JPH012380A - Method for manufacturing thermoelectric elements - Google Patents
Method for manufacturing thermoelectric elementsInfo
- Publication number
- JPH012380A JPH012380A JP62-156646A JP15664687A JPH012380A JP H012380 A JPH012380 A JP H012380A JP 15664687 A JP15664687 A JP 15664687A JP H012380 A JPH012380 A JP H012380A
- Authority
- JP
- Japan
- Prior art keywords
- adamantane
- metal alloy
- thermoelectric element
- manufacturing
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 40
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 238000010304 firing Methods 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 4
- LPSXSORODABQKT-UHFFFAOYSA-N tetrahydrodicyclopentadiene Chemical compound C1C2CCC1C1C2CCC1 LPSXSORODABQKT-UHFFFAOYSA-N 0.000 claims description 4
- 239000000654 additive Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 229910005331 FeSi2 Inorganic materials 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010299 mechanically pulverizing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、熱電特性に優れた金属合金熱電素子の製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a metal alloy thermoelectric element having excellent thermoelectric properties.
[従来の技lR]
ゼーベック効果を応用して熱電発電を行なわせる熱電素
子は種々の分野において実用化が期待されている。[Prior Art] Thermoelectric elements that generate thermoelectric power by applying the Seebeck effect are expected to be put to practical use in various fields.
金属合金からなる熱電素子の実用化を妨げる要因の一つ
として、熱起電力が低いという問題かある。One of the factors hindering the practical application of thermoelectric elements made of metal alloys is the problem of low thermoelectromotive force.
このため、熱起電力の高い熱電素子を得るため種々改良
のなされた熱電素子が開発されている。For this reason, various improved thermoelectric elements have been developed in order to obtain thermoelectric elements with high thermoelectromotive force.
このうち、金属合金からなる熱電素子においても、金属
合金の材料、含有率、粉末の粒子径を変えたり、あるい
は製造手順2条件を変えたりして種々の改良が行なわれ
ている。Among these, various improvements have been made in thermoelectric elements made of metal alloys by changing the material of the metal alloy, the content, the particle size of the powder, or by changing the conditions of the manufacturing procedure.
そして、金属合金からなる熱電素子は、素子を微細かつ
均一な多孔質の焼結体としたことにより熱起電力を高く
できることか判明した。It has also been found that a thermoelectric element made of a metal alloy can have a higher thermoelectromotive force by forming the element into a fine and uniform porous sintered body.
[解決すべき問題点]
しかしながら、微細かつ均一な多数の孔を有する多孔質
の焼結体て熱電素子を構成することは難しかった。すな
わち、微細な孔を均一に作ることができないため、高い
熱起電力を得ることができないとともに、製品の均質化
を図れることかてきず、金属合金による熱電素子は実用
化段階には至っていなかった。[Problems to be Solved] However, it has been difficult to construct a thermoelectric element using a porous sintered body having a large number of fine and uniform pores. In other words, it is not possible to obtain a high thermoelectromotive force because fine pores cannot be made uniformly, and it is not possible to achieve homogeneity in the product, so thermoelectric elements made of metal alloys have not reached the stage of practical use. Ta.
本発明は上記の問題点にかんがみてなされたものて、高
い熱起電力を得ることかできるとともに、製品の均質化
を回部として素子間のばらつきのない熱電素子の提供を
目的とした。The present invention has been made in view of the above-mentioned problems, and aims to provide a thermoelectric element that can obtain a high thermoelectromotive force and has no variation between elements by making the product homogeneous.
[問題点の解決手段]
本発明者は上記目的を達成するため鋭意検討した結果、
金属合金の粉末にアダマンタンもしくはアダマンタン/
トリメチレンノルボルナン混合物を混合添加し、その後
焼結を行なって熱電素子を製造することにより、上記目
的か達成できることを見出し本発明に到達した。[Means for solving the problem] As a result of intensive studies to achieve the above object, the inventor has found that
Adamantane or adamantane in metal alloy powder/
The inventors have discovered that the above object can be achieved by mixing and adding a trimethylene norbornane mixture and then performing sintering to produce a thermoelectric element, and have thus arrived at the present invention.
すなわち、本発明の熱電素子の製造方法は、金属合金の
粉末にアダマンタンもしくはアダマンタン/トリメチレ
ンノルボルナン混合物を添加してプレス成形し、その後
焼成を行なって製造した方法としである。そして、好ま
しくは、焼成を、焼結工程と熱処理工程の二段工程とし
た方法としている。That is, the thermoelectric element of the present invention is manufactured by adding adamantane or an adamantane/trimethylene norbornane mixture to a metal alloy powder, press-molding the mixture, and then firing it. Preferably, the firing is a two-step process of a sintering step and a heat treatment step.
このような製造方法によれば、微細かつ均一な多孔賀状
の熱電素子を得ることができる。According to such a manufacturing method, a fine and uniform porous thermoelectric element can be obtained.
以下、本発明の内容を詳細に説明する。Hereinafter, the content of the present invention will be explained in detail.
第1図は本発明製造方法を説明するためのフロック図て
あり、1は金属合金粉末の合成工程、2は金属合金粉末
とアダマンタン等の添加材を混合する混合工程、3は合
成した粉末金属合金を所定形状の成形体に成形するプレ
ス成形工程、4は成形体を真空中において焼結する焼結
工程、5は焼結した成形体を大気中において熱処理する
熱処理工程である。FIG. 1 is a flow diagram for explaining the manufacturing method of the present invention, in which 1 is a synthesis process of metal alloy powder, 2 is a mixing process of mixing metal alloy powder and additives such as adamantane, and 3 is a synthesized powder metal 4 is a press forming step in which the alloy is formed into a predetermined shaped compact; 4 is a sintering step in which the compact is sintered in vacuum; and 5 is a heat treatment step in which the sintered compact is heat treated in the atmosphere.
本発明の製造方法で製造される金属合金の熱電素子にお
いては、Bi2Te、Sb2Te:+、Bi、Se、、
5b2Se、。In the metal alloy thermoelectric element manufactured by the manufacturing method of the present invention, Bi2Te, Sb2Te:+, Bi, Se,
5b2Se,.
Zn5b、ZnTe、25Bi2Tez”75SbtT
es、70Bi2Tei”30BizSe3.PbTe
、Pb5e、Bi(Si−3ba)、B12(Ge”S
e):+。Zn5b, ZnTe, 25Bi2Tez”75SbtT
es, 70Bi2Tei”30BizSe3.PbTe
, Pb5e, Bi(Si-3ba), B12(Ge”S
e):+.
Cr5iz、 Mn5i1.yz、FeSi2.C0
3i、Ge3Si07゜Gd5el、 4)+Cu1.
stAgo、 osse+、 004S+ X −A
IBI21β−B、 MgSi、111gSi+7z、
5iGe、またはSi、Teを含有する合金を用いる。Cr5iz, Mn5i1. yz, FeSi2. C0
3i, Ge3Si07°Gd5el, 4)+Cu1.
stAgo, osse+, 004S+ X -A
IBI21β-B, MgSi, 111gSi+7z,
5iGe or an alloy containing Si or Te is used.
合成工程lにおいては、上述した金属合金を機械的に粉
砕したり、プラズマ法によって微粒子化することによっ
て金属合金の粉末を得ている(本発明においてiヨ、微
粒子を含めて粉末と称す)。In the synthesis step 1, a metal alloy powder is obtained by mechanically pulverizing the above-mentioned metal alloy or making it into fine particles using a plasma method (in the present invention, the metal alloy including fine particles is referred to as powder).
このうち、プラズマ法によって500n−以下の微粒子
を気相中にて合成したものを用いると、製造された熱電
素子の′熱電特性を、さらに向上させることができる。Among these, if particles of 500 nm or less are synthesized in the gas phase by a plasma method, the thermoelectric properties of the manufactured thermoelectric element can be further improved.
なお、プラズマ法としては、高周波プラズマ法あるいは
アークプラズマジェット法等を採用することが好ましい
。Note that as the plasma method, it is preferable to employ a high frequency plasma method, an arc plasma jet method, or the like.
混合工程2においては、合成工程1で合成した金属合金
粉末とアダマンタンあるいはアダマンタン/トリメチレ
ンノルボルナン(以下、TMNという)混合物をヘンシ
ェルミキサ等によって攪拌混合する。これにより、金属
合金粉末中にアダマンタンあるいはアダマンタン/TM
N混合物を添加する。なお、混合工程2において使用す
る混合機としては、粉末材の混合を行なえるものであれ
ば特に限定されず、上述のヘンシェルミキサのほか、ら
いかい機等の混合機を用いることもできる。また、添加
材としてアダマンタンあるいはアダマンタン/TMN混
合物を用いると、焼成時の抜けがよく、焼成後における
添加材の残量か少なく良好な多孔質状焼成体を形成てき
る。In the mixing step 2, the metal alloy powder synthesized in the synthesis step 1 and the adamantane or adamantane/trimethylene norbornane (hereinafter referred to as TMN) mixture are stirred and mixed using a Henschel mixer or the like. This allows adamantane or adamantane/TM to be contained in the metal alloy powder.
Add N mixture. The mixer used in the mixing step 2 is not particularly limited as long as it can mix the powder materials, and in addition to the above-mentioned Henschel mixer, a mixer such as a grinder can also be used. In addition, when adamantane or an adamantane/TMN mixture is used as the additive, the porous fired body can be easily removed during firing, and the remaining amount of the additive after firing is small, forming a good porous fired body.
プレス成形工程3においては、添加材を混合した粉末金
属合金を0.5〜2 ton/cm2の圧力て圧縮し、
所定形状の成形体となるようにプレス成形する。成形圧
力は、粉末金属合金が成形体として所定の形状を保持て
きる程度の圧力であればよく、必ずしも上記成形圧力に
限定されるものではない。In the press forming step 3, the powdered metal alloy mixed with additives is compressed under a pressure of 0.5 to 2 ton/cm2,
Press molding is performed to obtain a molded body of a predetermined shape. The compacting pressure may be a pressure that allows the powder metal alloy to maintain a predetermined shape as a compact, and is not necessarily limited to the above-mentioned compacting pressure.
焼結工程4においては、プレス成形された成形体を80
0〜1500℃、好ましくは1000〜1200℃の高
温で加熱して焼成する。このとき、添加材か昇華され成
形体中に多数の微細孔が形成される。プラズマ法によっ
て得た微粒子状の金属合金成形体の場合には、10−”
Torrの真空中で、 800〜1200℃の加熱を4
〜8時間行なう。焼結時の加熱温度が低いと昇華不足、
焼結不足となり、逆に高いと過焼結状態となり、いずれ
の場合も熱電素子の素子特性低下につながる。In the sintering step 4, the press-formed compact is
Firing is performed by heating at a high temperature of 0 to 1500°C, preferably 1000 to 1200°C. At this time, the additive material is sublimated and a large number of micropores are formed in the molded body. In the case of fine particle shaped metal alloy compacts obtained by plasma method, 10-"
Heating at 800-1200℃ in a Torr vacuum for 4 hours.
Do this for ~8 hours. If the heating temperature during sintering is low, sublimation will be insufficient,
If it is too high, it will be undersintered, and if it is too high, it will be oversintered, and either case will lead to deterioration of the device characteristics of the thermoelectric element.
熱処理工程5においては、焼結した金属合金成形体を大
気中て500〜1000℃、好ましくは700〜900
°Cの温度で数時間熱処理する。熱処理時における加熱
温度の設定も重要てあり、低いと素子特性の向上を図れ
ず、高いと結晶形態が変化してしまい、やはり素子特性
の向上を図れない結果となる。In heat treatment step 5, the sintered metal alloy molded body is heated at 500 to 1000°C, preferably 700 to 900°C, in the atmosphere.
Heat treatment for several hours at a temperature of °C. Setting the heating temperature during heat treatment is also important; if it is too low, the device characteristics cannot be improved, and if it is too high, the crystal morphology changes, resulting in the inability to improve the device characteristics.
[実施例]
次に、本発明の実施例を比較例と比べつつ、本発明を具
体的に説明する。[Example] Next, the present invention will be specifically described while comparing Examples of the present invention with Comparative Examples.
0実 施 例1
プラズマ法により合成した鉄ケイ化物粉末100gと、
アダマンタン25gをヘンシェルミキサに入れて3分間
攪拌混合し、その後混合物を1 ton/c+s”の圧
力でプレス成形し、これを1100’Cで6時間焼結し
た。そしてその後、 850”Cで3時間熱処理を行
なって熱電素子とした。(なお、焼成体の嵩比重は2.
1kg/cm3.計算上の空隙率は50%であった。、
)
この結果、第2図に示すように最高9.2mV/に程度
の熱起電力を得ることができた。0 Example 1 100g of iron silicide powder synthesized by plasma method,
25 g of adamantane was placed in a Henschel mixer and stirred and mixed for 3 minutes, and then the mixture was press-molded at a pressure of 1 ton/c+s'', which was sintered at 1100'C for 6 hours.Then, it was sintered at 850''C for 3 hours. A thermoelectric element was obtained by heat treatment. (The bulk specific gravity of the fired product is 2.
1kg/cm3. The calculated porosity was 50%. ,
) As a result, as shown in FIG. 2, a thermoelectromotive force of about 9.2 mV/max could be obtained.
O実 施 例2
実施例1におけるアダマンタン25gを、アダマンタン
:TMN=2:8としたアダマンタン/TMN混合物6
5gに代え、その他は実施例1と同じ条件て熱電素子を
製造した。(なお、焼成体の嵩比重は1.2kg/cm
3.計算上の空隙率は70%てあった。)
この結果、第2図に示すように最高1hV/にの熱起電
力を得ることができた。O Example 2 Adamantane/TMN mixture 6 in which 25 g of adamantane in Example 1 was changed to adamantane:TMN=2:8
A thermoelectric element was manufactured under the same conditions as in Example 1 except that the amount of 5 g was used. (The bulk specific gravity of the fired body is 1.2 kg/cm
3. The calculated porosity was 70%. ) As a result, as shown in FIG. 2, it was possible to obtain a thermoelectromotive force of up to 1 hV/.
O比較例
アダマンタンあるいはアダマンタン/TMN混合物を添
加し、ない鉄ケイ化物のみで、実施例1と同じ条件で熱
電素子を製造した。(なお、焼成体の嵩比重は3.8k
g/cm’ 、計算上の空隙率は5%であった。)
この結果、第2図に示すように最高1.5mV/にの熱
起電力を得ることかできた。Comparative Example A thermoelectric element was manufactured under the same conditions as in Example 1, with the addition of adamantane or an adamantane/TMN mixture, but with only iron silicide. (The bulk specific gravity of the fired product is 3.8k.
g/cm', and the calculated porosity was 5%. ) As a result, as shown in FIG. 2, it was possible to obtain a thermoelectromotive force of up to 1.5 mV/.
[発明の効果]
以上のように本発明によれば、アダマンタン等の添加材
を添加して焼成することにより、微細かつ均一な孔から
なる多孔質状の、熱電特性に優れた8T4.素子を製造
できるといった効果がある。[Effects of the Invention] As described above, according to the present invention, by adding additives such as adamantane and firing, 8T4. This has the effect that devices can be manufactured.
【図面の簡単な説明】
第1図は本発明製造方法の実施手順を説明するためのブ
ロック図、第2図本発明製造方法によって得た熱電素子
と比較例熱電素子の熱電特性図を示す。
l:合成工程 2:混合工程3ニブレス成形
工程 4:焼結工程5:熱処理工程BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram for explaining the implementation procedure of the manufacturing method of the present invention, and FIG. 2 is a thermoelectric characteristic diagram of a thermoelectric element obtained by the manufacturing method of the present invention and a comparative thermoelectric element. l: Synthesis process 2: Mixing process 3 Nibbles molding process 4: Sintering process 5: Heat treatment process
Claims (2)
タン/トリメチレンノルボルナン混合物を添加してプレ
ス成形し、その後焼成を行なって製造することを特徴と
した熱電素子の製造方法。(1) A method for manufacturing a thermoelectric element, which comprises adding adamantane or an adamantane/trimethylene norbornane mixture to a metal alloy powder, press-molding the mixture, and then firing it.
の工程に分けて行なうことを特徴とした特許請求の範囲
第1項記載の熱電素子の製造方法。(2) The method for manufacturing a thermoelectric element according to claim 1, wherein the firing is performed in two steps: a sintering step and a subsequent heat treatment step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62156646A JPS642380A (en) | 1987-06-25 | 1987-06-25 | Manufacture of thermoelectric element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62156646A JPS642380A (en) | 1987-06-25 | 1987-06-25 | Manufacture of thermoelectric element |
Publications (3)
Publication Number | Publication Date |
---|---|
JPH012380A true JPH012380A (en) | 1989-01-06 |
JPS642380A JPS642380A (en) | 1989-01-06 |
JPH0347751B2 JPH0347751B2 (en) | 1991-07-22 |
Family
ID=15632208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62156646A Granted JPS642380A (en) | 1987-06-25 | 1987-06-25 | Manufacture of thermoelectric element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS642380A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69132779T2 (en) * | 1990-04-20 | 2002-07-11 | Matsushita Electric Industrial Co., Ltd. | Vacuum insulated thermoelectric semiconductors and thermoelectric devices using P and N type thermoelectric semiconductors |
US20070240749A1 (en) * | 2004-03-22 | 2007-10-18 | Japan Science And Technology Agency | Porous Thermoelectric Material and Process for Producing the Same |
JP4729013B2 (en) * | 2007-07-13 | 2011-07-20 | 古河電気工業株式会社 | Female terminal |
AT508979A1 (en) * | 2009-10-23 | 2011-05-15 | Miba Sinter Austria Gmbh | METHOD FOR PRODUCING A THERMOELECTRIC ELEMENT |
JP6411782B2 (en) * | 2013-08-07 | 2018-10-24 | 株式会社Nttファシリティーズ | Method for manufacturing thermoelectric material |
CN106956004B (en) * | 2017-02-23 | 2018-12-28 | 厦门理工学院 | High stability Zn4Sb3Thermoelectric composite material and preparation method thereof |
CN107507909B (en) * | 2017-08-08 | 2020-02-14 | 武汉科技大学 | Porous P-type Bi2Te3Base thermoelectric material and preparation method thereof |
-
1987
- 1987-06-25 JP JP62156646A patent/JPS642380A/en active Granted
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4117096A (en) | Process for producing powder of β-type silicon carbide | |
US4992235A (en) | Method for producing thermoelectric elements | |
JPH012380A (en) | Method for manufacturing thermoelectric elements | |
US3164892A (en) | Thermoelectric body and method of making same | |
JPH0347751B2 (en) | ||
Ravi et al. | The microstructure and hardness of silicon carbide synthesized by plasma pressure compaction | |
CN108987024A (en) | A kind of sendust core of ultra-low loss and preparation method thereof | |
JPS5585601A (en) | Thermal expansion adjusting material and production thereof | |
JPS62282635A (en) | Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder | |
US3342591A (en) | Ferromagnetic compounds and method of preparation | |
JPH09260728A (en) | High-temperature thermoelectric material and manufacture thereof | |
JP2811454B2 (en) | Copper-tungsten mixed sintered body and method for producing the same | |
US3970485A (en) | Binder and lubricant removal from cobalt-rare earth alloys | |
JPS61155210A (en) | Preparation of easily sinterable aluminum nitride powder | |
JPH02275772A (en) | Production of aluminum nitride-base sintered material | |
JPS62243726A (en) | Cu-tib2 composite sintered material | |
JPS63183145A (en) | High hardness titanium-aluminum-vanadium alloy and its production | |
RU2082559C1 (en) | Method for producing titanium-nickel alloy close to equiatomic composition | |
JPH0227778A (en) | Manufacture of thermoelectric element | |
JPS61227908A (en) | Preparation of raw material powder for sintered silicon nitride | |
JPS5918106A (en) | Preparation of silicon aluminum oxynitride type powdery raw material | |
RU2030805C1 (en) | Iron-base nonretentive material production method | |
JPH02205603A (en) | Manufacture of super fine particles and magnetic super fine particles and magnetic material | |
JPH01184032A (en) | Production of cubic boron nitride | |
JPS58217469A (en) | Manufacture of silicon nitride-silicon carbide composition |