JPS63275680A - Coating composition - Google Patents

Coating composition

Info

Publication number
JPS63275680A
JPS63275680A JP11020987A JP11020987A JPS63275680A JP S63275680 A JPS63275680 A JP S63275680A JP 11020987 A JP11020987 A JP 11020987A JP 11020987 A JP11020987 A JP 11020987A JP S63275680 A JPS63275680 A JP S63275680A
Authority
JP
Japan
Prior art keywords
oil
heat
oven
resistant binder
salad oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11020987A
Other languages
Japanese (ja)
Inventor
Akio Fukuda
明雄 福田
Yasunori Kaneko
金子 康典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11020987A priority Critical patent/JPS63275680A/en
Publication of JPS63275680A publication Critical patent/JPS63275680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cookers (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide a coating compsn. which has an excellent oil stain decomposing activity on the inner surface of a cooking utensil heated in use, such as an oven, by dispersing a particular powdery mixture of a perovskite oxide and a heteropolyacid in a heat-resistant binder. CONSTITUTION:A powder mixture of a porovskite oxide of formula I or II (wherein 0<=x<1) and a heteropolyacid of formula III is dispersed in a heat- resistant binder, thereby obtaining the desired coating compsn. Oil decomposition can be performed at 400 deg.C by forming a coating layer derived from the coating compsn. on the inner surface of a cooking utensil heated in use, such as an oven, whereas at least 500 deg.C is required according to the conventional burning off method. Thus, it becomes possible to choose design parameters more freely. Moreover, since oil stain can be completely decomposed, it is possible to keep the interior of the oven clean. a silica sol is suitably used as the heat-resistant binder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、オーブンのような加熱調理器内面の油汚れを
防止する被覆面を提供する組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a composition for providing a coated surface to prevent oil stains on the inner surface of a cooking device such as an oven.

従来の技術 オーブンの油汚れを防止するには、油を熱で焼切って分
解してしまう焼切り方式と、酸化触媒などを使って分解
する触媒方式とに大きく分けられる。又、油を分解する
のではなくフッ素樹脂を使って非粘着性を調理室庫内(
以下庫内)の面(こ付与し、油が付着しにくくする方法
もあるが、これについては、割合する。
Conventional Technology Preventing oil stains in ovens can be broadly divided into two methods: burn-off methods, which use heat to burn off the oil and decompose it, and catalytic methods, which use oxidation catalysts to decompose the oil. Also, instead of breaking down the oil, we use fluororesin to make it non-stick in the cooking room (
There is also a method of applying oil to the surface (hereinafter referred to as the inside of the refrigerator) to make it difficult for oil to adhere, but this method is based on the ratio.

焼切り方式は庫内面を500 ’C程度の高温に加熱し
、その熱エネルギーで油を分解するもので完全に分解し
てしまうまで1〜2Hrsを要する。
The burn-off method heats the inner surface of the refrigerator to a high temperature of about 500'C and uses that thermal energy to decompose the oil, which takes 1 to 2 hours to completely decompose.

一方急媒方式は、酸化触媒としてMn 、 Cu 、 
Go。
On the other hand, the rapid medium method uses Mn, Cu,
Go.

Nl、Cr、Feなどの酸化物あるいは複合酸化物を使
用したり、固体酸であるゼオライト、酸性白土、活性白
土、シリカアルミナなどを触媒として使用するものであ
る。これらの触媒を無機質のバインダーに分散させ庫内
面に多孔質の被覆層を形成し、300〜350’Cの温
度で油を分解するといわれている。
Oxides or composite oxides such as Nl, Cr, and Fe are used, and solid acids such as zeolite, acid clay, activated clay, and silica alumina are used as catalysts. It is said that these catalysts are dispersed in an inorganic binder to form a porous coating layer on the inner surface of the refrigerator, and that the oil is decomposed at a temperature of 300 to 350'C.

発明が解決しようとする問題点 しかしながら上記方式においてはいくらかの問題点があ
る。まず焼切り方式においては、庫内面をs o O’
C以上に保持するための高出力ヒータが必要であること
、熱放出を防ぐための新熱構造を要すること、庫内面材
部が熱劣化を起こし易くなり、耐熱性の優れた材料を使
うにはコストが高くなることが問題となってくる。
Problems to be Solved by the Invention However, there are some problems with the above method. First, in the burn-off method, the inner surface of the refrigerator is
A high-output heater is required to maintain the temperature above C, a new thermal structure is required to prevent heat release, and the interior material of the refrigerator is susceptible to thermal deterioration, making it difficult to use materials with excellent heat resistance. The problem is that the cost is high.

一方、触媒方式においては、300〜350°Cという
温度では油は完全に分解しないで分解しない残渣は多孔
・質膜の中に浸入してしまう問題がある。温度を400
°C以上に上げても完全には分解しない。このことは、
触媒が効果を発揮していないことを示唆している。
On the other hand, in the catalytic method, there is a problem that the oil is not completely decomposed at a temperature of 300 to 350°C, and undecomposed residues enter the porous membrane. temperature to 400
It does not decompose completely even if raised above °C. This means that
This suggests that the catalyst is not effective.

問題点を解決するための手段 上記問題点を解決するために本発明は、ペロブスカイト
型酸化物La1−XCl!lXCOO3もしくはLal
 −xSr XCOO3(0< x < 1 )とへテ
ロポリ酸H3PMo 12040の混合粉末を耐熱性バ
インダーに分散した組成物から得られる被覆面を庫内面
に形成して、この面で油を分解するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a perovskite oxide La1-XCl! lXCOO3 or Lal
-xSr XCOO3 (0<x<1) and heteropolyacid H3PMo 12040 mixed powder dispersed in a heat-resistant binder A coated surface is formed on the inner surface of the refrigerator, and this surface decomposes oil. be.

作  用 上記手段により以下の作用が得られる。For production The following effects can be obtained by the above means.

まずペロブスカイト型酸化物について説明する。First, perovskite oxides will be explained.

一般式A日03 (A :希土類元素、アルカリ土類金
属B:遷移金属)で表わされるペロブスカイト型酸化物
は白金に匹敵する活性をもつ。油などの炭化水素の酸化
反応に関しては、バルク中のBn+に炭化水素が吸着し
、バルク酸素と炭化水素が反応し酸化反応が進行する。
A perovskite-type oxide represented by the general formula Aday03 (A: rare earth element, alkaline earth metal, B: transition metal) has an activity comparable to that of platinum. Regarding the oxidation reaction of hydrocarbons such as oil, the hydrocarbons are adsorbed to Bn+ in the bulk, and the bulk oxygen reacts with the hydrocarbons to proceed with the oxidation reaction.

消費された酸素はバルクに吸着している酸素により補給
される。待にABO3のAサイトがLa + Ce s
 BサイトがGoであるLa□、g Ce□、 I C
oO3は活性が高い。これは、反応に関与するCoG+
がバルク表面に最も出やすい構造となるからである。
The consumed oxygen is replenished by oxygen adsorbed in the bulk. Wait, the A site of ABO3 is La + Ce s
B site is Go La□, g Ce□, I C
oO3 is highly active. This is the CoG+ involved in the reaction.
This is because it is the structure that most easily appears on the bulk surface.

次にヘテロポリ酸(以下HPA )について説明する。Next, heteropolyacid (hereinafter referred to as HPA) will be explained.

HPAのプロトン融媒としての作用は通常の酸(例えば
HNO3)よりも強い。これはHPAアニオンが反応基
質と中間体を作りこれを安定化させることで反応をより
促進させるからである。
The action of HPA as a proton flux is stronger than that of normal acids (eg HNO3). This is because HPA anions create reaction substrates and intermediates and stabilize them, thereby further promoting the reaction.

HPAは例えばH3PMo12040 、 H3PW1
2040などへテロ原子P)とポリ原子(Mo、W)と
酸素、水素から成り、さらには結晶水をもっている。H
PAの酸は、Bronsted酸であり構成原子により
酸強度が異なる。酸強度は以下の序列になるが、反応に
よって最適な活性PW12 > 5iW12 > PM
o12〜5102 eA#203 > SiMo12 
>> H3PO4>> 5lo2をもつHPAが変わる
。これは、酸強度の大小が目的とする反応に対して副反
応あるいは生成物選択性に大きく影響するからで、反応
側に最適なHPAを見出す必要がある。
Examples of HPA include H3PMo12040, H3PW1
It consists of a heteroatom (P) such as 2040, a polyatom (Mo, W), oxygen, and hydrogen, and also has crystal water. H
The acid of PA is a Bronsted acid, and the acid strength varies depending on the constituent atoms. The acid strength is in the following order, but depending on the reaction, the optimal activity PW12 > 5iW12 > PM
o12~5102 eA#203 > SiMo12
>> H3PO4 >> HPA with 5lo2 changes. This is because the magnitude of acid strength greatly affects side reactions or product selectivity for the desired reaction, and it is necessary to find the optimal HPA for the reaction side.

実施例 以下、実施例について説明する。Example Examples will be described below.

第1表に示す組成物を作り、テストピースとしてアルミ
ナの板の表面に被覆層を形成した。
The compositions shown in Table 1 were prepared, and a coating layer was formed on the surface of an alumina plate as a test piece.

第1表 上記5種類の組成物による被覆層を400°Cに保持し
サラダ油を一定量滴下し経時変化を追った。
Table 1 The coating layer made of the above five types of compositions was maintained at 400°C, and a constant amount of salad oil was added dropwise to the coating layer to monitor changes over time.

30分経過した後組成物4は油を完全に分解したが、他
の4種類は炭化した残渣が残った。60分経過しても残
渣は残ったままであった。このことから、L a O0
9Co o、I Coo 3とH3PMo12040と
シリカゾルの混合系が油の分解に適している事がわかる
After 30 minutes, Composition 4 completely decomposed the oil, but the other four types left carbonized residue. The residue remained even after 60 minutes had passed. From this, L a O0
It can be seen that the mixed system of 9Coo, I Coo 3, H3PMo12040, and silica sol is suitable for decomposing oil.

第1図は、組成物4による被覆層の断面を示す。FIG. 1 shows a cross section of a coating layer made of composition 4.

第1図において1がLa□、gCe□、I CoO3、
2がH3PMo12040,3がシリカである。
In Fig. 1, 1 is La□, gCe□, I CoO3,
2 is H3PMo12040, and 3 is silica.

第2図は、La□0gce□、1.CoO3、H3PM
o12040、H3PW、12040  によるサラダ
油の示差熱曲線である。第2図中、5がLo 0.9 
Coo、 I Coo 3による曲線、6がH3PMo
12040による曲線、7がH3PW12040による
曲線、8がサラダ油単独の曲線である。
Figure 2 shows La□0gce□, 1. CoO3, H3PM
It is a differential thermal curve of salad oil according to o12040, H3PW, and 12040. In Figure 2, 5 is Lo 0.9
Curve by Coo, I Coo 3, 6 is H3PMo
12040, 7 is the curve for H3PW12040, and 8 is the curve for salad oil alone.

La□9gCe□、I CoO3の場合、420℃〜4
50′Cに強い発熱ピークがある。これは、炭化物が酸
化することによると考えられる。l#’Mot204o
、H3PW12040  においても450〜500°
Cに発熱ピークが見られるがLa□0gCe□、I C
oO3程に強くはない。この事は、La □、g Co
□、I Coo 3が炭化物の酸化反応を促進すること
を示し、サラダ油単独の場合500°C付近の発熱ピー
クが大変弱い事からもわかる。ただし、La0,9 C
a 0. I Coo 3の場合には酸化反応は促進さ
れるもののわずかではあるが酸化分解されない炭化物残
渣が残る事がわかった。反対にH3PMo12040で
は残渣がなかった。
In the case of La□9gCe□, ICoO3, 420℃~4
There is a strong exothermic peak at 50'C. This is thought to be due to oxidation of carbide. l#'Mot204o
, 450-500° also in H3PW12040
Although an exothermic peak is seen at C, La□0gCe□, I C
Not as strong as oO3. This means that La □, g Co
□ indicates that I Coo 3 promotes the oxidation reaction of carbides, which can be seen from the very weak exothermic peak around 500°C when salad oil is used alone. However, La0,9 C
a 0. In the case of I Coo 3, it was found that although the oxidation reaction was promoted, a small amount of carbide residue remained which was not oxidized and decomposed. On the contrary, there was no residue in H3PMo12040.

次に第3図は、触媒に対するサラダ油の吸着状態を示す
IR吸収スペクトルである。1700〜1750z−t
 の部分だけを示した。温度は室温である。第3図にお
いて9がLa□、g Co□、 I Co 03へのサ
ラダ油吸着のIR吸収スペクトル、10が同じ< H3
PMo12040,11が同じ< 83PW1204)
のものである。12はサラダ油の吸収スペクトルである
。第3図の1745cu−1及び1705cilの吸収
はカルボン酸の\C=Oによるものでサラダ油の成分が
シリスチン酸、パルミチン酸、ステアリン酸、オレイン
酸、リノール酸、リルン酸などの長蛸の飽和、不飽和カ
ルボン酸であることによる。1745CrIL−1は遊
雑のカルボン酸、17Q5Crn1  は会合したカル
ボン酸によるものと考えられる。第3図を見るとわかる
ようにH3P1iQo1204010の時だけが170
5crrL 1にピークを示す。
Next, FIG. 3 is an IR absorption spectrum showing the adsorption state of salad oil on the catalyst. 1700-1750z-t
Only that part is shown. The temperature is room temperature. In Figure 3, 9 is the IR absorption spectrum of salad oil adsorption to La□, gCo□, ICo03, and 10 is the same <H3
PMo12040, 11 are the same <83PW1204)
belongs to. 12 is the absorption spectrum of salad oil. The absorption of 1745 cu-1 and 1705 cil in Figure 3 is due to carboxylic acid \C=O, and the components of salad oil are saturated with octopus such as syristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and lilunic acid. Due to being an unsaturated carboxylic acid. It is thought that 1745CrIL-1 is due to a free carboxylic acid, and 17Q5Crn1 is due to an associated carboxylic acid. As you can see from Figure 3, only when H3P1iQo1204010 is 170
A peak is shown at 5crrL1.

La□、gCe□、I CoO39、H3PW1204
011  では1705Cmlにピークはなく明らかに
吸着状態が異なる。また、H3PMo 12040の1
Vloの一部をVやWで置換したH3PV21VI01
0040やH3PW6Mo604)では1705cm−
1の吸収の強さが弱くなり、1ν1゜が影響しているこ
とがわかった。
La□, gCe□, ICoO39, H3PW1204
011, there is no peak at 1705 Cml, and the adsorption state is clearly different. Also, 1 of H3PMo 12040
H3PV21VI01 with part of Vlo replaced with V or W
0040 and H3PW6Mo604) is 1705cm-
It was found that the absorption strength of 1 became weaker and was influenced by 1ν1°.

第4図は、サラダ油が分解した時に発生したガスのIR
吸収スペクトルである。13がLa□、90e□、 l
Co03iこよるサラダ油分解ガスのスペクトル、14
がH3PMo120aoによるサラダ油分解ガスのスペ
クトル、15がH3PM12040によるサラダ油分解
ガスのスペクトル、16がサラダ油単独での分解ガスの
スペクトルで、温度は約370°Cである。
Figure 4 shows the IR of gas generated when salad oil decomposes.
This is an absorption spectrum. 13 is La□, 90e□, l
Spectrum of salad oil decomposition gas caused by Co03i, 14
15 is the spectrum of the salad oil cracked gas due to H3PM120ao, 15 is the spectrum of the salad oil cracked gas due to H3PM12040, and 16 is the spectrum of the cracked gas from salad oil alone, and the temperature is about 370°C.

第3図のピークと異なり、t705cr/L−1の吸収
が強い。ただサラダ油単独の場合には1745Cutの
吸収も強い。これはサラダ油単独で加熱すると単純に蒸
発する成分が多いことを示すと考えられる。La0,9
 Ca0.I CoO3やHPAを使えば、1745C
!n−1のピークが失くなり第4図にはないが他のピー
クの変化からみても加熱により分解反応が進むと考えて
よい。このような分解ガスのスペクトル(第4図)とサ
ラダ油の吸着状態のスペクトル(第3図)を比較すると
H3PMo12040が分解に有利な事がスペクトルの
吸収波数の一致かられかる。
Unlike the peak in FIG. 3, the absorption of t705cr/L-1 is strong. However, in the case of salad oil alone, the absorption of 1745Cut is also strong. This is thought to indicate that there are many components that simply evaporate when salad oil is heated alone. La0,9
Ca0. If I CoO3 or HPA is used, 1745C
! The n-1 peak is lost and is not shown in Figure 4, but judging from the changes in other peaks, it can be considered that the decomposition reaction progresses due to heating. Comparing the spectrum of such decomposed gas (Fig. 4) and the spectrum of the adsorbed state of salad oil (Fig. 3), it can be seen from the coincidence of the absorption wave numbers of the spectra that H3PMo12040 is advantageous for decomposition.

さて、第1表にもどると組成物4が完全にサラダ油を分
解している。これは、上記の如(La□、gCe□、l
CoO3の炭化物の酸化反応促進効果、H3PMo12
040と他のHPAとの特異性によるものであると考え
てよいであろう。
Now, returning to Table 1, Composition 4 completely decomposes salad oil. This is as shown above (La□, gCe□, l
CoO3 carbide oxidation reaction promotion effect, H3PMo12
This may be due to the specificity of 040 and other HPAs.

次にLa1−1sr)(Co03  について説明する
。サラダ油との熱重量変化によれば450〜480°C
に炭化物の酸化による発熱ピークが見られる。この温度
はLa□、gce□、I CoO3に比べるとやや高い
ものの、第2表に示した組成物6による被覆層によって
第1表組成物4と殆ど同じ結果を得た。
Next, we will explain La1-1sr) (Co03. According to the thermogravimetric change with salad oil, it is 450 to 480 °C
An exothermic peak due to oxidation of carbides can be seen. Although this temperature was slightly higher than that of La□, gce□, and ICoO3, almost the same results as composition 4 of Table 1 were obtained with the coating layer of composition 6 shown in Table 2.

(以下余白) 第2表 発明の詳細 な説明したように、本発明によればペロブスカイト型酸
化物とへテロポリ酸の触媒効果により、オーブン庫内な
どの油汚れに対して次の効果を得る事ができる。
(Left below) As detailed in Table 2, the present invention provides the following effects on oil stains in ovens etc. due to the catalytic effect of the perovskite oxide and heteropolyacid. Can be done.

(1)従来の焼切り方式では500’C以上の温度を要
したが、本発明によればこれを400°Cに下げる事が
でき、設計条件に幅ができる。しかも、触媒の改良を進
めれば400℃以下350 ’C,300°Cの焼切り
も可能性がでてくる。
(1) The conventional burn-off method required a temperature of 500°C or more, but according to the present invention, this can be lowered to 400°C, allowing flexibility in design conditions. Moreover, if catalysts are improved, it will become possible to burn out at temperatures below 400°C, 350'C and 300°C.

(2)油汚れを完全に分解することができるので、オー
ブン庫内が清潔に保たれる。
(2) Since oil stains can be completely broken down, the inside of the oven can be kept clean.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による被覆用組成物の断面の
概念図、第2図は触媒によるサラダ油の示差熱曲線図、
第3図は触媒へのサラダ油の吸着状態を示すIRスペク
トル図、第4図は触媒を使ってサラダ油を分解した時に
発生したガスのIRスペクトル図である。 1 °= La□0gca□、I CoO3、2−−−
H3PMo120403・・・シリカ、4 ・・基材(
アルミナ)、5 ・・・・La□、gce□、I Co
O3による曲線、6−−−− H3PIVlo1204
01こよる曲線、7  ・H3PW12040による曲
線、8  ・触媒なしの曲線、9−− La□0gca
□、I CoO3への吸着、10 ・・H3PIVlo
12040への吸着、11・・・H3P、W18O49
への吸着、12・ ・サラダ油単独、13 ・・・La
□、gCe□、I CoO3による分解ガス、14・・
・・・H3PMo12040による分解ガス、15 ・
・−H3P、W18O49による分解ガス、16−・・
触媒なし。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 温  X   (”C) 第3図 p(cm−リ ソ(cm力
FIG. 1 is a conceptual diagram of a cross section of a coating composition according to an embodiment of the present invention, and FIG. 2 is a differential heat curve diagram of salad oil using a catalyst.
FIG. 3 is an IR spectrum diagram showing the adsorption state of salad oil on the catalyst, and FIG. 4 is an IR spectrum diagram of gas generated when salad oil is decomposed using the catalyst. 1 °= La□0gca□, I CoO3, 2---
H3PMo120403...Silica, 4...Base material (
alumina), 5...La□, gce□, I Co
Curve due to O3, 6---- H3PIVlo1204
Curve according to 01, 7 ・Curve according to H3PW12040, 8 ・Curve without catalyst, 9-- La□0gca
□, I Adsorption to CoO3, 10...H3PIVlo
Adsorption to 12040, 11...H3P, W18O49
Adsorption to, 12... Salad oil alone, 13...La
□, gCe□, decomposed gas by I CoO3, 14...
...Cracked gas by H3PMo12040, 15 ・
・-H3P, decomposition gas by W18O49, 16-...
No catalyst. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2: Temperature

Claims (1)

【特許請求の範囲】[Claims] ペロブスカイト型酸化物としてLa_1_−_xCe_
xCoO_3(O≦x<1)もしくはLa_1_−_x
Sr_xCoO_3(0≦x<1)と、ヘテロポリ酸と
してH_3PMo_1_2O_4_0の混合粉末を耐熱
性バインダーに分散した被覆用組成物。
La_1_-_xCe_ as perovskite type oxide
xCoO_3 (O≦x<1) or La_1_-_x
A coating composition in which a mixed powder of Sr_xCoO_3 (0≦x<1) and H_3PMo_1_2O_4_0 as a heteropolyacid is dispersed in a heat-resistant binder.
JP11020987A 1987-05-06 1987-05-06 Coating composition Pending JPS63275680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020987A JPS63275680A (en) 1987-05-06 1987-05-06 Coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020987A JPS63275680A (en) 1987-05-06 1987-05-06 Coating composition

Publications (1)

Publication Number Publication Date
JPS63275680A true JPS63275680A (en) 1988-11-14

Family

ID=14529822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020987A Pending JPS63275680A (en) 1987-05-06 1987-05-06 Coating composition

Country Status (1)

Country Link
JP (1) JPS63275680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413924A (en) * 2022-09-30 2022-12-02 武汉苏泊尔炊具有限公司 Composite material for non-stick cookware, method for manufacturing same and non-stick cookware

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413924A (en) * 2022-09-30 2022-12-02 武汉苏泊尔炊具有限公司 Composite material for non-stick cookware, method for manufacturing same and non-stick cookware
CN115413924B (en) * 2022-09-30 2024-02-13 武汉苏泊尔炊具有限公司 Composite material for non-stick cookware, method for producing same, and non-stick cookware

Similar Documents

Publication Publication Date Title
Hazenkamp et al. A luminescence spectroscopy study on supported vanadium and chromium oxide catalysts
WO2013038449A1 (en) Electrode, electrically heated catalytic converter using same and process for producing electrically heated catalytic converter
WO1992018243A1 (en) Praseodymium-palladium binary oxide, catalyst compositions containing the same, and methods of use
JPH0347537A (en) Treatment by means of catalyst
JPH01305824A (en) Multiple metal oxides
JPS63275680A (en) Coating composition
JPS61249541A (en) Oxidizing catalyst
JP4273227B2 (en) Manufacturing method of microwave heating element
Snapkauskienė et al. Preparation and characterization of TiO2-based plasma-sprayed coatings for NOx abatement
Takashima et al. Catalytic decomposition of trichloroethylene over Pt-/Ni-catalyst under microwave heating
JP7344505B2 (en) Method for manufacturing catalyst for VOC treatment
JPH034251B2 (en)
JPH05140505A (en) Infrared ray radiating coating material
JPS6197032A (en) Catalyst body for purifying exhaust gas
JP5119531B2 (en) Ceramic catalyst material and exhaust purification method using the same
JPS6025542A (en) Nox reducing method
JPS594504B2 (en) liquid fuel combustion tube
JP2507097B2 (en) Self-cleaning catalyst and heating cooker
JPH0132883B2 (en)
JP7442935B2 (en) Catalyst manufacturing method
RU2284219C1 (en) Method of preparing supported catalysts
EP1694442B1 (en) Method for heat treatment of a metal oxide catalyst for removal of organic material to make a porous catalyst
JPH1099695A (en) Catalytic body and its manufacture
Ciambelli et al. Uncatalysed and catalysed oxidation of fullerene
JPS63248441A (en) Production of catalyst