JPS61249541A - Oxidizing catalyst - Google Patents

Oxidizing catalyst

Info

Publication number
JPS61249541A
JPS61249541A JP60090026A JP9002685A JPS61249541A JP S61249541 A JPS61249541 A JP S61249541A JP 60090026 A JP60090026 A JP 60090026A JP 9002685 A JP9002685 A JP 9002685A JP S61249541 A JPS61249541 A JP S61249541A
Authority
JP
Japan
Prior art keywords
gas
oxide
alumina
catalyst
cuco2o4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60090026A
Other languages
Japanese (ja)
Inventor
Kenji Tabata
研二 田畑
Ikuo Matsumoto
松本 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60090026A priority Critical patent/JPS61249541A/en
Publication of JPS61249541A publication Critical patent/JPS61249541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the oxidizing catalyst having a large surface area and superior activity for burning hydrocarbon, etc. by producing fine powder of composite oxide CuCO2O4 by the evaporation gas method by which plasma, arc, etc., are irradiated to the oxide mixed stoichiometrically. CONSTITUTION:Copper oxide and cobalt oxide are stoichiometrically mixed and introduced put into a container, after reducing the pressure some of inert gas is introduced into it to carry out arc thermal spraying, and CuCo2O4 fine powder having a very large surface area of about 40-60m<2>/g is obtained by the vapor phase method. In the utility example of natural gas to a catalyst burner, the gas is burned catalytically on the oxidizing catalyst where the above- mentioned catalyst powder is supported together with alumina nitrate on the sheet-like alumina fiber and the gas is completely decomposed into steam and carbonic acid gas and the heat generated at this time is utilized for a heating system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は排ガス浄化、脱臭、あるいはプロパンガス、都
市ガスあるいは灯油、軽油等を触媒燃焼させる酸化触媒
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an oxidation catalyst for purifying and deodorizing exhaust gas, or for catalytically burning propane gas, city gas, kerosene, light oil, etc.

従来の技術 一般に未燃の炭化水素を空気の存在下、炭酸ガスと水蒸
気に完全酸化させる酸化触媒については白金、バラジク
ム、ロジウム等の白金族が最も活性が高い。このためア
ルミナ、シリカ等の各種担体に担持させた白金族系触媒
が酸化触媒として使用されている。一方コバルト、ニッ
ケル、鉄等ノいわゆる非金属については単独の金属酸化
物としてよりも、最近では各種複合酸化物が検討されて
いる(例えば中村、御園生ら、8化、1980゜167
9)。CuCo2O4についてはKin  Nobe(
9nd、 Eng、 Cham、、 P r od、R
es、Dev、、 vo 1.14 r No、 3+
1975.142)に酸化活性が高いことが報告されて
いる。
BACKGROUND OF THE INVENTION In general, platinum group metals such as platinum, baladicum, and rhodium have the highest activity as oxidation catalysts that completely oxidize unburned hydrocarbons into carbon dioxide gas and water vapor in the presence of air. For this reason, platinum group catalysts supported on various carriers such as alumina and silica are used as oxidation catalysts. On the other hand, for so-called nonmetals such as cobalt, nickel, and iron, various composite oxides have recently been investigated rather than individual metal oxides (for example, Nakamura, Misono et al., 8th Edition, 1980°167
9). For CuCo2O4, see Kin Nobe (
9th, Eng, Cham, Prod, R
es, Dev,, vo 1.14 r No, 3+
1975.142) reported that it has high oxidation activity.

発明が解決しようとする問題点 白金、ロジウム、パラジクム等の白金族はそれ自体酸化
活性が高いが、耐熱性に問題があり、コスト的にも高い
という問題がある。一方ニッケル、コバルト、鉄等の遷
移金属の各種組合せによる複合酸化物については表面積
が小さく、触媒活性が低いという問題がある。即ち、一
般に複合酸化物を調整するには量論比に混合した酸化物
の焼成。
Problems to be Solved by the Invention Platinum group metals such as platinum, rhodium, and palladium themselves have high oxidation activity, but they have problems in heat resistance and high cost. On the other hand, composite oxides made of various combinations of transition metals such as nickel, cobalt, and iron have a problem of small surface area and low catalytic activity. That is, in general, to prepare a composite oxide, oxides mixed in a stoichiometric ratio are fired.

あるいは硝酸塩、塩化物等各種塩の混合溶液を蒸発、分
解、焼成するという方法がある。あるいは各種混合塩の
溶液にアンモニア、カセイソーダ(NoOH)等の沈殿
剤を加え沈殿を形成後、洗浄、焼成により調整するとい
う方法があるが、いづれの方法にしても焼成後の表面積
は2〜5nt/fであり、その結果活性が低いという問
題があった。
Alternatively, there is a method in which a mixed solution of various salts such as nitrates and chlorides is evaporated, decomposed, and calcined. Alternatively, there is a method in which a precipitant such as ammonia or caustic soda (NoOH) is added to a solution of various mixed salts to form a precipitate, which is then washed and calcined to adjust the surface area. /f, resulting in a problem of low activity.

本発明は複合酸化物のうち、CuC02o4について新
しい調整法を提供することにより従来の複合酸化物が表
面積が小さく活性が低いという問題を解決しようとする
ものである。
The present invention aims to solve the problem that conventional composite oxides have a small surface area and low activity by providing a new method for adjusting CuC02o4 among composite oxides.

問題点を解決するための手段 この問題を解決するためにプラズマ、電子ビーム、アー
ク等をゆるい減圧中で照射し微粉末を作製するという蒸
発ガス法を採用した。
Means for Solving the Problem In order to solve this problem, we adopted the evaporative gas method, which involves producing fine powder by irradiating plasma, electron beam, arc, etc. in a mildly reduced pressure.

作  用 蒸発ガス法は気相法による微粒子の作製方法であり、触
媒の表面積が40〜60d/fと非常に大きくなり、そ
の結果酸化活性が向上した。
Function The evaporative gas method is a method for producing fine particles using a gas phase method, and the surface area of the catalyst is extremely large at 40 to 60 d/f, resulting in improved oxidation activity.

実施例 以下本発明による酸化触媒を利用した天然ガスの触媒燃
焼器について図面に基づき説明する。図に示すごとく本
実施例の触媒燃焼器本体ケース1の前面には金網2及び
背面パネル3に保持された酸化触媒体4がある。酸化触
媒体4は酸化銅と酸化コバルトを量論比に混合したもの
を減圧した容器の中に一部アルゴン、窒素等の不活性ガ
スを入れたのち、アーク溶射を行い気相法によって作製
したCuCo2O4の粉末を硝酸アルミナと共にシート
状のアルミナ繊維に担持したものである。次にガス量の
コントロールを行うガスコック5が零体グース1前面下
部にある。
EXAMPLES A natural gas catalytic combustor using an oxidation catalyst according to the present invention will be described below with reference to the drawings. As shown in the figure, on the front side of the catalytic combustor body case 1 of this embodiment, there is an oxidation catalyst body 4 held on a wire mesh 2 and a back panel 3. The oxidation catalyst 4 was prepared by a vapor phase method by placing a mixture of copper oxide and cobalt oxide in a stoichiometric ratio into a reduced-pressure container, partially containing an inert gas such as argon or nitrogen, and then performing arc spraying. CuCo2O4 powder is supported on sheet-like alumina fibers together with alumina nitrate. Next, a gas cock 5 for controlling the amount of gas is located at the lower front of the zero body goose 1.

次にその作用について述べる。Next, we will discuss its effect.

ガスコック5を開くことにより流れてきたガスは酸化触
媒体4下部の点火プラグ(図示せず)により酸化触媒体
4上で均一に火炎を形成する。この火炎により酸化触媒
体4は予熱された後触媒燃焼に移行し、ガスは水蒸気と
炭酸ガスに完全に酸化される。この時に発生する熱を暖
房用として利用する。
The gas flowing by opening the gas cock 5 forms a flame uniformly on the oxidation catalyst body 4 by a spark plug (not shown) at the lower part of the oxidation catalyst body 4. After the oxidation catalyst body 4 is preheated by this flame, it shifts to catalytic combustion, and the gas is completely oxidized into water vapor and carbon dioxide gas. The heat generated at this time is used for heating purposes.

発明の効果 以上のように本発明によりCuCo2O4なる組成をも
つ複合酸化物を蒸発ガス法により作製することにより粒
子径が小さく、表面積の大きい活性の高い酸化触媒体を
得ることが出来た。
Effects of the Invention As described above, according to the present invention, a highly active oxidation catalyst having a small particle size and a large surface area could be obtained by producing a composite oxide having a composition of CuCo2O4 by an evaporative gas method.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例である蒸発ガス法により作製した
CuCo2O4なる組成をもつ複合酸化物からなる酸化
触媒体を搭載した触媒燃焼器の一部断面の斜視図である
。 4・・・・・・酸化触媒体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名4・
・・西斐A二角曵々芋イ蓼
The figure is a partial cross-sectional perspective view of a catalytic combustor equipped with an oxidation catalyst made of a composite oxide having a composition of CuCo2O4, which was produced by an evaporative gas method and is an embodiment of the present invention. 4... Oxidation catalyst. Name of agent: Patent attorney Toshio Nakao and 1 other person 4.
・・Saihi A two-cornered lizard

Claims (2)

【特許請求の範囲】[Claims] (1)結晶構造式AB_2O_4であらわされる複合酸
化物を、Aは銅、Bはコバルトで構成したCuCo_2
O_4を量論比に混合した酸化物にプラズマあるいはア
ーク溶射を行う蒸発ガス法で作製した酸化触媒。
(1) CuCo_2 is a composite oxide represented by the crystal structure AB_2O_4, where A is copper and B is cobalt.
An oxidation catalyst made by the evaporative gas method, in which plasma or arc spraying is applied to an oxide mixed with O_4 in a stoichiometric ratio.
(2)結晶構造をもつ複合酸化物の粉末とコロイダルア
ルミナ等の無機バインダを混合しアルミナ、シリカ、コ
ージライト等の無機耐熱材料をハニカム状に成形したも
のあるいは発泡セラミック、発泡メタル、金網、シリカ
ファイバ、アルミナファイバ等に担持した特許請求の範
囲第1項記載の酸化触媒。
(2) A mixture of composite oxide powder with a crystalline structure and an inorganic binder such as colloidal alumina and formed into a honeycomb shape from an inorganic heat-resistant material such as alumina, silica, cordierite, or foamed ceramic, foamed metal, wire mesh, or silica. The oxidation catalyst according to claim 1 supported on a fiber, an alumina fiber, or the like.
JP60090026A 1985-04-26 1985-04-26 Oxidizing catalyst Pending JPS61249541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090026A JPS61249541A (en) 1985-04-26 1985-04-26 Oxidizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090026A JPS61249541A (en) 1985-04-26 1985-04-26 Oxidizing catalyst

Publications (1)

Publication Number Publication Date
JPS61249541A true JPS61249541A (en) 1986-11-06

Family

ID=13987166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090026A Pending JPS61249541A (en) 1985-04-26 1985-04-26 Oxidizing catalyst

Country Status (1)

Country Link
JP (1) JPS61249541A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405670A1 (en) * 2002-10-02 2004-04-07 Delphi Technologies, Inc. Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere
US6872427B2 (en) 2003-02-07 2005-03-29 Delphi Technologies, Inc. Method for producing electrical contacts using selective melting and a low pressure kinetic spray process
US6896933B2 (en) 2002-04-05 2005-05-24 Delphi Technologies, Inc. Method of maintaining a non-obstructed interior opening in kinetic spray nozzles
US6949300B2 (en) 2001-08-15 2005-09-27 Delphi Technologies, Inc. Product and method of brazing using kinetic sprayed coatings
US7001671B2 (en) 2001-10-09 2006-02-21 Delphi Technologies, Inc. Kinetic sprayed electrical contacts on conductive substrates
US7108893B2 (en) 2002-09-23 2006-09-19 Delphi Technologies, Inc. Spray system with combined kinetic spray and thermal spray ability
WO2006106624A1 (en) * 2005-03-31 2006-10-12 Mitsui Mining & Smelting Co., Ltd. Composite oxide particle having black color
JP2006306712A (en) * 2005-03-31 2006-11-09 Mitsui Mining & Smelting Co Ltd Composite oxide particle having black color
US7351450B2 (en) 2003-10-02 2008-04-01 Delphi Technologies, Inc. Correcting defective kinetically sprayed surfaces
US7674076B2 (en) 2006-07-14 2010-03-09 F. W. Gartner Thermal Spraying, Ltd. Feeder apparatus for controlled supply of feedstock
JP2010202490A (en) * 2009-02-04 2010-09-16 Ngk Insulators Ltd Method for producing transition metal oxide having spinel structure
CN103990459A (en) * 2014-05-16 2014-08-20 上海纳米技术及应用国家工程研究中心有限公司 Chromium-cobalt composite oxide catalyst as well as preparation and application thereof
CN112125348A (en) * 2020-09-07 2020-12-25 上海应用技术大学 Preparation method and application of ammonium perchlorate thermal decomposition catalytic material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949300B2 (en) 2001-08-15 2005-09-27 Delphi Technologies, Inc. Product and method of brazing using kinetic sprayed coatings
US7001671B2 (en) 2001-10-09 2006-02-21 Delphi Technologies, Inc. Kinetic sprayed electrical contacts on conductive substrates
US6896933B2 (en) 2002-04-05 2005-05-24 Delphi Technologies, Inc. Method of maintaining a non-obstructed interior opening in kinetic spray nozzles
US7108893B2 (en) 2002-09-23 2006-09-19 Delphi Technologies, Inc. Spray system with combined kinetic spray and thermal spray ability
EP1405670A1 (en) * 2002-10-02 2004-04-07 Delphi Technologies, Inc. Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere
US6872427B2 (en) 2003-02-07 2005-03-29 Delphi Technologies, Inc. Method for producing electrical contacts using selective melting and a low pressure kinetic spray process
US7351450B2 (en) 2003-10-02 2008-04-01 Delphi Technologies, Inc. Correcting defective kinetically sprayed surfaces
WO2006106624A1 (en) * 2005-03-31 2006-10-12 Mitsui Mining & Smelting Co., Ltd. Composite oxide particle having black color
JP2006306712A (en) * 2005-03-31 2006-11-09 Mitsui Mining & Smelting Co Ltd Composite oxide particle having black color
US7674076B2 (en) 2006-07-14 2010-03-09 F. W. Gartner Thermal Spraying, Ltd. Feeder apparatus for controlled supply of feedstock
JP2010202490A (en) * 2009-02-04 2010-09-16 Ngk Insulators Ltd Method for producing transition metal oxide having spinel structure
CN103990459A (en) * 2014-05-16 2014-08-20 上海纳米技术及应用国家工程研究中心有限公司 Chromium-cobalt composite oxide catalyst as well as preparation and application thereof
CN112125348A (en) * 2020-09-07 2020-12-25 上海应用技术大学 Preparation method and application of ammonium perchlorate thermal decomposition catalytic material

Similar Documents

Publication Publication Date Title
JP3017043B2 (en) Spinel-based catalysts for reducing nitrogen oxide emissions
JPS61249541A (en) Oxidizing catalyst
JPH0347537A (en) Treatment by means of catalyst
JPS5810137B2 (en) Oxidation catalyst composition
JPH0459049A (en) Catalyst for diesel engine exhaust gas cleanup
KR920019415A (en) Exhaust gas purification catalyst
JPS61283348A (en) Oxidizing catalyst
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
US20020081242A1 (en) NOx control
US5707593A (en) Energy self-sustainable reactor for gasifying engine particulates and unburned hydrocarbons
FI93520B (en) Exhaust catalysts for vehicles
US4980137A (en) Process for NOx and CO control
JP2001241619A (en) Method for purifying flue gas in radiant tube burner
JPS583641A (en) Catalyst for catalytic combustion
CA1067060A (en) Equilibrium catalyst
JPS6380849A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH0435744A (en) Catalytic body for purification of exhaust gas
JPH0620558B2 (en) Oxidation catalyst
JPS6133232A (en) Oxidation catalyst for catalytic combustion
JPS5849804A (en) Burner
JP3711363B2 (en) Nitrogen oxide catalytic reduction removal catalyst and nitrogen oxide catalytic reduction removal method
JPS60202742A (en) Oxidation catalyst for catalytic combustion
JPS61149245A (en) Oxydizing catalyst for catalytic combustion
JP2532494B2 (en) Catalytic combustion device
JPS61259759A (en) Oxidizing catalyst