JPH09214007A - Manufacturing method of thermoelectric material - Google Patents

Manufacturing method of thermoelectric material

Info

Publication number
JPH09214007A
JPH09214007A JP8019537A JP1953796A JPH09214007A JP H09214007 A JPH09214007 A JP H09214007A JP 8019537 A JP8019537 A JP 8019537A JP 1953796 A JP1953796 A JP 1953796A JP H09214007 A JPH09214007 A JP H09214007A
Authority
JP
Japan
Prior art keywords
thermoelectric
sintered product
pressing
temperature
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8019537A
Other languages
Japanese (ja)
Inventor
Shuzo Kagawa
修三 香川
Michio Yamaguchi
道夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP8019537A priority Critical patent/JPH09214007A/en
Publication of JPH09214007A publication Critical patent/JPH09214007A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a thermal conductivity and hence increase a thermoelectric performance figure by hot pressing a thermoelectric material within a predetermined time at a temperature where crystallization is achieved, and forcedly cooling a sintered product up to at least a temperature where the crystallization is not promoted. SOLUTION: A thermoelectric material is sintered at a crystallizable temperature with a hot press within a short time of 3 minutes or shorter to form a sintered product, and just after the pressing the sintered product is forcedly cooled up to at least a temperature where crystallization is not promoted. More specifically, just after the pressing, the sintered product is taken out from a metal mold and is forcedly cooled with a fan for example. Hereby, crystal grain of the sintered product is reduced. As a result, a thermoelectric element material having a large performance figure is ensured. Further, a homogeneous thermoelectric element material having substantially no directional property of the crystal is ensured and hence in a molding process there is no need of putting the direction of a dice in order and there is improved a working efficiency in an assembling process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電材料の製造方法に
関し、より具体的には、ホットプレスによる粉末焼結法
の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoelectric material, and more particularly to improvement of a powder sintering method by hot pressing.

【0002】[0002]

【従来の技術】ビスマス、テルル等の金属間化合物半導
体である熱電材料は、従来から熱電冷却や熱電発電素子
の材料として広く使用されている。熱電材料で得られる
最適の熱電効率は、その材料の熱電性能指数によって決
まる。この性能指数は、次の式により表わされる。 Z=α2/ρκ (1/K) ・・・ ここで、αはゼーベック係数(V/K)、ρは電気抵抗(Ω・
m)、及びκは熱伝導率(W/m・K)である。この性能指数Z
が大きいほど熱電効率は大きくなるため、熱電材料は大
きな性能指数を有するべきである。ところで、性能指数
は、熱電材料を構成する元素の種類や量だけでなく、熱
電材料の製造方法にも左右される。
2. Description of the Related Art Thermoelectric materials, which are intermetallic compound semiconductors such as bismuth and tellurium, have been widely used as materials for thermoelectric cooling and thermoelectric power generation elements. The optimum thermoelectric efficiency obtained with a thermoelectric material depends on the thermoelectric figure of merit of the material. This figure of merit is represented by the following equation. Z = α 2 / ρκ (1 / K) ・ ・ ・ where α is Seebeck coefficient (V / K) and ρ is electrical resistance (Ω ・
m) and κ are thermal conductivity (W / m · K). This figure of merit Z
The greater the value, the greater the thermoelectric efficiency, so the thermoelectric material should have a large figure of merit. By the way, the figure of merit depends not only on the type and amount of the elements constituting the thermoelectric material but also on the manufacturing method of the thermoelectric material.

【0003】熱電材料を製造する方法の1つとして、ホ
ットプレスによる焼結法がある。この焼結法は、所定量
の成分元素粉末を混合溶解し徐冷することにより得たイ
ンゴットを粉砕した粉末、又は各成分元素粉末を所定量
混ぜ合わせた混合粉末を、ホットプレス装置のプレス型
に入れて昇温し、同時に加圧して焼結するものである。
ホットプレスによる焼結は、熱電素子材料の種類等によ
って異なるが、一般的には、約200〜450kg/cm2
圧力、結晶化可能な温度(材料系にもよるが、例えば約
350〜600oC)の条件で、約20分以上の時間をか
けて行なわれている。このホットプレス焼結法では、溶
製法と異なり、結晶方位がランダムになって、強度的に
弱い面は殆んど形成されないから、成形加工での歩留り
低下が生じないという利点を有する。
As one of the methods for producing a thermoelectric material, there is a sintering method by hot pressing. In this sintering method, a powder obtained by crushing an ingot obtained by mixing and melting a predetermined amount of component element powder and gradually cooling it, or a mixed powder obtained by mixing a predetermined amount of each component element powder is pressed by a hot press machine. The temperature is increased by placing it in a furnace, and simultaneously pressurizing and sintering.
Sintering by hot pressing varies depending on the type of thermoelectric element material, etc., but in general, a pressure of about 200 to 450 kg / cm 2 and a temperature at which crystallization is possible (depending on the material system, for example, about 350 to 600 kg). o C), it takes about 20 minutes or more. Unlike the melting method, this hot press sintering method has an advantage that the crystal orientation becomes random and almost no weak surface is formed, so that the yield in molding does not decrease.

【0004】ところで、前記式から理解されるよう
に、熱電材料の性能指数は、電気抵抗と熱伝導率を小さ
くすることにより大きくすることができるが、一般的
に、電気抵抗の小さい物質、つまり電気電導度の大きい
物質は、熱伝導率も大きい性質があり、電気電導度と熱
伝導率とは互いに相関関係を有している。これは、電気
エネルギーのキャリヤである電子とホールが熱エネルギ
ーも運ぶためである。しかし、半導体中では、熱エネル
ギーの多くはフォノンによって運ばれるため、フォノン
を移動し難くすることにより、電気抵抗値に影響を与え
ることなく、熱伝導率だけを下げて、熱電素子材料の性
能指数を上げることが可能である。即ち、フォノンは電
子やホールとは異なり、結晶粒界で動き難くなるため、
結晶粒界を多くすることにより、熱伝導率だけを小さく
することができる。
By the way, as can be understood from the above equation, the figure of merit of a thermoelectric material can be increased by decreasing the electric resistance and the thermal conductivity, but in general, a substance having a small electric resistance, that is, A substance having high electric conductivity also has a property of high thermal conductivity, and the electric conductivity and the thermal conductivity have a correlation with each other. This is because electrons and holes, which are carriers of electric energy, also carry thermal energy. However, in semiconductors, most of the thermal energy is carried by phonons, so by making it difficult for phonons to move, the thermal conductivity is lowered without affecting the electrical resistance value, and the figure of merit of thermoelectric element materials is reduced. It is possible to raise. That is, phonons, unlike electrons and holes, are hard to move at grain boundaries,
By increasing the number of crystal grain boundaries, only the thermal conductivity can be reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、ホッ
トプレスによる熱電材料の製造方法において、熱伝導率
を小さくすることにより、熱電性能指数を大きくするこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to increase the thermoelectric figure of merit by reducing the thermal conductivity in the method for producing a thermoelectric material by hot pressing.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熱電材料の製造方法においては、ホットプ
レスによる焼結を、結晶化可能な温度にて、3分以内の
短い時間内でホットプレスを行なって焼結品を作製し、
プレス後直ちに、焼結品を少なくとも結晶化の進まない
温度まで強制冷却するようにしたものである。プレス後
は、直ちに焼結品を金型から取り外し、例えば送風機に
より焼結品の強制空冷を行なう。なお、焼結品の強制冷
却方法はこれに限定されるものでなく、常温の厚肉金属
板の上に載置して金属の高熱伝導率を利用して冷却する
ことも可能である。
In order to achieve the above object, in the method for producing a thermoelectric material of the present invention, sintering by hot pressing is performed at a temperature at which crystallization is possible within a short time of 3 minutes or less. Hot press to make a sintered product,
Immediately after pressing, the sintered product is forcibly cooled at least to a temperature at which crystallization does not proceed. Immediately after pressing, the sintered product is removed from the mold, and the sintered product is forcedly cooled by, for example, a blower. The method for forcibly cooling the sintered product is not limited to this, and it is also possible to place it on a thick metal plate at room temperature and cool it by utilizing the high thermal conductivity of the metal.

【0007】特にBi−Te系の熱電素子材料では、プ
レス時間が長くなると、結晶化が進んで結晶粒が大きく
成長するため、熱伝導率が大きくなる。本発明では、結
晶粒の成長を抑制するために、プレス時間を3分以内の
短い時間に限定すると共に、プレス後の焼結品を、結晶
化の進まない温度(例えば、Bi−Te−Seの3元系
n型熱電素子の場合、約350℃)まで急速冷却するよ
うにしたから、焼結品の結晶粒は小さく、熱伝導率は小
さくなる。この結果、性能指数の大きな熱電素子材料を
得ることができる。
Particularly in a Bi-Te type thermoelectric element material, when the pressing time becomes long, crystallization progresses and crystal grains grow large, so that the thermal conductivity becomes large. In the present invention, in order to suppress the growth of crystal grains, the pressing time is limited to a short time within 3 minutes, and the sintered product after pressing is subjected to a temperature at which crystallization does not proceed (for example, Bi-Te-Se). In the case of the ternary n-type thermoelectric element of (3), rapid cooling was performed to about 350 ° C., so the crystal grains of the sintered product are small and the thermal conductivity is small. As a result, a thermoelectric element material having a large figure of merit can be obtained.

【0008】[0008]

【発明の実施の形態】本発明の熱電材料として、例え
ば、Bi、Te、Se及びSbからなる群から選択され
る3種又は4種の元素からなる構成を示すことができ
る。所望成分の元素を化学量論的に秤量し、これらを石
英管等に封入し、溶融し、冷却し、これにより得られた
インゴットを粉砕し、原料粉末を得る。或は、所望成分
の元素を化学量論的に秤量し、これを高エネルギー型ボ
ールミル又は転動ボールミルの中で粉砕混合したものを
原料粉末とすることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION As the thermoelectric material of the present invention, for example, a structure composed of three or four elements selected from the group consisting of Bi, Te, Se and Sb can be shown. The elements of the desired components are stoichiometrically weighed, sealed in a quartz tube or the like, melted and cooled, and the ingot thus obtained is crushed to obtain a raw material powder. Alternatively, the raw material powder can be obtained by weighing the elements of the desired components stoichiometrically and pulverizing and mixing them in a high energy type ball mill or a rolling ball mill.

【0009】前記構成の原料粉末は、ホットプレスで加
圧焼結する。ホットプレスでの加圧焼結は、結晶化可能
な400〜550℃の温度で、3分以内の短い時間内で
行なう。プレス時間を3分以内に規定するのは、結晶粒
の成長をできるだけ抑制するためである。短時間の加圧
焼結で十分緻密な焼結体を得るために、圧力は1000
kg/cm2以上の高圧にする必要がある。なお、プレス時間
を短縮して緻密な焼結体を得るために、圧力は金型等の
強度面に支障をきたさない範囲内でより高圧にすること
が好ましく、2000kg/cm2以上がより望ましく、30
00kg/cm2以上がさらに望ましい。プレス時間の下限
は、一般的には、緻密な焼結体を得るのに必要な時間と
して設定されるもので、原料粉末の種類、プレス温度、
プレス圧力等の条件により異なるが、一般的には約20
秒以上の時間が選択されが、緻密な焼結体を得られる限
り、約20秒よりも短い時間に設定できることは勿論で
ある。ホットプレスは、真空中、又はArガス、窒素ガ
ス等の不活性ガス雰囲気、又はH2、CO等の還元性ガ
スを含んだ雰囲気の中で行なうことが好ましいが、これ
に限定されることはなく、高圧条件で短時間で焼結が完
了するから、大気雰囲気下で行なっても所望の効果を得
ることができる。
The raw material powder having the above structure is pressure-sintered by hot pressing. The pressure sintering by hot pressing is performed at a temperature of 400 to 550 ° C. at which crystallization is possible and within a short time of 3 minutes or less. The pressing time is defined within 3 minutes in order to suppress the growth of crystal grains as much as possible. In order to obtain a sufficiently dense sintered body by pressure sintering for a short time, the pressure is 1000
It is necessary to have a high pressure of kg / cm 2 or more. In order to shorten the pressing time and obtain a dense sintered body, the pressure is preferably higher within the range that does not hinder the strength of the mold or the like, and more preferably 2000 kg / cm 2 or more. , 30
00 kg / cm 2 or more is more desirable. The lower limit of the pressing time is generally set as the time required to obtain a dense sintered body, the type of raw material powder, the pressing temperature,
It depends on the conditions such as press pressure, but generally about 20
Although a time of more than a second is selected, it goes without saying that a time shorter than about 20 seconds can be set as long as a dense sintered body can be obtained. The hot pressing is preferably performed in a vacuum, an atmosphere of an inert gas such as Ar gas or nitrogen gas, or an atmosphere containing a reducing gas such as H 2 or CO, but is not limited thereto. Since the sintering is completed under a high pressure condition in a short time, the desired effect can be obtained even in the atmosphere.

【0010】[0010]

【実施例】標準的なn型熱電素子である(Bi2Te3)
0.85(Bi2Se3)0.15の組成となるように、Bi、Te
及びSeの元素粉末を化学量論的に秤量し、これらをボ
ールミルの中で粉砕混合し、平均粒径約5μmの原料粉
末を得た。原料粉末を、プレス用金型の中に充填し、予
め550℃に加熱してある金型加熱炉に入れ、500℃
になった時に3000kg/cm2の圧力で焼結した後、焼結
品を金型から速やかに取り出し、金属作業台の上に載せ
て送風機により強制冷却し、熱電材料を作製した。な
お、ホットプレスは大気雰囲気中で行ない、ホットプレ
スのプレス時間と、得られた熱電材料の密度比、ホール
移動度及び物性値を表1に示す。表1中、供試No.1は
プレス時間が短い比較例、供試No.2〜No.4は本発明の
実施例、供試No.5はプレス時間が本発明の規定より長
い比較例である。
EXAMPLE A standard n-type thermoelectric element (Bi 2 Te 3 ).
Bi, Te so that the composition is 0.85 (Bi 2 Se 3 ) 0.15.
And Se elemental powders were stoichiometrically weighed and pulverized and mixed in a ball mill to obtain a raw material powder having an average particle size of about 5 μm. The raw material powder is filled in a press die and placed in a die heating furnace which has been preheated to 550 ° C. to 500 ° C.
Then, after sintering at a pressure of 3000 kg / cm 2 , the sintered product was quickly taken out of the mold, placed on a metal workbench, and forcibly cooled by a blower to prepare a thermoelectric material. The hot pressing was carried out in the atmosphere, and the pressing time of the hot pressing, the density ratio, the hole mobility and the physical property values of the obtained thermoelectric material are shown in Table 1. In Table 1, sample No. 1 is a comparative example with a short press time, sample Nos. 2 to 4 are examples of the present invention, and sample No. 5 is a comparative example with a press time longer than the regulation of the present invention. Is.

【0011】[0011]

【表1】 [Table 1]

【0012】No.1の比較例は、密度比が89.6%と低
く、十分に焼結が進んでいないことを示している。これ
に対し、No.2〜No.5は、密度比が約99%以上と高
く、十分緻密な焼結体であるといえる。なお、密度比と
は、完全緻密体の密度に対する成形品の密度の比を表わ
すもので、焼結品の密度はアルキメデス法により測定し
た。
The comparative example of No. 1 has a low density ratio of 89.6%, indicating that sintering has not progressed sufficiently. On the other hand, No. 2 to No. 5 have a high density ratio of about 99% or more, and can be said to be sufficiently dense sintered bodies. The density ratio represents the ratio of the density of the molded product to the density of the perfect dense body, and the density of the sintered product was measured by the Archimedes method.

【0013】ホール移動度をみると、No.1の比較例
は、No.2〜No.5と比べて値が小さく、.熱電性能に劣
ることを示している。ホール移動度とは、単位電圧・時
間当たりに電子又はホールが移動する距離を表わす指標
で、熱電性能と相関関係があり、ホール移動度が大きい
ほど、熱電性能がすぐれることを示している。即ち、N
o.1は、No.2〜No.5と比べて結晶化温度以上でのプレ
ス時間が極端に短いため、結晶化が十分に進んでいない
ものと推察される。
Regarding the hole mobility, the comparative example of No. 1 has a smaller value than No. 2 to No. 5, indicating that the thermoelectric performance is inferior. The hole mobility is an index representing the distance traveled by an electron or hole per unit voltage / time, and has a correlation with the thermoelectric performance. The higher the hole mobility, the better the thermoelectric performance. That is, N
In No. 1 to No. 2, since the pressing time at the crystallization temperature or more is extremely shorter than No. 2 to No. 5, it is presumed that the crystallization is not sufficiently advanced.

【0014】次に、熱伝導率をみると、No.5の比較例
は、No.1〜No.4と比べて値が大きく、結果として性能
指数が小さくなっている。この理由は、No.5は、No.1
〜No.4よりもプレス時間が遥かに長く、結晶粒の成長
がより進んだために、熱伝導率が大きくなったと推察さ
れる。
Looking at the thermal conductivity, the comparative example of No. 5 has a larger value than No. 1 to No. 4, and as a result, the figure of merit is small. The reason is that No. 5 is No. 1
It is presumed that the thermal conductivity was high because the pressing time was much longer than in No. 4 and the growth of crystal grains was more advanced.

【0015】[0015]

【発明の効果】本発明の製造方法によれば、従来のホッ
トプレスの処理時間に比べて、遥かに短い時間で高密度
の焼結品が得られ、焼結品はプレス後急速に冷却される
から、スループットが早く生産能率の向上を達成でき
る。しかも、短いプレス時間で焼結を完了するため、結
晶粒が小さく、結晶の方向依存性の殆んどない均質な熱
電素子材料が得られる。従って、その後の成形加工では
ダイスの方向を揃える必要もなく、組立て工程での作業
効率が向上する等、すぐれた効果を有するものである。
本発明は、ごみ焼却炉や工場廃熱による熱電発電、レジ
ャークーラーや簡易冷蔵庫での熱電冷却などに使用され
る熱電材料の製造方法としてその産業上の利用価値は大
きい。
According to the manufacturing method of the present invention, a high density sintered product can be obtained in a much shorter time than the processing time of the conventional hot press, and the sintered product is cooled rapidly after pressing. Therefore, the throughput is fast and the production efficiency can be improved. Moreover, since the sintering is completed in a short pressing time, it is possible to obtain a homogeneous thermoelectric element material having a small crystal grain and almost no crystal direction dependency. Therefore, in the subsequent molding process, it is not necessary to align the dice directions, and the working efficiency in the assembling process is improved, which is an excellent effect.
INDUSTRIAL APPLICABILITY The present invention has a great industrial utility value as a method for producing a thermoelectric material used for thermoelectric power generation using a waste incinerator or waste heat from a factory, thermoelectric cooling in a leisure cooler or a simple refrigerator, and the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料金属粉末をホットプレスによって加
圧焼結する熱電材料の製造方法において、結晶化可能な
温度にて、3分以内の時間内でホットプレスを行ない、
プレス後直ちに、焼結品を少なくとも結晶化の進まない
温度まで強制冷却することを特徴とする熱電材料の製造
方法。
1. In a method for producing a thermoelectric material in which a raw material metal powder is pressure-sintered by hot pressing, hot pressing is performed at a crystallizable temperature within 3 minutes.
A method for producing a thermoelectric material, characterized in that, immediately after pressing, the sintered product is forcibly cooled at least to a temperature at which crystallization does not proceed.
JP8019537A 1996-02-06 1996-02-06 Manufacturing method of thermoelectric material Withdrawn JPH09214007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8019537A JPH09214007A (en) 1996-02-06 1996-02-06 Manufacturing method of thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8019537A JPH09214007A (en) 1996-02-06 1996-02-06 Manufacturing method of thermoelectric material

Publications (1)

Publication Number Publication Date
JPH09214007A true JPH09214007A (en) 1997-08-15

Family

ID=12002081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8019537A Withdrawn JPH09214007A (en) 1996-02-06 1996-02-06 Manufacturing method of thermoelectric material

Country Status (1)

Country Link
JP (1) JPH09214007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same
US8519256B2 (en) 2003-08-26 2013-08-27 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and method for manufacturing the same

Similar Documents

Publication Publication Date Title
CN1969354B (en) Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
CN1333093C (en) Preparation method of bismuth-tollurium base thromoelectric alloy
EP3246959B1 (en) Compound semiconductor thermoelectric material and method for manufacturing same
JPH0316281A (en) Thermoelectric semiconductor material and manufacture thereof
WO2001017034A1 (en) Process for producing thermoelectric material and thermoelectric material thereof
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
US3285017A (en) Two-phase thermoelectric body comprising a silicon-germanium matrix
US3086068A (en) Process for the preparation of thermo-electric elements
Lavrentev et al. Improved extruded thermoelectric materials
US6403875B1 (en) Process for producing thermoelectric material
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
JPH09214007A (en) Manufacturing method of thermoelectric material
JP3929880B2 (en) Thermoelectric material
JP3523600B2 (en) Thermoelectric element manufacturing method
KR20110092762A (en) MANUFACTURING METHOD OF Mg2Si THERMOELECTRIC MATERIAL USING MECHANICAL ALLOYING AND Mg2Si THERMOELECTRIC MATERIAL
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
US11839158B2 (en) Silicide alloy material and thermoelectric conversion device in which same is used
JPH06169110A (en) Manufacture of thermoelectric conversion material
JPH06216414A (en) Manufacture of thermoelectric conversion material
JP2002118299A (en) Manufacturing method of thermoelement
KR102134306B1 (en) P-type thermoelectric composite and process for preparing the same
JP4671553B2 (en) Thermoelectric semiconductor manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506