英ガラス
管内に所定量を滴下して加水分解した後、他のガス成分
と混合した。
The urea used as the reducing agent was stored as an aqueous solution, and a predetermined amount was dropped into a quartz glass tube for urea decomposition heated to 400 ° C. to hydrolyze, and then mixed with other gas components.

【0068】再生処理後に円筒管内のガスを採取してN
Ox濃度を計測した結果、0.1ppm以下であった。この
結果より、還元剤に尿素を用いて、NOを吸着剤上で還
元浄化できることが分かった。
After the regeneration treatment, the gas in the cylindrical tube was sampled and N
As a result of measuring the Ox concentration, it was 0.1 ppm or less. From this result, it was found that NO can be reduced and purified on the adsorbent by using urea as the reducing agent.

【0069】[0069]

【表9】 [Table 9]

【0070】[0070]

【発明の効果】本発明によれば、低濃度NOxを浄化処
理する際に吸着剤以外に触媒層を設ける必要がないた
め、コンパクトかつ効率的な浄化処理を行うことがで
き、特に自動車トンネルや地下駐車場などの排ガス脱硝
に好適である。
According to the present invention, since it is not necessary to provide a catalyst layer other than an adsorbent when purifying low-concentration NOx, it is possible to perform compact and efficient purifying treatment, especially for automobile tunnels and It is suitable for exhaust gas denitration in underground parking lots.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる低濃度NOx含有ガスの処理に用
いる装置の概念図である。
FIG. 1 is a conceptual diagram of an apparatus used for processing a low concentration NOx-containing gas according to the present invention.

【図2】本発明になる低濃度NOx含有ガスの処理に用
いる装置の概念図である。
FIG. 2 is a conceptual diagram of an apparatus used for processing a low concentration NOx-containing gas according to the present invention.

【符号の説明】[Explanation of symbols]

1…低濃度NOxを含有する排ガス、2…酸化工程、3
…オゾナイザ、4…吸着層、5…換気塔、6…窒素、7
…ファン、8…吸着層4より抜き出した吸着剤ユニッ
ト、9…炭化水素、10…加熱装置、11,12…流路
切り替えバルブ。
1 ... Exhaust gas containing low concentration NOx, 2 ... Oxidation step, 3
… Ozonizer, 4… Adsorption layer, 5… Ventilation tower, 6… Nitrogen, 7
... Fan, 8 ... Adsorbent unit extracted from adsorption layer 4, 9 ... Hydrocarbon, 10 ... Heating device, 11, 12 ... Flow path switching valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小豆畑 茂 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisao Yamashita 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Shigeru Shodohata 7-chome, Omika-cho, Hitachi, Ibaraki No. 1 Hitachi Ltd. Hitachi Research Laboratory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】排ガス中のダスト成分を除去する除塵装置
と、NOxを吸着除去する吸着装置と、該吸着装置の再
生時には還元剤を供給して、捕集されたNOxを脱着時
に該吸着装置内で窒素に還元分解する制御装置とを有す
ることを特徴とする低濃度NOx含有ガスの処理システ
ム。
1. A dust removing device for removing dust components in exhaust gas, an adsorbing device for adsorbing and removing NOx, a reducing agent is supplied when the adsorbing device is regenerated, and the adsorbing device is provided when desorbing the collected NOx. A system for treating a low-concentration NOx-containing gas, comprising a control device for reducing and decomposing it into nitrogen inside.
【請求項2】排ガス中のダスト成分を除塵装置で除去し
た後、NO酸化装置で排ガス中のNOの一部または全部
をNO2 に酸化し、吸着装置でNOxを吸着除去し、該
吸着装置の再生時には還元剤を供給して、捕集されたN
Oxを脱着時に該吸着装置内で窒素に還元分解すること
を特徴とする低濃度NOx含有ガスの処理システム。
2. After removing dust components in exhaust gas by a dust remover, a NO oxidizing device oxidizes a part or all of NO in exhaust gas to NO 2 , and an adsorbing device removes NOx by adsorption, and the adsorbing device When regenerating, the reducing agent is supplied to collect the collected N
A treatment system for a low-concentration NOx-containing gas, wherein Ox is reductively decomposed into nitrogen in the adsorption device during desorption.
【請求項3】排ガス中のダスト成分を除塵装置で除去し
た後、NO酸化装置で排ガス中のNOの一部または全部
をNO2 に酸化し、吸着装置でNOxを吸着除去し、該
吸着装置の再生時には還元剤を含むガスを供給して捕集
されたNOxを脱着させ、その一部を該吸着装置内で窒
素に還元分解した後NOx還元装置に導入し、該NOx
還元装置で前記脱着NOxの残部を還元浄化することを
特徴とする低濃度NOx含有ガスの処理システム。
3. After removing dust components in the exhaust gas by a dust remover, a NO oxidizing device oxidizes a part or all of NO in the exhaust gas into NO 2 , and an adsorbing device adsorbs and removes NOx. At the time of regeneration of NOx, a gas containing a reducing agent is supplied to desorb the collected NOx, and a part of the NOx is reduced and decomposed into nitrogen in the adsorption device and then introduced into the NOx reduction device.
A treatment system for a low-concentration NOx-containing gas, characterized in that the reduction device purifies the rest of the desorbed NOx by reduction.
【請求項4】低濃度NOx含有ガスを吸着剤に接触さ
せ、NOxを吸着除去するシステムにおいて、吸着剤の
再生時に該吸着剤を流通するガス中の酸素濃度を低減す
る装置を設け、該装置により含有酸素濃度を低減し、か
つ炭化水素あるいはアルコール類を含有するガスを流通
させ、吸着剤上でNOxをN2 に還元分解することを特
徴とする低濃度NOx含有ガスの処理システム。
4. A system for adsorbing and removing NOx by bringing a low-concentration NOx-containing gas into contact with the adsorbent, and providing a device for reducing the oxygen concentration in the gas flowing through the adsorbent when the adsorbent is regenerated. The treatment system for a low-concentration NOx-containing gas according to claim 1, wherein the oxygen concentration is reduced and a gas containing a hydrocarbon or alcohol is circulated to reduce NOx on the adsorbent into N 2 .
【請求項5】請求項4記載の低濃度NOx含有ガスの処
理システムにおいて、吸着剤の再生時に炭化水素あるい
はアルコール類を含有する不活性ガスを流通させ、吸着
剤上でNOxをN2 に還元分解することを特徴とする低
濃度NOx含有ガスの処理システム。
5. The low-concentration NOx-containing gas treatment system according to claim 4, wherein an inert gas containing hydrocarbons or alcohols is circulated during regeneration of the adsorbent to reduce NOx to N 2 on the adsorbent. A treatment system for a low-concentration NOx-containing gas, which is characterized by decomposing.
【請求項6】低濃度NOx含有ガスを吸着剤に接触さ
せ、NOxを吸着除去する方法において、吸着剤の再生
時には還元剤を含有するガスを流通させ、吸着剤上でN
OxをN2 に還元分解することを特徴とする低濃度NO
x含有ガスの処理方法。
6. A method of adsorbing and removing NOx by bringing a low-concentration NOx-containing gas into contact with the adsorbent, wherein a gas containing a reducing agent is passed during regeneration of the adsorbent, and N 2 is adsorbed on the adsorbent.
Low concentration NO characterized by reducing and decomposing Ox into N 2.
Treatment method of x-containing gas.
【請求項7】請求項6記載の低濃度NOx含有ガスの処
理方法において、還元剤が炭化水素あるいはアルコール
類であることを特徴とする低濃度NOx含有ガスの処理
方法。
7. The method for treating a low-concentration NOx-containing gas according to claim 6, wherein the reducing agent is a hydrocarbon or an alcohol.
【請求項8】請求項6記載の低濃度NOx含有ガスの処
理方法において、還元剤が尿素あるいは尿素の分解生成
物であることを特徴とする低濃度NOx含有ガスの処理
方法。
8. The method for treating a low-concentration NOx-containing gas according to claim 6, wherein the reducing agent is urea or a decomposition product of urea.
【請求項9】請求項6記載の低濃度NOx含有ガスの処
理方法において、吸着剤再生時の吸着剤充填層の温度を
100℃〜500℃に調整して再生を行うことを特徴と
する低濃度NOx含有ガスの処理方法。
9. The method for treating a low concentration NOx-containing gas according to claim 6, wherein the temperature of the adsorbent packed bed at the time of adsorbent regeneration is adjusted to 100 ° C. to 500 ° C. to perform regeneration. A method for treating a gas containing NOx at a concentration.
【請求項10】請求項6記載の低濃度NOx含有ガスの
処理方法において、吸着剤がNOxと還元剤との反応に
対して触媒作用を有することを特徴とする低濃度NOx
含有ガスの処理方法。
10. The low-concentration NOx-containing gas treatment method according to claim 6, wherein the adsorbent has a catalytic action on the reaction between the NOx and the reducing agent.
Treatment method of contained gas.
【請求項11】低濃度NOx含有ガスを吸着剤に接触さ
せ、NOxを吸着除去する方法において、吸着剤の再生
時には還元剤を含有するガスを流通させ、吸着剤上で一
部のNOxをN2 に還元分解し、かつ吸着剤の後流にN
Ox還元分解工程を設けたことを特徴とする低濃度NO
x含有ガスの処理方法。
11. A method for adsorbing and removing NOx by bringing a low-concentration NOx-containing gas into contact with the adsorbent, and flowing a gas containing a reducing agent during regeneration of the adsorbent so that a part of the NOx is removed on the adsorbent. 2 and decomposed into N in the wake of the adsorbent.
Low concentration NO characterized by having an Ox reduction decomposition step
Treatment method of x-containing gas.
【請求項12】低濃度NOx含有ガスを吸着剤に接触さ
せ、NOxを吸着除去する方法において、吸着剤の再生
時にはNOxの脱離を促進する化合物を含有するガスを
流通させ、吸着剤よりNOxを脱離させた後、後流に設
けたNOx還元分解工程でN2に還元分解することを特
徴とする低濃度NOx含有ガスの処理方法。
12. A method for adsorbing and removing NOx by bringing a low-concentration NOx-containing gas into contact with the adsorbent, wherein a gas containing a compound that promotes desorption of NOx is circulated during regeneration of the adsorbent, and NOx is adsorbed from the adsorbent. A method for treating a low-concentration NOx-containing gas, characterized in that after desorption, NOx is reduced and decomposed into N 2 in a NOx reduction-decomposition step provided in the downstream.
JP7067336A 1995-03-27 1995-03-27 System and process for treating low concentration nox-containing gas Pending JPH08257351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7067336A JPH08257351A (en) 1995-03-27 1995-03-27 System and process for treating low concentration nox-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7067336A JPH08257351A (en) 1995-03-27 1995-03-27 System and process for treating low concentration nox-containing gas

Publications (1)

Publication Number Publication Date
JPH08257351A true JPH08257351A (en) 1996-10-08

Family

ID=13342079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7067336A Pending JPH08257351A (en) 1995-03-27 1995-03-27 System and process for treating low concentration nox-containing gas

Country Status (1)

Country Link
JP (1) JPH08257351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397582B1 (en) 1996-06-10 2002-06-04 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
WO2003103806A1 (en) * 2002-06-07 2003-12-18 日本パイオニクス株式会社 Method for clarifying exhaust gas
JP2007021499A (en) * 2006-10-23 2007-02-01 Nishimatsu Constr Co Ltd Removal method of nitrogen oxide and removal apparatus of nitrogen oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397582B1 (en) 1996-06-10 2002-06-04 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
EP0904482B2 (en) 1996-06-10 2010-01-20 Hitachi, Ltd. Exhaust gas purification apparatus of an internal combustion engine and catalyst for purifying exhaust gas of an internal combustion engine
WO2003103806A1 (en) * 2002-06-07 2003-12-18 日本パイオニクス株式会社 Method for clarifying exhaust gas
US7300640B2 (en) 2002-06-07 2007-11-27 Japan Pionics Co., Ltd. Method for clarifying exhaust gas
JP2007021499A (en) * 2006-10-23 2007-02-01 Nishimatsu Constr Co Ltd Removal method of nitrogen oxide and removal apparatus of nitrogen oxide

Similar Documents

Publication Publication Date Title
EP1732842B1 (en) Molecular sieves for improved hydrocarbon traps
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
JPWO2005037412A1 (en) Exhaust gas treatment method and treatment apparatus
JP2002502691A (en) Catalyst / absorber regeneration method
JPH05192535A (en) Method and apparatus for purifying exhaust gas
JP2002321912A (en) Zeolite for absorption and device for removing gas using the same
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JPH08257351A (en) System and process for treating low concentration nox-containing gas
JPH01299642A (en) Adsorbent for nitrogen oxide having low concentration
JPH0824579A (en) Treatment of low concentration nox containing gas
JPH09248448A (en) Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide
JP3414808B2 (en) Hydrocarbon adsorbent in exhaust gas
JPH0975670A (en) Treatment of organic pollutant
JPH0722682B2 (en) Method and apparatus for decomposing nitrogen oxides
JP3083915B2 (en) Removal method of low concentration nitrogen oxides
JP2000271445A (en) Method of cleaning nitrogen oxide
JP3576189B2 (en) Odor removal method and odor component adsorbent
JP3545029B2 (en) Exhaust gas purification method
JPH0679137A (en) Method for treating air containing small amount of nitrogen oxide
JPH119957A (en) Method for removing nitrogen oxide in atmospheric air
JPH04250822A (en) Removing method for nitrogen oxides
JP2003103140A (en) Method for cleaning nitrogen dioxide-containing gas
JPH08299758A (en) Method for removing nitrogen oxide and device therefor
JP2000271446A (en) Method of cleaning nitrogen oxide
JPH08323150A (en) Treatment of gas containing nitrogen oxides