JPH03157141A - Self-cleaning catalytic body and heating cooker - Google Patents
Self-cleaning catalytic body and heating cookerInfo
- Publication number
- JPH03157141A JPH03157141A JP1296514A JP29651489A JPH03157141A JP H03157141 A JPH03157141 A JP H03157141A JP 1296514 A JP1296514 A JP 1296514A JP 29651489 A JP29651489 A JP 29651489A JP H03157141 A JPH03157141 A JP H03157141A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- metal
- porous body
- fibers
- body made
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 8
- 238000010438 heat treatment Methods 0.000 title claims description 5
- 230000003197 catalytic effect Effects 0.000 title abstract description 6
- 239000000835 fiber Substances 0.000 claims abstract description 69
- 239000003054 catalyst Substances 0.000 claims abstract description 59
- 239000000919 ceramic Substances 0.000 claims abstract description 26
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 230000003647 oxidation Effects 0.000 claims abstract description 7
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims description 48
- 239000002184 metal Substances 0.000 claims description 48
- 238000010411 cooking Methods 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000006864 oxidative decomposition reaction Methods 0.000 claims description 4
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 229910001111 Fine metal Inorganic materials 0.000 claims 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 4
- 239000010935 stainless steel Substances 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 229920000914 Metallic fiber Polymers 0.000 abstract 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 229910052761 rare earth metal Inorganic materials 0.000 abstract 1
- 150000002910 rare earth metals Chemical class 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052723 transition metal Inorganic materials 0.000 abstract 1
- 150000003624 transition metals Chemical class 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 239000011148 porous material Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 210000003298 dental enamel Anatomy 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 240000008415 Lactuca sativa Species 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 235000012045 salad Nutrition 0.000 description 4
- 150000002823 nitrates Chemical class 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- 241000565357 Fraxinus nigra Species 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 235000019503 curry powder Nutrition 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 235000008960 ketchup Nutrition 0.000 description 2
- 235000010746 mayonnaise Nutrition 0.000 description 2
- 239000008268 mayonnaise Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910001463 metal phosphate Inorganic materials 0.000 description 2
- 229910052914 metal silicate Inorganic materials 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 235000015067 sauces Nutrition 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 235000013555 soy sauce Nutrition 0.000 description 2
- 235000021419 vinegar Nutrition 0.000 description 2
- 239000000052 vinegar Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 208000031872 Body Remains Diseases 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- 241001536352 Fraxinus americana Species 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002320 enamel (paints) Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- -1 oil stains Natural products 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Cookers (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はオーブン、グリルといった加熱調理器で調理す
る際に発生した汚れを加熱下で分解・除去する機能を持
つ触媒体と前記触媒体を施した加熱調理器に関するもの
である。[Detailed Description of the Invention] Industrial Field of Application The present invention provides a catalyst body having a function of decomposing and removing dirt generated during cooking in a heating cooking device such as an oven or a grill, and a catalyst body coated with the catalyst body. This relates to a heating cooker.
従来の技術
肉や魚等の調理を行った際に調理器庫内壁に付着する汚
れを加熱下で分解・除去する方法には大別して次の3つ
がある。BACKGROUND ART There are three main methods for decomposing and removing dirt that adheres to the inner wall of a cooking appliance when cooking meat, fish, etc., using heat.
第1は庫内壁にホーロー質の被膜を形成し、ホーロー表
面温度で約450°C以上になるように庫内温度を上げ
熱によってホーロー表面の汚れを分解するものである。The first method is to form an enamel coating on the inner wall of the chamber, raise the temperature inside the chamber so that the enamel surface temperature is approximately 450° C. or higher, and use heat to decompose dirt on the enamel surface.
第2は無機金属のリン酸塩やケイ酸塩、あるいはホーロ
ーをバインダーとし、これにMn、Cu。The second method uses inorganic metal phosphates, silicates, or enamel as a binder, along with Mn and Cu.
Fe、Co、Ni等の遷移金属酸化物やアルカリ土類酸
化物を触媒として分散した多孔質膜を庫内壁面に形成し
た場合である。This is a case where a porous membrane in which transition metal oxides such as Fe, Co, and Ni or alkaline earth oxides are dispersed as a catalyst is formed on the inner wall surface of the refrigerator.
このような被膜は金属酸化物の触媒作用で油汚れを低温
で燃焼させ分解するものである。Such a film burns and decomposes oil stains at low temperatures using the catalytic action of metal oxides.
第3は同じく無機金属のリン酸塩やケイ酸塩、あるいは
ホーロー質をバインダーとし、金属酸化物粉末あるいは
貴金属粉末を分散させ塗料化したものを金属多孔体に、
前記金属多孔体の表面形状が残存する程度に薄く塗布し
た触媒体と庫内壁面に形成した場合である。(例えば、
特公昭59−40062号公報)
発明が解決しようとする課題
しかしながら上記従来の技術には次のような課題がある
。ホーローでは温度が500°C以上になるとクランク
が発生し剥離する。このため鉄基材が腐食し調理器とし
ての使用に耐えなくなる。The third method uses inorganic metal phosphates, silicates, or enamel as a binder, and disperses metal oxide powder or noble metal powder to form a coating, which is then made into a metal porous body.
This is a case in which the catalyst body is coated thinly enough that the surface shape of the metal porous body remains and is formed on the inner wall surface of the refrigerator. (for example,
(Japanese Patent Publication No. 59-40062) Problems to be Solved by the Invention However, the above-mentioned conventional technology has the following problems. In enamel, if the temperature exceeds 500°C, cranking will occur and peeling will occur. As a result, the iron base material corrodes and becomes unusable as a cooker.
またリン酸塩やケイ酸塩をバインダーとした多孔質膜に
ついては油汚れを完全燃焼させるために油と触媒との接
触面積をふやし被膜中の酸素拡散をよくするため被膜を
できるだけ多孔質にしなければ浄化性能は得られない。In addition, for porous membranes using phosphates or silicate as a binder, the coating must be made as porous as possible to increase the contact area between the oil and the catalyst and to improve oxygen diffusion within the coating to ensure complete combustion of oil stains. Otherwise, purification performance cannot be obtained.
しかし多孔質にすると硬度が低くなり剥離したり傷つい
たりし実用上問題がある。また焼は残ったタール成分や
灰分が多孔質の隙間に入り込んで沈着してしまい浄化性
能が徐々に低下する可能性がある。However, if it is made porous, the hardness will be low and it may peel or be damaged, which poses a practical problem. Furthermore, burning causes residual tar components and ash to enter the porous spaces and settle there, which may gradually reduce purification performance.
また金属多孔体に塗料を塗布した場合も、酸化物あるい
は貴金属の粉末がバインダーで覆われて活性が落ちるた
め油汚れを完全燃焼させるためにできるだけ空隙率の高
い金属多孔体を用い酸素拡散を上げなければならない。Also, when paint is applied to a porous metal body, the oxide or noble metal powder is covered with a binder and its activity is reduced.In order to completely burn out the oil stains, a porous metal body with as high a porosity as possible is used to increase oxygen diffusion. There must be.
しかし、反面空隙率が高いと目詰まりや外観上も庫内壁
としての実用に適さない等の問題がでてくる。また金属
は一般に油との濡れ性も悪く、バインダーを用いて酸化
物を塗布する上記方法では400 ’Cで2時間以上の
焼ききり時間が必要であり実用的でない。However, on the other hand, if the porosity is high, problems such as clogging and appearance make the wall unsuitable for practical use as an inner wall of a refrigerator. Furthermore, metals generally have poor wettability with oil, and the above method of applying an oxide using a binder requires baking at 400'C for 2 hours or more, which is not practical.
上記のように従来技術ではいくつかの課題があるが、本
発明では空隙率の高い触媒体上に表面硬度の高い触媒体
を設けることにより、浄化性能を表面硬度の両方を兼ね
備えた触媒体を提供するものである。As mentioned above, there are some problems with the conventional technology, but in the present invention, by providing a catalyst body with high surface hardness on a catalyst body with high porosity, a catalyst body that has both purification performance and surface hardness is created. This is what we provide.
課題を解決するための手段
上記課題を解決するために本発明では、触媒を担持した
セラミック繊維から成る触媒体を、同しく触媒を担持し
た金属繊維から成る多孔体で覆うことにより浄化性能と
触媒体表面の強度、外観。Means for Solving the Problems In order to solve the above problems, the present invention improves purification performance and catalysis by covering a catalyst body made of ceramic fibers carrying a catalyst with a porous body made of metal fibers also carrying a catalyst. Strength and appearance of media surface.
平滑さとを兼ね備えた触媒体を形成し、この触媒体を調
理器の庫内壁面に用いて、調理中に発生し、庫内壁面に
付着した油汚れを浄化するものである。A catalyst body that is smooth is formed, and this catalyst body is used on the inner wall surface of a cooking appliance to clean oil stains that are generated during cooking and adhere to the inner wall surface of the refrigerator.
作用 上記構成による触媒体の作用について説明する。action The action of the catalyst body with the above configuration will be explained.
まず本発明で用いているセラミック繊維から成る多孔体
(以下セラミック繊維多孔体と示す)はセラミックの微
細繊維を積層しており非常に高い空隙率を有するため触
媒を担持もしくは分散させると触媒と油との接触や酸素
の供給が十分に行なわれ触媒の持つ酸化活性が十分発揮
できる。しかし表面硬度が低く単独では実使用に適さな
い。また同じく本発明で用いている金属繊維から成る多
孔体(以下金属繊維多孔体と示す)は金属繊維の材質と
してA1もしくはステンレスを用いているため、セラミ
ンク繊維と比較して強度が非常に高い。First of all, the porous body made of ceramic fibers used in the present invention (hereinafter referred to as ceramic fiber porous body) is made of laminated ceramic fine fibers and has a very high porosity. The oxidation activity of the catalyst can be fully exerted due to sufficient contact with the catalyst and sufficient supply of oxygen. However, its surface hardness is low and it is not suitable for practical use alone. Furthermore, since the porous body made of metal fibers (hereinafter referred to as metal fiber porous body) used in the present invention uses A1 or stainless steel as the material of the metal fibers, it has extremely high strength compared to ceramic fibers.
また平均繊維径が数μレベルと非常に細かい繊維が積層
されているため空隙率も高い。Furthermore, since the fibers are laminated with very fine fibers with an average fiber diameter of several microns, the porosity is high.
しかし金属繊維多孔体はセラミック繊維多孔体と比べて
油分との濡れ性が悪く油分を通過させやすい。However, compared to ceramic fiber porous materials, metal fiber porous materials have poor wettability with oil and allow oil to pass through them easily.
従って触媒を担持した金属繊維多孔体単独で用いると、
通過した油分が調理器内壁と金属繊維多孔体との隙間に
入り込んで蓄積しタール化してしまう。Therefore, if a metal fiber porous body supporting a catalyst is used alone,
The oil that passes through enters the gap between the inner wall of the cooker and the porous metal fiber body, accumulates, and turns into tar.
そこで、本発明ではセラミック繊維多孔体の上に金属繊
維多孔体を被覆し、通過した油分は油分との濡れ性のよ
いセラミック繊維多孔体部で保持し酸化分解する方式と
した。Therefore, in the present invention, a metal fiber porous body is coated on a ceramic fiber porous body, and the oil that has passed through the ceramic fiber porous body is retained in the ceramic fiber porous body that has good wettability with oil and is oxidized and decomposed.
尚、一部金属繊維多孔体に付着した油分も酸化分解でき
るよう金属繊維多孔体にも触媒を担持した。In addition, a catalyst was also supported on the metal fiber porous body in order to oxidize and decompose some of the oil that adhered to the metal fiber porous body.
また酸化分解の反応の場であるセラミック繊維多孔体は
金属と比べて熱放出が少ないためヒータの熱を効率よく
酸化分解に利用できる。Furthermore, since the ceramic fiber porous body, which is the site of the oxidative decomposition reaction, releases less heat than metal, the heat from the heater can be used efficiently for the oxidative decomposition.
また本発明でセラミック繊維多孔体及び金属繊維多孔体
に含有させる酸化物としてはCe、 CuMn、Co
、Ni、Feのうちから選択される少なくとも一種以上
の希土類もしくは遷移金属酸化物の酸化物を用いた。こ
れらの酸化物は油汚れ等のような炭化水素の酸化分解に
対して高い活性を示すため特に組成を限定するものでは
ない。Further, in the present invention, the oxides to be contained in the ceramic fiber porous body and the metal fiber porous body include Ce, CuMn, Co
, Ni, and Fe. At least one kind of rare earth or transition metal oxide was used. Since these oxides exhibit high activity against oxidative decomposition of hydrocarbons such as oil stains, there are no particular limitations on the composition.
但し、一実施例として本発明ではCe、Cu。However, as an example, in the present invention, Ce and Cu are used.
Mnの複合酸化物(以下この複合酸化物を表現上、Ce
Cu、Mn+−* o、(0<x<1.)’>O)と示
す。ただし、構造を示すものではない。)を用いた。前
記複合酸化物は単一元素あるいは2種元素の複合酸化物
に比べ炭化水素の酸化に対して高い活性を示す。これは
CeとCu、Mnの3元素系酸化物においては酸化物の
表面における元素が多くの原子価をとるからであり(例
えばMnは3価、4価、Cuは1価、2価など)、つま
りは単一あるいは2成分系では見られない異元素間での
原子価制御が行なわれ、反応に関してより通した表面を
作るからである。このことはXPSで認められる。Mn complex oxide (hereinafter this complex oxide will be expressed as Ce
Denoted as Cu, Mn+-*o, (0<x<1.)'>O). However, it does not indicate the structure. ) was used. The composite oxide exhibits higher activity for oxidizing hydrocarbons than composite oxides of a single element or two elements. This is because in ternary oxides of Ce, Cu, and Mn, the elements on the surface of the oxide have many valences (for example, Mn is trivalent and tetravalent, Cu is monovalent and divalent, etc.). This is because valence control between different elements, which cannot be seen in single or two-component systems, is achieved, creating a more permeable surface for reactions. This is recognized in XPS.
実施例 以下本発明について一実施例を用いて説明する。Example The present invention will be explained below using an example.
なお、触媒については前記したように一例としてCeC
u、MJ−x o、(0<x<1.y>0)を用いた。As for the catalyst, as mentioned above, for example, CeC
u, MJ-x o, (0<x<1.y>0) was used.
まず触媒体の製法について説明する。First, the manufacturing method of the catalyst body will be explained.
セラミック繊維多孔体としてはシリカ・アルミナ繊維(
Sin、:A1.Os !=+:l : 1.平均繊維
径2.8μm、空隙率92%、厚み1閣)を用いた。Silica/alumina fibers (
Sin, :A1. Os! =+:l: 1. The average fiber diameter was 2.8 μm, the porosity was 92%, and the thickness was 1 mm.
金属繊維多孔体としては、オーステナイト系ステンレス
綱の微細繊維を積層した厚み0.5腫のもの(空隙率6
5〜80%)及びAI不織布をAIエキスパンドメタル
でサンドインチした厚さ1mのもの(空隙率50〜60
%)を用いた。The metal fiber porous material is made by laminating fine fibers of austenitic stainless steel and has a thickness of 0.5 mm (porosity: 6).
5-80%) and 1m thick AI nonwoven fabric sandwiched with AI expanded metal (porosity 50-60%).
%) was used.
この他にもステンレスの微粉末を焼結した多孔材料を用
いることができる。In addition to this, a porous material made by sintering fine powder of stainless steel can also be used.
触媒の担持方法について3通りの方法を、CeCux
Mn+−+t O,(0<x<1.)I>0)を例に挙
げて説明する。第1はCe、Cu、Mnのいずれも硝酸
塩を所定のモル比で混合し、水溶液にしたものにN a
OH、N a t COsなどのアルカリ水溶液を加
えCe、Cu、Mnを水和物の形で沈澱させる。次にこ
の沈澱を中性になるまで水洗し、乾燥後450℃以上で
焼成し得られた酸化物を乳バチで粉砕し@粉化する。こ
のようにして得られた酸化物の微粉末を直接セラミック
繊維多孔体及び金属繊維多孔体に分散させる方法である
。CeCux describes three methods for supporting catalysts.
This will be explained by taking Mn+-+t O, (0<x<1.)I>0) as an example. The first method is to mix nitrates of Ce, Cu, and Mn in a predetermined molar ratio, make an aqueous solution, and add Na
An alkaline aqueous solution such as OH or Na t COs is added to precipitate Ce, Cu, and Mn in the form of hydrates. Next, this precipitate is washed with water until it becomes neutral, dried, and then calcined at a temperature of 450° C. or higher. The resulting oxide is crushed with a pestle and turned into powder. This is a method in which the fine powder of the oxide thus obtained is directly dispersed in a porous ceramic fiber body and a porous metal fiber body.
第2は同しくCe、Cu、Mnのいずれも硝酸塩を所定
のモル比で混合し、水溶液にしたものをスプレーガン(
スプレー条件の一例;デビルビス製スプレーガン、ノズ
ル口径1.4■φ、Air圧1、5〜2にg/cm″)
で塗布し450℃以上で30分間程度焼成する方法であ
る。The second method is to mix nitrates of Ce, Cu, and Mn in a predetermined molar ratio and make an aqueous solution using a spray gun.
An example of spray conditions: DeVilbiss spray gun, nozzle diameter 1.4 φ, air pressure 1, 5 to 2 g/cm'')
This is a method in which the coating is coated with water and baked at 450°C or higher for about 30 minutes.
第3には同じ<Ce、Cu、Mnのいずれも硝酸塩を所
定のモル比で混合し、水溶液にしたものに直接セラミッ
ク繊維多孔体及び金属繊維多孔体をディッピングして4
50°C以上で30分程度焼成する方法がある。Thirdly, nitrates of the same <Ce, Cu, and Mn are mixed in a predetermined molar ratio, and the ceramic fiber porous body and the metal fiber porous body are directly dipped in an aqueous solution.
There is a method of baking at 50°C or higher for about 30 minutes.
第1図及び第2図に本発明の実施例である触媒体の概念
断面図を示す。FIGS. 1 and 2 show conceptual cross-sectional views of a catalyst body that is an embodiment of the present invention.
第1図及び第2図は前記した3つの触媒担持方法のうち
第1番目に示したように酸化物の微粉末lを直接セラミ
’7り繊維多孔体2及び金属繊維多孔体3に分散させ、
2層を支持物4で挟着したものであるやまた金属繊維多
孔体として第2図では金属網の微細繊維を積層したもの
、第3図では金属繊維不織布をエキスパンドメタル5で
サンドイッチしたものを示した。Figures 1 and 2 show that fine oxide powder is directly dispersed in the ceramic fiber porous body 2 and the metal fiber porous body 3 as shown in the first of the three catalyst supporting methods described above. ,
The metal fiber porous body is made by sandwiching two layers between supports 4, and the metal fiber porous body shown in FIG. Indicated.
次にこのようにして作成した触媒体の油浄化性能につい
て説明する。Next, the oil purification performance of the catalyst body thus prepared will be explained.
セラミック繊維の重量に対して酸化物の微粉末(Ce:
Cu:Mn−r: 0.3: 0.7(650℃焼成)
)を5.10.25.50重量・%分散させたもの、(
それぞれA、B、C,D) 、ステンレス網の微細繊維
の積層板を金属塩水溶液中にディッピングし焼成したも
の(E)(酸化物担持量20重量・%)酸化物微粉末2
0重量・%を分散させたA1不織布をAIエキスパンド
メタルでサントイ・シチしたもの(F)、及びDとE、
DとFをDを下にして重ねたものを用いて評価した。Fine powder of oxide (Ce:
Cu:Mn-r: 0.3: 0.7 (650°C firing)
) dispersed at 5.10.25.50% by weight, (
A, B, C, D) respectively, and a laminated plate of stainless steel mesh fine fibers dipped in a metal salt aqueous solution and fired (E) (Oxide supported amount: 20% by weight) Oxide fine powder 2
A1 nonwoven fabric in which 0% by weight is dispersed is made of AI expanded metal (F), and D and E,
The evaluation was made by stacking D and F with D facing down.
評価方法はサラダ油を0.15 g、o、oirrrの
試験片上に滴下し、任意の温度保持したオーブン中に入
れサラダ油が焼ききれたものは○、焼ききれなかったも
のは×で評価した。The evaluation method was to drop 0.15 g of salad oil onto a test piece of oilrr, place it in an oven maintained at a desired temperature, and give an evaluation of ○ if the salad oil was completely baked, and a × if it could not be baked.
結果を次表に示す。The results are shown in the table below.
以下余白
表より本発明で用いた触媒ではセラミック繊維の重量に
対して25重量・%以上担持すれば300°Cでサラダ
油が焼ききれることがわかる。また今回A−Dでは65
0°C焼成の触媒を用いたが本発明の系の触媒ではより
低温の450°C程度で焼成し非晶質の部分を多くして
おいた方がより活性が高いことがわかっており、触媒を
低温焼成することにより油汚れの焼き切り温度が更に低
くなると推定される。From the margin table below, it can be seen that with the catalyst used in the present invention, salad oil can be baked at 300°C if the catalyst is supported at 25% by weight or more based on the weight of the ceramic fibers. Also, this time A-D is 65
Although a catalyst calcined at 0°C was used, it has been found that the catalyst of the present invention has higher activity when calcined at a lower temperature of about 450°C to increase the amorphous portion. It is estimated that by firing the catalyst at a low temperature, the temperature at which oil stains are burned off is further lowered.
E、 FはCe、Cu、Mn系で450°Cで焼成を
行った。E and F were based on Ce, Cu, and Mn, and were fired at 450°C.
総合的に判断して、セラミンク繊維多孔体、金属繊維多
孔体共に300°C程度で油汚れを焼ききることができ
る。Judging comprehensively, both the ceramic fiber porous material and the metal fiber porous material can burn off oil stains at about 300°C.
しかし金属繊維単独では油との濡れ性が悪いためセラミ
ック繊維多孔体の場合より活性が落ちる。However, since metal fibers alone have poor wettability with oil, their activity is lower than that of porous ceramic fibers.
そこで金属繊維とセラミック繊維を重ねて用いると(G
、H)、金属繊維多孔体を通過した油はセラミンク繊維
内で分解し、更に金属繊維上に付着した少量の油も分解
するため油分を完全に焼ききることができる。Therefore, if metal fibers and ceramic fibers are used in layers (G
, H) The oil that has passed through the metal fiber porous body is decomposed within the ceramic fibers, and a small amount of oil adhering to the metal fibers is also decomposed, so the oil can be completely burned off.
次に本触媒体のもう1つの特徴である表面強度について
説明する。Next, the surface strength, which is another feature of this catalyst, will be explained.
上記したサラダ油の焼ききり性能の評価に用いたのと同
し触媒体に、酢、しょう油、ケチャツプマヨネーズ、ソ
ース、カレー粉という6種の調味料をそれぞれ0.15
gずつ滴下し380”Cで1時間加熱した。結果、G
、Hは酢、しょう油、ソースが跡形なく焼け、ケチャツ
プは固く黒い灰が、マヨネーズは白い灰が、カレー粉で
は黒い灰が触媒体上に付着していた。しかし灰はふきん
等でふきとるときれいにはがれた。強度の高い金属繊維
多孔体が上面にあるため表面強度は実用上問題ないと思
われる。Six types of seasonings: vinegar, soy sauce, ketchup mayonnaise, sauce, and curry powder were added to the same catalyst as used in the above evaluation of the grilling performance of salad oil at 0.15% each.
g was added dropwise and heated at 380"C for 1 hour. As a result, G
, H, vinegar, soy sauce, and sauce were burnt without a trace, ketchup had hard black ash, mayonnaise had white ash, and curry powder had black ash on the catalyst. However, the ash came off cleanly when wiped with a cloth. Since the high-strength metal fiber porous body is on the top surface, the surface strength seems to pose no practical problem.
次に実際に調理器の庫内壁面に上記触媒体を取り付けた
。第3図に断面図を示す。取り付けの方法は接着、上記
した触媒体の支持物と庫内壁面6との溶接などが可能で
あるが今回は支持物を庫内壁面6にスポット溶接して取
り付けた。Next, the above catalyst body was actually attached to the inner wall surface of the cooking appliance. A sectional view is shown in FIG. The attachment can be done by adhesion or by welding the support of the catalyst body and the internal wall surface 6 of the refrigerator, but in this case, the support was spot welded to the internal wall surface 6 of the refrigerator.
第4図はここで組立てた調理器に用いた触媒体表面の平
面図である。調理室内の各面が第4図に示した外観をし
ており、触媒体表面8と支持用の枠9があり、支持用の
枠9と第3図の調理室内壁6とガスボットン容接されて
いる。FIG. 4 is a plan view of the surface of the catalyst used in the cooking device assembled here. Each side of the cooking chamber has the appearance shown in FIG. 4, and there is a catalyst surface 8 and a supporting frame 9, and the supporting frame 9 and the cooking chamber wall 6 shown in FIG. 3 are in contact with the gas bottle. ing.
第5図は、ここで組立てた調理器の外観図で、調理室ド
アは除いている。Figure 5 is an external view of the cooker assembled here, with the cooking chamber door removed.
実際に油の出やすい鳥肉や魚7を調理し、調理終了後に
触媒体表面の汚れを観察したが油汚れはほとんど見られ
なかった。When we actually cooked poultry and fish 7, which tend to produce oil, and observed the stains on the surface of the catalyst after cooking, we found that almost no oil stains were observed.
また金属繊維多孔体の表面は手触わりも外観もよく、調
理器の壁面材料として異和感がないと思われる。In addition, the surface of the metal fiber porous material has a good feel and appearance, and it seems to be suitable as a wall material for a cooking appliance.
発明の詳細
な説明したように本発明の触媒体は、多孔質であるため
油汚れの分解性能が非常に高く、調理器壁面に用いれば
300’Cで数分レベルで調理中に発生し壁面に付着し
た油汚れを浄化することができるゆ
また金属繊維で表面の強度を上げているため、外観や手
触わりもよく、焼は残った灰分や付着物等は簡単にふき
取ることができるため調理器庫内壁面をいつまでもきれ
いな状態に保つことができる。As explained in detail, the catalyst of the present invention is porous and has a very high ability to decompose oil stains. Yumata's surface is strengthened with metal fibers that can cleanse oil stains on the surface, giving it a good appearance and feel, and remaining ash and deposits can be easily wiped off. The inner wall surface of the cooking cabinet can be kept clean forever.
第1図及び第2図はそれぞれ本発明の一実施例における
セルフクリーニング触媒体の概念断面図、第3図は同セ
ルフクリーニング触媒体を用いた調理器の断面図、第4
図は同セルフクリーニング触媒体の表面の平面図、第5
図は調理器の外観斜視図である。
1・・・・・・酸化触媒、2・・・・・・セラミック繊
維から成る多孔体、3・・・・・・金属繊維から成る多
孔体、4・・・・・・支持物、5・・・・・・エキスパ
ンドメタル、7・・・・・・被調理物、8・・・・・・
触媒体表面。1 and 2 are conceptual cross-sectional views of a self-cleaning catalyst according to an embodiment of the present invention, FIG. 3 is a cross-sectional view of a cooking appliance using the same self-cleaning catalyst, and FIG.
The figure is a plan view of the surface of the self-cleaning catalyst, and
The figure is an external perspective view of the cooking device. DESCRIPTION OF SYMBOLS 1... Oxidation catalyst, 2... Porous body made of ceramic fibers, 3... Porous body made of metal fibers, 4... Support material, 5... ...Expanded metal, 7...To be cooked, 8...
Catalyst surface.
Claims (4)
rO_2のうちいずれか少なくとも一種の酸化物を主成
分とするセラミック繊維から成る多孔体と、酸化触媒を
含む金属繊維から成る多孔体と、前記セラミック繊維か
ら成る多孔体と前記金属繊維から成る多孔体とを挟着す
る支持物とからなり、前記酸化触媒としてCe、Cu、
Mn、Co、Ni、Feのうちから選択される少なくと
も一種の希土類もしくは遷移金属酸化物を用いたセルフ
クリーニング触媒体。(1) Contains oxidation catalyst, SiO_2, Al_2O_3, Z
A porous body made of ceramic fibers containing at least one kind of oxide among rO_2 as a main component, a porous body made of metal fibers containing an oxidation catalyst, and a porous body made of the ceramic fibers and the metal fibers. The oxidation catalyst includes Ce, Cu,
A self-cleaning catalyst using at least one rare earth or transition metal oxide selected from Mn, Co, Ni, and Fe.
を積層したもの、あるいは板状の金属長繊維の少なくと
も片面にエキスパンドメタルを設けて焼結したもの、あ
るいは金属粉末を焼結した特許請求の範囲第(1)項記
載のセルフクリーニング触媒体。(2) The porous body made of metal fibers is a laminate of fine metal fibers, a plate-shaped long metal fiber with expanded metal provided on at least one side and sintered, or a patent for sintering metal powder. A self-cleaning catalyst body according to claim (1).
3、ZrO_2のうちいずれか少なくとも一種の酸化物
を主成分とするセラミック繊維から成る多孔体と、酸化
触媒を含む金属繊維から成る多孔体と、前記セラミック
繊維から成る多孔体と前記金属繊維から成る多孔体とを
挟着する支持物とから成り、前記酸化触媒としてCe、
Cu、Mn、Co、Ni、Feのうちから選択される少
なくとも一種の希土類もしくは遷移金属酸化物を用いた
セルフクリーニング触媒体を調理室内壁に設けた加熱調
理器。(3) Contains oxidative decomposition catalyst, SiO_2, Al_2O_
3. A porous body made of ceramic fibers containing at least one kind of oxide among ZrO_2 as a main component, a porous body made of metal fibers containing an oxidation catalyst, and a porous body made of the ceramic fibers and the metal fibers. a porous body and a support sandwiching the porous body, and as the oxidation catalyst, Ce,
A heating cooker in which a self-cleaning catalyst body using at least one kind of rare earth or transition metal oxide selected from Cu, Mn, Co, Ni, and Fe is provided on the inner wall of the cooking chamber.
を積層したもの、あるいは板状の金属長繊維の少なくと
も片面にエキスパンドメタルを設けて焼結したもの、あ
るいは金属粉末を焼結した特許請求の範囲第(3)項記
載の加熱調理器。(4) The porous body made of metal fibers is a laminate of fine metal fibers, a plate-shaped long metal fiber with expanded metal provided on at least one side and sintered, or a patent for sintering metal powder. A heating cooker according to claim (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1296514A JP2507097B2 (en) | 1989-11-15 | 1989-11-15 | Self-cleaning catalyst and heating cooker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1296514A JP2507097B2 (en) | 1989-11-15 | 1989-11-15 | Self-cleaning catalyst and heating cooker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03157141A true JPH03157141A (en) | 1991-07-05 |
JP2507097B2 JP2507097B2 (en) | 1996-06-12 |
Family
ID=17834527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1296514A Expired - Fee Related JP2507097B2 (en) | 1989-11-15 | 1989-11-15 | Self-cleaning catalyst and heating cooker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2507097B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6276173B1 (en) * | 1997-02-20 | 2001-08-21 | N.V. Bekaert S.A. | Covering for structures that come into contact with glass objects during their moulding process |
JP2004288650A (en) * | 2004-07-13 | 2004-10-14 | Matsushita Electric Ind Co Ltd | Induction heating cooking device |
-
1989
- 1989-11-15 JP JP1296514A patent/JP2507097B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6276173B1 (en) * | 1997-02-20 | 2001-08-21 | N.V. Bekaert S.A. | Covering for structures that come into contact with glass objects during their moulding process |
JP2004288650A (en) * | 2004-07-13 | 2004-10-14 | Matsushita Electric Ind Co Ltd | Induction heating cooking device |
Also Published As
Publication number | Publication date |
---|---|
JP2507097B2 (en) | 1996-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3266477A (en) | Self-cleaning cooking apparatus | |
US5094222A (en) | Catalytic composite and a cooker having the same | |
US7696128B2 (en) | Catalytic coating for the self-cleaning of ovens and stoves | |
US4968656A (en) | Mixed oxide catalyst and coating or porous material comprising the same | |
JPH03157141A (en) | Self-cleaning catalytic body and heating cooker | |
US3627560A (en) | Self-cleaning cooking apparatus | |
JPH03154636A (en) | Deodorization catalyst | |
US3545423A (en) | Self-cleaning cooking apparatus | |
JP2884685B2 (en) | Wall material for cookers | |
JPH03160224A (en) | Heating cooker | |
JPS5940507B2 (en) | Self-cleaning wall forming method for the inner wall of a cooking appliance | |
JPH0338254A (en) | Heat-resisting film | |
JPH0559114U (en) | Heating cooker | |
JPS60102941A (en) | Self-purifying coated body | |
JPS6325769B2 (en) | ||
JPH0464736B2 (en) | ||
JPH029451A (en) | Coated layer for self-cleaning | |
JPS6138660Y2 (en) | ||
JPH01306732A (en) | Cooker | |
JPS5830324A (en) | Purification method for soot | |
JPS61234947A (en) | Catalyst body | |
JPS5821534B2 (en) | catalyst body | |
JPS61249540A (en) | Catalyst | |
JPH0813336B2 (en) | Covered surface | |
JPH0813334B2 (en) | Self-cleaning coated surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |