JPH0347751B2 - - Google Patents

Info

Publication number
JPH0347751B2
JPH0347751B2 JP62156646A JP15664687A JPH0347751B2 JP H0347751 B2 JPH0347751 B2 JP H0347751B2 JP 62156646 A JP62156646 A JP 62156646A JP 15664687 A JP15664687 A JP 15664687A JP H0347751 B2 JPH0347751 B2 JP H0347751B2
Authority
JP
Japan
Prior art keywords
adamantane
metal alloy
thermoelectric element
mixture
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62156646A
Other languages
Japanese (ja)
Other versions
JPH012380A (en
JPS642380A (en
Inventor
Takashi Uesugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP62156646A priority Critical patent/JPS642380A/en
Publication of JPH012380A publication Critical patent/JPH012380A/en
Publication of JPS642380A publication Critical patent/JPS642380A/en
Publication of JPH0347751B2 publication Critical patent/JPH0347751B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱電特性に優れた金属合金熱電素子
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a metal alloy thermoelectric element having excellent thermoelectric properties.

[従来の技術] ゼーベツク効果を応用して熱電発電を行なわせ
る熱電素子は種々の分野において実用化が期待さ
れている。
[Prior Art] Thermoelectric elements that generate thermoelectric power by applying the Seebeck effect are expected to be put to practical use in various fields.

金属合金からなる熱電素子の実用化を妨げる要
因の一つとして、熱起電力が低いという問題があ
る。
One of the factors hindering the practical application of thermoelectric elements made of metal alloys is the problem of low thermoelectromotive force.

このため、熱起電力の高い熱電素子を得るため
種々の改良のなされた熱電素子が開発されてい
る。このうち、金属合金からなる熱電素子におい
ても、金属合金の材料、含有率、粉末の粒子径を
変えたり、あるいは製造手順、条件を変えたりし
て種々の改良が行なわれている。
For this reason, various improved thermoelectric elements have been developed in order to obtain thermoelectric elements with high thermoelectromotive force. Among these, various improvements have been made in thermoelectric elements made of metal alloys by changing the material of the metal alloy, the content, the particle size of the powder, or by changing the manufacturing procedure and conditions.

そして、金属合金からなる熱電素子は、素子を
微細かつ均一な多孔質の焼結体とすることにより
熱起電力を高くできることが判明した。
It has also been found that the thermoelectromotive force of a thermoelectric element made of a metal alloy can be increased by forming the element into a fine and uniform porous sintered body.

[解決すべき問題点] しかしながら、微細かつ均一な多数の孔を有す
る多孔質の焼結体で熱電素子を構成することは難
しかつた。すなわち、微細な孔を均一に作ること
ができないため、高い熱起電力を得ることができ
ないとともに、製品の均質化を図れることができ
ず、金属合金による熱電素子は実用化段階には至
つていないかつた。
[Problems to be Solved] However, it has been difficult to construct a thermoelectric element using a porous sintered body having a large number of fine and uniform pores. In other words, since it is not possible to make fine holes uniformly, it is not possible to obtain a high thermoelectromotive force and it is not possible to achieve homogeneity of the product, and thermoelectric elements made of metal alloys have not reached the stage of practical use. I didn't have it.

本発明は上記の問題点にかんでみてなされたも
ので、高い熱起電力を得ることができるととも
に、製品の均質化を可能として素子間のばらつき
のない熱電素子の提供を目的とする。
The present invention has been made in view of the above-mentioned problems, and aims to provide a thermoelectric element that can obtain a high thermoelectromotive force, enables homogenization of the product, and has no variation between elements.

[問題点の解決手段] 本発明者は上記目的を達成するため鋭意検討し
た結果、金属合金の粉末にアダマンタンもしくは
アダマンタン/トリメチレンノルボルナン混合物
を混合添加し、その後焼結を行なつて熱電素子を
製造することにより、上記目的が達成できること
を見出し本発明に到達した。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the inventor of the present invention mixed and added adamantane or an adamantane/trimethylene norbornane mixture to a metal alloy powder, and then sintered the mixture to form a thermoelectric element. The present inventors have discovered that the above object can be achieved by manufacturing the product, and have thus arrived at the present invention.

すなわち、本発明の熱電素子の製造方法は、金
属合金の粉末にアダマンタンもしくはアダマンタ
ン/トリメチレンノルボルナン混合物を添加して
プレス成形し、その後焼結を行なつて製造した方
法としてある。そして、好ましくは、焼成を、焼
結工程と熱処理工程の二段工程とする方法として
いる。
That is, the method for manufacturing a thermoelectric element of the present invention is a method in which adamantane or an adamantane/trimethylene norbornane mixture is added to metal alloy powder, press-molded, and then sintered. Preferably, the firing is a two-stage process of a sintering process and a heat treatment process.

このような製造方法によれば、微細かつ均一な
多孔質状の熱電素子を得ることができる。
According to such a manufacturing method, a fine and uniform porous thermoelectric element can be obtained.

以下、本発明の内容を詳細に説明する。 Hereinafter, the content of the present invention will be explained in detail.

第1図は本発明製造方法を説明するためのブロ
ツク図であり、1は金属合金粉末の合成工程、2
は金属合金粉末とアダマンタン等の添加材を混合
する混合工程、3は合成した粉末金属合金を所定
形状の成形体に成形するプレス成形工程、4は成
形体を真空中において焼結する焼結工程、5は焼
結した成形体を大気中において熱処理する熱処理
工程である。
FIG. 1 is a block diagram for explaining the manufacturing method of the present invention, in which 1 is a synthesis step of metal alloy powder, 2
3 is a mixing process in which metal alloy powder is mixed with additives such as adamantane; 3 is a press forming process in which the synthesized powder metal alloy is formed into a predetermined shaped compact; 4 is a sintering process in which the compact is sintered in a vacuum , 5 is a heat treatment step in which the sintered compact is heat treated in the atmosphere.

本発明な製造方法で製造される金属合金の熱電
素子においては、Bi2Te3,Sb2Te3,Bi2Se3
Sb2Se3,ZnSb,ZnTe,25Bi2Te3+75Sb2Te3
70Bi2Te3+30Bi2Se3,PbTe,PbSe、Bi(Si・
Sb2),Bi2(Ge・Se)3,CrSi2,MnSi1173、FeSi2
CoSi,Ge3Si017,GdSe1149,Cu1197Ag0103
Se110045,x−AlB12,β−B,MgSi1173,SiGe,
またはSi,Teを含有する合金を用いる。
In the metal alloy thermoelectric element manufactured by the manufacturing method of the present invention, Bi 2 Te 3 , Sb 2 Te 3 , Bi 2 Se 3 ,
Sb 2 Se 3 , ZnSb, ZnTe, 25Bi 2 Te 3 +75Sb 2 Te 3 ,
70Bi 2 Te 3 +30Bi 2 Se 3 , PbTe, PbSe, Bi(Si・
Sb 2 ), Bi 2 (Ge・Se) 3 , CrSi 2 , MnSi 1173 , FeSi 2 ,
CoSi, Ge 3 Si 017 , GdSe 1149 , Cu 1197 Ag 0103
Se 110045 , x-AlB 12 , β-B, MgSi 1173 , SiGe,
Or use an alloy containing Si or Te.

合金工程においては、上述した金属合金を機械
的に粉砕したり、プラズマ法によつて微粒子化す
ることによつて金属合金の粉末を得ている(本発
明においては、微粒子を含めて粉末と称す)。
In the alloying process, metal alloy powder is obtained by mechanically pulverizing the metal alloy described above or by making it into fine particles using a plasma method (in the present invention, the term "powder" including fine particles is used). ).

このうち、プラズマ法によつて500nm以下の
微粒子を気相中にて合成したものを用いると、製
造された熱電素子の熱電特性を、さらに向上させ
ることができる。
Among these, if particles of 500 nm or less are synthesized in the gas phase by a plasma method, the thermoelectric properties of the manufactured thermoelectric element can be further improved.

なお、プラズマ法としては、高周波プラズマ法
あるいはアークプラズマジエツト法等を採用する
ことが好ましい。
As the plasma method, it is preferable to employ a high frequency plasma method, an arc plasma jet method, or the like.

混合工程2においては、合成工程1で合成した
金属合金粉末とアダマンタンあるいはアダマンタ
ン/トリメチレンノルボルナン(以下、TMNと
いう)混合物をヘンシエルミキサ等によつて撹拌
混合する。これにより、金属合金粉末中にアダマ
ンタンあるいはアダマンタン/TMN混合物を添
加する。なお、混合工程2において使用する混合
機としては、粉末材の混合を行なえるものであれ
ば特に限定されず、上述のヘンシエルミキサのほ
か、らいかい機等の混合機を用いることもでき
る。また、添加材としてアダマンタンあるいはア
ダマンタン/TMN混合物を用いると、焼成時の
抜けがよく、焼成時における添加材の残量が少な
く良好な多孔質状焼成体を形成できる。
In the mixing step 2, the metal alloy powder synthesized in the synthesis step 1 and the adamantane or adamantane/trimethylene norbornane (hereinafter referred to as TMN) mixture are stirred and mixed using a Henschel mixer or the like. This adds adamantane or an adamantane/TMN mixture into the metal alloy powder. The mixer used in the mixing step 2 is not particularly limited as long as it can mix the powder materials, and in addition to the above-mentioned Henschel mixer, a mixer such as a rice cracker can also be used. Furthermore, when adamantane or an adamantane/TMN mixture is used as the additive, a good porous fired body can be formed with good release during firing and a small amount of the additive remaining during firing.

プレス成形工程3においては、添加材を混合し
た粉末金属合金を0.5〜2ton/cm2の圧力で圧縮し、
所定形状の成形体となるようにプレス成形する。
成形圧力は、粉末金属合金が成形体として所定の
形状を保持できる程度の圧力であればよく、必ず
しも上記成形圧力に限定されるものではない。
In press forming step 3, the powdered metal alloy mixed with additives is compressed at a pressure of 0.5 to 2 ton/ cm2 ,
Press molding is performed to obtain a molded body of a predetermined shape.
The compacting pressure may be a pressure that allows the powder metal alloy to maintain a predetermined shape as a compact, and is not necessarily limited to the above-mentioned compacting pressure.

焼結工程4においては、プレス成形された成形
体を800〜1500℃、好ましくは1000〜1200℃の高
温で加熱して焼成する。このとき、添加材が昇華
され成形体中に多数の微細孔が形成される。プラ
ズマ法によつて得た微粒子状の金属合金成形体の
場合には、10-2Torrの真空中で、800〜1200℃の
加熱を4〜8時間行なう。焼結時の加熱温度が低
いと昇華不足、焼結不足となり、逆に高いと過焼
結状態となり、いずれの場合も熱電素子の素子特
性低下につながる。
In the sintering step 4, the press-formed compact is heated and fired at a high temperature of 800 to 1500°C, preferably 1000 to 1200°C. At this time, the additive material is sublimated and a large number of micropores are formed in the molded body. In the case of a particulate metal alloy compact obtained by the plasma method, heating is performed at 800 to 1200° C. for 4 to 8 hours in a vacuum of 10 −2 Torr. If the heating temperature during sintering is low, there will be insufficient sublimation and sintering, while if it is high, an oversintered state will result, and in either case, the element characteristics of the thermoelectric element will deteriorate.

熱処理工程5においては、焼結した金属合金成
形体を大気中で500〜1000℃、好ましくは700〜
900℃の温度で数時間熱処理する。熱処理時にお
ける加熱温度の設定も重要であり、低いと素子特
性の向上を図れず、高いと結晶形態が変化してし
まい、やはり素子特性の向上を図れない結果とな
る。
In heat treatment step 5, the sintered metal alloy molded body is heated at 500 to 1000°C, preferably 700 to 1000°C, in the atmosphere.
Heat treatment at a temperature of 900℃ for several hours. Setting the heating temperature during heat treatment is also important; if it is too low, the device characteristics cannot be improved, and if it is too high, the crystal morphology changes, resulting in the inability to improve the device characteristics.

[実施例] 次に、本発明の実施例を比較例と比べつつ、本
発明を具体的に説明する。
[Example] Next, the present invention will be specifically described while comparing Examples of the present invention with Comparative Examples.

Γ実施例 1 プラズマ法により合成した鉄ケイ化物粉末100
gと、アダマンタン25gをヘンシエルミキサに入
れて3分間撹拌混合し、その後混合物を1ton/cm2
の圧力でプレス成形し、これを1100℃で6時間焼
結した。そしてその後、850℃で3時間熱処理を
行なつて熱電素子とした。(なお、焼結体の嵩比
重は2.1Kg/cm3、計算上の空隙率は50%であつ
た。) この結果、第2図に示すように最高9.2mV/
K程度の熱起電力を得ることができた。
Γ Example 1 Iron silicide powder synthesized by plasma method 100
g and 25 g of adamantane in a Henschel mixer, stir and mix for 3 minutes, then mix the mixture at 1 ton/cm 2
This was press-molded at a pressure of 1,100°C for 6 hours. Then, heat treatment was performed at 850°C for 3 hours to produce a thermoelectric element. (The bulk specific gravity of the sintered body was 2.1 Kg/cm 3 , and the calculated porosity was 50%.) As a result, as shown in Figure 2, the maximum
It was possible to obtain a thermoelectromotive force of about K.

Γ実施例 2 実施例1におけるアダマンタン25gを、アダマ
ンタン:TMN=2:8としたアダマンタン/
TMN混合物65gに代え、その他は実施例1と同
じ条件で熱電素子を製造した。(なお、焼結体の
嵩比重は1.2Kg/cm3、計算上の空隙率は70%であ
つた。) この結果、第2図に示すように最高10mV/K
の熱起電力を得ることができた。
ΓExample 2 25g of adamantane in Example 1 was converted into adamantane/TMN=2:8.
A thermoelectric element was manufactured under the same conditions as in Example 1 except that 65 g of the TMN mixture was used. (The bulk specific gravity of the sintered body was 1.2Kg/cm 3 and the calculated porosity was 70%.) As a result, as shown in Figure 2, the maximum
We were able to obtain a thermoelectromotive force of .

Γ比較例 アダマンタンあるいはアダマンタン/TMN混
合物を添加しない鉄ケイ化物のみで、実施例1と
同じ条件で熱電素子を製造した。(なお、焼結体
の嵩比重は3.8Kg/cm3、計算上の空隙率は5%で
あつた。) この結果、第2図に示すように最高1.5mV/
Kの熱起電力を得ることができた。
Γ Comparative Example A thermoelectric element was manufactured under the same conditions as in Example 1 using only iron silicide without adding adamantane or an adamantane/TMN mixture. (The bulk specific gravity of the sintered body was 3.8 Kg/cm 3 , and the calculated porosity was 5%.) As a result, as shown in Figure 2, the maximum
We were able to obtain a thermoelectromotive force of K.

[発明の効果] 以上のように本発明によれば、アダマンタン等
の添加材を添加して焼成することにより、微細か
つ均一な孔からなる多孔質状の、熱電特性に優れ
た熱電素子を製造できるといつた効果がある。
[Effects of the Invention] As described above, according to the present invention, by adding additives such as adamantane and firing, it is possible to manufacture a porous thermoelectric element having excellent thermoelectric properties and having fine and uniform pores. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製造方法の実施手順を説明する
ためのブロツク図、第2図本発明製造方法によつ
て得た熱電素子と比較例熱電素子の熱電特性図を
示す。 1:合成工程、2:混合工程、3:プレス成形
工程、4:焼結工程、5:熱処理工程。
FIG. 1 is a block diagram for explaining the implementation procedure of the manufacturing method of the present invention, and FIG. 2 is a diagram showing thermoelectric characteristics of a thermoelectric element obtained by the manufacturing method of the present invention and a comparative thermoelectric element. 1: Synthesis process, 2: Mixing process, 3: Press molding process, 4: Sintering process, 5: Heat treatment process.

Claims (1)

【特許請求の範囲】 1 金属合金の粉末にアダマンタンもしくはアダ
マンタン/トリメチレンノルボルナン混合物を添
加してプレス成形し、その後焼成を行なつて製造
することを特徴とした熱電素子の製造方法。 2 焼成を、焼結工程とその後の熱処理工程の二
段階の工程に分けて行なうことを特徴とした特許
請求の範囲第1項記載の熱電素子の製造方法。
[Scope of Claims] 1. A method for manufacturing a thermoelectric element, which comprises adding adamantane or an adamantane/trimethylene norbornane mixture to a metal alloy powder, press-molding the mixture, and then firing the mixture. 2. The method for manufacturing a thermoelectric element according to claim 1, wherein the firing is performed in two steps: a sintering step and a subsequent heat treatment step.
JP62156646A 1987-06-25 1987-06-25 Manufacture of thermoelectric element Granted JPS642380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62156646A JPS642380A (en) 1987-06-25 1987-06-25 Manufacture of thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62156646A JPS642380A (en) 1987-06-25 1987-06-25 Manufacture of thermoelectric element

Publications (3)

Publication Number Publication Date
JPH012380A JPH012380A (en) 1989-01-06
JPS642380A JPS642380A (en) 1989-01-06
JPH0347751B2 true JPH0347751B2 (en) 1991-07-22

Family

ID=15632208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62156646A Granted JPS642380A (en) 1987-06-25 1987-06-25 Manufacture of thermoelectric element

Country Status (1)

Country Link
JP (1) JPS642380A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69132779T2 (en) * 1990-04-20 2002-07-11 Matsushita Electric Industrial Co., Ltd. Vacuum insulated thermoelectric semiconductors and thermoelectric devices using P and N type thermoelectric semiconductors
US20070240749A1 (en) * 2004-03-22 2007-10-18 Japan Science And Technology Agency Porous Thermoelectric Material and Process for Producing the Same
JP4729013B2 (en) * 2007-07-13 2011-07-20 古河電気工業株式会社 Female terminal
AT508979A1 (en) * 2009-10-23 2011-05-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING A THERMOELECTRIC ELEMENT
JP6411782B2 (en) * 2013-08-07 2018-10-24 株式会社Nttファシリティーズ Method for manufacturing thermoelectric material
CN106956004B (en) * 2017-02-23 2018-12-28 厦门理工学院 High stability Zn4Sb3Thermoelectric composite material and preparation method thereof
CN107507909B (en) * 2017-08-08 2020-02-14 武汉科技大学 Porous P-type Bi2Te3Base thermoelectric material and preparation method thereof

Also Published As

Publication number Publication date
JPS642380A (en) 1989-01-06

Similar Documents

Publication Publication Date Title
US5069868A (en) Method for producing thermoelectric elements
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
US3531245A (en) Magnesium-aluminum nitrides
JP2000252526A (en) Skutterudite thermoelectric material, thermocouple and manufacture thereof
JPH0347751B2 (en)
JPH012380A (en) Method for manufacturing thermoelectric elements
US3164892A (en) Thermoelectric body and method of making same
CN105541337A (en) Multi-metal silicide powder and preparing method thereof
CN107326250A (en) The supper-fast method for preparing high-performance ZrNiSn block thermoelectric materials of one step
JPH08186294A (en) Thermoelectric material
JP2002223013A (en) Thermoelectric conversion element and manufacturing method of it
US3342591A (en) Ferromagnetic compounds and method of preparation
JPH09260728A (en) High-temperature thermoelectric material and manufacture thereof
US3383198A (en) High green strength-low density copper powder and method for preparing same
JPS6317210A (en) Production of aluminum nitride powder
JPH01164731A (en) Superconducting material and its production
JPH06216414A (en) Manufacture of thermoelectric conversion material
JP7449549B2 (en) Thermoelectric element and its manufacturing method
JPH01164730A (en) Superconducting material and its production
JPH07211944A (en) Manufacture of thermoelectric element
JPH08139368A (en) Fesi2 thermoelectric device and its manufacture
JP2679267B2 (en) Manufacturing method of brazing material
JPH06169110A (en) Manufacture of thermoelectric conversion material
JPH0227778A (en) Manufacture of thermoelectric element
JPH012379A (en) Method for manufacturing thermoelectric elements