JPH08132207A - Method for suppressing surface crack at the time of continuously casting steel - Google Patents

Method for suppressing surface crack at the time of continuously casting steel

Info

Publication number
JPH08132207A
JPH08132207A JP27466294A JP27466294A JPH08132207A JP H08132207 A JPH08132207 A JP H08132207A JP 27466294 A JP27466294 A JP 27466294A JP 27466294 A JP27466294 A JP 27466294A JP H08132207 A JPH08132207 A JP H08132207A
Authority
JP
Japan
Prior art keywords
cooling
slab
steel
content
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27466294A
Other languages
Japanese (ja)
Inventor
Toru Kato
徹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27466294A priority Critical patent/JPH08132207A/en
Publication of JPH08132207A publication Critical patent/JPH08132207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE: To provide a method for suppressing the surface crack at the time of continuously casting a steel, particularly Ni-containing steel. CONSTITUTION: In a secondary cooling at the time of continuously casting the steel containing 0-50% Ni, the cooling is executed under condition in which the relation of Ni content MNi in a cast slab, water quantity density W (l/min.m<2> ) of the secondary cooling and the surface temp. T ( deg.C) of the cast slab at the secondary cooling zone satisfy the following inequality to suppress the surface crack at the time of continuously casting the steel. The inequality is: T>(650+5W<1/2> .MNi <1/3> ). By this method, the surface crack of traversed crazing caused on the cast slab surface of the continuous casting can be prevented or reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼、特にNi含有鋼の連
続鋳造時における横ひび割れなどの表面割れを抑制する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for suppressing surface cracks such as lateral cracks during continuous casting of steel, especially Ni-containing steel.

【0002】[0002]

【従来の技術】鋼にNiを添加すると低温靱性が向上す
る。このため、Niを2〜10%程度含む鋼が低温用鋼とし
て使用されている。なかでも、Niを9%程度含む鋼は、
−160 ℃以下での使用に耐えることから液化天然ガスな
どのタンク材などに用いられている。しかし、Ni含有量
が 5.5〜10%では、普通の炭素鋼、低合金鋼に比べて、
表面横ひび割れ、表皮下割れ、コーナー割れの発生が激
しく、連続鋳造による製造が困難である。
2. Description of the Related Art When Ni is added to steel, low temperature toughness is improved. Therefore, steel containing Ni in an amount of 2 to 10% is used as a low temperature steel. Above all, steel containing about 9% Ni
It is used for tank materials such as liquefied natural gas because it withstands use below -160 ° C. However, when the Ni content is 5.5-10%, compared to ordinary carbon steel and low alloy steel,
Surface lateral cracks, subepidermal cracks, and corner cracks are severely generated, making continuous casting difficult.

【0003】一方、上記9%Ni鋼のような特殊用途の鋼
材に限らず、一般の厚板材についても材料特性上の要求
から、Niを 0.1〜1%程度含有する鋼種の生産量が増加
している。しかし、この鋼の連続鋳造時にも横ひび割れ
が発生する場合があり、このため熱延工程への直行率の
向上が妨げられている。
On the other hand, not only the steel materials for special applications such as the 9% Ni steel described above but also the general thick plate materials are required to have material properties, so that the production amount of steel types containing 0.1 to 1% Ni increases. ing. However, lateral cracks may also occur during continuous casting of this steel, which hinders improvement in the orthogonality ratio to the hot rolling process.

【0004】これらの割れは、連続鋳造の2次冷却時に
鋳片表面温度が熱間延性を低下させるγ→α変態温度近
傍 (約 600〜850 ℃) になり、このとき熱応力、矯正応
力を受けることにより生じる。
[0004] These cracks become the slab surface temperature near the γ → α transformation temperature (about 600 to 850 ° C) which lowers the hot ductility at the time of the secondary cooling of continuous casting, at which time the thermal stress and the correction stress are reduced. It occurs by receiving.

【0005】Niを 5.5〜10%含有する鋼を連続鋳造化す
るために、冷却方法を改善する方法や鋼の化学組成を限
定する方法が、いくつか提案されている。
Several methods have been proposed for improving the cooling method and for limiting the chemical composition of steel in order to continuously cast steel containing 5.5 to 10% of Ni.

【0006】冷却方法を改善するものとして、例えば特
開昭57−32862 号公報には、矯正点での表面温度が延性
の低下する温度域を高温側に回避できるような弱冷却の
冷却パターンを取り、かつ、鋳片表面温度の均一化を図
る2次冷却方法が示されている。
As a method for improving the cooling method, for example, Japanese Patent Laid-Open No. 57-32862 discloses a cooling pattern of weak cooling that can avoid a temperature range where the surface temperature at the correction point is low in ductility on the high temperature side. A secondary cooling method is shown which aims at taking and uniformizing the surface temperature of the slab.

【0007】この発明には、2次冷却水ノズルにオーバ
ルタイプノズルや気水ノズル(ミストノズル)を用いる
ことにより、鋳片表面温度が均一化し、鋳片表面に発生
する熱応力が低減され、その結果、鋳片表面疵を防止す
ることが可能となることも記載されている。しかし、こ
れらの対策を採っても、鋳片幅方向の端部(鋳片コーナ
ー部分)では、冷却されやすく鋳片内部からの復熱の効
果も少ないために、矯正点における表面温度を延性の低
下する温度以上に安定して維持することは困難であると
いう問題を内在している。
According to the present invention, by using an oval type nozzle or a steam nozzle (mist nozzle) as the secondary cooling water nozzle, the surface temperature of the slab is made uniform and the thermal stress generated on the surface of the slab is reduced, As a result, it is also described that it is possible to prevent surface defects on the slab. However, even if these measures are taken, the end portion in the width direction of the slab (the slab corner portion) is easily cooled, and the effect of recuperating heat from the inside of the slab is small, so that the surface temperature at the straightening point is less ductile. There is an inherent problem that it is difficult to maintain a stable temperature above the decreasing temperature.

【0008】同じく特公平5−4169号公報には、1150〜
950 ℃の温度領域で冷却速度を20℃/分以下に制御すれ
ば延性が向上するという知見のもとに、連続鋳造時の冷
却速度を1150〜950 ℃の温度領域で20℃/分以下に抑制
することにより、連続鋳造時の表面割れを防止する方法
が提案されている。
Similarly, Japanese Examined Patent Publication No. 5-4169 discloses that 1150-
Based on the knowledge that if the cooling rate is controlled to 20 ° C / min or less in the temperature range of 950 ° C, the ductility is improved, the cooling rate during continuous casting should be 20 ° C / min or less in the temperature range of 1150 to 950 ° C. A method of preventing surface cracks during continuous casting by suppressing the amount has been proposed.

【0009】一方、化学組成を限定するものとして、特
公昭60−8134号公報に示される方法がある。この方法
は、CaやTiを添加することにより材料の延性を改善し、
鋳片表面に発生する疵を防止するものである。P、Sに
ついても、これらの元素が粒界に偏析すると割れやすく
なるため、例えば前記特公平5−4169号公報では、冷却
速度の抑制に加えて、S:0.003 %以下、P:0.010 %
以下、N: 0.004%以下に高純度化するのが望ましいと
されている。
On the other hand, as a method for limiting the chemical composition, there is a method disclosed in JP-B-60-8134. This method improves the ductility of the material by adding Ca and Ti,
It is intended to prevent flaws generated on the surface of the slab. As for P and S, if these elements segregate at the grain boundaries, they tend to crack. For example, in JP-B-5-4169, in addition to suppressing the cooling rate, S: 0.003% or less, P: 0.010%
Hereinafter, it is said that it is desirable to highly purify N: 0.004% or less.

【0010】しかし、Niを 5.5〜10%含有する低温用鋼
では、上記の提案のような方法で連続鋳造し冷却して
も、依然として割れの発生を完全に防止するには至って
いない。
However, in low temperature steel containing 5.5 to 10% of Ni, even if continuously cast and cooled by the method as proposed above, the generation of cracks has not been completely prevented yet.

【0011】一般鋼について連続鋳造時に発生する横ひ
び割れを防止するためのものとして、例えば特公昭58−
3790号公報には、いったん鋳型直下で急冷却して組織を
微細化した後、矯正点では前述のγ→α変態温度近傍の
高温脆化域を回避する方法が提案されている。鋳片に発
生する歪の原因となり、割れ発生の起因となる矯正を施
す場所で、高温脆化域を高温側あるいは低温側に回避す
るように2次冷却を制御する方法は一般に行われている
ものの、Ni含有鋼では十分な効果をあげていない。
As a means for preventing lateral cracks occurring in continuous casting of general steel, for example, Japanese Patent Publication No. 58-
In Japanese Patent No. 3790, a method is proposed in which, immediately after being immediately cooled under the mold, the structure is refined, and then at the correction point, the high temperature embrittlement region near the γ → α transformation temperature is avoided. A method of controlling the secondary cooling is generally performed so as to avoid the high temperature embrittlement region on the high temperature side or the low temperature side in a place where the correction that causes the strain that occurs in the slab and causes the crack generation occurs. However, the Ni-containing steel is not sufficiently effective.

【0012】[0012]

【発明が解決しようとする課題】前述の従来の方法によ
っても、なお鋳片表面の割れ発生は避けられず、十分な
品質の鋳片は得られていない。さらに、前述のように従
来の方法では、一般鋼またはNiを 0.1〜1%程度含有す
る鋼について連続鋳造時に発生する横ひび割れを防止す
るために、高温脆化域を矯正点で高温側あるいは低温側
に回避するように冷却を制御しているにすぎない。した
がって、高Ni含有鋼まで適用することができる定量的な
連続鋳造鋳片の冷却条件は明らかになっていない。
Even with the above-mentioned conventional method, the occurrence of cracks on the surface of the slab cannot be avoided, and a slab with sufficient quality cannot be obtained. Further, as described above, in the conventional method, in order to prevent lateral cracks that occur during continuous casting of general steel or steel containing 0.1 to 1% of Ni, the high temperature embrittlement region is set at the high temperature side or low temperature at the correction point. It just controls the cooling to avoid it. Therefore, quantitative cooling conditions for continuously cast slabs that can be applied to steels with high Ni content have not been clarified.

【0013】本発明は、このような問題点を解決し、Ni
含有量に応じて連続鋳造時の2次冷却条件を制御するこ
とにより、鋳片の横ひび割れを防止あるいは低減するこ
とができる冷却方法を提供するものである。
The present invention solves these problems and provides a Ni
The present invention provides a cooling method capable of preventing or reducing lateral cracking of a slab by controlling secondary cooling conditions during continuous casting according to the content.

【0014】[0014]

【課題を解決するための手段】本発明は、次の連続鋳造
時の表面割れ抑制方法を要旨とする。
DISCLOSURE OF THE INVENTION The gist of the present invention is a method for suppressing surface cracks in the following continuous casting.

【0015】Niをmass%で0〜50%含有する鋼を連続鋳
造する際の2次冷却において、鋳片のNi含有量MNi、2
次冷却の水量密度W (リットル/min・m2) および2次冷
却帯の鋳片の表面温度T (℃) の関係が下記式を満た
す条件下で冷却を行うことを特徴とする鋼の連続鋳造時
における表面割れ抑制方法。
In secondary cooling when continuously casting a steel containing Ni in an amount of 0 to 50% by mass, the Ni content of the slab M Ni , 2
Continuous steel characterized in that cooling is carried out under the condition that the relationship between the water quantity density W (liter / min · m 2 ) of the secondary cooling and the surface temperature T (° C) of the slab in the secondary cooling zone satisfies the following formula: Method of suppressing surface cracks during casting.

【0016】 T>( 650+5W1/2 ・MNi 1/3 )・・・ ここでいう水量密度とは、2次冷却帯の鋳片表面の任意
の点において、単位面積、単位時間に衝突する水量を意
味する。
T> (650 + 5W 1/2 · M Ni 1/3 ) ... The water amount density here means that the water collides with a unit area and a unit time at an arbitrary point on the surface of the slab in the secondary cooling zone. It means the amount of water.

【0017】本発明者は、鋼の連続鋳造時に発生する表
面疵防止技術の開発の過程において、鋼を水スプレーあ
るいは気水ミストにより冷却する際には、冷却特性がNi
含有量により変化し、このときの表面温度の変化はNi含
有量および冷却水量密度で整理できることを知見した。
The present inventor, in the process of developing a surface flaw prevention technique which occurs during continuous casting of steel, has a cooling characteristic of Ni when cooling the steel with water spray or steam mist.
It was found that it changes depending on the content, and the change of the surface temperature at this time can be arranged by the Ni content and the cooling water density.

【0018】[0018]

【作用】本発明方法の冷却条件を前記のように定めた理
由について、実験結果により説明する。%はmass%を意
味する。
The reason for setting the cooling conditions of the method of the present invention as described above will be explained by the experimental results. % Means mass%.

【0019】鋳片を冷却する際、表面温度に影響を与え
る要因としては、その表面熱伝達係数、この係数と係わ
る鋳片の成分(特にNi含有量)と表面のスケールの有無
および冷却媒体とその密度が考えられる。これらは、鋳
片の表面割れに重要な影響を及ぼす要因でもある。以
下、表面熱伝達係数を単に熱伝達係数という。
When cooling the slab, factors affecting the surface temperature include the surface heat transfer coefficient, the components of the slab (particularly the Ni content) related to this coefficient, the presence or absence of scale on the surface, and the cooling medium. The density is considered. These are also factors that have an important influence on the surface cracking of the slab. Hereinafter, the surface heat transfer coefficient will be simply referred to as the heat transfer coefficient.

【0020】最初に、鋳片の表面温度T(℃)及び冷却
媒体と表面熱伝達係数h (W/m2・K)との関係を述べ
る。
First, the relationship between the surface temperature T (° C.) of the slab and the cooling medium and the surface heat transfer coefficient h (W / m 2 · K) will be described.

【0021】本発明者は、Ni含有鋼の連続鋳造時には鋳
片表面の「温度むら」が発生しやすいことを知り、この
機構を明らかにするためにNi含有量と冷却媒体を変えて
冷却し、その冷却特性を調査した。
The inventors of the present invention have found that "temperature unevenness" on the surface of the slab is likely to occur during continuous casting of Ni-containing steel, and in order to clarify this mechanism, the Ni content and the cooling medium are changed to cool. , Its cooling characteristics were investigated.

【0022】表1に供試材の組成を示す。Ni含有量のみ
を0〜9%で変化させ、他の成分はほぼ一定にしたもの
である。
Table 1 shows the composition of the test material. Only the Ni content was changed from 0 to 9%, and the other components were kept almost constant.

【0023】[0023]

【表1】 [Table 1]

【0024】実験は、予め高周波を用いて1200〜1300℃
に加熱しておいた試験片を、水スプレーあるいは水+空
気のミストにより冷却する方法で行った。冷却時の温度
変化は、予め試験片に埋め込んでおいた熱電対により測
定した。表2に、試験片の寸法と冷却条件を示す。
The experiment was conducted in advance by using high frequency wave at 1200-1300 ° C.
The test piece that had been heated above was cooled by a water spray or a mist of water and air. The temperature change during cooling was measured by a thermocouple embedded in the test piece in advance. Table 2 shows the dimensions of the test pieces and the cooling conditions.

【0025】[0025]

【表2】 [Table 2]

【0026】得られた冷却曲線から数値解析を行い、試
験片の表面温度Tと熱伝達係数hとの関係を求めた。こ
れらの例を図1および図2に示す。
Numerical analysis was carried out from the obtained cooling curve to determine the relationship between the surface temperature T of the test piece and the heat transfer coefficient h. Examples of these are shown in FIGS. 1 and 2.

【0027】図1は、熱伝達係数hに及ぼすNi含有量と
表面温度Tの影響を示す図である。
FIG. 1 is a diagram showing the effects of the Ni content and the surface temperature T on the heat transfer coefficient h.

【0028】図2は、図1の関係の一例を模式的に示
し、後述する熱伝達係数変曲点Tc の意味を説明する図
である。
FIG. 2 is a diagram schematically showing an example of the relationship of FIG. 1 and explaining the meaning of a heat transfer coefficient inflection point Tc described later.

【0029】この図2から、表面温度Tが低下すると、
ある温度Tc で熱伝達係数hが急激に変化し、Tc 以下
で急勾配で上昇することがわかる。以下、この温度Tc
を熱伝達係数変曲点と呼ぶ。
From FIG. 2, when the surface temperature T decreases,
It can be seen that the heat transfer coefficient h changes abruptly at a certain temperature Tc and rises steeply below Tc. Below this temperature Tc
Is called the heat transfer coefficient inflection point.

【0030】すなわち、熱伝達係数変曲点Tc を境界と
して鋳片表面の冷却条件が急変し、これが鋳片表面の割
れ発生に係わってくるのである。この機構は次のように
説明される。
That is, the cooling conditions on the surface of the slab suddenly change with the inflection point Tc of the heat transfer coefficient as a boundary, and this causes the occurrence of cracks on the surface of the slab. This mechanism is explained as follows.

【0031】従来の研究によれば、この現象は冷却水の
沸騰状態の変化と対応し、熱伝達係数変曲点Tc より高
温側は膜沸騰領域に、低温側は遷移沸騰領域に相当して
いる。図2に示すように、表面温度が低いほど熱伝達係
数が増大することから、何らかの理由により表面温度が
低い部分が発生すると、その部分は熱伝達係数が高いた
めに冷却が強化され、更に温度が低下する。遷移沸騰領
域では熱伝達係数の変化が急激であることから、この冷
却強化効果が助長される。
According to the conventional research, this phenomenon corresponds to the change of the boiling state of the cooling water, and the high temperature side and the low temperature side of the heat transfer coefficient inflection point Tc correspond to the film boiling region and the transition boiling region, respectively. There is. As shown in FIG. 2, the heat transfer coefficient increases as the surface temperature becomes lower. Therefore, if a part having a low surface temperature occurs for some reason, the part has a high heat transfer coefficient, so that the cooling is strengthened and the temperature is further increased. Is reduced. Since the change in the heat transfer coefficient is rapid in the transition boiling region, this cooling enhancement effect is promoted.

【0032】このため、連続鋳造時の鋳片表面温度が遷
移沸騰領域になると、表面温度の不均一が助長される方
向に働き、鋳片表面の「温度むら」となって熱応力が発
生し、表面割れ発生の一因になる。
Therefore, when the surface temperature of the slab during continuous casting is in the transition boiling region, unevenness of the surface temperature is promoted, which causes "temperature unevenness" on the surface of the slab, causing thermal stress. , Which contributes to the occurrence of surface cracks.

【0033】したがって、連続鋳造の2次冷却の際に鋳
片表面の割れを抑制するには、鋳片表面温度が遷移沸騰
領域とならないように制御すること、すなわち、鋳片表
面温度を常に熱伝達係数変曲点Tc 以上に維持すること
が必要である。
Therefore, in order to suppress cracks on the surface of the slab during secondary cooling in continuous casting, control is performed so that the surface temperature of the slab does not fall in the transition boiling region, that is, the surface temperature of the slab is constantly heated. It is necessary to maintain the transfer coefficient at or above the inflection point Tc.

【0034】図1は、Ni含有量毎の表面温度と熱伝達係
数hを示す図であるが、それぞれのNi含有量の場合につ
いて熱伝達係数変曲点Tc を超える温度領域が望ましい
膜沸騰領域となる。図1から明らかなように、Ni含有量
が増加しても、膜沸騰領域の熱伝達係数には大きな変化
はない。しかし、Ni含有量の増加に伴い、熱伝達係数変
曲点Tc は高温側に大きく移動する。
FIG. 1 is a diagram showing the surface temperature and the heat transfer coefficient h for each Ni content. For each Ni content, it is desirable that the temperature range is above the heat transfer coefficient inflection point Tc. Becomes As is clear from FIG. 1, even if the Ni content is increased, the heat transfer coefficient in the film boiling region does not change significantly. However, as the Ni content increases, the heat transfer coefficient inflection point Tc largely moves to the high temperature side.

【0035】このため、Ni含有鋼の鋳片表面の割れを抑
制するには、Ni含有量に応じて鋳片表面温度を常に熱伝
達係数変曲点Tc 以上に維持することができる冷却条件
を見いだすことが必須となるのである。
Therefore, in order to suppress the cracking of the surface of the slab of Ni-containing steel, cooling conditions are required so that the surface temperature of the slab can always be maintained above the heat transfer coefficient inflection point Tc in accordance with the Ni content. It is essential to find out.

【0036】次に、熱伝達係数変曲点Tc に及ぼすNi含
有量と冷却媒体側の条件との影響を説明する。
Next, the effect of the Ni content and the conditions on the cooling medium side on the heat transfer coefficient inflection point Tc will be described.

【0037】Ni含有鋼ではサブスケールが鋳片表面に生
成する。サブスケールの構造は一般鋼の場合と異なり、
その剥離が困難である上に、その厚さはNi含有量の増加
とともに厚くなる。このようなスケールが鋳片表面に存
在するときには、熱伝達係数変曲点Tc が高温側に移動
する。しかし、Ni含有量と熱伝達係数変曲点Tc および
冷却条件との関係を明らかにした報告はない。
In the Ni-containing steel, subscale is formed on the surface of the slab. The structure of the subscale is different from that of general steel,
In addition to being difficult to peel off, its thickness increases with increasing Ni content. When such a scale exists on the surface of the slab, the heat transfer coefficient inflection point Tc moves to the high temperature side. However, there is no report clarifying the relationship between the Ni content, the heat transfer coefficient inflection point Tc, and the cooling conditions.

【0038】そこで、冷却媒体を水スプレーと水+空気
のミストとし、水量密度W (リットル/min・m2) を変化
させたとき、熱伝達係数変曲点Tc がNi含有量に応じて
具体的にどの程度変化するかを調査した。冷却条件によ
りγ→αの変態潜熱による凹部があり、熱伝達係数変曲
点Tc の判定が困難な場合もあったが、この影響を極力
排除するように判定を行った。その結果、熱伝達係数変
曲点Tc は、±30℃以内のよい再現性を示し、Ni含有量
Niの 1/3乗と良い直線関係があることがわかった。
Therefore, when a water spray and a mist of water and air are used as the cooling medium, and the water amount density W (liter / min · m 2 ) is changed, the heat transfer coefficient inflection point Tc is determined according to the Ni content. To see how much it changes. Depending on the cooling conditions, there was a recess due to the latent heat of transformation of γ → α, and there were cases where it was difficult to determine the heat transfer coefficient inflection point Tc, but the determination was made to eliminate this effect as much as possible. As a result, it was found that the heat transfer coefficient inflection point Tc showed good reproducibility within ± 30 ° C. and had a good linear relationship with the 1/3 power of the Ni content M Ni .

【0039】図3は、熱伝達係数変曲点Tc に及ぼす冷
却条件とNi含有量MNiの影響の例を示す図である。プロ
ットは実測値である。曲線は数値解析を行って求めた実
験式であり、Ni含有量MNiの1/3 乗にある係数を掛けた
ものである。
FIG. 3 is a diagram showing an example of the influence of the cooling conditions and the Ni content M Ni on the heat transfer coefficient inflection point Tc. Plots are measured values. The curve is an empirical formula obtained by performing a numerical analysis, and is obtained by multiplying the Ni content M Ni to the 1/3 power by a coefficient.

【0040】さらに、冷却条件を適正に定めるには、熱
伝達係数変曲点Tc に及ぼす水量密度W (リットル/min
・m2) の影響を定量化する必要がある。このため、図3
から得られたデータなどをもとに、これを検討した。
Further, in order to properly determine the cooling condition, the water amount density W (liter / min) which affects the heat transfer coefficient inflection point Tc
・ It is necessary to quantify the effect of m 2 ). Therefore, in FIG.
This was examined based on the data obtained from

【0041】膜沸騰領域における熱伝達係数(冷却の強
度)には、スプレー冷却の場合では水量密度Wが、ミス
ト冷却の場合では水量密度Wと衝突流速Vが、それぞれ
主に関与することが知られている。したがって、冷却水
の沸騰状態が膜沸騰から遷移沸騰に変化する場合も、そ
の機構から考えて、いずれも同様の因子が支配的となる
と考えてよい。
It is known that the heat transfer coefficient (cooling strength) in the film boiling region is mainly related to the water amount density W in the case of spray cooling, and the water amount density W and the collision flow velocity V in the case of mist cooling. Has been. Therefore, even when the boiling state of the cooling water changes from film boiling to transition boiling, it can be considered from the mechanism that the same factors are dominant.

【0042】実験結果によれば、熱伝達係数変曲点Tc
は衝突流速Vが大きいときに高温側に移動した。しか
し、通常連続鋳造の2次冷却条件で使用される衝突流速
V:10〜50m/s の範囲では、その影響は20℃程度と少な
く、衝突流速Vの影響は無視することができる。液滴粒
径、衝突圧力など他の因子についても検討を行ったが、
それらの影響は認められない。
According to the experimental results, the heat transfer coefficient inflection point Tc
Moved to the high temperature side when the collision flow velocity V was high. However, in the range of the collision flow velocity V: 10 to 50 m / s which is usually used in the secondary cooling condition of continuous casting, the influence is as small as about 20 ° C., and the influence of the collision flow velocity V can be ignored. We also examined other factors such as droplet size and collision pressure,
Their effects are not recognized.

【0043】上記の検討と数値解析により、ミスト冷却
とスプレー冷却のいずれの場合においても、熱伝達係数
変曲点Tc は、水量密度Wの影響を受け、水量密度Wの
1/2乗と良い直線関係があるという結果を得た。
From the above examination and numerical analysis, the heat transfer coefficient inflection point Tc is influenced by the water amount density W in both cases of mist cooling and spray cooling,
The result is that it has a good linear relationship with 1/2 power.

【0044】以上の知見から、熱伝達係数変曲点Tc
(℃)とNi含有量MNi(mass%)および水量密度W (リ
ットル/min・m2) との関係を、下記(1) 式で示す実験式
として表すことができる。
From the above findings, the heat transfer coefficient inflection point Tc
The relationship between (° C.), Ni content M Ni (mass%), and water amount density W (liter / min · m 2 ) can be expressed as an empirical formula shown by the following formula (1).

【0045】 Tc = 650+5W1/2 ・MNi 1/3 ・・・(1) ここで、第1項の 650はNiを含有しないときのベースと
なる熱伝達係数変曲点を、第2項はNi含有量および水量
密度の熱伝達係数変曲点への影響分を、それぞれ表す。
Tc = 650 + 5W 1/2 · M Ni 1/3 (1) Here, 650 of the first term is the inflection point of the heat transfer coefficient which is the base when Ni is not contained, and the second term is Represents the influence of Ni content and water density on the heat transfer coefficient inflection point.

【0046】第1項の 650については、次のように考え
て定めた。すなわち、本来Niを含有しないときも冷却条
件により冷却水の沸騰状態が変化し、熱伝達係数変曲点
Tcは移動することが考えられる。しかし、上記実験結
果ではその影響は 50 ℃程度と小さいので無視し、熱伝
達係数変曲点Tc の実測値の変動範囲の中で高めの値で
ある 650とした。
The value of 650 in the first term was determined in consideration of the following. That is, it is conceivable that the boiling state of the cooling water changes depending on the cooling conditions and the heat transfer coefficient inflection point Tc moves even when it does not originally contain Ni. However, in the above experimental results, the influence is small at about 50 ° C., so it is ignored and set to 650, which is a higher value in the range of fluctuation of the measured value of the heat transfer coefficient inflection point Tc.

【0047】第2項の係数は、前述の熱伝達係数変曲点
Tc とNi含有量MNiとの関係および熱伝達係数変曲点T
c と水量密度Wとの関係を導出する過程で得られた係数
から定めたものである。ただし、第2項の係数も、第1
項の定数値と同様に、実際の連続鋳造における温度変動
を考慮して、(1) 式で求めるTc 値が実験の際の実測値
よりも大きくなるように定めた。
The coefficient of the second term is the relationship between the above-mentioned heat transfer coefficient inflection point Tc and the Ni content M Ni and the heat transfer coefficient inflection point T.
It is determined from the coefficient obtained in the process of deriving the relationship between c and the water amount density W. However, the coefficient of the second term is also the first
Similar to the constant value of the term, considering the temperature fluctuation in the actual continuous casting, the Tc value determined by the equation (1) was set to be larger than the actually measured value in the experiment.

【0048】図4は、前記(1) 式を用いて求めた熱伝達
係数変曲点Tc に及ぼす水量密度WとNi含有量MNiとの
影響を示す図である。
FIG. 4 is a diagram showing the influence of the water content density W and the Ni content M Ni on the heat transfer coefficient inflection point Tc obtained by using the equation (1).

【0049】前述のように、連続鋳造時の鋳片表面温度
が遷移沸騰領域になると、表面割れ発生の一因となるこ
とから、常に鋳片表面温度Tを(1) 式で表される熱伝達
係数変曲点Tc よりも高く維持すれば、表面割れを防止
あるいは低減することが可能になる。したがって、Ni含
有鋼の連続鋳造において、2次冷却帯の鋳片の表面温度
T (℃) 、鋳片のNi含有量MNi (mass%) および2次冷
却の水量密度W (リットル/min・m2) の間の関係が、下
記式を満たす条件下で冷却を行えば、連続鋳造時に発
生する表面疵を防止または抑制することができるのであ
る。
As described above, if the surface temperature of the slab during continuous casting is in the transition boiling region, it will cause the generation of surface cracks. Therefore, the surface temperature T of the slab is always expressed by the equation (1). By maintaining the transfer coefficient higher than the inflection point Tc, surface cracks can be prevented or reduced. Therefore, in the continuous casting of Ni-containing steel, the surface temperature T (° C) of the slab in the secondary cooling zone, the Ni content M Ni (mass%) of the slab, and the water content density W (liter / min. If the cooling is performed under the condition that the relationship between m 2 ) satisfies the following formula, surface defects that occur during continuous casting can be prevented or suppressed.

【0050】 T>( 650+5W1/2 ・MNi 1/3 )・・・・・ すなわち図4において、鋳片表面温度TがNi含有量
Ni、水量密度Wから求められる熱伝達係数変曲点Tc
よりも下にあるときは、表面温度Tは遷移沸騰領域に入
り、表面割れ発生の一因となる。
T> (650 + 5W 1/2 · M Ni 1/3 ) ... That is, in FIG. 4, the slab surface temperature T is the heat transfer coefficient inflection obtained from the Ni content M Ni and the water amount density W. Point Tc
Below that, the surface temperature T enters the transition boiling region and contributes to the occurrence of surface cracks.

【0051】水量密度は、通常2次冷却帯全体あるいは
冷却帯を何分割かした部分の鋳片表面積と、対応する水
量から求めた平均的な水量のことを指すが、本発明で
は、2次冷却帯の鋳片表面の任意の点において単位面
積、単位時間に衝突する水量を意味する。すなわち、2
次冷却時にはノズルの特性、配置により水量密度分布が
存在するが、2次冷却帯のどの部分をとっても上記式
で示す関係を満たさなければならない。
The water amount density usually refers to the average water amount obtained from the slab surface area of the entire secondary cooling zone or the portion obtained by dividing the cooling zone and the corresponding water amount. It means the amount of water that collides with a unit area and unit time at any point on the surface of the slab in the cooling zone. Ie 2
At the time of the next cooling, there is a water amount density distribution depending on the characteristics and arrangement of the nozzles, but any part of the secondary cooling zone must satisfy the relationship shown by the above formula.

【0052】本発明方法を実機に適用する場合には、予
め鋳片の表面温度Tを予測して水量密度Wを決定してお
き、オンラインで実測した表面温度Tと水量密度Wとの
関係が2次冷却帯の任意のどの部分においても上記式
を満たすように水量密度Wを調整する。
When the method of the present invention is applied to an actual machine, the surface temperature T of the slab is predicted in advance to determine the water content density W, and the relationship between the surface temperature T measured online and the water content density W is shown. The water amount density W is adjusted so as to satisfy the above formula in any arbitrary part of the secondary cooling zone.

【0053】本発明方法が、Ni含有量0〜50%の範囲で
適用可能な理由は、次のとおりである。
The reason why the method of the present invention is applicable in the Ni content range of 0 to 50% is as follows.

【0054】前述のように、Niの含有による冷却特性の
変化は、表面に生成する剥離困難な酸化スケールにもよ
る。Ni含有量が増加すると、この固着した酸化スケール
の厚さが増し、その厚さに応じて熱伝達係数変曲点Tc
が移動する。この固着酸化スケールは、Ni含有量が9%
を超え50%以下の範囲でもNiが濃化した金属と酸化物と
が入り組んだ構造を有し、この構造はNiが9%以下の鋼
の場合と同様である。
As described above, the change in the cooling characteristics due to the inclusion of Ni also depends on the oxide scale that is formed on the surface and is difficult to peel off. When the Ni content increases, the thickness of the adhered oxide scale increases, and the heat transfer coefficient inflection point Tc increases depending on the thickness.
Moves. This fixed oxide scale has a Ni content of 9%
Even in the range of more than 50% and less than 50%, it has a structure in which a metal enriched in Ni and an oxide are intricate, and this structure is similar to the case of steel having Ni of 9% or less.

【0055】そのスケールの厚さも、Ni含有量が9%を
超える鋼でも同じ傾向で増加するので、本発明の方法
は、Ni含有量が0〜50%の範囲で適用することができ
る。
Since the thickness of the scale also increases in the same tendency in steel having a Ni content of more than 9%, the method of the present invention can be applied in the Ni content range of 0 to 50%.

【0056】さらに、Ni以外の成分の含有量を変更した
鋼種、およびCa、Ti、Moを添加した鋼についても、同様
に冷却試験を行ったが、冷却特性に有意差は認められな
かった。これは、Ni含有量が0〜50%の範囲であれば、
スケール構造や厚さは、Ni以外の成分を変化させても大
きな変化はなく、Ni含有量のみに依存すると判断してよ
いことを示すものである。したがって、本発明の方法
は、Ni含有量が上記範囲内では、Ni以外の成分の含有量
を変更した鋼種についても有効である。
Further, a cooling test was conducted in the same manner for steel types in which the contents of components other than Ni were changed, and steels to which Ca, Ti and Mo were added, but no significant difference was found in the cooling characteristics. If the Ni content is in the range of 0-50%,
It shows that the scale structure and thickness do not change significantly even when the components other than Ni are changed, and it can be judged that the scale structure and the thickness depend only on the Ni content. Therefore, the method of the present invention is also effective for steel types in which the content of components other than Ni is changed within the above range.

【0057】本発明方法の割れ防止または低減の効果
は、連続鋳造機の形式や引き抜き速度あるいは矯正点に
おける延性低下温度域の回避可否の冷却条件等の鋳造条
件が変わっても、同様に得ることができる。さらに、従
来から提案されているような連続鋳造時の2次冷却を改
善する方法や、対象鋼の組成を限定する方法も併せて実
施すれば、より大きな効果を得ることができる。
The effect of preventing or reducing the cracks of the method of the present invention can be similarly obtained even if the casting conditions such as the type of the continuous casting machine, the drawing speed or the cooling conditions for avoiding the ductility lowering temperature region at the straightening point are changed. You can Further, if a method for improving secondary cooling at the time of continuous casting as proposed hitherto and a method for limiting the composition of the target steel are also carried out, a greater effect can be obtained.

【0058】[0058]

【実施例】表3に示す化学組成の鋼を溶製し、機長23
m、3点矯正の湾曲型連続鋳造機を使用して鋳片の横ひ
び割れなどの表面割れを抑制する試験を行った。選択し
た鋼種は、Ni含有量が 0.5%の低合金鋼、 3.5%および
9%の低温用鋼、41%の高合金鋼の4種類である。スラ
ブの寸法は幅1800mm、厚さ 230mmの一定条件とした。
[Example] Steel having the chemical composition shown in Table 3 was melted, and the machine length was 23
A test for suppressing surface cracks such as lateral cracks of the slab was conducted using a curved continuous casting machine with three-point straightening. The four steel types selected were low alloy steel with a Ni content of 0.5%, low temperature steels with 3.5% and 9%, and high alloy steel with 41%. The dimensions of the slab were constant with a width of 1800 mm and a thickness of 230 mm.

【0059】[0059]

【表3】 [Table 3]

【0060】実験条件を表4に示す。冷却条件ではγ→
α変態温度近傍 (約 600〜850 ℃)の高温脆化域を低温
側に回避する強冷却条件、同じく高温側に回避する弱冷
却条件の2種類とした。すなわち、低合金鋼では強冷却
と弱冷却の条件、その他の鋼種では弱冷却の条件のみで
ある。
The experimental conditions are shown in Table 4. Under cooling conditions γ →
There were two types of cooling conditions: strong cooling conditions to avoid the high temperature embrittlement region near the α transformation temperature (about 600 to 850 ° C) on the low temperature side, and weak cooling conditions to avoid the high temperature embrittlement region on the high temperature side. That is, the low alloy steels have only the conditions of strong cooling and weak cooling, and the other steel types have only the conditions of weak cooling.

【0061】本発明例では、2次冷却帯の鋳片表面全長
にわたり、本発明で定める下記式の条件を満たすよう
に冷却水量密度を制御した。
In the present invention example, the cooling water amount density was controlled so as to satisfy the condition of the following formula defined in the present invention over the entire length of the surface of the slab of the secondary cooling zone.

【0062】 T>( 650+5W1/2 ・MNi 1/3 )・・・・・ 図5は、本発明例1と比較例1の場合の、スラブの表面
温度推移と水量密度分布を示す図である。
T> (650 + 5W 1/2 · M Ni 1/3 ) ... FIG. 5 is a diagram showing the surface temperature transition of the slab and the water amount density distribution in the case of the present invention example 1 and comparative example 1. Is.

【0063】すなわち比較例の場合では、いずれも図5
のハッチングをつけた部分のように水量密度を増加し、
水量密度が上記式を満たさない部分を意図的に作っ
た。本発明例、比較例のいずれも2次冷却条件以外は、
ほぼ同一の条件とした。
That is, in the case of the comparative example, FIG.
Increase the water density like the hatched part of
A part where the water amount density does not satisfy the above formula was intentionally made. In all of the examples of the present invention and the comparative examples, except the secondary cooling conditions,
The conditions were almost the same.

【0064】[0064]

【表4】 [Table 4]

【0065】連続鋳造時の鋳片の表面温度は、矯正点付
近での鋳片表面を放射温度計で測定した。水量密度の制
御には、予め鋳片表面温度を予測して水量密度を設定
し、鋳造時に測定した上記の表面温度により、前記式
を満足することを確認する方法を用いた。
The surface temperature of the slab during continuous casting was measured by a radiation thermometer on the surface of the slab near the straightening point. For controlling the water content density, a method was used in which the surface temperature of the slab was predicted in advance to set the water content density, and it was confirmed by the surface temperature measured during casting that the above formula was satisfied.

【0066】評価の一つは、上記の表面温度分布の測定
値から求めた、幅方向の表面温度の最大値と最小値の差
(不均一度)で行った。この温度差が小さい方が、表面
温度むらが小さく割れが発生しにくいことを示す。
One of the evaluations was carried out by the difference (nonuniformity) between the maximum value and the minimum value of the surface temperature in the width direction obtained from the measured values of the surface temperature distribution. The smaller this temperature difference is, the smaller the surface temperature unevenness is, which means that cracks are less likely to occur.

【0067】スラブ表面の割れ発生の評価は、スラブを
冷却、表面研削した後、目視で割れを観察し、割れ発生
の有無の程度を示す「割れコード指数」で行った。割れ
コード指数とは、全く割れが発生しなかった場合を0、
全面に深い割れが発生し手入れが不可能の場合を5とす
る6段階の指数を用いるものである。これらの結果を表
4に併せて示す。
The occurrence of cracks on the surface of the slab was evaluated by cooling the slab and grinding the surface, and then visually observing the cracks, and using the "crack code index" which indicates the degree of occurrence of cracks. The crack code index is 0 when no crack occurs at all,
A 6-level index is used, which is 5 when deep cracks occur on the entire surface and maintenance is impossible. The results are also shown in Table 4.

【0068】表4に示すように、本発明方法によれば、
鋳片表面温度の幅方向均一化が促進された結果、表面割
れがないか、または低減されていることが明らかであ
る。さらに、本発明方法は、Ni含有量によらず表面割れ
の低減に有効であることがわかる。表4から、冷却条件
における前記の強冷却や弱冷却との組み合わせは必ずし
も必要ではなく、単に本発明で定める条件を満たして2
次冷却を施せば、表面割れの改善に効果があることも明
らかである。
As shown in Table 4, according to the method of the present invention,
As a result of promoting the uniformity of the slab surface temperature in the width direction, it is clear that surface cracks are eliminated or reduced. Furthermore, it can be seen that the method of the present invention is effective in reducing surface cracks regardless of the Ni content. From Table 4, it is not always necessary to combine the above-mentioned strong cooling and weak cooling in the cooling conditions, and simply satisfy the conditions defined in the present invention.
It is also clear that the subsequent cooling is effective in improving surface cracks.

【0069】別の試験によれば、水量密度が図4に示す
曲線を逸脱する条件であるほど、あるいは逸脱の程度が
大きい条件であるほど、スラブの表面温度の不均一度、
表面性状は悪化した。
According to another test, the more the water density deviates from the curve shown in FIG. 4, or the more the deviation deviates, the more uneven the surface temperature of the slab,
The surface quality deteriorated.

【0070】以上の結果から、前記式に従い連続鋳造
の2次冷却の水量密度を決定する本発明方法によれば、
鋳片表面割れの防止または低減に効果が得られることは
明らかである。この効果は、垂直曲げ型連続鋳造機など
へ鋳造機の形式が変わっても、また引き抜き速度等の鋳
造条件が変わっても、同様に得ることができる。
From the above results, according to the method of the present invention for determining the water amount density of the secondary cooling of continuous casting according to the above formula,
It is obvious that the effect of preventing or reducing the surface crack of the slab can be obtained. This effect can be obtained similarly even if the type of casting machine is changed to a vertical bending type continuous casting machine or the like, or if the casting conditions such as the drawing speed are changed.

【0071】[0071]

【発明の効果】本発明方法によれば、Ni含有鋼の連続鋳
造時に鋳片表面に生成する横ひび割れなどの表面割れを
防止あるいは低減することが可能である。
According to the method of the present invention, it is possible to prevent or reduce surface cracks such as lateral cracks which are generated on the surface of a slab during continuous casting of Ni-containing steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱伝達係数hに及ぼすNi含有量と表面温度Tの
影響を示す図である。
FIG. 1 is a diagram showing an influence of a Ni content and a surface temperature T on a heat transfer coefficient h.

【図2】図1の関係の一例を模式的に示し、熱伝達係数
変曲点Tc の意味を説明する図である。
FIG. 2 is a diagram schematically showing an example of the relationship of FIG. 1 and explaining the meaning of a heat transfer coefficient inflection point Tc.

【図3】熱伝達係数変曲点Tc に及ぼす冷却条件とNi含
有量MNiの影響の例を示す図である。
FIG. 3 is a diagram showing an example of the influence of cooling conditions and Ni content M Ni on the heat transfer coefficient inflection point Tc.

【図4】式(1) に基づいて、熱伝達係数変曲点Tc に及
ぼす水量密度WとNi含有量MNiとの影響を示す図であ
る。
FIG. 4 is a diagram showing an influence of a water content density W and a Ni content M Ni on a heat transfer coefficient inflection point Tc based on the equation (1).

【図5】本発明例1と比較例1の場合の、スラブの表面
温度推移と水量密度分布を示す図である。
FIG. 5 is a diagram showing the surface temperature transition of the slab and the water amount density distribution in the case of the present invention example 1 and comparative example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Niをmass%で0〜50%含有する鋼を連続鋳
造する際の2次冷却において、鋳片のNi含有量MNi、2
次冷却の水量密度W (リットル/min・m2) および2次冷
却帯の鋳片の表面温度T (℃) の関係が下記式を満た
す条件下で冷却を行うことを特徴とする鋼の連続鋳造時
における表面割れ抑制方法。 T>( 650+5W1/2 ・MNi 1/3 )・・・
1. A Ni content M Ni of a cast slab in secondary cooling during continuous casting of a steel containing Ni in an amount of 0 to 50% by mass.
Continuous steel characterized in that cooling is carried out under the condition that the relationship between the water quantity density W (liter / min · m 2 ) of the secondary cooling and the surface temperature T (° C) of the slab in the secondary cooling zone satisfies the following formula: Method of suppressing surface cracks during casting. T> (650 + 5W 1/2・ M Ni 1/3 ) ...
JP27466294A 1994-11-09 1994-11-09 Method for suppressing surface crack at the time of continuously casting steel Pending JPH08132207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27466294A JPH08132207A (en) 1994-11-09 1994-11-09 Method for suppressing surface crack at the time of continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27466294A JPH08132207A (en) 1994-11-09 1994-11-09 Method for suppressing surface crack at the time of continuously casting steel

Publications (1)

Publication Number Publication Date
JPH08132207A true JPH08132207A (en) 1996-05-28

Family

ID=17544813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27466294A Pending JPH08132207A (en) 1994-11-09 1994-11-09 Method for suppressing surface crack at the time of continuously casting steel

Country Status (1)

Country Link
JP (1) JPH08132207A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212972A (en) * 2007-03-02 2008-09-18 Jfe Steel Kk METHOD FOR MANUFACTURING CAST SLAB OF HIGH Ni STEEL
JP2009522110A (en) * 2006-01-11 2009-06-11 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for continuous casting
JP2009202166A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Secondary cooling method and secondary cooling device in continuous casting
JP2014200803A (en) * 2013-04-02 2014-10-27 新日鐵住金株式会社 Cooling method and cooling system of continuous casting cast piece

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522110A (en) * 2006-01-11 2009-06-11 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method and apparatus for continuous casting
JP2008212972A (en) * 2007-03-02 2008-09-18 Jfe Steel Kk METHOD FOR MANUFACTURING CAST SLAB OF HIGH Ni STEEL
JP2009202166A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Secondary cooling method and secondary cooling device in continuous casting
JP2014200803A (en) * 2013-04-02 2014-10-27 新日鐵住金株式会社 Cooling method and cooling system of continuous casting cast piece

Similar Documents

Publication Publication Date Title
CN1150825A (en) Equipment for manufacturing stainless steel strip
CN1177644A (en) Method for cooling steel pipe
JPH08132207A (en) Method for suppressing surface crack at the time of continuously casting steel
JP2015093278A (en) CONTINUOUS CASTING METHOD OF Ti DEOXIDIZED STEEL
CN101932736A (en) Process for manufacturing martensite stainless steel pipe
KR100450611B1 (en) A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
JP3453990B2 (en) Cooling method for continuous casting bloom
JP2008261036A (en) Method for cooling continuously cast bloom
CN111944969B (en) Control method for narrowing grain size of high-carbon heat-resistant stainless steel
JP2833442B2 (en) Ni-containing steel for low temperature and secondary cooling method of continuous cast slab thereof
JPH1133688A (en) Method for continuously casting steel
KR20040058814A (en) Method for manufacturing slab of martensitic stainless steel
KR100969806B1 (en) A method for controling ?-ferrite distribution in slab of stainless 304
JP4112785B2 (en) Method for preventing surface cracking of continuous cast slabs under large hot width reduction
CN115380129B (en) Slab and continuous casting method thereof
KR100311784B1 (en) Method for preventing cracks on corner of continuous cast steel slab
JP2002205153A (en) Powder for continuous casting for producing b-containing steel and method for producing b-containing steel
JP2002224798A (en) Manufacturing method of high chromium ferritic heat- resistant steel
Reis et al. EFFECT OF PLATE SURFACE CONDITIONS ON ACCELERATED COOLING PERFORMANCE
JP2001059137A (en) High carbon slab for seamless steel pipe and its production
JP3423815B2 (en) Method for producing ferritic stainless steel to prevent surface flaws from occurring during hot rolling
JPS62156056A (en) Continuous casting method for low alloy steel
KR20200118964A (en) Casting method for manufacturing special steel
JPH0910822A (en) Method for controlling coiling temperature of hot rolled plate
JPH10244350A (en) Manufacture of ferritic stainless steel continuously cast slab having no cracking and high cooling efficiency