JPH08299758A - Method for removing nitrogen oxide and device therefor - Google Patents

Method for removing nitrogen oxide and device therefor

Info

Publication number
JPH08299758A
JPH08299758A JP7112986A JP11298695A JPH08299758A JP H08299758 A JPH08299758 A JP H08299758A JP 7112986 A JP7112986 A JP 7112986A JP 11298695 A JP11298695 A JP 11298695A JP H08299758 A JPH08299758 A JP H08299758A
Authority
JP
Japan
Prior art keywords
gas
adsorbent
adsorption
desorption
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7112986A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
野島  繁
Toshikuni Sera
俊邦 世良
Yasuyoshi Mihashi
庸良 三橋
Naoyuki Uejima
直幸 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7112986A priority Critical patent/JPH08299758A/en
Publication of JPH08299758A publication Critical patent/JPH08299758A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide the method and device for efficiently and economically removing the dil. NOx in the atmosphere by using an adsorbent. CONSTITUTION: A gas 1 in the atmosphere contg. dil. NOx is introduced into an adsorption tower 3 to adsorb the NOx on an adsorbent 4. The adsorbent 4 is then treated with a gas heated by a heater 8 to desorb the adsorbed gas and regenerated, and the desorbed NOx is decomposed in a catalytic device 10 and discharged outside the system. The regenerated adsorbent 4 is cooled by the gas passed through a cooler 9, and the adsorption and desorption are repeated. The adsorbent 4 is regenerated in a heated inert gas also reduced in oxygen concn., and the oxygen concn. in the atmosphere at the end of regeneration and in cooling is decreased to zero or the atmosphere is made slightly reductive.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として道路トンネ
ル、閉鎖系駐車場からの換気ガス等に含有される低濃度
の一酸化窒素(NO)、二酸化窒素(NO2 )等の窒素
酸化物(以下、NOx と記す)を吸着除去する方法及び
そのための装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to nitrogen oxides such as low concentrations of nitric oxide (NO) and nitrogen dioxide (NO 2 ) mainly contained in ventilation gas from road tunnels and closed parking lots. Hereinafter, a method for adsorbing and removing NO x ) and an apparatus therefor.

【0002】[0002]

【従来の技術】道路トンネル内の換気設備は、主として
煤塵に起因する明視距離の確保及び一酸化炭素(C
O)、NOx 等有害物質の許容値以下への低減を目的に
設置されている。現状の換気方式は、新鮮な外気をトン
ネル外から吸気し、必要に応じて煤塵を除去後、トンネ
ル外に強制換気する方式が一般的に用いられている。
2. Description of the Related Art Ventilation equipment in a road tunnel is used to secure a clear visual distance mainly due to soot and carbon monoxide (C).
O), NO x, etc. are installed for the purpose of reducing the harmful substances to below the allowable value. As the current ventilation method, a method is generally used in which fresh outside air is taken in from outside the tunnel, soot is removed if necessary, and then forced ventilation is performed outside the tunnel.

【0003】しかしながら、この方式は有害物質を含む
換気ガスを大気に拡散しているだけであり、根本的な環
境改善になっていない。特に自動車排ガスによる大気汚
染が深刻になっている都市部では、高度の汚染地域を拡
大させることになり、道路計画におけるトンネル化、シ
ェルター設置に支障を来す場合がある。そこで省エネル
ギーで、周辺環境への影響が無い新たな換気方式の開発
が望まれている。
However, this method only diffuses ventilation gas containing harmful substances into the atmosphere, and does not improve the environment fundamentally. Particularly in urban areas where air pollution due to automobile exhaust gas is becoming serious, a highly polluted area is expanded, which may hinder tunneling and shelter installation in road planning. Therefore, it is desired to develop a new ventilation method that is energy-saving and has no effect on the surrounding environment.

【0004】トンネル換気ガスは常温・大容量で、NO
x 濃度は10ppm 以下と希薄であり、交通量によってN
x 濃度変動が激しいという特異性があるため、ボイラ
燃焼排ガスで既に実用化されているNH3 を還元剤とす
るNOx 浄化方法を、そのまま適用することは不可能で
ある。
The tunnel ventilation gas is NO at room temperature and has a large capacity.
The x concentration is as low as 10ppm or less, and N depends on the traffic volume.
Because of the peculiarity that the O x concentration fluctuation is severe, it is not possible to directly apply the NO x purification method using NH 3 as a reducing agent, which has already been put to practical use in boiler combustion exhaust gas.

【0005】そこで低濃度のNOx 浄化方法として、乾
式法及び湿式法が種々提案されているが、湿式法は廃水
処理装置が必要とするために実用化が困難である。乾式
法としては以下の方法がある。
Therefore, various dry methods and wet methods have been proposed as low-concentration NO x purification methods, but the wet method is difficult to put into practical use because it requires a wastewater treatment apparatus. The following dry methods are available.

【0006】(1) トンネル換気ガスのNOx を吸着
剤に吸着させ、温度、圧力を変えて吸着剤から分離・濃
縮後、接触の存在下で、還元剤を添加しないでNOx
無害な窒素に分解する接触分解法。
(1) After adsorbing NO x of the tunnel ventilation gas to the adsorbent, separating and concentrating from the adsorbent by changing the temperature and pressure, NO x is harmless without adding a reducing agent in the presence of contact. Catalytic decomposition method that decomposes to nitrogen.

【0007】(2) トンネル換気ガスのNOx を吸着
剤に吸着させ、温度、圧力を変えて分離・濃縮後、触媒
の存在下でNH3 を還元剤として無害な窒素にして除去
する吸着法。吸着剤によっては、NO2 にすると高性能
になるため、予めオゾンで酸化する場合、還元剤として
NH3 の代わりにプロパンを使用する場合もある。
(2) Adsorption method in which NO x of tunnel ventilation gas is adsorbed by an adsorbent, separated and concentrated by changing temperature and pressure, and then NH 3 is removed as harmless nitrogen as a reducing agent in the presence of a catalyst. . Depending on the adsorbent, if NO 2 is used, the performance will be high. Therefore, when oxidizing with ozone in advance, propane may be used as the reducing agent instead of NH 3 .

【0008】(3) トンネル換気ガスにNH3 を添加
すると同時に、電子線を照射して、NOx を硝酸アンモ
ニウムに換え、電気集塵機で回収・除去する電子線照射
法。
(3) An electron beam irradiation method in which NH 3 is added to the tunnel ventilation gas, and at the same time, an electron beam is irradiated to replace NO x with ammonium nitrate, and is recovered and removed by an electrostatic precipitator.

【0009】本発明者は、本NOx 浄化設備が都会設置
型であることを考慮し、有害物質のイメージが強く、2
次公害物質発生の恐れがあるNH3 、O3 の使用、及び
硝酸アンモニウムの如き固体副生物発生のない浄化法を
検討し、最初に(1)の方式を提案した。
The present inventor has a strong image of harmful substances in consideration of the fact that the NO x purification equipment is installed in the city.
The use of NH 3, O 3 there is a risk of the following pollutants occurs, and consider cleaning method without such a solid by-product generation in the ammonium nitrate was first proposed a scheme (1).

【0010】即ち、ゼオライト系吸着剤を用い加圧下で
NOx ガスを選択的に吸着させ、減圧下で吸着ガスを脱
離させるようにしたPSA(圧力スイング吸着)方式で
NO x を分離・濃縮後、NOx 分解触媒で窒素と酸素に
分解する方法であるが、NO x 濃度を数千倍(1%程
度)に濃縮しないと、NOx 分解触媒が所定の分解性能
を発現しないため、NOx 分離・濃縮部の占有容積、設
備コスト、所要動力などの面で実用性に劣る。
That is, under pressure using a zeolite-based adsorbent
NOxSelectively adsorb gas and desorb the adsorbed gas under reduced pressure.
PSA (pressure swing adsorption) method that is set to separate
NO xNO after separating and concentratingxDecomposition catalyst to nitrogen and oxygen
It is a decomposition method, but NO xConcentration several thousand times (about 1%
NO if not concentrated)xDecomposition catalyst has predetermined decomposition performance
NO because it does not expressxThe volume occupied by the separation / concentration unit
It is inferior in terms of equipment cost and required power.

【0011】そこで(1)の場合と同じ吸着剤を使用
し、還元ガスの添加による触媒作用により、窒素に転換
する(2)の方法を提案した。ここで、還元ガスとして
は、万一の漏洩時に有害物質としてのイメージの強いN
3 に代えて、家庭用燃料のプロパンを選定した。
Therefore, the method (2) in which the same adsorbent as in the case (1) is used and it is converted into nitrogen by a catalytic action by addition of a reducing gas was proposed. Here, as the reducing gas, N which has a strong image as a harmful substance should it leak out.
Instead of H 3 , propane, a household fuel, was selected.

【0012】しかしこの方法では、処理ガスに含まれる
飽和水分(2.6%程度)の影響があり、疎水性ゼオラ
イト系吸着剤に変更しても、吸脱着の繰り返しによるN
x吸着容量の低減が認められた。従って、処理ガスの
水分をゼロにするか、吸着剤容量を増やすかの対策が必
要となり、NOx 分離・濃縮部の改善効果は少ないと言
わざるを得ない。
However, this method is affected by the saturated water content (about 2.6%) contained in the treated gas, and even if the hydrophobic zeolite adsorbent is used, N by repeated adsorption and desorption is used.
A reduction in O x adsorption capacity was observed. Therefore, it is necessary to take measures to reduce the water content of the processing gas to zero or increase the adsorbent capacity, and it must be said that the effect of improving the NO x separation / concentration section is small.

【0013】また、水分共存下での吸脱着繰り返しで
も、NOx 吸着容量の低下が少ない吸着剤の選定並びに
吸脱着条件の検討を行った結果、活性炭を吸着剤としN
x ガスに対する吸着能が温度により異なることを利用
したTSA(温度スイング吸着)方式で吸脱着させ、N
3 を還元剤として触媒で無害な窒素によるプロセスも
有望であるとの見通しを得た。
[0013] Further, as a result of selecting an adsorbent having a small decrease in NO x adsorption capacity even after repeated adsorption and desorption in the presence of water and studying adsorption and desorption conditions, it was found that activated carbon was used as the adsorbent.
Adsorption and desorption by the TSA (Temperature Swing Adsorption) method, which utilizes the fact that the adsorption capacity for O x gas varies depending on the temperature,
It was concluded that a process using nitrogen, which is harmless as a catalyst with H 3 as a reducing agent, is also promising.

【0014】しかし、通常の活性炭は吸着速度が遅く、
かつNO分圧の影響を受け、所定の吸着性能発現には、
処理ガス流速を0.1m/sec 以下としなければならない
こと、及び活性炭の加熱再生を空気中で行うと発火の危
険性があるため、温度管理を充分に行わなければならな
いなどの実用化上の問題があった。
However, ordinary activated carbon has a slow adsorption rate,
In addition, due to the influence of NO partial pressure, in order to achieve the specified adsorption performance,
In terms of practical application, the process gas flow rate must be 0.1 m / sec or less, and if the activated carbon is heated and regenerated in the air, there is a risk of ignition. There was a problem.

【0015】次に、NOを効率よく吸着する吸着剤とし
て、Pt−Al2 3 のような貴金属系の吸着剤がよく
知られている。しかしながら、貴金属系の吸着剤は、酸
素共存下でNOx 吸脱着を繰り返すと、急激なNOx
着容量の低下が生じる事が判明した。
Next, as an adsorbent for efficiently adsorbing NO, a noble metal adsorbent such as Pt-Al 2 O 3 is well known. However, it has been found that when the noble metal-based adsorbent is repeatedly adsorbed and desorbed by NO x in the presence of oxygen, the NO x adsorption capacity is rapidly reduced.

【0016】トンネル換気ガス中には大気雰囲気の酸素
を含有しており、そのままの条件でTSA方式で吸脱着
させると、貴金属系吸着剤でも活性炭吸着剤でも上述の
ようなそれぞれの問題が生じるので、系外からオゾンな
どを添加してNOをNO2 に転換することなく吸着除去
するプロセスとして実用化するには万全とは言えない。
The tunnel ventilation gas contains oxygen in the atmosphere, and if the TSA method is used for adsorption and desorption under the same conditions, the noble metal-based adsorbent and the activated carbon adsorbent have the respective problems described above. However, it cannot be said to be practical for practical use as a process of adsorbing and removing NO without converting ozone to NO 2 by adding ozone or the like from outside the system.

【0017】トンネル換気ガスには煤塵が含まれてお
り、既に電気集塵機の如き煤塵除去設備が設置されてい
る。電気集塵機で荷電圧を大きくしていくと、NOがN
2 に転換するようになり、荷電圧の増加と共に転化率
は大きくなるのでこの現象を利用するか、或いは系外か
らオゾンを添加してNOをNOx に転換して、NO2
対して選択的に吸着する吸着剤を適用することにより、
トンネル換気ガス中の希薄NOx を効率よく除去する方
法及びそのための吸着剤について、本発明者らは既に提
案済みである。
The tunnel ventilation gas contains soot and dust, and soot and dust removing equipment such as an electric dust collector has already been installed. When the load voltage is increased with an electric dust collector, NO changes to N
Become converted to O 2, since conversion with increasing load voltage increases or utilizing this phenomenon, or to convert NO to NO x by adding ozone from the outside of the system, with respect to NO 2 By applying an adsorbent that selectively adsorbs,
The present inventors have already proposed a method for efficiently removing dilute NO x in tunnel ventilation gas and an adsorbent therefor.

【0018】[0018]

【発明が解決しようとする課題】以上のようにトンネル
換気ガス中の希薄NOx を、系外からオゾンなどを添加
してNOをNO2 に転換することなく除去する方法は2
次公害物質発生の恐れが無く魅力的であるが、実用上効
率よく経済的に除去する方法は未だ見出せていないと言
える。活性炭吸着剤によるNOx 脱着では、雰囲気酸素
の含有量を数%以下に低下させれば通常行われる200
℃前後の条件では、急激な吸着剤の酸化はなく安定であ
る。
As described above, the method of removing the lean NO x in the tunnel ventilation gas without adding NO or the like from the outside of the system and converting NO into NO 2 is available.
It is attractive because there is no fear of the next pollutant generation, but it can be said that a method for practically efficient and economical removal has not yet been found. NO x desorption with an activated carbon adsorbent is usually performed if the atmospheric oxygen content is reduced to several percent or less.
Under the conditions of around ℃, the adsorbent is stable without sudden oxidation.

【0019】また、本発明者等は、貴金属系吸着剤にお
ける容量の低下原因について解明するため種々実験を実
施し、酸素共存下でのNOx 脱着後の吸着剤表面は貴金
属活性点に酸素が強く吸着されるため、再生後の吸着剤
はNOx を吸着しないことによる劣化であることを解明
し、酸素ゼロ条件では酸素吸着は生じないこと、更には
水素などの還元ガス条件では吸着O2 はH2 Oに還元さ
れ速やかに劣化が回復する事等、劣化防止と回復対策に
ついて明かにした。
Further, the present inventors have conducted various experiments in order to elucidate the cause of the decrease in capacity of the noble metal-based adsorbent, and the surface of the adsorbent after NO x desorption in the presence of oxygen has oxygen at the noble metal active sites. Since it is strongly adsorbed, it has been clarified that the adsorbent after regeneration is deteriorated by not adsorbing NO x , oxygen adsorption does not occur under the condition of zero oxygen, and adsorption O 2 under the condition of reducing gas such as hydrogen. Has been clarified regarding the prevention of deterioration and recovery measures, such as the fact that deterioration is quickly recovered by reduction to H 2 O.

【0020】本発明は、吸着剤の劣化を速やかに回復
し、NOx の吸脱着を繰り返して大気雰囲気下にある希
薄なNOx を、効率よく経済的に除去する方法と装置を
提供することを課題としている。
[0020] The present invention will promptly restore the deterioration of the adsorbent, a dilute NO x in the atmosphere by repeating adsorption and desorption of NO x, efficiently providing a method and apparatus for economically removed Is an issue.

【0021】[0021]

【課題を解決するための手段】本発明は、前記課題を解
決するため、希薄なNOx を含有する大気雰囲気下にあ
るガスを吸着剤で乾式処理して主としてNOx を吸着
し、次にその吸着剤を加熱ガスで処理して吸着ガスを脱
着して再生させ、脱着したNOx は脱硝触媒で分解処理
して系外に排出し、再生した前記吸着剤は冷却して前記
吸脱着を繰り返えす方式のNOx 除去方法を採用する。
Means for Solving the Problems The present invention for solving the above problems, the gas in the ambient atmosphere containing dilute NO x adsorbs primarily NO x was dry treated with an adsorbent, then The adsorbent is treated with a heating gas to desorb and regenerate the adsorbed gas, the desorbed NO x is decomposed with a denitration catalyst and discharged to the outside of the system, and the regenerated adsorbent is cooled to perform the adsorption / desorption. A repeated NO x removal method is adopted.

【0022】そして本発明によるNOx 除去方法では、
前記した吸着剤の再生を酸素濃度を低減したイナートな
加熱ガス雰囲気中で行うと共に再生終了時及び冷却時の
雰囲気の酸素濃度をほぼゼロないし若干の還元雰囲気と
する。本発明によるNOx 除去方法は、活性炭吸着剤や
貴金属系吸着剤等の一酸化窒素を効率よく吸収する吸着
剤を用いるのが好ましい。
In the NO x removal method according to the present invention,
The regeneration of the adsorbent described above is performed in an inert heating gas atmosphere in which the oxygen concentration is reduced, and the oxygen concentration in the atmosphere at the end of regeneration and at the time of cooling is set to almost zero or a slight reducing atmosphere. In the NO x removal method according to the present invention, it is preferable to use an adsorbent such as an activated carbon adsorbent or a noble metal-based adsorbent that efficiently absorbs nitric oxide.

【0023】また、本発明によるNOx 除去方法におい
て、吸着剤再生工程の完了前に系内の酸素濃度を低減さ
せ、必要に応じて若干の還元雰囲気とするためには、以
下説明するようにシール窒素供給による希釈、脱着C
O,C3 8 燃焼による酸素消費などの酸素濃度低減効
果を利用することができる。
Further, in the NO x removal method according to the present invention, in order to reduce the oxygen concentration in the system before the adsorbent regeneration step is completed, and to make a slight reducing atmosphere, if necessary, as described below. Diluting and desorbing by supplying seal nitrogen C
Oxygen concentration reducing effects such as oxygen consumption due to O, C 3 H 8 combustion can be utilized.

【0024】(1)シール窒素供給による希釈効果:再
生工程を通じて、装置内部を大気からシールするための
シール窒素が吸収塔の出入口部に供給される。系内の酸
素は窒素に置換され濃度を徐々に低減しながら、後述の
排ガス清浄器を通して系外に排出される。窒素供給量が
多い程、希釈による酸素濃度低減は大きいが、(2)以
降の酸素濃度低下分を勘案すれば、窒素供給量は装置内
部を大気からシールするに必要とされる量程度に留ま
る。
(1) Diluting effect by supply of seal nitrogen: Through the regeneration process, seal nitrogen for sealing the inside of the apparatus from the atmosphere is supplied to the inlet / outlet of the absorption tower. Oxygen in the system is replaced with nitrogen and the concentration is gradually reduced, and is discharged out of the system through an exhaust gas purifier described later. The larger the nitrogen supply amount, the greater the reduction in oxygen concentration due to dilution. However, considering the decrease in oxygen concentration after (2), the nitrogen supply amount remains at the amount required to seal the inside of the device from the atmosphere. .

【0025】(2)脱着水分による希釈効果:再生工程
当初100〜120℃付近に加熱された段階で、NOx
吸着剤に吸着されていた水分が脱着する。脱着水分は系
内の酸素を希釈しながら、排ガス清浄器を通して系外に
排出される。系内の酸素濃度はシール窒素供給による希
釈効果とも合わさって大幅に低下する。
(2) Diluting effect of desorbed water: NO x at the stage of heating at about 100 to 120 ° C. at the beginning of the regeneration process.
The water adsorbed on the adsorbent is desorbed. The desorbed water is discharged out of the system through the exhaust gas purifier while diluting oxygen in the system. The oxygen concentration in the system is drastically reduced in combination with the dilution effect of the seal nitrogen supply.

【0026】(3)脱着CO,C3 8 燃焼による酸素
消費:NOx 吸着剤には処理すべき希薄NOx 含有ガ
ス、例えばトンネル換気ガスの中のCO,C3 8 をも
吸着する性質を持たしており、これらの吸着CO等は吸
着剤の燃焼触媒作用によって200℃付近でO2 と反応
しCO2 とH2 Oに変化し、これによって酸素濃度が低
下する。
(3) Desorption of CO, C 3 H 8 Oxygen consumption by combustion: The NO x adsorbent also adsorbs the lean NO x containing gas to be treated, for example, CO and C 3 H 8 in the tunnel ventilation gas. Due to the combustion catalytic action of the adsorbent, these adsorbed CO and the like react with O 2 at around 200 ° C. to change into CO 2 and H 2 O, which lowers the oxygen concentration.

【0027】なお、この工程の終了時点での酸素濃度
は、次の脱硝反応が酸素存在下で行われるので、1%か
ら2%程度の酸素を残存させておく必要があるか、脱着
CO,C3 8 燃焼によってO2 濃度が下がり過ぎる場
合には、一時シールガスを空気に変更して酸素濃度を調
整する事が出来る。また燃焼に伴う発熱は再生工程の必
要エネルギーの一部として有効に利用できる。
Regarding the oxygen concentration at the end of this step, since the next denitration reaction is carried out in the presence of oxygen, it is necessary to leave about 1% to 2% of oxygen or desorption CO, If the O 2 concentration is too low due to C 3 H 8 combustion, the oxygen concentration can be adjusted by changing the temporary seal gas to air. In addition, the heat generated by combustion can be effectively used as a part of the energy required for the regeneration process.

【0028】(4)NOx 分解時の酸素濃度低下:C
O,C3 8 の吸着剤上での燃焼とほぼ同時にNOx
脱着し始めるので、NH3 や尿素水等のNOx 還元剤を
供給して、脱硝触媒上でNOx を分解する。この場合
も、脱硝反応による酸素消費や尿素水供給による水分の
蒸発等で若干の酸素濃度低下が生じる。
(4) Reduction of oxygen concentration during NO x decomposition: C
Since NO x begins to be desorbed almost at the same time as the combustion of O and C 3 H 8 on the adsorbent, a NO x reducing agent such as NH 3 or aqueous urea is supplied to decompose NO x on the denitration catalyst. Also in this case, a slight decrease in oxygen concentration occurs due to oxygen consumption due to the denitration reaction and evaporation of water due to the supply of urea water.

【0029】(4)還元ガス添加による酸素消費:脱硝
終了時点での残留酸素は1%程度と低濃度ではあるが、
再生工程完了迄の時間は比較的短く、シール窒素供給に
よる希釈と同時に、CH4 やC3 8 等の還元ガスを添
加し燃焼させて残存酸素を完全に消滅させるのが有効で
ある。
(4) Oxygen consumption due to addition of reducing gas: The residual oxygen at the end of denitration is a low concentration of about 1%,
The time until the completion of the regeneration process is relatively short, and it is effective to add a reducing gas such as CH 4 or C 3 H 8 and burn at the same time as diluting by supplying the seal nitrogen to completely eliminate the residual oxygen.

【0030】還元ガス使用量も比較的少量であり特に問
題はなく、若干過剰に加えれば還元雰囲気を得ることが
出来る。また、特にCH4 原料としては都市ガスでよく
実用的である。
The reducing gas is used in a relatively small amount and there is no particular problem. If a slight excess is added, a reducing atmosphere can be obtained. Moreover, especially as a CH 4 raw material, city gas is often practical.

【0031】以上のような酸素濃度低減効果を利用する
ことによって系内の酸素濃度をほぼゼロにし、必要に応
じては若干の還元雰囲気となすことが可能である。
By utilizing the effect of reducing the oxygen concentration as described above, the oxygen concentration in the system can be made almost zero, and a slight reducing atmosphere can be created if necessary.

【0032】本発明はまた、前記したNOx 除去方法を
実施するためのNOx 除去装置を提供する。その装置
は、除塵器と、NOx 吸着剤が充填された吸着塔と、処
理ガス吸引ファンとを備えたNOx 除去部を有してい
る。
The present invention also provides a NO x removal device for carrying out the above-mentioned NO x removal method. The apparatus includes a dust collector, and the NO x adsorption agent adsorption tower filled, the NO x removing unit and a processing gas suction fan.

【0033】本発明によるNOx 除去装置は、前記した
NOx 除去部に加え、加熱器と、NOx 分解触媒装置
と、冷却器と、循環ガスブロアと、均圧をとりながら系
外にガスを排出するための排ガス清浄器とを有し、シー
ルガスバルブを介して前記吸着塔に連絡され同吸着塔を
通るガス循環経路を形成する再生部を有している。
The NO x removing device according to the present invention, in addition to the NO x removing section described above, includes a heater, a NO x decomposition catalyst device, a cooler, a circulating gas blower, and a gas outside the system while equalizing pressure. An exhaust gas purifier for discharging the gas, and a regeneration section that is connected to the adsorption tower via a seal gas valve and forms a gas circulation path passing through the adsorption tower.

【0034】[0034]

【作用】本発明のNOx 除去方法においては、吸着剤に
よってガス中の希薄なNOx を吸着したのちこれを脱着
し、脱着したNOx を脱硝触媒で分解処理するのである
が、吸着ガスを吸着剤から脱着する脱着工程は酸素ゼロ
条件で行い、更に必要に応じて若干の還元ガス条件で行
う。
In the NO x removal method of the present invention, the adsorbent adsorbs the lean NO x in the gas, desorbs the desorbed NO x , and decomposes the desorbed NO x with the denitration catalyst. The desorption step of desorbing from the adsorbent is performed under zero oxygen conditions and, if necessary, under a slight reducing gas condition.

【0035】これによって吸着NOx の酸化を防止し、
酸化した場合にはこれを還元することにより、吸着NO
x の脱着を容易にし、NOx 吸着剤の再生を比較的低温
で完全に行わせるのである。従ってこの吸着、脱着反応
を繰り返すことにより、希薄なNOx を含有する空気を
長期間にわたって効率よく浄化できる。
This prevents the oxidation of adsorbed NO x ,
When oxidized, the NO
This facilitates desorption of x and complete regeneration of the NO x adsorbent at relatively low temperatures. Thus the suction, by repeating the desorption reaction, air can efficiently purify over a long period of time containing dilute NO x.

【0036】以上説明した本発明によるNOx 除去方法
における脱着工程の効果を調べるため次の実験を行っ
た。
The following experiment was conducted to examine the effect of the desorption process in the NO x removal method according to the present invention described above.

【0037】(実験例)Pt−Al2 3 吸着剤を試作
し、吸着及び脱着試験条件を以下の表1の通りに設定し
て、吸脱着繰り返し性能に及ぼす脱着条件の影響を評価
した。
(Experimental example) A Pt-Al 2 O 3 adsorbent was prototyped, and the adsorption and desorption test conditions were set as shown in Table 1 below to evaluate the influence of the desorption conditions on the adsorption / desorption repetition performance.

【0038】なお、本吸着剤はγ−Al2 3 に塩化白
金酸化物水溶液を含浸法でPtにて2wt%担持させ、
110℃で乾燥、500℃で5時間焼成させた粉末をウ
オッシュコート法にて400セル/inch2 コージェライ
トハニカム基材にて200g/1コートしたものであ
る。
In this adsorbent, γ-Al 2 O 3 was impregnated with an aqueous solution of chloroplatinic oxide to support 2 wt% of Pt.
A powder obtained by drying at 110 ° C. and firing at 500 ° C. for 5 hours was coated with a cordierite honeycomb substrate of 400 cells / inch 2 at 200 g / 1 by a wash coating method.

【0039】吸脱着試験を1回実施後の2回目の吸着試
験結果をデータとし、破過時間(C/C0 0.2となる
時間)及びNO吸着容量を求めた。なお、脱着条件は空
気(相対湿度60%(25℃))で400℃、60分間
処理した後、表1の〜のガスで処理を行ない、吸着
性能に与える影響を検討した。
Using the results of the second adsorption test after one adsorption and desorption test as data, the breakthrough time (time to reach C / C 0 0.2) and the NO adsorption capacity were determined. The desorption conditions were air (relative humidity 60% (25 ° C.)) at 400 ° C. for 60 minutes, and then treatment was performed with the gases from to in Table 1 to examine the influence on the adsorption performance.

【0040】[0040]

【表1】 [Table 1]

【0041】試験結果を表2に示すと共に、各脱着条件
での破過曲線と脱着曲線を図1に示してある。表2は吸
着時間120分において、C/C0=0.2に達しない場
合の破過時間は120分以上と記して、NOx 吸着容量
は吸着時間120分までの吸着量を記載した。
The test results are shown in Table 2, and the breakthrough curve and desorption curve under each desorption condition are shown in FIG. In Table 2, the breakthrough time when C / C 0 = 0.2 is not reached in the adsorption time of 120 minutes is described as 120 minutes or more, and the NO x adsorption capacity is the adsorption amount up to the adsorption time of 120 minutes.

【0042】[0042]

【表2】 [Table 2]

【0043】表1、図1に示す結果より、空気で再生を
行った後、イナートガスと窒素()、還元ガスの水素
()、C3 8 ()で処理を行うことにより、次の
NO吸着工程における吸着剤のNO吸着量の増大をもた
らすことがわかり、これによって吸着剤の高性能化すな
わち使用吸着剤量の低減を図ることが可能である。
From the results shown in Table 1 and FIG. 1, after regeneration with air, treatment with inert gas and nitrogen (), reducing gas hydrogen (), and C 3 H 8 () was performed to obtain the following NO: It was found that the NO adsorbed amount of the adsorbent in the adsorption step is increased, which makes it possible to improve the performance of the adsorbent, that is, reduce the amount of the adsorbent used.

【0044】次に、本発明によるNOx の除去装置は、
前記した構成のNOx 除去部と再生部を備え、この再生
部においては前記した酸素濃度低減効果を利用して系内
の酸素濃度を低減した雰囲気中で吸着剤の再生を行わせ
ることにより、前記した本発明のNOx 除去方法を効果
的に実施することができる。
Next, the NO x removal apparatus according to the present invention is
The NO x removing unit and the regenerating unit having the above-described configuration are provided, and in this regenerating unit, the adsorbent is regenerated in the atmosphere in which the oxygen concentration in the system is reduced by utilizing the oxygen concentration reducing effect described above. The above-described NO x removal method of the present invention can be effectively implemented.

【0045】[0045]

【実施例】以下、本発明によるNOx 除去方法の実施の
態様と本発明によるNOx 除去装置の一実施例について
図2により具体的に説明する。
Embodiments of the NO x removal method according to the present invention and one embodiment of the NO x removal device according to the present invention will be specifically described below with reference to FIG.

【0046】図2において3はNOx 吸着塔を示してお
り、処理すべき希薄NOx 含有ガス1、例えばトンネル
換気ガスを除塵器2に導き、処理ガス中の煤塵を除去し
ダスト19として系外に取り出した後、NOx 吸着剤4
を充填したNOx 吸着塔3に導入する。ここで、NOx
が吸着除去され、吸引ファン5を通じて、清浄ガス6と
なって大気に放出される。
In FIG. 2, reference numeral 3 denotes a NO x adsorption tower, which introduces a lean NO x- containing gas 1 to be treated, for example, a tunnel ventilation gas, to a dust remover 2 to remove soot and dust in the treated gas to form a dust 19 system. After taking it out, NO x adsorbent 4
Is introduced into the NO x adsorption tower 3 filled with. Where NO x
Are adsorbed and removed, and become clean gas 6 through the suction fan 5 to be released to the atmosphere.

【0047】NOx 浄化を連続して進めるためには、N
x 吸着塔3を2塔以上設置して、1塔でNOx 吸着を
行っている間に、他の塔において吸着NOx の脱着を行
って、吸着と脱着を切り替えながら運転を継続するのが
普通であるが、本実施例では昼間にNOx 吸着を行い、
夜間において吸着NOx の脱着(以下、再生工程と呼
ぶ)を行う場合に対応して、1塔のNOx 吸着塔3を切
り替えて使用している。
To continuously purify NO x , N
The O x adsorption tower 3 by installing two towers above, while performing the NO x adsorption in 1 column, performing desorption of adsorbed NO x in another column, to continue the operation while switching adsorption and desorption However, in this embodiment, NO x adsorption is performed in the daytime,
Corresponding to the case where desorption of adsorbed NO x (hereinafter referred to as a regeneration step) is performed at night, one NO x adsorption column 3 is switched and used.

【0048】再生工程は加熱工程と冷却工程とに分けら
れる。加熱工程ではNOx 吸着剤4を加熱して、吸着N
x の脱着を行って脱着ガス中に濃縮されたNOx を分
解する工程である。冷却工程は再生されたNOx 吸着剤
4を冷却して、次のNOx 吸着に備える工程である。
The regeneration process is divided into a heating process and a cooling process. In the heating process, the NO x adsorbent 4 is heated to absorb the adsorbed N 4.
This is a step of desorbing O x to decompose NO x concentrated in the desorption gas. The cooling step is a step of cooling the regenerated NO x adsorbent 4 and preparing for the next NO x adsorption.

【0049】NOx 吸着を終了して吸引ファン5を停止
して4台のシールガスバルブV1,V2,V3,V4を
閉とし、NOx 吸着塔3と大気側(上流と下流側)との
ガスの出入りを停止させる。次にV7,V8を閉とする
と共にV5,V6を開き、加熱器8を稼働して、NO x
吸着塔3−循環ガスブロア7−加熱器8−NOx 分解触
媒装置10を連ねた加熱循環経路を形成し、吸着剤4の
加熱を開始して再生工程に入る。
NOxStop suction and stop the suction fan 5
Then, set the four seal gas valves V1, V2, V3 and V4.
Closed, NOxBetween the adsorption tower 3 and the atmosphere side (upstream and downstream sides)
Stop gas flow. Then close V7 and V8
Open V5 and V6 together, operate heater 8 and x
Adsorption tower 3-circulating gas blower 7-heater 8-NOxDisassembly
A heating circulation path that connects the media devices 10 is formed, and the adsorbent 4
Start heating and enter the regeneration process.

【0050】加熱工程当初、吸着剤4が100〜120
℃となる付近で、先ずNOx 吸着剤に吸着されていた水
分が脱着する。脱着水分は系内の酸素を希釈しながら、
排ガス清浄器11及び冷却器12を通して清浄ガス16
として系外に排出される。
At the beginning of the heating process, the amount of the adsorbent 4 is 100 to 120.
In the vicinity of the temperature, the water adsorbed on the NO x adsorbent is desorbed. Desorbed water dilutes oxygen in the system,
Clean gas 16 through exhaust gas purifier 11 and cooler 12
Is discharged outside the system.

【0051】再生工程を通じて、装置内部を大気からシ
ールするための、シールガス18がシールガスブロア1
7を通して供給されている。系内の酸素を低減するため
に、シールガスとして窒素を使用する。このシール窒素
供給による酸素希釈効果とも合わさって系内の酸素濃度
は大幅に低下する。
The seal gas 18 is used to seal the inside of the apparatus from the atmosphere through the regeneration process.
It is supplied through 7. Nitrogen is used as a seal gas to reduce oxygen in the system. Combined with the oxygen diluting effect due to the supply of the seal nitrogen, the oxygen concentration in the system is significantly reduced.

【0052】NOx 吸着剤4にはトンネル換気ガス中の
CO,C3 8 等の炭化水素ガスをも吸着する性質を持
たしており、これらの吸着炭化水素は吸着剤の燃焼触媒
作用によって200℃付近で、O2 と反応しCO2 とH
2 Oに変化する。CO,C3 8 の場合の反応式を数式
1の(1),(2)に示す。
The NO x adsorbent 4 has a property of adsorbing hydrocarbon gases such as CO and C 3 H 8 in the tunnel ventilation gas, and these adsorbed hydrocarbons are produced by the combustion catalytic action of the adsorbent. At around 200 ° C, it reacts with O 2 and CO 2 and H
Change to 2 O. The reaction formulas for CO and C 3 H 8 are shown in (1) and (2) of Formula 1.

【0053】[0053]

【化1】 Embedded image

【0054】この工程の終了時点での酸素濃度は、炭化
水素と燃焼前の酸素濃度から炭化水素との燃焼によって
消費する酸素を差し引いたものとなるが、次の段階の脱
硝反応が酸素存在下で行われるので、1%から2%程度
の酸素を残存させておく必要がある。
The oxygen concentration at the end of this step is obtained by subtracting the oxygen consumed by the combustion of the hydrocarbon from the oxygen concentration of the hydrocarbon and the oxygen before combustion. Therefore, it is necessary to leave about 1% to 2% of oxygen.

【0055】この為、脱着炭化水素の燃焼によってO2
濃度が下がり過ぎる場合には、一時、シールガスを空気
に変更して酸素濃度を調整する事が出来る。また燃焼に
伴う発熱は式(1),(2)のHで示されているが、再
生工程の必要エネルギーの一部として有効に利用でき
る。
Therefore, the combustion of the desorbed hydrocarbon causes O 2
If the concentration is too low, the oxygen concentration can be adjusted by temporarily changing the seal gas to air. The heat generated by combustion is represented by H in the equations (1) and (2), but it can be effectively used as a part of the required energy for the regeneration process.

【0056】吸着炭化水素の吸着剤上での燃焼とほぼ同
時にNOx が脱着し始めるので、加熱循環経路のNOx
濃度が上昇してくるので、NOx 分解触媒装置10の入
口ライン13にNOx 還元剤として尿素水14を供給し
て、脱硝触媒上でNOx を分解する。尿素水の加水分解
によるNH3 の生成及び脱硝反応を数式2の(3)、
(4)、(5)式に示す。
[0056] Since almost simultaneously NO x and combustion on the adsorbent of the adsorption hydrocarbons begin to desorb, NO x in the heating circulation path
Since the concentration increases, urea water 14 is supplied as an NO x reducing agent to the inlet line 13 of the NO x decomposition catalyst device 10 to decompose NO x on the denitration catalyst. The generation of NH 3 and the denitration reaction by hydrolysis of urea water are described in Equation 2 (3),
This is shown in equations (4) and (5).

【0057】[0057]

【化2】 Embedded image

【0058】このNOx 脱着に必要な温度はNOx 吸着
剤4の種類によっても異なり、活性炭吸着剤では200
℃、貴金属系吸着剤では350℃程度、その他高くても
400℃程度の範囲にあるので、NOx 分解触媒装置1
0及びNOx 吸着塔3の温度を適宜最適に選べばよい。
The temperature required for this NO x desorption varies depending on the type of NO x adsorbent 4, and is 200 for activated carbon adsorbent.
℃, the noble metal-based adsorbent is about 350 ℃, and at the highest is about 400 ℃, NO x decomposition catalyst device 1
The temperatures of 0 and the NO x adsorption tower 3 may be appropriately selected appropriately.

【0059】この温度範囲で脱硝は充分に行う事が出来
るので、NOx 脱着及び脱硝はほぼ完全に達成される。
なお、ここでも、脱硝反応による酸素消費や尿素水供給
による水分の蒸発等で若干の酸素濃度低下が生じる。
Since denitration can be sufficiently performed in this temperature range, NO x desorption and denitration are almost completely achieved.
Also here, a slight decrease in oxygen concentration occurs due to oxygen consumption due to the denitration reaction and evaporation of water due to the supply of urea water.

【0060】脱硝終了時点での残留酸素を1%程度と低
濃度にコントロールしている、活性炭吸着剤でのNOx
脱着では、雰囲気酸素の含有量を数%以下に低下させれ
ば、通常行われる200℃前後の条件では、急激な吸着
剤の酸化と発熱はなく、また、吸脱着繰り返し性能も安
定しているので、ここで脱着を終了し次ぎに冷却工程に
移行すればよい。
The residual oxygen at the end of denitration is controlled to a low concentration of about 1%, and NO x in the activated carbon adsorbent is controlled.
In desorption, if the atmospheric oxygen content is reduced to a few percent or less, there is no sudden oxidation and heat generation of the adsorbent under conditions of about 200 ° C. which is usually performed, and the adsorption / desorption repetition performance is stable. Therefore, the desorption may be completed here, and then the cooling process may be performed.

【0061】貴金属系吸着剤でのNOx 脱着では、NO
x 吸着容量の低下原因となるNOx脱着後の吸着剤上の
貴金属活性点への酸素吸着を防ぐために酸素濃度をほぼ
ゼロ条件とし、それでも若干の酸素吸着が進んだ場合に
は更に還元雰囲気となし、吸着酸素の還元除去を行う。
For NO x desorption with a noble metal-based adsorbent, NO
In order to prevent the adsorption of oxygen to the noble metal active sites on the adsorbent after desorption of NO x , which causes a decrease in the x adsorption capacity, the oxygen concentration was set to almost zero conditions, and if some oxygen adsorption still progressed, a reducing atmosphere was created. None, reduce and remove adsorbed oxygen.

【0062】この方法は、シール窒素18供給による希
釈と同時に、CH4 やC3 8 等の還元ガス15を添加
し燃焼させて残存酸素を完全に消滅させるのが有効であ
る。還元ガス使用量も比較的少量であり特に問題はな
く、若干過剰に加えれば還元雰囲気を得ることが出来
る。この場合のCH4 原料としては都市ガスであってよ
く、実用的である。
In this method, it is effective to add the reducing gas 15 such as CH 4 or C 3 H 8 and burn at the same time as diluting by supplying the seal nitrogen 18 to completely eliminate the residual oxygen. The amount of reducing gas used is also relatively small, and there is no particular problem. If a slight excess is added, a reducing atmosphere can be obtained. The CH 4 raw material in this case may be city gas, which is practical.

【0063】NOx 脱着が終了に近ずき、上記の加熱循
環経路内のNOx 濃度が所定値まで低下すると、NOx
還元剤の尿素水14の供給を停止すると共に加熱器8を
停止し、V5、V6を閉とすると共に、V7、V8を開
き、冷却器9を稼働してNO x 吸着塔3−循環ガスブロ
ア7−冷却器9を連ねる冷却循環経路を形成して、循環
経路ガスを冷却して、ガス中の水分はドレン20として
排出し、NOx 吸着塔3を常温近くまで冷却して次回の
NOx 吸着工程に備える。
NOxWhen desorption is nearing completion, the above heating cycle
NO in the ring routexIf the concentration drops to a predetermined value, NOx
The supply of the reducing agent urea water 14 is stopped and the heater 8 is turned on.
Stop, close V5 and V6, and open V7 and V8
When the cooler 9 is activated, NO xAdsorption tower 3-circulating gas blow
A 7- Forming a cooling circulation path connecting the coolers 9 to circulate
Cooling the path gas, water in the gas is drained 20
Eject, NOxAfter cooling the adsorption tower 3 to near normal temperature,
NOxPrepare for the adsorption process.

【0064】図2に示すNOx 除去装置を用いて、NO
x 吸着剤4として前記実験例で供したハニカム形状Pt
−Al2 3 吸着剤を30リットル充填してNOx 吸着
塔3とし、表3の入口欄に示す組成の希薄NOx 含有空
気150m3N/h を処理し、NOx 除去1回当たり14時
間、TSA(温度スイング吸着)方式での再生に10時
間の1回/日の吸脱着試験を10回繰り返し行なった。
表3には繰り返し毎の出口ガス組成も示すが、経時的な
変化はなく、安定した性能が得られた。
By using the NO x removing device shown in FIG.
x As the adsorbent 4, the honeycomb-shaped Pt used in the above experimental example
An NO x adsorption tower 3 was filled with 30 liters of —Al 2 O 3 adsorbent, and 150 m 3 N / h of lean NO x- containing air having the composition shown in the inlet column of Table 3 was treated, and NO x removal was performed at 14 times per removal. The adsorption / desorption test was repeated 10 times once a day for 10 hours for regeneration by the TSA (temperature swing adsorption) method.
Table 3 also shows the composition of the outlet gas for each repetition, but there was no change over time, and stable performance was obtained.

【0065】[0065]

【表3】 [Table 3]

【0066】再生試験結果は次の通りであった。表4に
水分脱着時、COとC3 8 の燃焼時、NOx 分解時及
びCH4 添加時のそれぞれの工程のNOx 吸着塔出口に
おける経時的ガス組成変化を示す。図3に脱着工程での
2 ,N2 ,H2 O濃度変化を、図4にNO,CO,C
3 8 ,NH3 の、図5にCO2 濃度変化を示す。
The results of the regeneration test were as follows. In Table 4
When desorbing water, CO and C3H8NO when burningxDisassembly time
And CHFourNO of each process at the time of additionxAt the adsorption tower outlet
3 shows changes in gas composition with time. Figure 3 shows the desorption process
O2, N2, H2Fig. 4 shows changes in O concentration as NO, CO, C
3H 8, NH3Of CO2The change in concentration is shown.

【0067】表4及び図3に示すように、O2 濃度は水
分脱着時の0〜180min 間に当初の20.8%から
8.6%に低下、次のCOとC3 8 の燃焼時の180
〜240min 間で更に2.3%迄に低下、NOx 分解終
了時の420min に0.5%程度に低下、その後CH4
添加によってゼロ濃度が達成される。工程毎の試験条件
と結果を表5にまとめて示す。
As shown in Table 4 and FIG. 3, the O 2 concentration dropped from 20.8% at the beginning to 8.6% during the desorption of water for 0 to 180 minutes, and the next combustion of CO and C 3 H 8 was performed. 180 of the hour
Further decreases until 2.3% between ~240Min, reduced to about 0.5% NO x decomposition at the end of 420Min, then CH 4
Zero concentration is achieved by the addition. Table 5 shows the test conditions and results for each process.

【0068】[0068]

【表4】 [Table 4]

【0069】[0069]

【表5】 [Table 5]

【0070】[0070]

【発明の効果】以上のように、本発明によるNOx 除去
方法は、大気雰囲気下にある希薄なNOx 、特に一酸化
窒素を主成分とする排ガスを、活性炭吸着剤や貴金属系
吸着剤等の一酸化窒素を効率よく吸収する吸着剤と接触
させて、NOx を常温で吸着除去し、かつ、NOx を吸
着した吸着剤を、酸素を含有しない加熱イナートガスで
脱離して再生させ、特に再生の終了時点において系内の
酸素濃度をほぼゼロにし、必要に応じては若干の還元雰
囲気となすことを特徴とするNOx の除去方法である。
As described above, according to the method for removing NO x according to the present invention, the diluted NO x in the air atmosphere, particularly the exhaust gas containing nitric oxide as a main component is treated with the activated carbon adsorbent, the noble metal adsorbent, etc. and the nitric oxide is contacted with efficiently absorbing adsorbent to adsorb and remove nO x at room temperature, and the adsorbent adsorbs nO x, regenerated desorbed by heating inert gas containing no oxygen, especially This is a method for removing NO x , which is characterized in that the oxygen concentration in the system is set to almost zero at the end of the regeneration, and a slight reducing atmosphere is created if necessary.

【0071】本方法によれば、TSA(温度スイング吸
着)方式での吸脱着繰り返しに対しても経時的な吸脱着
性能変化はなく、吸着剤の高性能化が可能となるため使
用吸着剤の低減を図ることができ、さらに安定した長期
使用が出来る。
According to this method, the adsorption / desorption performance does not change with time even after repeated adsorption / desorption in the TSA (temperature swing adsorption) system, and the performance of the adsorbent can be improved. It can be reduced, and more stable long-term use is possible.

【0072】また、NOx 除去部と再生部をもつ本発明
のNOx 除去装置によれば、前記した効果をもつ本発明
によるNOx 除去方法を効果的に実施することができ
る。
Further, according to the NO x removing apparatus of the present invention having the NO x removing section and the regenerating section, the NO x removing method according to the present invention having the above-mentioned effects can be effectively implemented.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱着条件が吸着性能に与える影響を試験した結
果を示す破過曲線と脱着曲線を示すグラフ。
FIG. 1 is a graph showing a breakthrough curve and a desorption curve showing the results of testing the effect of desorption conditions on adsorption performance.

【図2】本発明による窒素酸化物の除去方法を実施する
ための装置の構成例を示す説明図。
FIG. 2 is an explanatory diagram showing a configuration example of an apparatus for carrying out the method for removing nitrogen oxides according to the present invention.

【図3】脱着工程におけるO2 ,N2 ,H2 Oの濃度変
化を示すグラフ。
FIG. 3 is a graph showing changes in O 2 , N 2 , and H 2 O concentrations during the desorption process.

【図4】脱着工程におけるNO,CO,C3 3 ,NH
3 の濃度変化を示すグラフ。
FIG. 4 NO, CO, C 3 H 3 , NH in desorption process
The graph which shows the density | concentration change of 3 .

【図5】脱着工程におけるCO2 の濃度変化を示すグラ
フ。
FIG. 5 is a graph showing changes in CO 2 concentration during the desorption process.

【符号の説明】[Explanation of symbols]

1 希薄NOx 含有ガス 2 除塵器 3 NOx 吸着塔 4 NOx 吸着剤 5 吸引ファン 6 清浄ガス 7 循環ガスブロア 8 加熱器 9 冷却器 10 NOx 分解触媒装置 11 排ガス清浄器 12 冷却器 13 入口ライン 14 NOx 還元剤(尿素水) 15 還元ガス 16 清浄ガス 17 シールガスブロワ 18 シール窒素1 Dilute NO x- containing gas 2 Dust remover 3 NO x adsorption tower 4 NO x adsorbent 5 Suction fan 6 Clean gas 7 Circulating gas blower 8 Heater 9 Cooler 10 NO x decomposition catalyst device 11 Exhaust gas cleaner 12 Cooler 13 Inlet line 14 NO x reducing agent (urea water) 15 reducing gas 16 clean gas 17 seal gas blower 18 seal nitrogen

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/86 ZAB B01D 53/36 ZAB 53/94 102G B01J 20/08 ZAB (72)発明者 上島 直幸 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location B01D 53/86 ZAB B01D 53/36 ZAB 53/94 102G B01J 20/08 ZAB (72) Inventor Ueshima Naoyuki 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries Ltd. Takasago Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希薄な窒素酸化物を含有する大気雰囲気
下にあるガスを吸着剤で乾式処理して主として窒素酸化
物を吸着し、次に該吸着剤を加熱ガスで処理して吸着ガ
スを脱着して再生させ、脱着した窒素酸化物は脱硝触媒
で分解処理して系外に排出し、再生した前記吸着剤は冷
却して前記吸脱着を繰り返えす窒素酸化物の除去方法で
あって、前記吸着剤の再生を酸素濃度を低減したイナー
トな加熱ガス雰囲気中で行うと共に再生終了時及び冷却
時の雰囲気の酸素濃度をほぼゼロないし若干の還元雰囲
気とすることを特徴とする窒素酸化物の除去方法。
1. A gas under an atmosphere containing dilute nitrogen oxides is dry-treated with an adsorbent to mainly adsorb nitrogen oxides, and then the adsorbent is treated with a heating gas to obtain an adsorbed gas. Desorption and regeneration, the desorbed nitrogen oxides are decomposed with a denitration catalyst and discharged to the outside of the system, and the regenerated adsorbent is cooled to repeat the adsorption and desorption. A nitrogen oxide characterized in that the adsorbent is regenerated in an inert heating gas atmosphere in which the oxygen concentration is reduced, and the oxygen concentration of the atmosphere at the end of regeneration and at the time of cooling is set to be almost zero or a slight reducing atmosphere. Removal method.
【請求項2】 除塵器と、窒素酸化物吸着剤が充填され
た吸着塔と、処理ガス吸引ファンとを備えた窒素酸化物
除去部、及び加熱器と、窒素酸化物分解触媒装置と、冷
却器と、循環ガスブロアと、均圧をとりながら系外にガ
スを排出するための排ガス清浄器とを有し、シールガス
バルブを介して前記吸着塔に連絡され同吸着塔を通るガ
ス循環経路を形成する再生部を有することを特徴とする
請求項1記載の除去方法を実施するための窒素酸化物の
除去装置。
2. A nitrogen oxide removing unit provided with a dust remover, an adsorption tower filled with a nitrogen oxide adsorbent, and a processing gas suction fan, a heater, a nitrogen oxide decomposition catalyst device, and cooling. And a circulating gas blower, and an exhaust gas purifier for discharging gas to the outside of the system while maintaining a uniform pressure, and is connected to the adsorption tower via a seal gas valve to form a gas circulation path through the adsorption tower. A nitrogen oxide removing apparatus for carrying out the removing method according to claim 1, further comprising:
JP7112986A 1995-05-11 1995-05-11 Method for removing nitrogen oxide and device therefor Withdrawn JPH08299758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7112986A JPH08299758A (en) 1995-05-11 1995-05-11 Method for removing nitrogen oxide and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7112986A JPH08299758A (en) 1995-05-11 1995-05-11 Method for removing nitrogen oxide and device therefor

Publications (1)

Publication Number Publication Date
JPH08299758A true JPH08299758A (en) 1996-11-19

Family

ID=14600559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7112986A Withdrawn JPH08299758A (en) 1995-05-11 1995-05-11 Method for removing nitrogen oxide and device therefor

Country Status (1)

Country Link
JP (1) JPH08299758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437696A (en) * 2020-05-09 2020-07-24 中国成达工程有限公司 Containing NOxExhaust gas treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437696A (en) * 2020-05-09 2020-07-24 中国成达工程有限公司 Containing NOxExhaust gas treatment system

Similar Documents

Publication Publication Date Title
JP4590618B2 (en) Exhaust gas treatment method and treatment apparatus
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
JPH05192535A (en) Method and apparatus for purifying exhaust gas
JP2007000733A (en) Treatment method and treatment apparatus of gas
JPH07136456A (en) High desulfurization-denitration method and apparatus for exhaust gas
JPH08299758A (en) Method for removing nitrogen oxide and device therefor
JP3197072B2 (en) Regeneration method of ammonia adsorbent
JPH0824572A (en) Treatment of methyl bromide-containing waste gas
JP3249181B2 (en) Regeneration method of nitrogen oxide adsorbent
JP4997527B2 (en) Exhaust gas treatment method and treatment apparatus
JP2002066246A (en) Digestion gas purifier
JP4295548B2 (en) Nitrogen oxide removing catalyst, denitration method and apparatus using the same
JP3014725B2 (en) Exhaust gas purification method and apparatus
JP2002060767A (en) Method and apparatus for purifying gas containing siloxane compound
JPH08257351A (en) System and process for treating low concentration nox-containing gas
JP5058107B2 (en) NOx purification device
JPH01155933A (en) Method for purifying ventilation gas in road tunnel
JP2007321678A5 (en)
JP3545029B2 (en) Exhaust gas purification method
JPH0679137A (en) Method for treating air containing small amount of nitrogen oxide
JPH07256054A (en) Apparatus and method for adsorbing and removing nox
JPH10211427A (en) Nitrogen dioxide absorber, and method for removing nitrogen dioxide using this absorber
JPH119957A (en) Method for removing nitrogen oxide in atmospheric air
JPH05146633A (en) Purification of dilute nitrogen oxide-containing air
JP2023103654A (en) Adsorbent recycling method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806