JPH029451A - Coated layer for self-cleaning - Google Patents

Coated layer for self-cleaning

Info

Publication number
JPH029451A
JPH029451A JP63159978A JP15997888A JPH029451A JP H029451 A JPH029451 A JP H029451A JP 63159978 A JP63159978 A JP 63159978A JP 15997888 A JP15997888 A JP 15997888A JP H029451 A JPH029451 A JP H029451A
Authority
JP
Japan
Prior art keywords
catalyst
coated layer
coating layer
plasma
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63159978A
Other languages
Japanese (ja)
Other versions
JPH0813335B2 (en
Inventor
Makiko Waki
脇 真起子
Yasunori Kaneko
金子 康典
Akio Fukuda
明雄 福田
Mamoru Isotani
磯谷 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63159978A priority Critical patent/JPH0813335B2/en
Publication of JPH029451A publication Critical patent/JPH029451A/en
Publication of JPH0813335B2 publication Critical patent/JPH0813335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a self-cleaning coated layer which enables catalytic activity to be maintained for a long time by forming the coated layer of a composite oxide consisting of Ce, Cu and Mn with a specific composition on a base using a plasma flame spraying method so that the density gradient of Ce, Cu and Mn is obtained in a film thickness direction. CONSTITUTION:After an aqueous solution of nitrate containing Ce, Cu and Mn and a precipitate is obtained using a coprecipitation method, a composite oxide expressed by CeA, CuB, MnC OD (where A=1, B+C=1.0<B<1.0<C<1.0>0) through pyrolysis. The obtained catalytic powder is plasma-sprayed on a stainless steel base so that the density gradient of Ce, Cu and Mn is obtained in the thickness direction of the coated layer. Since a self-cleaning coated layer is obtained as described, which is made only of catalyst, the contact area between the catalyst and an oily component is large. In addition, since the plasma-flame sprayed film is a porous film with an optimum porosity, an adequate amount of oxygen is supplied to a reaction surface between the catalyst and the oily component. Consequently, the catalytic activity can be maintained for a long time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は炭化水素系化合物の酸化触媒作用を有する被覆
層に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a coating layer having a catalytic action for oxidizing hydrocarbon compounds.

従来の技術 従来より炭化水素系の酸化分解触媒としては、貴金属や
遷移金属の酸化物などが使用されてきている。例えば炭
化水素系化合物として、特に調理器の油汚れにみられる
カルボキシル基を含む高級脂肪酸のトリグリセリドを考
えた場合、Mn、Cu。
BACKGROUND OF THE INVENTION Conventionally, oxides of noble metals and transition metals have been used as hydrocarbon-based oxidative decomposition catalysts. For example, when considering triglycerides of higher fatty acids containing carboxyl groups, which are found in oil stains on cooking utensils, Mn and Cu are examples of hydrocarbon compounds.

F・、Co、N1等の各金属酸化物かもしくは各金属酸
化物の混合物が酸化分解触媒として知られており、調理
器庫内壁面にこれらの酸化物などを主成分とした触媒物
質をホーローやガラス質の皮膜中に添加した触媒コーテ
ィングがある。これらは無機質のバインダー中に触媒を
分散させたものを庫内壁面に塗布して被覆層を形成し、
油分や食品残査などを触媒的に高温下で分解しようとす
るものであるが、触媒物質がホーローやガラス質、塗料
などの皮膜中に覆われて表面の露出が少なくなるため4
50″C以上の高温が必要となり、更に低温で触媒活性
を有する被覆層が望まれている。
Metal oxides such as F, Co, N1, etc. or mixtures of metal oxides are known as oxidative decomposition catalysts, and catalytic materials mainly composed of these oxides are coated on the inner wall of the cooker. There are also catalytic coatings added to glassy films. These are made by dispersing a catalyst in an inorganic binder and applying it to the internal wall surface of the refrigerator to form a coating layer.
It attempts to catalytically decompose oil, food residue, etc. at high temperatures, but because the catalytic material is covered in a film of enamel, glass, paint, etc., the surface exposure is reduced.
A high temperature of 50''C or higher is required, and a coating layer that has catalytic activity at even lower temperatures is desired.

発明が解決しようとする課題 上記従来技術においては、例えばトリグリセリドの酸化
分解反応に対して各金属酸化物の触媒活性が低いこと、
また皮膜として用いる場合には触媒を耐熱性のバインダ
ー中に分散させるために触媒表面の露出がなくなり活性
が低下することが問題である。また触媒表面の露出を多
くするためには被覆層をできるだけ多孔質にしなければ
ならないが、反面多孔質にすることにより基材との密着
性や被覆層の耐蝕性、摩耗性が低下するという問題があ
った。Cれらの問題が主要因となり実用化しにくいなど
の2次的な問題が発生する。
Problems to be Solved by the Invention In the above prior art, for example, each metal oxide has a low catalytic activity for the oxidative decomposition reaction of triglyceride;
Further, when used as a film, the catalyst is dispersed in a heat-resistant binder, so the catalyst surface is not exposed and the activity is reduced, which is a problem. In addition, in order to increase the exposure of the catalyst surface, the coating layer must be made as porous as possible, but on the other hand, making it porous reduces the adhesion with the base material and the corrosion resistance and abrasion resistance of the coating layer. was there. C These problems become the main cause, and secondary problems such as difficulty in practical application occur.

本発明は上記問題点を解決しようとするもので、触媒自
身、および触媒を基材上に被覆層として形成した場合に
も活性を高めることにより反応温度を低下させるセルフ
クリーニング用被覆層を提供するものである。
The present invention aims to solve the above problems, and provides a self-cleaning coating layer that lowers the reaction temperature by increasing the activity of the catalyst itself and also when the catalyst is formed as a coating layer on a base material. It is something.

課題を解決するための手段 上記問題点を解決するために本発明は、プラズマ溶射に
より、耐熱性基材表面に希土類元素のCeと遷移金属の
Cu、Mnの複合酸化物の被覆層を、被覆層の膜厚方向
にCe、 Cu 、 Mnの濃度勾配を持たせて形成す
るものであり、この被覆層表面上で調理物から飛散する
油分を分解しようとするものである。
Means for Solving the Problems In order to solve the above problems, the present invention coats the surface of a heat-resistant base material with a coating layer of a composite oxide of rare earth element Ce and transition metals Cu and Mn by plasma spraying. The layer is formed with a concentration gradient of Ce, Cu, and Mn in the thickness direction, and is intended to decompose the oil scattered from the cooked food on the surface of this coating layer.

作  用 上記構成による触媒被覆層の作用について説明する。ま
ず本発明の触媒であるCeACLIBMlICOD(イ
旦しA=1 、B十〇=1 、O<日<1.O<C<1
 、 D>0)で表わされる複合酸化物は従来にない化
合物であり、各成分の単一酸化物に比ベトリグリセリド
の酸化に対して高い活性を示す。例えばCeO2、Cu
O、Cu2O、Mn2O3、Mn 02のいずれに比べ
ても酸化活性が高い。これはC・とCu。
Function The function of the catalyst coating layer having the above configuration will be explained. First, the catalyst of the present invention, CeACLIBMlICOD (Idanshi A=1, B10=1, O<day<1.O<C<1
, D>0) is an unprecedented compound and exhibits higher activity for oxidizing vetriglyceride than single oxides of each component. For example, CeO2, Cu
It has higher oxidizing activity than O, Cu2O, Mn2O3, and Mn02. This is C. and Cu.

Mnの3元素系酸化物においては、酸化物の表面におけ
る元素が多くの原子価をとるからであり(例えばMnは
3価、4価、Cuは1価、2価など)、つまり単一成分
では見られない異元素間での原子価制御が行なわれ、反
応に関してより適した表面を作るからである。このこと
はxPSで認められる。
This is because in ternary Mn oxides, the elements on the surface of the oxide have many valences (for example, Mn is trivalent and tetravalent, Cu is monovalent and divalent, etc.), that is, it is a single component. This is because valence control between different elements, which cannot be seen in other materials, is achieved, creating a surface more suitable for reactions. This is recognized in xPS.

本発明では上記した触媒を用いてプラズマ溶射により触
媒の単独膜を形成している。皮膜そのものが触媒である
ためホーロー、ガラス質や塗料のようにフリットやバイ
ンダーで触媒が覆われ固められたものではない。従って
本発明の被覆層は触媒と油分との直接接触、反応界面へ
の酸素の供給が十分に行なわれ触媒性能を向とさせるこ
とができる。更に被覆層の膜厚方向にCe、Cu、Mn
の濃度勾配を有することが可能なため、例えば被覆層の
耐熱性基材表面側にC・の含有率を高くすることにより
耐熱性基材の表面積を大きくし、被覆層の表面側にCu
、Mnの含有率を高くすることにより、より酸化活性の
高い被覆層を形成することができるのである。
In the present invention, a single catalyst film is formed by plasma spraying using the above catalyst. The film itself is a catalyst, so unlike enamel, glass, or paint, the catalyst is not covered and hardened with frit or binder. Therefore, in the coating layer of the present invention, direct contact between the catalyst and oil and sufficient supply of oxygen to the reaction interface can be achieved, thereby improving the catalyst performance. Furthermore, Ce, Cu, Mn are added in the thickness direction of the coating layer.
Therefore, for example, by increasing the content of C on the surface side of the heat-resistant base material of the coating layer, the surface area of the heat-resistant base material can be increased, and the surface area of the heat-resistant base material can be increased.
By increasing the Mn content, a coating layer with higher oxidation activity can be formed.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

まず触媒の作成法について説明する。First, the method for preparing the catalyst will be explained.

Go 、 Cu 、 Mnの硝酸塩を所定のモル比にな
るようにした水溶液を作り共沈法により沈殿物を得たの
ち熱分解してCeACuBMnCOO(但しA=1.B
十〇=1 、O<8<1 、O<Cく1.D>0)で表
わされる複合酸化物とした。比較のために単一および二
種成分の遷移金属酸化物の沈殿法により作成した。
An aqueous solution containing nitrates of Go, Cu, and Mn at a predetermined molar ratio was prepared, a precipitate was obtained by a coprecipitation method, and then thermally decomposed to form CeACuBMnCOO (where A=1.B
10=1, O<8<1, O<Cku1. A composite oxide represented by D>0) was used. For comparison, single and dual component transition metal oxides were prepared by precipitation method.

上記した方法で作成した触媒粉末を用い、ブラスト処理
を施したステンレス基板(板厚1 rnm )上にプラ
ズマスプレーを行い、膜厚20μmで触媒の溶射皮膜を
形成した。
Using the catalyst powder prepared by the above method, plasma spraying was performed on a blast-treated stainless steel substrate (plate thickness: 1 rnm) to form a sprayed catalyst coating with a thickness of 20 μm.

なお、プラズマ溶射は水田鉄工■製のNT30型直流プ
ラズマスプレー装置を使用した。
For plasma spraying, an NT30 type DC plasma spray device manufactured by Mizuta Iron Works was used.

これを試験片として370℃での油分の浄化能力を確認
した。一定量のサラダ油を試験片上に滴下し、370″
Cのオーブン中に保持してサラダ油の変化を見たもので
ある。結果を第1表に示す。
This was used as a test piece to confirm its ability to purify oil at 370°C. Drop a certain amount of salad oil onto the test piece and
Changes in the salad oil were observed after it was kept in the oven in C. The results are shown in Table 1.

第1表 以上の結果から、Ce−Cu  Mn複合酸化物をプラ
ズマ溶射した被覆層は、トリグリセリドの酸化反応に対
する促進効果が極めて大きいことがわかる。
From the results in Table 1 and above, it can be seen that the coating layer obtained by plasma spraying the Ce--Cu Mn composite oxide has an extremely large accelerating effect on the oxidation reaction of triglycerides.

触媒粉末にサラダ油を1ttl程度滴下して加熱を行い
、サラダ油の燃焼が開始する温度を確認した。
Approximately 1 ttl of salad oil was dropped onto the catalyst powder and heated, and the temperature at which combustion of the salad oil started was confirmed.

Co  Cu−Mn系においては約240〜250°C
で燃焼の開始が認められた。
Approximately 240 to 250°C for Co Cu-Mn system
The start of combustion was observed.

Mn酸化物やCu酸化物では300”Cでもこのような
現象はおこらず触媒活性の違いが明確でありCe−Cu
−Mn系が特に油の分解に適していることがわかる。こ
れは複合酸化物であるため複合効果による酸化反応の促
進作用、C・の、特にRルクにおけるMnなどへの酸素
の供給源としての働き等により、このように油分の分解
に対する高い活性が発揮されているものと思われる。
With Mn oxide and Cu oxide, this phenomenon does not occur even at 300"C, and the difference in catalytic activity is clear.
It can be seen that the -Mn system is particularly suitable for decomposing oil. Since it is a composite oxide, it exhibits high activity against oil decomposition due to its combined effect of promoting oxidation reactions and acting as a source of oxygen to Mn, etc., especially in R-lux. It seems that this has been done.

更に、Co−Cu−Mn系の複合酸化物における各元素
の機能を考えてみると、Cm酸化物は第2表に示したよ
うに、単一酸化物としての表面積も大きく、またCu−
Mn系の複合酸化物と組み合わせることにより更に大き
な表面積の触媒を作っていることがわかる。Ce酸化物
がバルク中でMnなどへの酸素の供給源になっているこ
とは既に上記した通りである。
Furthermore, if we consider the functions of each element in Co-Cu-Mn complex oxides, as shown in Table 2, Cm oxide has a large surface area as a single oxide, and Cu-
It can be seen that a catalyst with an even larger surface area is created by combining it with a Mn-based composite oxide. As already mentioned above, Ce oxide serves as a source of oxygen to Mn and the like in the bulk.

第2表 次に同じく沈殿法により作成したCe0)(、Mn0)
(。
Table 2 Ce0) (, Mn0) prepared by the same precipitation method
(.

CLIOX (X :未決定)について各粉末とサラダ
油を一定の重量比で混合し、熱天秤を用い昇温によるサ
ラダ油の重量変化を追った。第3図にその結果を示す。
For CLIOX (X: undetermined), each powder and salad oil were mixed at a constant weight ratio, and changes in the weight of the salad oil due to temperature rise were monitored using a thermobalance. Figure 3 shows the results.

第3図よりサラダ油の酸化に対してはCe01よりもM
n0)(やCu OXの方が触媒活性が高いことがわか
る。C・−Cu Mn系の複合酸化物では、複合するこ
とにより更に相乗的な効果もおこり従来にない高活性を
示しているのである。
From Figure 3, for the oxidation of salad oil, M is better than Ce01.
It can be seen that the catalytic activity of n0) (and Cu OX is higher than that of C.-CuMn-based composite oxides, which has an even more synergistic effect when combined and shows unprecedented high activity. be.

そこで以との結果をふまえ、更にプラズマ溶射の利点を
活かし更に高活性な被覆層を形成する試みを行った。プ
ラズマ溶射では2種類以上の粉末を別々の溶射口から同
時に同じ基材上に溶射して皮膜を形成することができる
。そこで第1図に示したように、Ce01とCu−Mn
0)(を別々の溶射口2゜3から耐熱性基材1に溶射し
て被覆層4を形成した。その際第2図に示したようにそ
れぞれの溶射1を経時的に変化させ、T時間後に溶射を
ストップさせ、被覆層の厚み方向にCe、Cu、Mnの
濃度勾配を持たせた。Co 、 Cu 、 Mnの濃度
勾配を持たせて形成した被覆層4の上にサラダ油を滴下
し温度を上げると、350℃で約209後に油は完全に
分解し残渣は残らなかった。濃度勾配を持たせずに形成
した被覆層では、第1表に示したように370”Cで約
30〜35分で油は分解している。
Based on the above results, we attempted to utilize the advantages of plasma spraying to form a more highly active coating layer. In plasma spraying, two or more types of powder can be simultaneously sprayed onto the same substrate from separate spray ports to form a film. Therefore, as shown in Fig. 1, Ce01 and Cu-Mn
A coating layer 4 was formed by thermally spraying 0) (from separate thermal spray ports 2°3 onto a heat-resistant substrate 1. At this time, each thermal spray 1 was changed over time as shown in FIG. 2, and T After a period of time, the thermal spraying was stopped, and a concentration gradient of Ce, Cu, and Mn was created in the thickness direction of the coating layer. Salad oil was dropped onto the coating layer 4 formed with a concentration gradient of Co, Cu, and Mn. When the temperature was increased, the oil completely decomposed after approximately 20°C at 350°C and no residue remained.In the coating layer formed without a concentration gradient, the oil decomposed at approximately 30°C at 370°C as shown in Table 1. The oil is decomposed in ~35 minutes.

このことは基材側にCll0Xを多くすることでより表
面積の大きな触媒層を形成し、また触媒活性の高いCu
−Mnを表面層に多くすることで総合的に、油の酸化に
対して高い触媒活性を示しているためと思われる。
This means that by increasing Cll0X on the base material side, a catalyst layer with a larger surface area can be formed, and Cu with high catalytic activity can be used.
This is probably because by increasing the amount of -Mn in the surface layer, overall catalytic activity against oil oxidation is exhibited.

発明の詳細 な説明の通り、本発明によればプラズマ溶射により基材
表面に触媒活性が極めて高いCe−Cu−M n系複合
酸化物の触媒を用い触媒単独のセルフクリーニング被覆
層を形成したものであるため触媒と油分との接触面積が
大きく、プラズマ溶射皮膜は好適な多孔度を有するポー
ラスな皮膜であるため触媒と油分との反応界面に酸素が
十分に供給される。従って酸化反応で消費される酸素も
、皮膜の内部及び空気中から補給されるため性能低下も
なく長期間触媒活性を保持することができる。
As described in the detailed description of the invention, according to the present invention, a self-cleaning coating layer of a catalyst alone is formed on the surface of a base material by plasma spraying using a Ce-Cu-M n-based composite oxide catalyst with extremely high catalytic activity. Therefore, the contact area between the catalyst and the oil is large, and since the plasma sprayed coating is a porous film with suitable porosity, oxygen is sufficiently supplied to the reaction interface between the catalyst and the oil. Therefore, since the oxygen consumed in the oxidation reaction is replenished from inside the film and from the air, the catalyst activity can be maintained for a long period of time without deterioration of performance.

また膜〃方向に自由にCe 、 Cu 、 Mnの濃度
勾配を汀することができるため、より高活性な皮膜を形
成することができる。またCe01は基材との密着性が
よく、酸に対して強いため、被覆層の基材側にCoo)
(の含有率を高べしておくことにより基材との密着性が
向上し、また酸に触れることがあっても基材が酸で腐食
することが防止できるのである。
Furthermore, since the concentration gradient of Ce, Cu, and Mn can be freely leveled in the direction of the film, a more highly active film can be formed. In addition, Ce01 has good adhesion to the base material and is resistant to acids, so it is placed on the base material side of the coating layer.
By increasing the content of (), the adhesion to the base material is improved, and even if it comes into contact with acid, the base material can be prevented from being corroded by the acid.

本発明のセフルクリーニング被覆層をオーブン等の庫内
壁面に適用することにより、従来の焼切り方式のオーブ
ンで熱セルフクリーニングスル場合500〜550℃の
温度に保持する必要があったがこれを400℃以下に下
げることが可能となり省エネや断熱の面で多大な効果を
有するものである。また油汚れを完全に分解することが
できるのでオーブン庫内を長く新品同様の状態に保つこ
とができる。
By applying the self-cleaning coating layer of the present invention to the inner wall surface of an oven, etc., it is possible to reduce the temperature of 500 to 550°C, which was required to be maintained at a temperature of 500 to 550°C in the case of thermal self-cleaning in a conventional burn-off type oven. It is possible to lower the temperature below ℃, which has great effects in terms of energy saving and heat insulation. Also, since oil stains can be completely broken down, the inside of the oven can be kept in a new condition for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による被覆層の断面概念図、
第2図はプラズマ溶射における溶射量制御方法の一例を
示す相関グラフ、第3図は各種酸化物とサラダ油を混合
したものの熱重量変化曲線である。 1・・・・・・耐熱性基材、2,3・・・・・・プラズ
マ浴射口、4・・・・・・プラズマ溶射触媒皮膜。 代理人の氏名 弁理士 中 尾 敏 男 はか18第 図 図 4I&Jtの一定分棺めにすの溶射1 淳#眸WR(仕え目Δ)
FIG. 1 is a cross-sectional conceptual diagram of a coating layer according to an embodiment of the present invention;
FIG. 2 is a correlation graph showing an example of a spray amount control method in plasma spraying, and FIG. 3 is a thermogravimetric change curve of a mixture of various oxides and salad oil. 1... Heat-resistant base material, 2, 3... Plasma bath injection port, 4... Plasma sprayed catalyst coating. Agent's name Patent attorney Toshio Nakao Figure 18 Figure 4 I&Jt thermal spraying 1 Atsushi #eye WR (serving eye Δ)

Claims (1)

【特許請求の範囲】[Claims] 基材上にプラズマ溶射法で形成したCe、Cu、Mnか
ら成る複合酸化物の被覆層であり、前記複合酸化物はC
e_ACu_BMn_CO_D(但しA=1、B+C=
1、0<B<1、0<C<1、D>0)で表わされる組
成を有し、更に前記被覆層は膜厚方向にCe、Cu、M
nの濃度勾配を有することを特徴とするプラズマ溶射法
によって形成されたセルフクリーニング用被覆層。
A coating layer of a composite oxide consisting of Ce, Cu, and Mn formed on a base material by a plasma spraying method, and the composite oxide is composed of C
e_ACu_BMn_CO_D (However, A=1, B+C=
1, 0<B<1, 0<C<1, D>0), and the coating layer further includes Ce, Cu, M in the thickness direction.
A self-cleaning coating layer formed by a plasma spraying method characterized by having a concentration gradient of n.
JP63159978A 1988-06-28 1988-06-28 Self-cleaning coating layer Expired - Fee Related JPH0813335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63159978A JPH0813335B2 (en) 1988-06-28 1988-06-28 Self-cleaning coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63159978A JPH0813335B2 (en) 1988-06-28 1988-06-28 Self-cleaning coating layer

Publications (2)

Publication Number Publication Date
JPH029451A true JPH029451A (en) 1990-01-12
JPH0813335B2 JPH0813335B2 (en) 1996-02-14

Family

ID=15705330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63159978A Expired - Fee Related JPH0813335B2 (en) 1988-06-28 1988-06-28 Self-cleaning coating layer

Country Status (1)

Country Link
JP (1) JPH0813335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642385A1 (en) * 1991-09-05 1995-03-15 Technalum Research, Inc. Catalist composition and a method for its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642385A1 (en) * 1991-09-05 1995-03-15 Technalum Research, Inc. Catalist composition and a method for its preparation
EP0642385A4 (en) * 1991-09-05 1995-07-26 Technalum Research Inc Catalist composition and a method for its preparation.

Also Published As

Publication number Publication date
JPH0813335B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US4465458A (en) Apparatus for burning liquid fuel equipped with heating-type fuel vaporizer
JPH029451A (en) Coated layer for self-cleaning
JPH03154636A (en) Deodorization catalyst
US4410454A (en) Noble metal and rare earth metal catalyst
Palmisano et al. A new concept for a self-cleaning household oven
JPS6026211A (en) Combustion burner
RU2209116C2 (en) Catalytically active structure
JPH01304049A (en) Self-cleaning coating surface
JPS583641A (en) Catalyst for catalytic combustion
JP2507097B2 (en) Self-cleaning catalyst and heating cooker
JPS6325769B2 (en)
JP2008255430A (en) Enamel material and gas range using the enamel material
JPS5836988A (en) Manufacture of heat-resistant composite material
JPH02183728A (en) Soot purifying catalyst and cooker
JPS63275680A (en) Coating composition
JPH0132883B2 (en)
JPS56111024A (en) Purification method for exhaust gas of combustion appliance
JPH0210030A (en) Cooking apparatus
JPS61242640A (en) Oxidation catalyst
US4388377A (en) Tar inhibitor coated layer
JPS5949314B2 (en) How to prevent carbonaceous deposits on surfaces
JP2833142B2 (en) Paint cured film and cooker having the same
JPH04122455A (en) Exhaust gas purification catalyst body
JPS58187471A (en) Method for forming self-cleaning coating layer
JPH02225918A (en) Heat-cooking apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees