JPH0813334B2 - Self-cleaning coated surface - Google Patents

Self-cleaning coated surface

Info

Publication number
JPH0813334B2
JPH0813334B2 JP63133275A JP13327588A JPH0813334B2 JP H0813334 B2 JPH0813334 B2 JP H0813334B2 JP 63133275 A JP63133275 A JP 63133275A JP 13327588 A JP13327588 A JP 13327588A JP H0813334 B2 JPH0813334 B2 JP H0813334B2
Authority
JP
Japan
Prior art keywords
catalyst
self
cleaning
coated surface
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63133275A
Other languages
Japanese (ja)
Other versions
JPH01304049A (en
Inventor
康典 金子
明雄 福田
守 礒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63133275A priority Critical patent/JPH0813334B2/en
Publication of JPH01304049A publication Critical patent/JPH01304049A/en
Publication of JPH0813334B2 publication Critical patent/JPH0813334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種オーブン等の箱型加熱調理器内面の油汚
れを防止する触媒作用を有する被覆面を提供するもので
ある。
TECHNICAL FIELD The present invention provides a coated surface having a catalytic action for preventing oil stains on the inner surface of a box-type heating cooker such as various ovens.

従来の技術 従来このような触媒作用を有する被覆面としては、ホ
ウロウやガラス質の皮膜中に酸化物あるいは複合酸化
物、希土類金属の酸化物などを主成分とした触媒物質を
添加した触媒コーティングがある。これらはいずれも無
機質のバインダー中に触媒を分散させたものを庫内壁面
に塗布して被覆層を形成し油分や食品残渣などを触媒的
に高温下で分解しようとするものである。
2. Description of the Related Art Conventionally, as a coated surface having such a catalytic action, a catalyst coating in which a catalyst substance containing an oxide or a complex oxide, an oxide of a rare earth metal, etc. as a main component is added to an enamel or glassy film. is there. All of these are intended to apply a catalyst dispersed in an inorganic binder to the inner wall surface of the chamber to form a coating layer to catalytically decompose oil and food residues at high temperature.

発明が解決しようとする課題 触媒活性を有効に発揮させるためには酸素の拡散が不
可欠であるが従来技術ではホウロウやガラス質、塗料な
どの皮膜中に触媒が覆われたような状態であるため皮膜
を出来るだけ多孔質にしなければならない必要性があ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Oxygen diffusion is indispensable for effectively exhibiting catalytic activity, but in the prior art it is a state in which the catalyst is covered in a film such as enamel, glass, and paint. There is a need to make the coating as porous as possible.

このため触媒能力の面では有効であるものの皮膜の物
性、すなわち密着性、耐蝕性、摩耗性などを犠牲にしな
ければならないという大きな課題がある。これは実用上
も大きな問題である。密着性を高める、或いは耐蝕性を
あげる目的で2コート2ベーク方式が従来の触媒コーテ
ィングでは採用されているが膜厚が数百μとなるため形
状の複雑なものへの処理がむずかしく、焼付け温度が極
めて高温となり薄板への処理もむずかしい。又ホウロウ
質やガラス質を形成させるものであるから熱衝撃に対し
てもろく、量産性の面でも難点を有し、コスト高の課題
も有している。
Therefore, although it is effective in terms of catalytic ability, there is a big problem that the physical properties of the film, that is, the adhesiveness, the corrosion resistance, the wear resistance and the like must be sacrificed. This is a big problem in practical use. The two-coat, two-bake method is used in the conventional catalyst coating for the purpose of enhancing the adhesion or improving the corrosion resistance, but the film thickness is several hundreds μ, which makes it difficult to process the complicated shape and the baking temperature. Becomes extremely high temperature, making it difficult to process thin plates. Further, since it is formed of enamel or glass, it is vulnerable to thermal shock, has problems in mass productivity, and has a problem of high cost.

課題を解決するための手段 上記問題点を解決するために本発明は、プラズマ溶射
により耐熱性基材表面にMn,Cu,Ce系の複合酸化物あるい
はMn,Cu,Ce,Co系複合酸化物をいずれか単独もしくは混
合した触媒を用いてこの触媒の溶射層からなるセルフク
リーニング用被覆面を形成するものであり、この被覆表
面上で調理物から飛散する油分を連続的に分解しようと
するものである。
Means for Solving the Problems In order to solve the above problems, the present invention is a Mn, Cu, Ce-based complex oxide or Mn, Cu, Ce, Co-based complex oxide on the heat-resistant substrate surface by plasma spraying. Which forms a coating surface for self-cleaning consisting of a sprayed layer of this catalyst either alone or in combination, and which continuously decomposes oil scattered from the cooked product on this coating surface. Is.

作用 上記被覆面の構成により以下の作用が得られる。本発
明の触媒は極めて強い酸化能力を有する酸化触媒であり
プラズマ溶射により酸化触媒の単独膜を形成している。
皮膜自体が触媒であるためホウロウ、ガラス質や塗料の
ようにフリットやバインダーで触媒が覆われ固められた
ものではない。
Action The following action is obtained by the configuration of the coated surface. The catalyst of the present invention is an oxidation catalyst having an extremely strong oxidation ability and forms a single film of the oxidation catalyst by plasma spraying.
Since the film itself is a catalyst, it is not hardened by covering the catalyst with frit or binder like enamel, glass or paint.

触媒反応を最も効果的に進行させるためには、触媒と
の接触面積を大きくして反応速度、反応効率を高めるこ
と、更に重要なことは触媒と油分との反応界面に酸素を
たえず供給することである。ある程度の温度があり酸化
反応状態にある場合では触媒である酸化物自体の酸素で
行なわれるが従来の酸化触媒ではしたがって比較的短時
間で触媒自体の組成は次第に低級酸化物となり、安定性
に欠け、色の変化がおこり、性能も急激に低下してしま
うことになっていた。前述のようにフリットやバインダ
ーに覆われていたり、多量の油分や汚れで触媒表面が包
み込まれたような場合は尚更であった。
In order to proceed the catalytic reaction most effectively, increase the contact area with the catalyst to increase the reaction rate and reaction efficiency, and more importantly, constantly supply oxygen to the reaction interface between the catalyst and oil. Is. When there is a certain temperature and it is in an oxidation reaction state, it is carried out with oxygen of the oxide itself, which is a catalyst, but with conventional oxidation catalysts, the composition of the catalyst itself gradually becomes a lower oxide in a relatively short time and lacks stability. However, there was a change in color, and performance was to drop sharply. This was even more the case when the catalyst surface was covered with frit or binder as described above, or when the catalyst surface was covered with a large amount of oil or dirt.

油などの炭化水素と触媒との反応によりバルクの酸素
が消費され、消費された酸素が表面からも補給されやす
く、又バルク中からの酸素の補給がなくなることがない
本発明のような被覆層、触媒構成であれば触媒反応効率
が短時間で低下する、触媒活性が発揮されなくなるよう
な不都合は全く起こることはない。
Oxygen in the bulk is consumed by the reaction of hydrocarbons such as oil and the catalyst, the consumed oxygen is easily replenished from the surface, and the coating layer according to the present invention does not stop the supply of oxygen from the bulk. In the case of the catalyst structure, the inconvenience that the catalytic reaction efficiency is reduced in a short time and the catalytic activity is not exhibited does not occur at all.

皮膜そのものが触媒である本発明のセリフクリーニン
グ被覆面は触媒と油分との直接接触、反応界面への酸素
の供給が十分に行なわれること、バルク中での触媒反応
に於いて酸素を補給するCeやCoが含有され被膜中に分散
されていること、更にこれらがMnなどを安定化させるこ
とにより触媒性能を飛躍的に向上させたものである。
The serif-cleaning coated surface of the present invention in which the film itself is a catalyst is that the catalyst and the oil content are in direct contact, oxygen is sufficiently supplied to the reaction interface, and Ce that supplements oxygen in the catalytic reaction in the bulk is Ce. And Co are contained and dispersed in the coating film, and these stabilize the Mn and the like, thereby dramatically improving the catalytic performance.

実施例 以下に本発明の実施例について詳述する。Examples Examples of the present invention will be described in detail below.

触媒は沈澱法により調整した。出発物質としては炭酸
塩、酢酸塩や硝酸塩などがあるがここでは硝酸塩を用い
た。Mn,Cu,Mn−Cu,Mn−Cu−Ce,Mn−Cu−Ce−Coの5種類
について、硝酸塩水溶液に過剰のNaOHを加えて各々の水
酸化物の沈澱としたのちPHがほぼ7となるまで十分に洗
浄し、乾燥後450℃で2時間焼成して上記5種類の触媒
を得たものである。触媒の組成はMn−Cuは1:1(モル
比)、Mu−Cu−Ceは1:1:2(同)、Mn−Cu−Ce−Coは1:
1:2:0.25(同)とした。
The catalyst was prepared by the precipitation method. Carbonates, acetates, nitrates and the like are used as starting materials, but nitrates were used here. For 5 kinds of Mn, Cu, Mn-Cu, Mn-Cu-Ce and Mn-Cu-Ce-Co, PH was almost 7 after precipitation of each hydroxide by adding excess NaOH to the aqueous nitrate solution. It was thoroughly washed until it became dry, dried and calcined at 450 ° C. for 2 hours to obtain the above-mentioned five kinds of catalysts. The composition of the catalyst is 1: 1 (molar ratio) for Mn-Cu, 1: 1: 2 (the same) for Mu-Cu-Ce, and 1: 1 for Mn-Cu-Ce-Co.
1: 2: 0.25 (same).

以上5種類の触媒粉末を用いブラスト処理を施したス
テンレス基板(板厚1mm)上にプラズマスプレーを行な
い膜厚20μmで触媒の溶射皮膜を形成した。
Plasma spraying was performed on a stainless steel substrate (plate thickness: 1 mm) that had been subjected to blast treatment using the above five types of catalyst powder to form a catalyst sprayed film with a film thickness of 20 μm.

尚、プラズマ溶射は永田鉄工(株)製のNT30型直流プ
ラズマスプレー装置を使用したものである。
The plasma spraying was performed using an NT30 type DC plasma spray device manufactured by Nagata Iron Works Co., Ltd.

これを試験片として370℃での油分の浄化能力を確認
した。一定量のサラダオイルを試験片上に滴下し370℃
のオーブン中に保持してサラダオイルの変化をみたもの
である。
Using this as a test piece, the ability to purify oil at 370 ° C was confirmed. A certain amount of salad oil was dropped on the test piece and 370 ℃
It was kept in an oven to see the change in salad oil.

結果を次表に示す。 The results are shown in the table below.

以上の結果からMn−Cu−Ce複合酸化物やMn−Cu−Ce−
Co複合酸化物の酸化反応に対する促進効果が極めて大き
いことがわかる。特に序列をつけるとすればMn−Cu−Ce
−Co系の方が優れているようであるが差はわずかであ
る。
From the above results, Mn-Cu-Ce composite oxide and Mn-Cu-Ce-
It can be seen that the promoting effect on the oxidation reaction of the Co composite oxide is extremely large. Mn-Cu-Ce
The -Co system seems to be superior, but the difference is slight.

触媒粉末にサラダオイル1μ程度滴下して加熱をお
こない、サラダオイルの燃焼がどれだけの温度になった
時に開始するかを確認した。
About 1 μ of salad oil was added dropwise to the catalyst powder to heat it, and it was confirmed at what temperature the combustion of the salad oil started.

Mn−Cu−Ce系に於いては約240〜250℃で燃焼の開発が
認められた。Mn−Cu−Ce−Co系でもほぼ同一温度での燃
焼があった。Mn酸化物やCu酸化物では300℃でも同現象
はなく触媒活性の違いが明確であり、Mn−Cu−Ce系やMn
−Cu−Ce−Co系が特に油の分解に適している事がわか
る。複合酸化物であるための複合効果による酸化反応の
促進作用、CeやCoが特にバルクに於けるMnなどへの酸素
の供給源としての働き等によりこのような油分の分解に
対する高い活性が発揮されているものと想われる。
In the Mn-Cu-Ce system, the development of combustion was confirmed at about 240-250 ℃. Combustion also occurred at almost the same temperature in the Mn-Cu-Ce-Co system. With Mn oxide and Cu oxide, the same phenomenon does not occur even at 300 ° C, and the difference in catalytic activity is clear.
It can be seen that the -Cu-Ce-Co system is particularly suitable for the decomposition of oil. Since it is a complex oxide, it promotes the oxidation reaction due to the complex effect, and Ce and Co serve as a supply source of oxygen to Mn, especially in the bulk. It is thought that it is.

発明の効果 以上、説明の通り本発明によればプラズマ溶射により
基材表面に触媒活性が極めて高いMn−Cu−Ce系、あるい
はMn−Cu−Ce−Co系複合酸化物の触媒を用い、この触媒
の溶射層からなるセルフクリーニング被覆層を形成した
ものであるため触媒と油分の接触面積が大きく、プラズ
マ溶射皮膜は好適な多孔度を有するポーラスな皮膜であ
るため触媒と油分との反応界面に酸素が十分に供給され
る。したがって酸化反応で消費される酸素も皮膜の内部
及び空気中から補給されるため性能低下もなく長く触媒
活性を保持することが出来るものである。
As described above, according to the present invention as described above, the catalytic activity of the Mn-Cu-Ce-based or Mn-Cu-Ce-Co-based composite oxide having extremely high catalytic activity on the surface of the substrate by plasma spraying is used. Since the self-cleaning coating layer consisting of the sprayed layer of the catalyst is formed, the contact area of the catalyst and the oil content is large, and the plasma spray coating is a porous film with suitable porosity, so the reaction interface between the catalyst and the oil content is large. Sufficient oxygen is supplied. Therefore, the oxygen consumed in the oxidation reaction is also replenished from the inside of the film and from the air, so that the catalytic activity can be maintained for a long time without deterioration in performance.

本発明のセルフクリーニング被覆面をオーブン等の庫
内壁面に適用することにより、従来の焼切り方式のオー
ブンで熱セルフクリーニングする場合500〜550℃の温度
に保持する必要があったがこれを400℃以下に下げるこ
とが可能となり省エネや断熱の面で多大な効果を有する
ものである。又、油汚れを完全に分解することが出来る
のでオーブン庫内が長く新品同様の状態に保つことがで
きるものである。
By applying the self-cleaning coated surface of the present invention to the inner wall surface of an oven or the like, it was necessary to maintain the temperature at 500 to 550 ° C. in the case of performing thermal self-cleaning in a conventional baking oven, but this was 400 It is possible to reduce the temperature to below ℃, which has a great effect on energy saving and heat insulation. Further, since the oil stains can be completely decomposed, the inside of the oven can be kept long and can be maintained in a state like a new one.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の一実施例によるセルフクリーニング用被覆
面の断面図である。 1……断熱性基材、2……プラズマ溶射触媒皮膜。
FIG. 1 is a sectional view of a self-cleaning covering surface according to an embodiment of the present invention. 1 ... Insulating base material, 2 ... Plasma spray catalyst coating.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】プラズマ溶射により耐熱性基材表面に触媒
の溶射層を形成して連続的に汚れを分解するセルフクリ
ーニング用被覆面の前記触媒がMn,Cu,Ceの複合金属酸化
物もしくはMn,Cu,Ce,Coの複合金属酸化物のいずれか一
方の触媒による溶射層からなるセルフクリーニング用被
覆面。
1. A composite metal oxide of Mn, Cu, Ce or Mn, which is a self-cleaning coated surface for forming a sprayed layer of a catalyst on the surface of a heat-resistant substrate by plasma spraying to continuously decompose dirt. A coating surface for self-cleaning, which is composed of a sprayed layer formed by a catalyst of any one of the complex metal oxides of Cu, Ce, and Co.
JP63133275A 1988-05-31 1988-05-31 Self-cleaning coated surface Expired - Fee Related JPH0813334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133275A JPH0813334B2 (en) 1988-05-31 1988-05-31 Self-cleaning coated surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133275A JPH0813334B2 (en) 1988-05-31 1988-05-31 Self-cleaning coated surface

Publications (2)

Publication Number Publication Date
JPH01304049A JPH01304049A (en) 1989-12-07
JPH0813334B2 true JPH0813334B2 (en) 1996-02-14

Family

ID=15100824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133275A Expired - Fee Related JPH0813334B2 (en) 1988-05-31 1988-05-31 Self-cleaning coated surface

Country Status (1)

Country Link
JP (1) JPH0813334B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382552A (en) * 1993-09-14 1995-01-17 Miles Inc. Rare earth-containing alkali silicate frits and their use for the preparation of porcelain enamel coatings with improved cleanability
CN117071014B (en) * 2023-10-12 2024-01-26 成都岷山绿氢能源有限公司 Preparation method of rare earth modified coating on surface of SOFC (solid oxide Fuel cell) metal connector

Also Published As

Publication number Publication date
JPH01304049A (en) 1989-12-07

Similar Documents

Publication Publication Date Title
US3266477A (en) Self-cleaning cooking apparatus
JPS5919052B2 (en) frit composition
US3627560A (en) Self-cleaning cooking apparatus
JPH0813334B2 (en) Self-cleaning coated surface
US3492148A (en) Alumina coated metal element for catalyst support
US3545423A (en) Self-cleaning cooking apparatus
JPS6138659Y2 (en)
JPS58159848A (en) Catalyst of precious metal and rare-earth metal
JPS6325769B2 (en)
JPS5854613B2 (en) Film with oxidation catalytic action
JPS609612Y2 (en) High frequency heating device with heater
GB690825A (en) Improvements in catalytic units
JPS6338830A (en) Self-cleaning coating compound for electronic range
JPS5742338A (en) Catalyst for cleaning exhaust gas
JPH029451A (en) Coated layer for self-cleaning
JPS6138660Y2 (en)
JPS60102941A (en) Self-purifying coated body
JPS5853573B2 (en) Articles with self-cleaning coating layer
JPH0334371B2 (en)
JP2008255430A (en) Enamel material and gas range using the enamel material
JPH0334370B2 (en)
JPH03157141A (en) Self-cleaning catalytic body and heating cooker
JPS5678449A (en) Self-cleaning coating layer
JPS63111185A (en) Enamel coating
JPS58108257A (en) Preparation of self-cleaning type coating layer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees