JPH0910822A - Method for controlling coiling temperature of hot rolled plate - Google Patents

Method for controlling coiling temperature of hot rolled plate

Info

Publication number
JPH0910822A
JPH0910822A JP7183634A JP18363495A JPH0910822A JP H0910822 A JPH0910822 A JP H0910822A JP 7183634 A JP7183634 A JP 7183634A JP 18363495 A JP18363495 A JP 18363495A JP H0910822 A JPH0910822 A JP H0910822A
Authority
JP
Japan
Prior art keywords
temperature
steel
water
heat transfer
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7183634A
Other languages
Japanese (ja)
Other versions
JP2861871B2 (en
Inventor
Hirobumi Shimizu
博文 清水
Shigemasa Nakagawa
繁政 中川
Yoichi Haraguchi
洋一 原口
Yukihiko Yakita
幸彦 焼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7183634A priority Critical patent/JP2861871B2/en
Publication of JPH0910822A publication Critical patent/JPH0910822A/en
Application granted granted Critical
Publication of JP2861871B2 publication Critical patent/JP2861871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE: To enhance control accuracy when a hot rolled plate is a high Si steel in the control of the coiling temperature of the hot rolled plate. CONSTITUTION: The coiling temperature of a hot rolled plate is predictively calculated, and a water injection quantity from a header is decided so that a calculated value becomes a target value. In the predictive calculation of the coiling temperature, when the hot rolled plate is a high Si steel, the heat transfer coefficient of a water-cooling surface, which is larger than that in the case of a low Si steel, is used. The coiling temperature is correctly predicated, and a control with high accuracy of the coiling temperature is enabled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延された高Si
鋼板をランアウトテーブル上で所望の巻き取り温度に冷
却する熱延鋼板の巻き取り温度制御方法に関する。
FIELD OF THE INVENTION The present invention relates to hot-rolled high Si.
The present invention relates to a method for controlling a winding temperature of a hot rolled steel sheet, which cools the steel sheet to a desired winding temperature on a runout table.

【0002】[0002]

【従来の技術】熱間圧延された鋼板は、ランアウトテー
ブル上で所定の温度に冷却されてからコイラーに巻き取
られる。ランアウトテーブル上での巻き取り温度の制御
は、鋼板の機械的特性を決定する上で重要な工程であ
る。そのため、所定の機械的性質が得られるように、ラ
ンアウトテーブル面の上方および下方に配置された冷却
ヘッダーからの注水量が決定される。
2. Description of the Related Art A hot rolled steel sheet is cooled to a predetermined temperature on a run-out table and then wound on a coiler. Controlling the winding temperature on the runout table is an important step in determining the mechanical properties of the steel sheet. Therefore, the water injection amount from the cooling headers arranged above and below the runout table surface is determined so as to obtain a predetermined mechanical property.

【0003】図1はランアウトテーブル上での巻き取り
温度制御の概要を示す模式図である。仕上圧延機2から
出た鋼板1は、ランアウトテーブル3上で冷却ヘッダー
4,5からの注水により冷却されてコイラー6に巻き取
られる。このとき、冷却前の鋼板温度が温度計7によ
り、また冷却後の鋼板温度が温度計8によりそれぞれ測
定される。コントローラ9は基本的にフィードフォワー
ド制御器であって、冷却後の温度(巻き取り温度)を予
測計算し、その計算値が目標値に一致するように冷却ヘ
ッダー4,5からの注水量を決定する。
FIG. 1 is a schematic diagram showing an outline of winding temperature control on a runout table. The steel plate 1 discharged from the finish rolling mill 2 is cooled on the run-out table 3 by pouring water from the cooling headers 4 and 5 and wound on the coiler 6. At this time, the steel plate temperature before cooling is measured by the thermometer 7, and the steel plate temperature after cooling is measured by the thermometer 8. The controller 9 is basically a feed-forward controller, predictively calculates the temperature after cooling (winding temperature), and determines the amount of water injected from the cooling headers 4 and 5 so that the calculated value matches the target value. To do.

【0004】ところで、高張力鋼板の製造においては、
要求される強度に応じて巻き取り温度が400〜550
℃と比較的低温に設定される。しかし、このように鋼板
温度が低い領域では、沸騰現象が膜沸騰から核沸騰に移
行する遷移沸騰の状態にあり、バルブ開閉により鋼板温
度が大きく変化する。図2は鋼板表面温度が600℃の
ときを基準とした熱伝達率比と鋼板表面温度との関係を
示す。500℃より低い温度で遷移沸騰の状態となり、
この状態では鋼板表面温度が低下するにつれて熱伝達率
比が急激に増大するので、冷却が不安定になる。
By the way, in the manufacture of high-strength steel sheet,
Winding temperature is 400-550 depending on the required strength
It is set at a relatively low temperature of ℃. However, in such a region where the steel plate temperature is low, the boiling phenomenon is in a state of transition boiling in which film boiling changes to nucleate boiling, and the steel plate temperature greatly changes by opening and closing the valve. FIG. 2 shows the relationship between the heat transfer coefficient ratio and the steel plate surface temperature when the steel plate surface temperature is 600 ° C. Transition boiling occurs at temperatures below 500 ° C
In this state, the heat transfer coefficient ratio rapidly increases as the surface temperature of the steel sheet decreases, so that cooling becomes unstable.

【0005】この問題を解決するために、特公平6−2
48号公報では、冷却水が膜沸騰する高温域では上下の
冷却ヘッダーより注水を行い、遷移沸騰領域では鋼板の
下面のみに注水を行うことにより、安定した状態で鋼板
の冷却を行うことが提案されている。
In order to solve this problem, Japanese Patent Publication No. 6-2
In Japanese Patent Laid-Open No. 48, it is proposed to cool the steel sheet in a stable state by injecting water from the upper and lower cooling headers in a high temperature region where the cooling water is film boiling and injecting water only into the lower surface of the steel plate in the transition boiling region. Has been done.

【0006】[0006]

【発明が解決しようとする課題】図1に示すような熱延
鋼板の巻き取り温度制御では、仕上圧延機2の出側で測
定した鋼板表面温度、鋼板速度、上下の冷却ヘッダー
4,5からの注水量、図2に示す水冷面熱伝達率曲線な
どをもとに、冷却後の鋼板温度(巻き取り温度)が計算
される。そして、その計算温度が目標温度となるよう
に、注水量が決定される。従って、巻き取り温度を目標
温度に精度よく制御するためには、巻き取り温度を正確
に予測計算することが必要となる。
In the winding temperature control of the hot rolled steel sheet as shown in FIG. 1, the steel sheet surface temperature measured at the exit side of the finishing rolling mill 2, the steel sheet speed, and the upper and lower cooling headers 4 and 5 are used. The steel plate temperature (winding temperature) after cooling is calculated on the basis of the water injection amount, the water-cooled surface heat transfer coefficient curve shown in FIG. Then, the water injection amount is determined so that the calculated temperature becomes the target temperature. Therefore, in order to accurately control the winding temperature to the target temperature, it is necessary to accurately predict and calculate the winding temperature.

【0007】高張力鋼板のSi含有量が0.5%未満の比
較的低Siの場合は、鋼板巻き取り温度の計算値と測定
値の差は通常±20℃以下であり、巻き取り温度をフィ
ードバックするなどの手法を併用することにより、精度
の良い巻き取り温度制御が行われる。ところが、Si含
有量が0.5%以上の高Si鋼の場合、低Si鋼と同じ水
冷面熱伝達率曲線を用いて巻き取り温度を予測計算する
と、その計算値と予測値の差が100℃以上となり、フ
ィードバック等を併用しても、巻き取り温度の制御精度
が著しく低下する。この問題は巻き取り温度を正確に予
測計算できないことに起因するので、特公平6−248
号公報で提案されている方法を用いても一向に解決され
ない。
When the Si content of the high-strength steel sheet is relatively low (less than 0.5%), the difference between the calculated value and the measured value of the steel sheet winding temperature is usually ± 20 ° C. or less. By using a method such as feedback, the winding temperature can be controlled with high accuracy. However, in the case of high Si steel with Si content of 0.5% or more, when the coiling temperature is predicted and calculated using the same water-cooled surface heat transfer coefficient curve as that of low Si steel, the difference between the calculated value and the predicted value is 100. The temperature becomes higher than 0 ° C, and even if feedback is also used, the accuracy of controlling the winding temperature is significantly reduced. This problem is caused by the fact that the winding temperature cannot be accurately predicted and calculated.
Even if the method proposed in the publication is not solved at all.

【0008】本発明の目的は、高Si鋼からなる熱延鋼
板の巻き取り温度を高精度に制御する熱延鋼板の巻き取
り温度制御方法を提供することにある。
An object of the present invention is to provide a method for controlling the winding temperature of a hot-rolled steel sheet, which is capable of controlling the winding temperature of the hot-rolled steel sheet made of high Si steel with high accuracy.

【0009】[0009]

【課題を解決するための手段】本発明の巻き取り温度制
御方法は、熱延鋼板をランアウトテーブル上で水冷して
巻き取る際に、水冷面熱伝達率を用いて熱延鋼板の巻き
取り温度を予測計算し、その計算値が目標値と一致する
ようにランアウトテーブルでの注水量を制御する熱延鋼
板の巻き取り温度制御において、鋼板温度が350℃以
上の領域で高Si鋼の水冷面熱伝達率が低Si鋼の水冷
面熱伝達率よりも大きくなるように、水冷面熱伝達率を
補正するものである。
According to the winding temperature control method of the present invention, when the hot-rolled steel sheet is water-cooled on a run-out table and wound, the winding temperature of the hot-rolled steel sheet is calculated by using the heat transfer coefficient of the water-cooled surface. In the winding temperature control of the hot-rolled steel sheet, which predicts and calculates the water injection amount in the run-out table so that the calculated value agrees with the target value, the water-cooled surface of the high Si steel in the region where the steel sheet temperature is 350 ° C or higher. The heat transfer coefficient of the water-cooled surface is corrected so that the heat transfer coefficient becomes larger than the heat transfer coefficient of the water-cooled surface of the low Si steel.

【0010】[0010]

【作用】高Si鋼では、図3に示すように、素材の表面
に形成された酸化スケールが圧延後も残存し、その結
果、鋼板表面の粗さが粗くなる。本発明者らは、高Si
鋼の巻き取り温度制御で巻き取り温度の予測計算値が測
定値から大きく外れる原因を、この残存スケールによる
冷却現象の相違に求め、次の実験を行った。
In the high Si steel, as shown in FIG. 3, the oxide scale formed on the surface of the raw material remains after rolling, and as a result, the surface of the steel sheet becomes rough. We have found that high Si
The reason why the predicted calculation value of the coiling temperature greatly deviates from the measured value by controlling the coiling temperature of steel was found in the difference in cooling phenomenon due to this residual scale, and the following experiment was conducted.

【0011】表1に成分組成を示す低Si鋼および高S
i鋼のそれぞれについて、板厚3.0mmの試験片を作成
し、各試験片を1220℃に約15分間加熱した後デス
ケーリングを行い、800℃から水冷を開始して冷却曲
線を求めた。その結果、図4に示すように、高Si鋼は
低Si鋼に比べて冷却初期の冷却速度が2倍以上になる
ことが分かった。ちなみに、デスケーリング後のスケー
ル厚は高Si鋼で21〜22μm、低Si鋼で6〜14
μmであった。
Low Si steel and high S whose composition is shown in Table 1
A test piece having a plate thickness of 3.0 mm was prepared for each of the i steels, each test piece was heated to 1220 ° C. for about 15 minutes, and then descaling was performed, and water cooling was started from 800 ° C. to obtain a cooling curve. As a result, as shown in FIG. 4, it was found that the high Si steel has a cooling rate at least twice as high as that of the low Si steel in the early stage of cooling. By the way, the scale thickness after descaling is 21 to 22 μm for high Si steel and 6 to 14 for low Si steel.
μm.

【0012】次に、図4の結果に基づいて高Si鋼と低
Si鋼の水冷面熱伝達率を逆算により求めた。その結果
を図5に示すが、水冷面温度が350℃以上の領域では
高Si鋼の方が低Si鋼より熱伝達率が大きくなり、そ
の差Δhは350〜600℃の領域で特に大きいことが
わかる。
Next, based on the results of FIG. 4, the water-cooled surface heat transfer coefficients of the high Si steel and the low Si steel were obtained by back calculation. The results are shown in FIG. 5. In the region where the water-cooled surface temperature is 350 ° C. or higher, the high Si steel has a larger heat transfer coefficient than the low Si steel, and the difference Δh is particularly large in the region of 350 to 600 ° C. I understand.

【0013】[0013]

【表1】 [Table 1]

【0014】本発明の巻き取り温度制御方法では、この
結果に着目し、熱延鋼板が高Si鋼板の場合に、鋼板温
度が350℃以上の領域で水冷面熱伝達率を、低Si鋼
板を冷却する場合よりも大きくして、Si量の相違に起
因する鋼板温度の予測計算誤差を小さくする。これによ
り巻き取り温度が正確に予測され、高精度な巻き取り温
度制御が可能になる。
In the winding temperature control method of the present invention, paying attention to this result, when the hot-rolled steel sheet is a high-Si steel sheet, the water-cooled surface heat transfer coefficient and the low-Si steel sheet are selected in the region where the steel sheet temperature is 350 ° C. or higher. It is made larger than that in the case of cooling to reduce the prediction calculation error of the steel plate temperature due to the difference in the amount of Si. This makes it possible to accurately predict the winding temperature and control the winding temperature with high accuracy.

【0015】熱伝達率を大きくする度合は、望ましくは
前述した熱伝達率の差Δhとし、鋼板の水冷面温度によ
って変化させる。
The degree of increasing the heat transfer coefficient is preferably the above-mentioned difference Δh between the heat transfer coefficients, and is changed according to the water-cooled surface temperature of the steel sheet.

【0016】[0016]

【実施例】以下に本発明の実施例を、図6に示す14個
の冷却バンクからなるランアウトテーブル冷却設備にお
いて巻き取り温度を制御する場合について説明する。
EXAMPLE An example of the present invention will be described below for the case of controlling the winding temperature in the run-out table cooling equipment consisting of 14 cooling banks shown in FIG.

【0017】図6に示すランアウトテーブル冷却設備で
は、仕上げ圧延機2の出側に設けた温度計7により冷却
前の鋼板温度が測定され、No. 6バンクとNo. 7バンク
の間に設けた温度計10により冷却途中の鋼板温度が測
定される。また、コイラー6の入側に設けた温度計8に
より冷却後の鋼板温度(巻き取り温度)が測定される。
コントローラ9は温度計7から圧延仕上げ温度の実績値
を取り込み、仕上げ圧延機2から鋼板速度の実績値を取
り込む。これらを含む種々の実績値を用いてコントロー
ラ9は次の処理を行う。鋼板1の現在温度を計算する。
各バンクでの鋼板温度を予測計算し、各計算値がそれぞ
れの目標値となるように、上下冷却ヘッダーのバルブ開
閉パターンを修正する。このようにして冷却開始から冷
却終了までの冷却プロセスをフィードフォワード制御
し、最終的に巻き取り温度をその目標値に制御する。温
度計8から取り込まれる巻き取り温度の実績値が目標値
に一致しない場合、その偏差によっては上下冷却ヘッダ
ーからの注水量がフィードバック制御により微調整され
る。
In the run-out table cooling equipment shown in FIG. 6, the temperature of the steel sheet before cooling is measured by a thermometer 7 provided on the outlet side of the finishing rolling mill 2, and it is provided between the No. 6 bank and the No. 7 bank. The temperature of the steel sheet during cooling is measured by the thermometer 10. Further, the temperature of the steel plate after cooling (winding temperature) is measured by a thermometer 8 provided on the inlet side of the coiler 6.
The controller 9 takes in the actual value of the rolling finishing temperature from the thermometer 7 and the actual value of the steel plate speed from the finishing rolling mill 2. The controller 9 performs the following processing using various actual values including these. Calculate the current temperature of the steel plate 1.
The steel plate temperature in each bank is predicted and calculated, and the valve opening / closing pattern of the upper and lower cooling headers is corrected so that each calculated value becomes the respective target value. In this way, the cooling process from the start of cooling to the end of cooling is feedforward controlled, and finally the winding temperature is controlled to its target value. When the actual value of the winding temperature taken in from the thermometer 8 does not match the target value, the amount of water injected from the upper and lower cooling headers is finely adjusted by feedback control depending on the deviation.

【0018】本実施例の巻き取り温度制御では、各バン
ク毎に鋼板温度を予測計算する際の手法が重要である。
鋼板温度を計算する際に用いる熱伝達方程式を数式1に
示す。また、鋼板表面の境界条件を数式2に示す。
In the winding temperature control of this embodiment, a method for predicting and calculating the steel plate temperature for each bank is important.
The heat transfer equation used when calculating the steel plate temperature is shown in Formula 1. In addition, the boundary condition of the steel plate surface is shown in Equation 2.

【0019】[0019]

【数1】 (Equation 1)

【0020】[0020]

【数2】 (Equation 2)

【0021】数式2において、上面・下面における熱流
速qt ・ qb は、数式3にて与えられる。
In equation (2), heat flow rates q t and q b on the upper and lower surfaces are given by equation (3).

【0022】[0022]

【数3】 qt =qwt+qRt+qAtb =qWb+qRb+qAbWt:水冷の熱流速 qWb:水冷の熱流速 qRt:輻射の熱流速 qRb:輻射の熱流速 qAt:対流の熱流速 qAb:対流の熱流速Equation 3] q t = q wt + q Rt + q At q b = q Wb + q Rb + q Ab q Wt: water cooling of the heat flux q Wb: water cooling of the heat flux q Rt: radiation heat flux q Rb: heat flux radiation q At : Convection heat flow rate q Ab : Convection heat flow rate

【0023】また数式3において、水冷の熱流速qWt
Wbは、水冷の熱伝達率hWt・hWb〔W/m2 ℃〕を用
いて数式4により与えられる。
In equation 3, the water-cooled heat flow rate q Wt
q Wb is given by Equation 4 using the heat transfer coefficient h Wt · h Wb [W / m 2 ° C] of water cooling.

【0024】[0024]

【数4】qWt=hWt(θS −θW ) qWb=hWb(θS −θW ) θS :材料表面温度〔℃〕 θW :水温〔℃〕[ Formula 4] q Wt = h WtS −θ W ) q Wb = h WbS −θ W ) θ S : Material surface temperature [° C] θ W : Water temperature [° C]

【0025】そして、水冷の熱伝達率hWt・hWbは数式
5にて与えられる。
Then, the heat transfer coefficient h Wt · h Wb of water cooling is given by Equation 5.

【0026】[0026]

【数5】 (上面) hWt=1.163 ×106 W0.425( θS −θW ) -1-0.08 {1-0.02 (θS −40) }z (下面) hWb=7.020 ×105W0.771S −θW ) -1{1-0.02( θS −40) }z W:水量密度〔m3 /m2 min 〕 v:鋼板速度〔m/min 〕 z:補正係数[ Equation 5] (upper surface) h Wt = 1.163 × 10 6 W 0.425S −θ W ) -1 v -0.08 {1-0.02 (θ S −40)} z (lower surface) h Wb = 7.020 × 10 5 W 0.771S −θ W ) −1 {1-0.02 (θ S −40)} z W: Water quantity density [m 3 / m 2 min] v: Steel plate speed [m / min] z: Correction factor

【0027】ここで、上面・下面の熱伝達率hWt・hWb
を求めるにあたり、その補正係数zを表2のようにし
た。すなわち、熱延鋼板が高Si鋼の場合、No. 1〜1
4の上下バンクにおいてその補正係数zを低Si鋼の場
合よりも大きくし、上面・下面の熱伝達率hWt・hWb
大きくした。その量は図5における熱伝達率の差Δhに
相当する。
Here, the heat transfer coefficients h Wt and h Wb of the upper and lower surfaces
The correction coefficient z was determined as shown in Table 2 for obtaining That is, when the hot rolled steel sheet is high Si steel, No. 1 to 1
In the upper and lower banks of No. 4, the correction coefficient z is made larger than that of the low Si steel, and the heat transfer coefficients h Wt and h Wb of the upper surface and the lower surface are increased. The amount corresponds to the heat transfer coefficient difference Δh in FIG.

【0028】熱延鋼板が高Si鋼の場合にこのような熱
伝達率の補正を行うことにより、巻き取り温度が正確に
予測計算され、高精度な巻き取り温度制御が可能とな
る。
By correcting the heat transfer coefficient in the case where the hot-rolled steel sheet is a high Si steel, the coiling temperature can be accurately predicted and calculated, and the coiling temperature can be controlled with high accuracy.

【0029】図7は熱延鋼板が高Si鋼の場合の、巻き
取り温度の計算値と測定値の関係を示す。高Si鋼の場
合、低Si鋼の場合と同じ熱延伝達率を用いると、○に
示すように計算温度は測定温度より100〜200℃高
くなる。しかし、上述した熱伝達率の補正を行うと、◎
に示すように計算温度と測定温度の差は最大で数10℃
に抑えられる。これはフィードバック制御の併用により
解消できる差である。このときの鋼種は表1、板厚は2.
6〜2.9mmである。
FIG. 7 shows the relationship between the calculated value and the measured value of the winding temperature when the hot rolled steel sheet is a high Si steel. In the case of high-Si steel, if the same hot rolling transfer coefficient as in the case of low-Si steel is used, the calculated temperature is 100 to 200 ° C. higher than the measured temperature as shown by ◯. However, if the heat transfer coefficient is corrected as described above, ◎
As shown in, the maximum difference between the calculated temperature and the measured temperature is several tens of degrees
Can be suppressed. This is a difference that can be eliminated by using feedback control together. The steel grades at this time are shown in Table 1, and the plate thickness is 2.
It is 6 to 2.9 mm.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】上記実施例では鋼板温度を予測計算する際
に上面・下面の熱伝達率hWt・hWbを補正したが、図5
に示されるように鋼板温度が600℃以上では高Si鋼
と低Si鋼とによる熱伝達率の差が比較的小さいこと、
鋼板下面ではスプレー冷却のため上面ほど顕著な沸騰現
象が起らず冷却が比較的安定していることにより、後半
バンクの上面のみでその熱伝達率hWtを補正するように
してもよい。その1例を表3に示す。このような近似的
な熱伝達率の補正も鋼板温度の計算精度向上に有効であ
り、本発明に含まれるものである。
In the above embodiment, the heat transfer coefficients h Wt and h Wb of the upper surface and the lower surface were corrected when the steel plate temperature was predictively calculated.
As shown in, when the steel plate temperature is 600 ° C. or higher, the difference in heat transfer coefficient between the high Si steel and the low Si steel is relatively small,
Since the lower surface of the steel sheet is spray-cooled, the boiling phenomenon is not as remarkable as that of the upper surface and the cooling is relatively stable, so that the heat transfer coefficient h Wt may be corrected only on the upper surface of the second half bank. One example is shown in Table 3. Such approximate correction of the heat transfer coefficient is also effective in improving the calculation accuracy of the steel plate temperature, and is included in the present invention.

【0033】[0033]

【発明の効果】以上に説明した通り、本発明の熱延鋼板
の巻き取り温度制御方法は、熱延鋼板が高Si鋼の場合
に低Si鋼の場合より大きい水冷面熱伝達率を用いて巻
き取り温度を予測計算することにより、その計算精度を
高め、高精度な巻き取り温度制御を可能にする。
As described above, the method for controlling the coiling temperature of the hot-rolled steel sheet of the present invention uses the water-cooled surface heat transfer coefficient which is higher when the hot-rolled steel sheet is high Si steel than when it is low Si steel. By predicting and calculating the winding temperature, the calculation accuracy is increased, and highly accurate winding temperature control is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】巻き取り温度制御の説明図である。FIG. 1 is an explanatory diagram of winding temperature control.

【図2】水冷面熱伝達率曲線を示すグラフである。FIG. 2 is a graph showing a heat transfer coefficient curve for a water-cooled surface.

【図3】高Si鋼における残スケールの説明図である。FIG. 3 is an explanatory diagram of a residual scale in high Si steel.

【図4】低Si鋼と高Si鋼の冷却速度の違いを示すグ
ラフである。
FIG. 4 is a graph showing the difference in cooling rate between low Si steel and high Si steel.

【図5】低Si鋼と高Si鋼の水冷面熱伝達率曲線の違
いを示すグラフである。
FIG. 5 is a graph showing the difference in heat transfer coefficient curve between water cooling surface of low Si steel and high Si steel.

【図6】実施例で用いたランアウトテーブル冷却設備の
説明図である。
FIG. 6 is an explanatory diagram of the runout table cooling equipment used in the examples.

【図7】巻き取り温度の計算値と測定値の関係を示す図
表である。
FIG. 7 is a chart showing a relationship between a calculated value of a winding temperature and a measured value.

【符号の説明】[Explanation of symbols]

1 鋼板 2 仕上げ圧延機 3 ランアウトテーブル 4,5 冷却ヘッダー 6 コイラー 7,8,10 温度計 1 Steel plate 2 Finish rolling mill 3 Run-out table 4,5 Cooling header 6 Coiler 7,8,10 Thermometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 焼田 幸彦 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukihiko Yakida, 3 Hikari, Oshima, Kashima-machi, Kashima-gun, Kashima-gun, Ibaraki Sumitomo Metal Industries, Ltd. Kashima Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱延鋼板をランアウトテーブル上で水冷
して巻き取る際に、水冷面熱伝達率を用いて熱延鋼板の
巻き取り温度を予測計算し、その計算値が目標値と一致
するようにランアウトテーブルでの注水量を決定する熱
延鋼板の巻き取り温度制御において、鋼板温度が350
℃以上の領域で高Si鋼の水冷面熱伝達率が低Si鋼の
水冷面熱伝達率よりも大きくなるように、水冷面熱伝達
率を補正することを特徴とする熱延鋼板の巻き取り温度
制御方法。
1. When a hot-rolled steel sheet is water-cooled on a run-out table and wound up, the coiling temperature of the hot-rolled steel sheet is predicted and calculated using the water-cooled surface heat transfer coefficient, and the calculated value matches the target value. In the winding temperature control of the hot-rolled steel sheet that determines the water injection amount at the run-out table, the steel sheet temperature is set to 350
Winding of hot-rolled steel sheet, characterized in that the heat transfer coefficient of the water-cooled surface is corrected so that the heat transfer coefficient of the water-cooled surface of the high Si steel becomes larger than the heat transfer coefficient of the water-cooled surface of the low Si steel in the range of ℃ or higher. Temperature control method.
JP7183634A 1995-06-26 1995-06-26 Control method of winding temperature of hot rolled steel sheet Expired - Fee Related JP2861871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7183634A JP2861871B2 (en) 1995-06-26 1995-06-26 Control method of winding temperature of hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7183634A JP2861871B2 (en) 1995-06-26 1995-06-26 Control method of winding temperature of hot rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH0910822A true JPH0910822A (en) 1997-01-14
JP2861871B2 JP2861871B2 (en) 1999-02-24

Family

ID=16139216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7183634A Expired - Fee Related JP2861871B2 (en) 1995-06-26 1995-06-26 Control method of winding temperature of hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP2861871B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563260B1 (en) * 2001-06-19 2006-03-27 주식회사 포스코 Cooling control method for compensating set-up temperature by recalculating amount of cooling water
JP2010234446A (en) * 2010-06-01 2010-10-21 Nippon Steel Corp Method of cooling hot-rolled steel plate
CN113814278A (en) * 2021-09-18 2021-12-21 北京北科麦思科自动化工程技术有限公司 Strip steel hot continuous rolling temperature control method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563260B1 (en) * 2001-06-19 2006-03-27 주식회사 포스코 Cooling control method for compensating set-up temperature by recalculating amount of cooling water
JP2010234446A (en) * 2010-06-01 2010-10-21 Nippon Steel Corp Method of cooling hot-rolled steel plate
CN113814278A (en) * 2021-09-18 2021-12-21 北京北科麦思科自动化工程技术有限公司 Strip steel hot continuous rolling temperature control method and device

Also Published As

Publication number Publication date
JP2861871B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
JP5350579B2 (en) Material stabilization method for hot-rolled steel sheet for continuous hot-dip plating
JP3480366B2 (en) Control method of winding temperature of hot rolled steel sheet
JPH09225607A (en) Method for continuously casting steel
KR20140090925A (en) Apparatus for calculating set value, method of calculating set value, and program recording medium for calculating set value
JP4438509B2 (en) Thick steel plate controlled cooling system
JP2006055884A (en) Method for manufacturing hot-rolled steel sheet and apparatus for controlling rolling
JPH0910822A (en) Method for controlling coiling temperature of hot rolled plate
KR100568358B1 (en) Hot strip cooling control mothode for chage target temperature
KR20020096401A (en) Cooling control method for compensating set-up temperature by recalculating amount of cooling water
JP2555116B2 (en) Steel material cooling control method
JPH03277721A (en) Method for controlling cooling of hot rolled steel strip
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JP2001300633A (en) Low temperature coiling method of high strength hot rolled steel strip
JPH0732006A (en) Cold rolling method of directional silicon steel sheet and roll cooling device of cold rolling mill
JP2744415B2 (en) Hot rolled steel coiling temperature control device
JP3518504B2 (en) How to set cooling conditions for steel sheets
JP2002011502A (en) Method and device for manufacturing hot-rolled steel sheet
JPS5944367B2 (en) Water quenching continuous annealing method
WO2024009783A1 (en) Hot-rolled steel strip annealing method, and electromagnetic steel sheet production method using said annealing method
JP2001314901A (en) Method for rolling hot rolled steel plate and hot rolling apparatus
JP3684942B2 (en) Cold rolled steel strip manufacturing method
JP2523068B2 (en) Plate thickness determination method
JP3227057B2 (en) Method for producing hot rolled silicon steel sheet with excellent surface properties
JPH02263554A (en) Secondary cooling regulating method for continuous casting machine for metallic product
JPH11309507A (en) Method for estimating thermal flux in cooling of steel and cooling control method using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees