JPS6043882A - P type thermoelectric generating material - Google Patents

P type thermoelectric generating material

Info

Publication number
JPS6043882A
JPS6043882A JP58151595A JP15159583A JPS6043882A JP S6043882 A JPS6043882 A JP S6043882A JP 58151595 A JP58151595 A JP 58151595A JP 15159583 A JP15159583 A JP 15159583A JP S6043882 A JPS6043882 A JP S6043882A
Authority
JP
Japan
Prior art keywords
manganese
aluminum
iron
alloy
iron silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58151595A
Other languages
Japanese (ja)
Other versions
JPH021380B2 (en
Inventor
Isao Nishida
西田 勲夫
Takeshi Masumoto
剛 増本
Yukihiro Isoda
幸宏 磯田
Tsuneo Ogoshi
大越 恒雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP58151595A priority Critical patent/JPS6043882A/en
Publication of JPS6043882A publication Critical patent/JPS6043882A/en
Publication of JPH021380B2 publication Critical patent/JPH021380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain a large output without lowering the thermoelectromotive force of iron silicide by using an alloy or a solid solution in which specific quantities of manganese and aluminum are made to contain in iron silicide. CONSTITUTION:An alloy or a solid solution in which a manganese element and an aluminum element are made to contain in iron silicide in quantities of manganese at an atomic percent of 1.67 and the sum total of manganese and aluminum at an atomic percent of 2.0-4.7 is used. Each raw material of elements, such as iron, metallic silicon (not less than 98% purity), manganese and aluminum is weighed so as to form said composition, and the mixture is melted by using a high-frequency melting furnace, and casted to a mold made of iron, thus manufacturing the iron silicide alloy containing manganese and aluminum. The alloy is changed into powder of several mum by employing a stamp mill and a ball mill made of iron, and the powder is sintered for 3min at 1,060-1,100 deg.C while applying pressure of 250kg/cm<2> in an argon atmosphere, and thermally treated for 50hr at 800 deg.C, thus obtaining a thermoelectric material.

Description

【発明の詳細な説明】 本発明は熱発fil料に関するものであり、更に詳しく
は、大きな出力が得られるP型鉄けい化物の熱発電材料
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermogenic material, and more particularly to a P-type iron silicide thermoelectric material that can provide a large output.

熱エネルギーを直接電気エネルギーに変換する熱発電材
料は、熱電能(ゼーベック件数)が大きく、比抵抗と熱
伝導度が小さいという物理的性質を有するものである、
また、高温の大気中で利用できる熱発電材料は、前記の
物理的性質の他に、耐熱性と耐酸イし性に優れていると
いう化学的性質も具備していたければならない。
Thermoelectric materials that directly convert thermal energy into electrical energy have physical properties such as high thermoelectric power (Seebeck number) and low specific resistance and thermal conductivity.
In addition to the above-mentioned physical properties, thermoelectric materials that can be used in high-temperature atmosphere must also have chemical properties such as excellent heat resistance and acid resistance.

このような条件を相当溝している材料として、3d−遷
移金属けい化物を挙げることができる。
A 3d-transition metal silicide can be cited as a material that satisfies such conditions.

とれらけい化物の中で、特に鉄けい化物は非常に大きな
熱起電力が利られる点で優れた熱発電材料である(本発
明者による特許第930733号)。
Among the silicides, iron silicides are particularly excellent thermoelectric materials in that they have a very large thermoelectromotive force (Patent No. 930733 by the present inventor).

しかしながら、とのけい化物のP型熱発電材料は比抵抗
が比較的大きく、例えば、ガス捷たは石油を熱源とする
温風暖房機の電源などに利用する場合そのモーターを回
転させるに必要な大き女電流を取り出す電力用としては
適していないという欠点があった。
However, the P-type thermoelectric power generation material made of silicide has a relatively high resistivity, and for example, when used as a power source for a hot-air heater that uses gas or oil as a heat source, it is necessary to rotate the motor. It had the disadvantage that it was not suitable for use as a power source for extracting large currents.

本発明の目的は前記の欠点を解消し5、鉄けい化物の熱
起電力を劣化させるととカ<、大きな出力が得られるよ
うにしたP型熱発電材料を提供するにある。
It is an object of the present invention to provide a P-type thermoelectric power generation material which eliminates the above-mentioned drawbacks and which can provide a large output by degrading the thermoelectromotive force of iron silicide.

本発明は前記目的を達成すべく研究の結果、冨ム元素と
の総和が2.0〜5.4原子チの量含、有させた合金ま
たは固溶体は、鉄けい化物の熱:起電力を劣化させると
と々く、大きな出力が得られることを見い出し、これに
基いて本発明を完成した。
As a result of research to achieve the above object, the present invention has found that an alloy or solid solution containing and having a total amount of 2.0 to 5.4 atoms of iron silicide has the ability to reduce the heat/electromotive force of iron silicide. It was discovered that a large output can be obtained as soon as the material is degraded, and the present invention was completed based on this finding.

鉄けい化物(FeSi、)中にマンガンを167原子係
とし、〜ンガン元素とアルミ= :j、元素との含有量
を変化させて得られた熱発電材料の熱起電力、平均の比
抵抗、有効な最大出方を示すと第1表の通りであった。
The thermoelectromotive force and average specific resistance of the thermoelectric power generation material obtained by setting manganese to 167 atoms in iron silicide (FeSi) and varying the content of ~nganese element and aluminum = :j, element, Table 1 shows the effective maximum yield.

なお、比較のため、マンガン単独及びアルミニウム含有
量の小さいものを併記する。
In addition, for comparison, those containing only manganese and those containing small aluminum are also shown.

第1表 含有量(原子%) 熱起電力平均比抵抗有効な最大出力
Mn Δt 総計 (mV) (Ω、cm ) (Wc
m1a! )なお、これらの値は温度差800℃で行い
、平均の比抵抗と有効な最大出力は、それぞれ単位体積
当りの内部抵抗と最大出力に対応する。
Table 1 Content (atomic %) Thermoelectromotive force average specific resistance Effective maximum output Mn Δt Total (mV) (Ω, cm) (Wc
m1a! ) These values were taken at a temperature difference of 800° C., and the average resistivity and effective maximum output correspond to the internal resistance and maximum output per unit volume, respectively.

この第1表に示す結果かられかるように、マンガン元素
の含有量が1.67原子チでアルミニー一ム元素の含有
量が0.33〜303原子チで熱起電力が劣化すること
なく大きな出力が得られるが、アルミニ’−AJム元素
の含有量が3.03原子係を超えると熱起電力と出力が
低下する。まだ、アルミニ9コム元素の含有量が0,3
3原子1%より少ないとマンガン元素だけを含有するも
)のと熱起電、力および出力が一致し、アルミニし十−
ム元素を含有する効果が表われない。従って、マ・ガル
元素とア〜ミ=Qム元素の含有量はそれらの総和が2.
0〜4.7原子チの範囲であることが必要である。
As can be seen from the results shown in Table 1, when the content of manganese element is 1.67 atoms and the content of aluminum element is 0.33 to 303 atoms, the thermoelectromotive force is large without deterioration. Output is obtained, but when the content of the aluminum element exceeds 3.03 atomic ratios, the thermoelectromotive force and output decrease. Still, the content of aluminum 9com element is 0.3
3 atoms (less than 1% and containing only manganese element), the thermoelectromotive power, power and output are consistent, and the aluminum
The effect of containing mu elements does not appear. Therefore, the total content of Ma-Gal elements and A-Mi-Qm elements is 2.
It needs to be in the range of 0 to 4.7 atoms.

本発明のP型熱発電材料は、一般の鋳造法によって円柱
や角柱などの形状のものを得ることができるが、低純度
の原料(再製鉄、金属シリコン)を用いると鋳造孔(ビ
/ホール、気泡)や微細な割れのないも9を得ることは
極めて困難である。従ってこのようなものを作るには粉
末冶金法により製造することが好ましい。以下の実施例
は、粉末冶金法で行ったものを示す。
The P-type thermoelectric power generation material of the present invention can be obtained in the shape of a cylinder or a prism by a general casting method, but if low-purity raw materials (recycled steel, metal silicon) are used, It is extremely difficult to obtain a material 9 without any fine cracks or bubbles. Therefore, it is preferable to manufacture such a product by a powder metallurgy method. The following examples were performed using powder metallurgy methods.

実施例 鉄、金属シリコン(純度98チ以上)、マンガン、アル
ミ=’ci4−ムの各原料をF e O,95M n 
o、o s 5j2−zA7.Zの組成になるように秤
量し、この混合物1を高周波溶解炉を用いて、溶解し、
鉄製の鋳型に:鋳込んでマンガン元素を1.67原子係
、アルミニ′砿コム元素を0.30〜300原子チ含有
する鉄けい化物合金を作った。この各合金を鉄製のスタ
ンプミルとボールミルを用いて数μmの粉末にしだ。
Example Each raw material of iron, metallic silicon (purity of 98 cm or more), manganese, and aluminum = 'ci4-m was mixed with F e O, 95M n
o, o s 5j2-zA7. Weigh it so that it has the composition Z, and melt this mixture 1 using a high frequency melting furnace,
An iron silicide alloy containing 1.67 atoms of manganese element and 0.30 to 300 atoms of aluminum element was prepared by casting into an iron mold. Each of these alloys was made into a powder of several micrometers using an iron stamp mill and a ball mill.

この粉末をアルゴン雰囲気中で250 Kv/ caの
圧力を加え、1060〜1100℃で3分間焼結し、引
続いて800℃で50時間熱処理して熱電材料(5x 
B x 25 +J )を得た。
This powder was sintered at 1060-1100°C for 3 minutes under an argon atmosphere under a pressure of 250 Kv/ca, and subsequently heat-treated at 800°C for 50 hours to form a thermoelectric material (5x
B x 25 +J) was obtained.

その熱発電材料の起電力、平均の比抵抗、有効な最大出
力は第1表に示す通シであった。
The electromotive force, average specific resistance, and effective maximum output of the thermoelectric material were as shown in Table 1.

本発明の熱発雷材料によると、鉄けい化物にマンガンに
更にアルタニウムを特定量含有させることにより、熱起
電力と出力が共に優れたものが得られる。
According to the thermal lightning generation material of the present invention, by including a specific amount of manganese and artanium in the iron silicide, it is possible to obtain an excellent thermal electromotive force and output.

Claims (1)

【特許請求の範囲】[Claims] 鉄けい化物にマンガン元素とアルミニウム元素とを、マ
ンガンを1.67原子係とし、マンガンとアルミニウム
との総和が20〜4.7原子係の量含有させた合金また
は固溶体からなる熱発電材料。
A thermoelectric power generation material made of an alloy or solid solution containing manganese element and aluminum element in iron silicide in an amount of 1.67 atomic ratio of manganese and 20 to 4.7 atomic ratio of manganese and aluminum in total.
JP58151595A 1983-08-22 1983-08-22 P type thermoelectric generating material Granted JPS6043882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58151595A JPS6043882A (en) 1983-08-22 1983-08-22 P type thermoelectric generating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151595A JPS6043882A (en) 1983-08-22 1983-08-22 P type thermoelectric generating material

Publications (2)

Publication Number Publication Date
JPS6043882A true JPS6043882A (en) 1985-03-08
JPH021380B2 JPH021380B2 (en) 1990-01-11

Family

ID=15521953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151595A Granted JPS6043882A (en) 1983-08-22 1983-08-22 P type thermoelectric generating material

Country Status (1)

Country Link
JP (1) JPS6043882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335213A2 (en) * 1988-03-30 1989-10-04 Idemitsu Petrochemical Co. Ltd. Method for producing thermoelectric elements
US5484490A (en) * 1993-02-23 1996-01-16 Technova Inc. P-type thermoelectric material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335213A2 (en) * 1988-03-30 1989-10-04 Idemitsu Petrochemical Co. Ltd. Method for producing thermoelectric elements
EP0583795A1 (en) * 1988-03-30 1994-02-23 Idemitsu Petrochemical Co. Ltd. Method for producing thermoelectric elements
US5484490A (en) * 1993-02-23 1996-01-16 Technova Inc. P-type thermoelectric material

Also Published As

Publication number Publication date
JPH021380B2 (en) 1990-01-11

Similar Documents

Publication Publication Date Title
CN100511743C (en) Method for producing a device for direct thermoelectric energy conversion
CN106986315B (en) A kind of p-type bismuth telluride thermoelectric material and preparation method suitable for low-temperature electricity-generating
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP2006086512A (en) Thermoelectric conversion system using filled skutterudite alloy
JP2008159680A (en) Yb-ae-fe-co-sb (ae:ca, sr, ba, cu, ag, au)-based thermoelectric conversion material
JPS6043882A (en) P type thermoelectric generating material
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
KR101417965B1 (en) GeTe thermoelectric material doped with Ag and Sb and La and manufacturing method thereby
JPH0374885A (en) P-type fe silicide thermoelectric conversion material
EP3573115A1 (en) P-type thermoelectric conversion material, thermoelectric conversion module, and method for producing p-type thermoelectric conversion material
JPH06144825A (en) Production of thermoelectric element
JPS6043881A (en) P type thermoelectric generating material
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JPH10102160A (en) Production of cobalt triantimonide type composite material
JP3422570B2 (en) CuSnS-based thermoelectric conversion semiconductor material and method of manufacturing the same
JP4804638B2 (en) Clathrate compound, high-efficiency thermoelectric material, manufacturing method thereof, and thermoelectric module using high-efficiency thermoelectric material
JP3528222B2 (en) P-type thermoelectric material and alloy for P-type thermoelectric material
KR101531011B1 (en) PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
JP2004014804A (en) Thermoelectric material and thermoelectric device
CN110491988A (en) A kind of GeSe base thermoelectricity material and its preparation method and application of Ag doping
KR102227069B1 (en) Co-DOPED Ti2FeNiSb2 DOUBLE HALF-HEUSLER ALLOY AND PREPARATION METHOD THEREOF
JP3572814B2 (en) Manufacturing method of thermoelectric cooling material
JP2665014B2 (en) Manufacturing method of thermoelectric conversion element material
WO2020149304A1 (en) Silicide alloy material and thermoelectric conversion element in which same is used