JPH08139369A - Fesi2 thermoelectric device and its manufacture - Google Patents
Fesi2 thermoelectric device and its manufactureInfo
- Publication number
- JPH08139369A JPH08139369A JP6273930A JP27393094A JPH08139369A JP H08139369 A JPH08139369 A JP H08139369A JP 6273930 A JP6273930 A JP 6273930A JP 27393094 A JP27393094 A JP 27393094A JP H08139369 A JPH08139369 A JP H08139369A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- raw material
- sintered
- fesi
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 33
- 239000002994 raw material Substances 0.000 claims abstract description 21
- 239000004065 semiconductor Substances 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 18
- 229910005329 FeSi 2 Inorganic materials 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 2
- 238000010248 power generation Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 28
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 229910000881 Cu alloy Inorganic materials 0.000 abstract 1
- 229910005331 FeSi2 Inorganic materials 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 239000002245 particle Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000005749 Copper compound Substances 0.000 description 1
- -1 CuO Chemical class 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Silicon Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は熱電対等の熱発電素子の
製造方法に係り、特に鉄珪化物からなるFeSi2 熱発
電素子及びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric generator such as a thermocouple, and more particularly to a FeSi 2 thermoelectric generator made of iron silicide and a method for manufacturing the same.
【0002】[0002]
【従来の技術】熱電対や電子冷凍素子等に用いられる熱
発電素子は、いくつかの標準的な組み合わせがJIS規
格等で定まっており、その一つとしてp型鉄珪化物熱電
材料とn型鉄珪化物熱電材料との組み合わせからなるF
eSi2 熱発電素子がある。2. Description of the Related Art For thermoelectric generators used for thermocouples, electronic refrigeration elements, etc., some standard combinations are defined by JIS standards, and one of them is a p-type iron silicide thermoelectric material and an n-type. F consisting of combination with iron silicide thermoelectric material
There is an eSi 2 thermoelectric generator.
【0003】そして、この熱発電素子の製造方法として
は、図5に示すように、先ず、Fe、Si中にMn及び
Coを添加してp型あるいはn型に調製した原料をそれ
ぞれ高周波溶解・急冷してインゴットを形成した後、ス
タンプミルやボールミル等によって細かく粉砕した後、
これにポリビニルアルコール等の結合材を添加して造粒
する。その後、これを冷間プレスで仮成形して圧粉体と
し、370℃〜430℃で脱脂し、1140℃〜116
0℃で真空焼結(10時間以上)を行った後、さらに、
840℃〜860℃で100時間以上熱処理を施して熱
電性能を示す半導体相(β相)にするようにしたもので
ある。As a method for manufacturing this thermoelectric generator, as shown in FIG. 5, first, raw materials prepared by adding Mn and Co to Fe and Si to prepare p-type or n-type are respectively subjected to high-frequency melting and melting. After rapidly cooling to form an ingot, after finely crushing with a stamp mill or ball mill,
A binder such as polyvinyl alcohol is added to this and granulated. Then, this is temporarily formed by cold pressing to obtain a green compact, which is degreased at 370 ° C to 430 ° C, and 1140 ° C to 116 ° C.
After performing vacuum sintering (10 hours or more) at 0 ° C.,
The heat treatment is performed at 840 ° C. to 860 ° C. for 100 hours or more to obtain a semiconductor phase (β phase) exhibiting thermoelectric performance.
【0004】[0004]
【発明が解決しようとする課題】ところで、このような
方法では焼結時間が10時間以上要することから、量産
性が低いといった欠点がある。そのため、本発明者らは
特開平6−244465号公報に示すように、ホットプ
レス等を用い、高圧で加圧しながらプラズマ焼結するこ
とで、焼結時間を1時間以下に大幅に短縮する方法を提
案している。By the way, such a method has a drawback that mass productivity is low because the sintering time takes 10 hours or more. Therefore, the inventors of the present invention, as disclosed in JP-A-6-244465, use a hot press or the like to perform plasma sintering while pressurizing at high pressure, thereby significantly reducing the sintering time to 1 hour or less. Is proposed.
【0005】しかしながら、このような方法によって得
られた焼結体はその密度が92〜95%であり、焼結体
としての強度が不十分であった。また、焼結時間の更な
る短縮化が要求される。However, the density of the sintered body obtained by such a method was 92 to 95%, and the strength of the sintered body was insufficient. Further, it is required to further shorten the sintering time.
【0006】そこで、本発明は上記課題を解決するため
に案出されたものであり、その目的は焼結時間を短縮す
ると共に、焼結体として十分な強度を有する新規な熱電
素子及びその製造方法を提供することにある。Therefore, the present invention has been devised to solve the above problems, and its purpose is to shorten the sintering time and to provide a novel thermoelectric element having sufficient strength as a sintered body and its manufacture. To provide a method.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に本発明は、p型あるいはn型に調整され、半導体化さ
れたFeSi2 母材中に、Cu成分が均一に拡散してな
るものであり、その第一の製造方法はp型あるいはn型
に調製されたα(金属相)−FeSi2 粉末中に、Cu
粒子を添加、混合撹拌して原料粉末を形成した後、この
原料粉末を所定の形状の型内に入れ、加圧焼結して焼結
体を形成し、その後、この焼結体を熱処理して半導体化
するものであり、また、第二の製造方法は、Feと、S
iと、Mn又はCoと、Cu又はCu化合物とを混合
し、溶解急冷してインゴットを形成した後、これを細か
く粉砕して原料粉末を形成し、この原料粉末を加圧焼結
して焼結体を形成し、その後、この焼結体を熱処理して
半導体化するものであり、さらに、このCuの含有量を
0.5〜10wt%未満としたものである。In order to achieve the above object, the present invention comprises a FeSi 2 base material, which is adjusted to p-type or n-type and is made into a semiconductor, in which a Cu component is uniformly diffused. The first manufacturing method is that in the α (metal phase) -FeSi 2 powder prepared in p-type or n-type, Cu
After adding particles and mixing and stirring to form a raw material powder, the raw material powder is put into a mold having a predetermined shape, pressure-sintered to form a sintered body, and then the sintered body is heat-treated. The second manufacturing method is Fe and S.
i, Mn or Co, and Cu or a Cu compound are mixed and melted and rapidly cooled to form an ingot, which is then finely pulverized to form a raw material powder, and the raw material powder is pressure-sintered and fired. A sintered body is formed after that, a sintered body is formed into a semiconductor, and the Cu content is 0.5 to less than 10 wt%.
【0008】[0008]
【作用】本発明は上述したように、FeSi2 原料粉末
にCu粉末を添加することにより、焼結時間の短縮及び
焼結体の密度を向上させることができる。すなわち、従
来のFeSi2 原料粉末のみでは焼結体の密度が92〜
95%、ホットプレスによる焼結時間が30〜50分で
あったが、上記成分に、Cu成分を添加することによ
り、焼結体の密度が97〜99%に向上し、また、焼結
時間が7〜10分に短縮される。また、このCuの含有
量を0.5〜10wt%未満と規定したのは、0.5w
t%未満では、このような効果が現れず、反対に、10
wt%を越えると、得られた熱電素子の熱起電力が急激
に低下してしまうからである。また、このCuの添加方
法、添加時期としては、材料を焼結する際にFeSi2
中に均一に分散していれば良く、本発明に規定するよう
に、溶解時にFe、Si、Mn又はCoと共に、あるい
は、α(金属相)−FeSi2 粉末を形成した後に、粉
末状として添加するようにするのが望ましい。また、こ
のCuは単独、あるいはCuO等の銅化合物としたもの
であっても良く、いずれの場合でもほぼ同様な効果が得
られる。As described above, the present invention can shorten the sintering time and improve the density of the sintered body by adding the Cu powder to the FeSi 2 raw material powder. That is, with the conventional FeSi 2 raw material powder alone, the density of the sintered body is 92-
95%, the sintering time by hot pressing was 30 to 50 minutes, but the density of the sintered body was improved to 97 to 99% by adding the Cu component to the above components, and the sintering time was Is shortened to 7 to 10 minutes. In addition, the content of Cu is defined as 0.5 to less than 10 wt% by 0.5 w.
If it is less than t%, such an effect does not appear.
This is because the thermoelectromotive force of the obtained thermoelectric element sharply decreases when the content exceeds wt%. The addition method of the Cu, the addition timing is, FeSi 2 during sintering material
As long as it is uniformly dispersed therein, as defined in the present invention, it is added together with Fe, Si, Mn or Co at the time of melting, or after forming α (metal phase) -FeSi 2 powder, as a powder form. It is desirable to do so. Further, this Cu may be used alone or as a copper compound such as CuO, and in any case, substantially the same effect can be obtained.
【0009】[0009]
【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
【0010】(実施例1)図1に示すように、FeとS
iにMnあるいはCoを添加した原料をFeSi2 の組
成になるように秤量し、これを高周波により溶解、急冷
してインゴットを形成した後、これを粉砕して粒径が3
8〜53μmの原料粉末を形成した。次に、この原料粉
末中に粒径が10μmのCu粉末を0.5、1.0、
2.0、4.0wt%の順に加えて混合した試料粉末を
形成し、これらをそれぞれφ10×10mmのカーボン
型に入れ、圧力450kg/mm2 、型温度1000℃
で焼結して4種類の試料となる焼結体を形成した。そし
て、その焼結過程で焼結体が徐々に収縮していき、その
収縮が停止した時をそれぞれの焼結体の焼結終了とし、
それまでに要した時間を焼結時間として計測した。(Example 1) As shown in FIG. 1, Fe and S
A raw material obtained by adding Mn or Co to i was weighed so as to have a composition of FeSi 2 , melted by high frequency and rapidly cooled to form an ingot, which was then crushed to have a particle size of 3
A raw material powder of 8 to 53 μm was formed. Next, Cu powder having a particle diameter of 10 μm was added to the raw material powder in an amount of 0.5, 1.0,
2.0 and 4.0 wt% were added in this order to form a mixed sample powder, which were put in a carbon mold of φ10 × 10 mm, respectively, pressure 450 kg / mm 2 , mold temperature 1000 ° C.
Sintering was carried out to form four kinds of sampled sintered bodies. Then, in the sintering process, the sintered body gradually shrinks, and when the shrinkage stops, the sintering of each sintered body is completed,
The time required until then was measured as the sintering time.
【0011】(比較例)Cu粉末を全く添加しない他
は、実施例1と同様な方法によって焼結体を形成し、そ
の焼結時間を計測した。Comparative Example A sintered body was formed in the same manner as in Example 1 except that no Cu powder was added, and the sintering time was measured.
【0012】この結果、図3に示すように、Cu粉末を
全く添加しない比較例の場合では焼結時間として50分
以上を要したが、Cuを0.5wt%を添加した場合で
はその焼結時間が半減し、1.0wt%ではさらにその
焼結時間が短縮し、添加量が増えるに従って、その焼結
時間が短縮されることがわかる。また、この実施例1及
び比較例で得られた焼結体の密度を調べたところ、比較
例では94%であったのに対し、本実施例の焼結体はい
ずれも97〜99%と高い密度であった。また、さらに
これらの三点曲げ強度を測定したところ、比較例では1
39.7MPaであったのに対し、本実施例ではいずれ
も170.0MPa以上の高い強度を発揮し、材料強度
が20%〜23%上昇した。As a result, as shown in FIG. 3, a sintering time of 50 minutes or more was required in the case of the comparative example in which Cu powder was not added at all, but the sintering time was increased in the case of adding 0.5 wt% of Cu. It can be seen that the time is halved, and the sintering time is further shortened at 1.0 wt%, and the sintering time is shortened as the addition amount increases. Further, when the density of the sintered bodies obtained in Example 1 and Comparative Example was examined, it was 94% in Comparative Example, whereas the sintered bodies of this Example were all 97 to 99%. It had a high density. Further, when these three-point bending strengths were further measured, it was 1 in the comparative example.
In contrast to 39.7 MPa, all of the present examples exhibited a high strength of 170.0 MPa or more, and the material strength increased by 20% to 23%.
【0013】(実施例2)図2に示すように、Fe、S
i、Mnに対し、Cu又はCu化合物が0、1、2、
4、6、10、20wt%となるように秤量し、これら
を高周波により溶解、急冷して7種類のインゴットを形
成した後、それぞれ粉砕して粒径が38〜53μmの原
料粉末を形成した。次に、これらをそれぞれφ10×1
0mmのカーボン型に入れ、圧力570kg/mm2 、
型温度1000℃で焼結して7種類の試料となる焼結体
を形成した後、これら焼結体を860℃で熱処理を行っ
てβ化(半導体相)し、7種類のp型FeSi2 熱電素
子を形成した。そして、これら熱電素子の温度差250
℃におけるそのCu含有量と熱起電力(mv)との関係
を測定した。(Embodiment 2) As shown in FIG. 2, Fe, S
Cu or Cu compound is 0, 1, 2,
Weighed so as to be 4, 6, 10, 20 wt%, melted by high frequency and rapidly cooled to form 7 types of ingots, which were then crushed to form raw material powder having a particle size of 38 to 53 μm. Next, these are each φ10 × 1
Put in 0mm carbon mold, pressure 570kg / mm 2 ,
After sintering at a mold temperature of 1000 ° C. to form seven types of sample sintered bodies, these sintered bodies are heat-treated at 860 ° C. to be β (semiconductor phase), and seven types of p-type FeSi 2 A thermoelectric element was formed. The temperature difference between these thermoelectric elements is 250
The relationship between the Cu content at 0 ° C and the thermoelectromotive force (mv) was measured.
【0014】その結果、図4からも明らかなように、C
u含有量が10wt%未満のものではいずれも高い起電
力を発揮しているが10wt%を越えるあたりからその
熱起電力が急激に低下し始め、20wt%ではほぼ半分
以下に低下してしまった。As a result, as is clear from FIG. 4, C
When the u content is less than 10 wt%, high electromotive force is exhibited. However, when the u content exceeds 10 wt%, the thermoelectromotive force starts to sharply decrease, and at 20 wt%, it has decreased to almost half or less. .
【0015】[0015]
【発明の効果】以上要するに本発明によれば、焼結体の
焼結密度が高くなって、強度が向上し、また、焼結時間
を短縮することができるため、信頼性及び生産性が高い
熱電素子が提供できる等といった優れた効果を発揮す
る。In summary, according to the present invention, since the sintered density of the sintered body is increased, the strength is improved, and the sintering time can be shortened, the reliability and the productivity are high. It exhibits excellent effects such as provision of a thermoelectric element.
【図1】本発明方法の一実施例を示す製造工程図であ
る。FIG. 1 is a manufacturing process diagram showing an embodiment of a method of the present invention.
【図2】本発明方法の一実施例を示す製造工程図であ
る。FIG. 2 is a manufacturing process chart showing an embodiment of the method of the present invention.
【図3】Cu添加量に対する焼結時間の関係を示すグラ
フ図である。FIG. 3 is a graph showing the relationship between the amount of Cu added and the sintering time.
【図4】Cu添加量に対する熱起電力の関係を示すグラ
フ図である。FIG. 4 is a graph showing the relationship between the amount of Cu added and the thermoelectromotive force.
【図5】従来の製造法の一例を示す流れ図である。FIG. 5 is a flow chart showing an example of a conventional manufacturing method.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年12月1日[Submission date] December 1, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0010[Correction target item name] 0010
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0010】 (実施例1)図1に示すように、Fe
とSiにMnあるいはCoを添加した原料をFeSi2
の組成になるように秤量し、これを高周波により溶解、
急冷してインゴットを形成した後、これを粉砕して粒径
が38〜53μmの原料粉末を形成した。次に、この原
料粉末中に粒径が10μmのCu粉末を0.5、1.
0、2.0、4.0wt%の順に加えて混合した試料粉
末を形成し、これらをそれぞれφ10×10mmのカー
ボン型に入れ、圧力570Kg/cm2 、型温度100
0℃で焼結して4種類の試料となる焼結体を形成した。
そして、その焼結過程で焼結体が徐々に焼結していき、
その収縮が停止した時をそれぞれの焼結体の焼結終了と
し、それまでに要した時間を焼結時間として計測した。Example 1 As shown in FIG. 1, Fe
With FeSi 2 as a raw material obtained by adding Mn or Co to Si and Si
Weigh it so that it has the composition
After rapid cooling to form an ingot, this was crushed to form a raw material powder having a particle size of 38 to 53 μm. Next, Cu powder having a particle diameter of 10 μm was added to the raw material powder in an amount of 0.5, 1.
0, 2.0, 4.0 wt% were added in this order to form a mixed sample powder, which were each put in a carbon mold of φ10 × 10 mm, pressure 570 Kg / cm 2 , mold temperature 100.
Sintering was performed at 0 ° C. to form four types of sample sintered bodies.
Then, in the sintering process, the sintered body is gradually sintered,
When the contraction stopped, the sintering of each sintered body was completed, and the time required until then was measured as the sintering time.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0013[Correction target item name] 0013
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0013】 図2に示すように、Fe、Si、Mnに
対し、Cu又はCu化合物が0、1、2、4、6、1
0、20wt%となるように秤量し、これらを高周波に
より溶解、急冷して7種類のインゴットを形成した後、
それぞれ粉砕して粒径が38〜53μmの原料粉末を形
成した。次に、これらをそれぞれφ10×10mmのカ
ーボン型に入れ、圧力570Kg/cm2 、型温度10
00℃で焼結して7種類の試料となる焼結体を形成した
後、これら焼結体を860℃で熱処理を行ってβ化
(半導体相)し、7種類のp型FeSi2熱電素子を形
成した。そして、これら熱電素子の温度差を250℃に
おけるそのCu含有量と熱起電力(mv)との関係を測
定した。As shown in FIG. 2, with respect to Fe, Si, and Mn, Cu or Cu compound is 0, 1, 2, 4, 6, 1,
After weighing so as to be 0 and 20 wt%, melting these by high frequency and quenching to form 7 types of ingots,
Each was pulverized to form a raw material powder having a particle size of 38 to 53 μm. Next, these are put into a carbon mold of φ10 × 10 mm, respectively, and the pressure is 570 Kg / cm 2 , and the mold temperature is 10
After sintering at 00 ° C to form 7 types of sample sintered bodies, these sintered bodies are heat treated at 860 ° C to form β.
(Semiconductor phase), and 7 types of p-type FeSi 2 thermoelectric elements were formed. Then, the relationship between the Cu content and the thermoelectromotive force (mv) at a temperature difference of 250 ° C. of these thermoelectric elements was measured.
フロントページの続き (72)発明者 奥村 英二 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 小川 誠 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内Front page continuation (72) Inventor Eiji Okumura 8 Isuzu Central Research Center, Fujisawa City, Kanagawa Prefecture Isuzu Central Research Institute (72) Inventor Makoto Ogawa 8 Isuzu Central Research Center, Fujisawa City, Kanagawa Prefecture Isuzu Central Research Institute Co., Ltd.
Claims (5)
半導体化されたFeSi2 母材中に、Cu成分が均一に
拡散してなることを特徴とするFeSi2 熱発電素子。1. Adjusting to p-type or n-type,
A FeSi 2 thermoelectric power generation element, characterized in that a Cu component is uniformly diffused in a FeSi 2 base material made into a semiconductor.
t%未満であることを特徴とする請求項1記載のFeS
i2 熱発電素子。2. The content of the Cu component is 0.5 to 10 w.
FeS according to claim 1, characterized in that it is less than t%.
i 2 thermoelectric generator.
相)−FeSi2 粉末中に、Cu又はCu化合物からな
る粉体を添加、混合撹拌して原料粉末を形成した後、こ
の原料粉末を所定の形状の型内に入れ、加圧焼結して焼
結体を形成し、その後、この焼結体を熱処理して半導体
化することを特徴とするFeSi2 熱発電素子の製造方
法。3. A raw material powder is formed by adding a powder of Cu or a Cu compound to an α (metal phase) -FeSi 2 powder prepared to be p-type or n-type and mixing and stirring the raw material powder. A method for manufacturing a FeSi 2 thermoelectric generator, characterized in that the powder is placed in a mold of a predetermined shape, pressure-sintered to form a sintered body, and then the sintered body is heat-treated to be a semiconductor. .
又はCu化合物とを混合し、溶解急冷してインゴットを
形成した後、これを細かく粉砕して原料粉末を形成し、
この原料粉末を加圧焼結して焼結体を形成し、その後、
この焼結体を熱処理して半導体化することを特徴とする
FeSi2 熱発電素子の製造方法。4. Fe, Si, Mn or Co, and Cu
Alternatively, a Cu compound is mixed and melted and rapidly cooled to form an ingot, which is then finely pulverized to form a raw material powder,
This raw material powder is pressure-sintered to form a sintered body, and thereafter,
A method of manufacturing a FeSi 2 thermoelectric generator, comprising heat-treating this sintered body to form a semiconductor.
未満であることを特徴とする請求項1又は2記載のFe
Si2 熱発電素子の製造方法。5. The Cu content is 0.5 to 10 wt%.
Fe less than 3
Method for manufacturing Si 2 thermoelectric generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6273930A JPH08139369A (en) | 1994-11-08 | 1994-11-08 | Fesi2 thermoelectric device and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6273930A JPH08139369A (en) | 1994-11-08 | 1994-11-08 | Fesi2 thermoelectric device and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08139369A true JPH08139369A (en) | 1996-05-31 |
Family
ID=17534559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6273930A Pending JPH08139369A (en) | 1994-11-08 | 1994-11-08 | Fesi2 thermoelectric device and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08139369A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100478391B1 (en) * | 1999-06-25 | 2005-03-23 | 마츠시다 덴코 가부시키가이샤 | Method of producing sintered body of material for thermoelectric element |
-
1994
- 1994-11-08 JP JP6273930A patent/JPH08139369A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100478391B1 (en) * | 1999-06-25 | 2005-03-23 | 마츠시다 덴코 가부시키가이샤 | Method of producing sintered body of material for thermoelectric element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0874406A2 (en) | A co-sb based thermoelectric material and a method of producing the same | |
US10662507B2 (en) | Method for producing a thermoelectric material | |
JPH08139369A (en) | Fesi2 thermoelectric device and its manufacture | |
JP3541549B2 (en) | Thermoelectric material for high temperature and method for producing the same | |
JPH08139368A (en) | Fesi2 thermoelectric device and its manufacture | |
JPH0347751B2 (en) | ||
CN1544673A (en) | Process for preparing W-Cu alloy by mechanical activation and chemical activation method | |
JPH012380A (en) | Method for manufacturing thermoelectric elements | |
JP4273692B2 (en) | Method for producing thermoelectric conversion material | |
JP3422570B2 (en) | CuSnS-based thermoelectric conversion semiconductor material and method of manufacturing the same | |
JP7449549B2 (en) | Thermoelectric element and its manufacturing method | |
JPH1012933A (en) | Manufacture of material powder for fesi2 thermoelectric conversion element | |
JP4373296B2 (en) | Raw material for thermoelectric conversion material, method for producing thermoelectric conversion material, and thermoelectric conversion material | |
JP7506388B2 (en) | Method for manufacturing thermoelectric elements | |
Cook et al. | Thermoelectric properties of mechanically alloyed p‐type Si80Ge20 alloys | |
JP2533356B2 (en) | Thermoelectric element and manufacturing method thereof | |
JPH06216414A (en) | Manufacture of thermoelectric conversion material | |
JPH0522670B2 (en) | ||
JP2735442B2 (en) | Manufacturing method of high-efficiency thermoelectric element with high temperature operation | |
JPS58147537A (en) | Permanent magnet alloy and its manufacture | |
US3087792A (en) | Rare-earth arsenides | |
JPH06216415A (en) | Manufacture of thermoelectric conversion material | |
JPS6043882A (en) | P type thermoelectric generating material | |
JPH06169110A (en) | Manufacture of thermoelectric conversion material | |
JPH09214007A (en) | Manufacturing method of thermoelectric material |