JP2002224798A - Manufacturing method of high chromium ferritic heat- resistant steel - Google Patents

Manufacturing method of high chromium ferritic heat- resistant steel

Info

Publication number
JP2002224798A
JP2002224798A JP2001027841A JP2001027841A JP2002224798A JP 2002224798 A JP2002224798 A JP 2002224798A JP 2001027841 A JP2001027841 A JP 2001027841A JP 2001027841 A JP2001027841 A JP 2001027841A JP 2002224798 A JP2002224798 A JP 2002224798A
Authority
JP
Japan
Prior art keywords
slab
less
thickness
steel
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001027841A
Other languages
Japanese (ja)
Other versions
JP3518517B2 (en
Inventor
Toru Kato
徹 加藤
Yoshiori Kono
佳織 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001027841A priority Critical patent/JP3518517B2/en
Publication of JP2002224798A publication Critical patent/JP2002224798A/en
Application granted granted Critical
Publication of JP3518517B2 publication Critical patent/JP3518517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ingot manufactured by the continuous casting which has a high quality and does not crack as a material for the hot milling of a high-chromium and ferritic heat-resistant steel. SOLUTION: This is a manufacturing method of a steel containing C: 0.03-0.2%, Si: 0.05-0.7%, Mn: 0.1-1.5%, Cr: 8-14%, W: 0.8-4%, V: 0.1-0.3%, Nb: 0.01-0.2%, N: 0.005-0.2%, Al: 0.002-0.05% in mass %. By the condition that a relative water volume for the secondary cooling of an ingot is made to be 0.6 liter/kg-steel and the secondary cooling is completed before the center part of the thick side of the ingot begins to solidify, the ingot which is not less than 150 mm thick and of which cross-sectional shape is rectangle, is cast continuously, and as long as the surface temperature of the ingot is not less than 400 deg.C after the solidification of the center part of the thick side of the ingot has been completed, the primary rolling of the ingot is made by the condition of the pressure ratio 0.1-0.4, and then, the ingot to which the primary rolling is made is hot-rolled and is made to a steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高クロム・フェラ
イト系耐熱鋼材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high chromium ferrite heat-resistant steel material.

【0002】[0002]

【従来の技術】ボイラ、原子力、化学工業などの分野で
使用される耐熱鋼材には、優れた高温強度と靱性、さら
に耐食性、耐酸化性などが要求されるとともに、加工
性、溶接性に優れ、さらに経済性に優れることが要求さ
れる。
2. Description of the Related Art Heat-resistant steel materials used in the fields of boilers, nuclear power and chemical industries are required to have excellent high-temperature strength and toughness, corrosion resistance, oxidation resistance, etc., as well as excellent workability and weldability. It is also required to be more economical.

【0003】このような分野に用いられる鋼管の耐熱鋼
材として、2・1/4Cr−1Mo鋼に代表され、JI
S G 3462のボイラ・熱交換器用合金鋼鋼管に規
定される低合金鋼、またSUS304HTB、SUS3
21HTBなどに代表され、JIS G 3463のボ
イラ・熱交換器用ステンレス鋼管に規定されるオーステ
ナイト系耐熱鋼材、さらに11質量%程度以上のCrを
含有し、同じくJISG 3463に規定されるフェラ
イト系耐熱鋼材などが用いられている。
[0003] As a heat-resistant steel material for steel pipes used in such fields, represented by 2 1 / 4Cr-1Mo steel, JI
Low alloy steel specified for alloy steel tubes for boilers and heat exchangers of SG 3462, SUS304HTB, SUS3
21HTB, etc., austenitic heat-resistant steel specified in JIS G 3463 stainless steel tubes for boilers and heat exchangers, and ferritic heat-resistant steel containing about 11% by mass or more of Cr and also specified in JIS G 3463. Is used.

【0004】これらの耐熱鋼材の中で、フェライト系耐
熱鋼材は、強度、靱性、耐食性、耐酸化性などの点で低
合金鋼より優れ、またオーステナイト系耐熱鋼材に比
べ、安価であるとともに耐熱疲労特性、耐応力腐食割れ
性などで優れており、多く使用されている。
Among these heat-resistant steel materials, heat-resistant ferritic steel materials are superior to low-alloy steels in strength, toughness, corrosion resistance, oxidation resistance, and the like. It is excellent in characteristics, stress corrosion cracking resistance, etc., and is widely used.

【0005】このようなフェライト系耐熱鋼材に関し、
特開昭59−140352号公報には、耐熱性と低温靱
性とを兼ね備える耐熱鋼材として、Cr含有率8〜12
質量%をベースにMo、W、V、Nbなどを複合添加し
た耐熱鋼材が提案されている。また、特開平3−978
32号公報には、耐酸化性と溶接性に優れた耐熱鋼材と
して、Cr含有率8〜14質量%をベースにMo、W、
V、Nb、Cu、Nなどを複合添加した耐熱鋼材が提案
されている。さらに特開平5−17850号公報には、
耐酸化性と溶接性に優れた耐熱鋼材として、Cr含有率
8〜14質量%をベースにNi、W、V、Nb、Cu、
Nなどを複合添加した耐熱鋼材が提案されている。これ
ら特開昭59−140352号公報、特開平3−978
32号公報および特開平5−17850号公報で提案さ
れた耐熱鋼材は、強度、靱性、耐食性、耐酸化性、溶接
性、加工性などにおいて優れた特性を有する。
With respect to such a ferritic heat-resistant steel,
JP-A-59-140352 discloses a heat-resistant steel material having both heat resistance and low-temperature toughness with a Cr content of 8-12.
A heat-resistant steel material in which Mo, W, V, Nb, and the like are added in combination based on mass% is proposed. Also, JP-A-3-978
No. 32 discloses Mo, W, and Mo as a heat-resistant steel material having excellent oxidation resistance and weldability based on a Cr content of 8 to 14% by mass.
A heat-resistant steel material to which V, Nb, Cu, N, and the like are added in combination has been proposed. Further, JP-A-5-17850 discloses that
As a heat-resistant steel material excellent in oxidation resistance and weldability, based on a Cr content of 8 to 14% by mass, Ni, W, V, Nb, Cu,
A heat-resistant steel material to which N or the like is added in combination has been proposed. JP-A-59-140352 and JP-A-3-978.
The heat-resistant steel materials proposed in JP-A No. 32 and JP-A-5-17850 have excellent properties such as strength, toughness, corrosion resistance, oxidation resistance, weldability, and workability.

【0006】しかし、これらCrを8〜14質量%程度
含有するフェライト系耐熱鋼材用の素材には、従来から
インゴット法により鋳造された鋼塊を分塊して得られる
鋼片が用いられている。これは、連続鋳造した鋳片に
は、手入れによる除去が困難な鋳片表面の割れが発生し
やすく、また二枚割れと呼ばれる厚さ中心部近傍に割れ
が発生しやすいからである。さらに、連続鋳造した鋳片
をガス切断する際に、切断面に微細な割れが発生しやす
い。
[0006] However, as a material for heat-resistant ferritic steel containing about 8 to 14% by mass of Cr, a steel slab obtained by dividing a steel ingot cast by an ingot method is conventionally used. . This is because a continuously cast slab is likely to have cracks on the slab surface that are difficult to remove by maintenance, and it is liable to crack near the center of the thickness called double cracks. Further, when the continuously cast slab is subjected to gas cutting, fine cracks are likely to occur on the cut surface.

【0007】インゴット法による鋼塊から鋼片を得る方
法では、鋼塊から鋼片までの歩留まりが著しく低くな
り、耐熱鋼材の鋼材の製造コストが高くなるので、連続
鋳造による鋳片の安定した製造方法の確立が求められて
いるのが現状である。
In the method of obtaining a billet from a steel ingot by the ingot method, the yield from the steel ingot to the billet is extremely low, and the cost of producing a heat-resistant steel material is high. At present, it is required to establish a method.

【0008】[0008]

【発明が解決しようとする課題】本発明は、高クロム・
フェライト系耐熱鋼材の製造方法に関し、その耐熱鋼材
の鋼材の熱間圧延用素材として、連続鋳造により割れ発
生のない品質の良好な鋳片を得ることができる方法、お
よびその鋳片をガス切断する際に、割れの発生のない方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a high chromium
Regarding a method for producing a heat-resistant ferritic steel material, as a material for hot rolling of the heat-resistant steel material, a method capable of obtaining a good quality slab without cracking by continuous casting, and gas cutting the slab At the time, an object of the present invention is to provide a method free from cracks.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、下記
(1)〜(3)に示す高クロム・フェライト系耐熱鋼材
の製造方法にある。 (1)質量%で、C:0.03〜0.2%、Si:0.
05〜0.7%、Mn:0.1〜1.5、Cr:8〜1
4%、W:0.8〜4%、V:0.1〜0.3%、N
b:0.01〜0.2%、N:0.005〜0.2%、
Al:0.002〜0.05%、Ni:1%以下、M
o:1.2%以下、Cu:3.5%以下、Co:4%以
下、B:0.02%以下、Ti:0.05%以下、T
a:0.05%以下、Hf:0.05%以下、Nd:
0.05%以下、La:0.05%以下、Ce:0.0
5%以下、Y:0.05%以下、Ca:0.01%以
下、Mg:0.01%以下を含有し、残部はFeおよび
不純物からなる高クロム・フェライト系耐熱鋼材の製造
方法であって、鋳片の二次冷却の比水量を0.1〜0.
6リットル/kg−鋼とし、鋳片の厚さ中心部が凝固開
始するまでに二次冷却を終了する条件で、150mm以
上の厚さで断面形状が長方形の鋳片を連続鋳造し、厚さ
中心部が凝固完了した後の鋳片の表面温度が400℃以
上である間に、圧下比0.1〜0.4の条件で鋳片を一
次圧延し、その後、一次圧延した鋳片を熱間圧延して鋼
材に仕上げる高クロム・フェライト系耐熱鋼材の製造方
法。 (2)上記一次圧延後の鋳片の表面温度が400℃にな
るまでは、平均50℃/時間以下の冷却速度で冷却し、
その後、一次圧延した鋳片を熱間圧延し、一次圧延前の
鋳片からの合計圧下比が0.67以上である鋼材に仕上
げる上記(1)に記載の高クロム・フェライト系耐熱鋼
材の製造方法。 (3)一次圧延前または一次圧延後の鋳片を切断用ガス
を用いて切断するに際し、切断部分近傍の鋳片の表面温
度が350℃以上である間に鋳片を切断する上記(1)
または(2)に記載の高クロム・フェライト系耐熱鋼材
の製造方法。
The gist of the present invention resides in a method for producing a high chromium / ferrite heat resistant steel as shown in the following (1) to (3). (1) In mass%, C: 0.03 to 0.2%, Si: 0.
05 to 0.7%, Mn: 0.1 to 1.5, Cr: 8 to 1
4%, W: 0.8-4%, V: 0.1-0.3%, N
b: 0.01 to 0.2%, N: 0.005 to 0.2%,
Al: 0.002 to 0.05%, Ni: 1% or less, M
o: 1.2% or less, Cu: 3.5% or less, Co: 4% or less, B: 0.02% or less, Ti: 0.05% or less, T
a: 0.05% or less, Hf: 0.05% or less, Nd:
0.05% or less, La: 0.05% or less, Ce: 0.0
5% or less, Y: 0.05% or less, Ca: 0.01% or less, Mg: 0.01% or less, with the balance being a method for producing a high chromium / ferrite heat resistant steel material comprising Fe and impurities. Then, the specific water amount of the secondary cooling of the slab is 0.1 to 0.1.
6 liters / kg-steel, continuous casting of a slab with a thickness of 150 mm or more and a rectangular cross section under the condition that secondary cooling is completed before solidification of the slab thickness starts. While the surface temperature of the slab after the center is completely solidified is 400 ° C. or higher, the slab is primarily rolled under the conditions of a reduction ratio of 0.1 to 0.4. A method for manufacturing high-chromium ferrite heat-resistant steel that is hot rolled to finish it into steel. (2) until the surface temperature of the slab after the primary rolling reaches 400 ° C., cooling at an average cooling rate of 50 ° C./hour or less;
Thereafter, the primary-rolled slab is hot-rolled to produce a steel material having a total reduction ratio of 0.67 or more from the slab before the primary rolling, thereby producing a high chromium / ferritic heat-resistant steel material according to the above (1). Method. (3) When the slab before or after the primary rolling is cut using a cutting gas, the slab is cut while the surface temperature of the slab near the cut portion is 350 ° C. or higher.
Or the method for producing a high chromium / ferritic heat-resistant steel material according to (2).

【0010】本発明で規定する「鋳片の厚さ中心部が凝
固開始する」時期は、鋳造する鋼の化学組成、鋳片サイ
ズ、鋳造速度、鋳片の二次冷却の比水量などが決まれ
ば、通常の凝固伝熱解析による方法などで算出でき、た
とえば、鋳型内の溶鋼のメニスカスからの距離で、その
開始時期を表現することができる。
In the present invention, the timing at which "the center of the slab thickness starts to solidify" is determined by the chemical composition of the steel to be cast, the slab size, the casting speed, the specific water volume for the secondary cooling of the slab, and the like. For example, it can be calculated by a method based on ordinary solidification heat transfer analysis or the like. For example, the start time can be expressed by the distance from the meniscus of the molten steel in the mold.

【0011】本発明で規定する「鋳片の表面温度」と
は、たとえば、放射温度計により測定することのできる
表面温度であり、鋳片の表面から表皮直下までの温度を
意味する。鋳片の表面温度は、幅方向で必ずしも均一で
はなく、鋳片の冷却過程で、鋳片の短辺部近傍が幅中央
部よりも速く冷却され、その表面温度が低くなりやす
い。本発明でいう鋳片の表面温度とは、幅方向で最も低
い表面温度を意味する。
The “surface temperature of the slab” defined in the present invention is a surface temperature that can be measured by, for example, a radiation thermometer, and means a temperature from the surface of the slab to just below the skin. The surface temperature of the slab is not always uniform in the width direction. In the process of cooling the slab, the vicinity of the short side of the slab cools faster than the center of the width, and the surface temperature tends to decrease. The surface temperature of the slab in the present invention means the lowest surface temperature in the width direction.

【0012】本発明で規定する「一次圧延後の鋳片の表
面温度が400℃になるまでは、平均50℃/時間以下
の冷却速度で冷却」とは、1時間当たり平均で50℃以
下の冷却速度で冷却することを意味する。
The term "cooling at a cooling rate of 50 ° C./hour or less on average until the surface temperature of the slab after the primary rolling reaches 400 ° C." It means cooling at a cooling rate.

【0013】また、本発明で規定する「圧下比」とは、
圧下量、すなわち圧延前の厚さから圧延後の厚さを引い
た厚さを、 圧延前の厚さで除した比を意味する。した
がって、一次圧延の際の「圧下比」とは、連続鋳造した
ままの鋳片の厚さから一次圧延後の鋳片(鋼材の熱間圧
延用素材)の厚さを引いた厚さを、連続鋳造したままの
鋳片の厚さで除した比のことである。また、一次圧延し
た鋳片を熱間圧延する際の「合計圧下比」とは、連続鋳
造したままの鋳片の厚さから鋼材の厚さを引いた厚さ
を、連続鋳造したままの鋳片の厚さで除した比のことで
ある。
[0013] The "reduction ratio" defined in the present invention is:
The reduction amount, that is, the ratio obtained by subtracting the thickness after rolling from the thickness before rolling and dividing the thickness by the thickness before rolling. Therefore, the "rolling ratio" at the time of primary rolling is the thickness obtained by subtracting the thickness of the slab after primary rolling (the material for hot rolling of steel) from the thickness of the slab as continuously cast, It is the ratio divided by the thickness of the slab as continuously cast. The `` total reduction ratio '' when hot rolling the primary rolled slab is defined as the thickness obtained by subtracting the thickness of the steel material from the thickness of the slab as continuously cast. It is the ratio divided by the thickness of the piece.

【0014】さらに、本発明で規定する「切断部分近傍
の鋳片の表面温度が350℃以上」とは、たとえば、熱
間圧延用に鋳片を幅方向に切断するに際し、その切断予
定断面を含む鋳造方向である長さ方向に50〜100m
m程度の鋳片の全幅部分の表面温度が350℃以上であ
ることを意味する。鋳片の表面温度を、鋳造直後の高温
の状態から350℃未満にまで低下させることなく、鋳
片を切断することでもよいし、また、いったん鋳片を室
温まで冷却し、その後、鋳片を加熱して、上記鋳片の領
域の表面温度が350℃以上になるようにした後に、鋳
片を切断することでもよい。
Further, the phrase “the surface temperature of the slab near the cut portion is 350 ° C. or more” as defined in the present invention means that, for example, when cutting the slab in the width direction for hot rolling, 50-100m in the length direction which is the casting direction including
It means that the surface temperature of the entire width portion of the slab of about m is 350 ° C. or more. Without lowering the surface temperature of the slab from a high temperature immediately after casting to less than 350 ° C., the slab may be cut, or the slab is once cooled to room temperature, and then the slab is cooled. The slab may be cut after heating so that the surface temperature of the region of the slab becomes 350 ° C. or higher.

【0015】本発明が対象とする鋼材は、質量%で、
C:0.03〜0.2%、Si:0.05〜0.7%、
Mn:0.1〜1.5、Cr:8〜14%、W:0.8
〜4%、V:0.1〜0.3%、Nb:0.01〜0.
2%、N:0.005〜0.2%、Al:0.002〜
0.05%、Ni:1%以下、Mo:1.2%以下、C
u:3.5%以下、Co:4%以下、B:0.02%以
下、Ti:0.05%以下、Ta:0.05%以下、H
f:0.05%以下、Nd:0.05%以下、La:
0.05%以下、Ce:0.05%以下、Y:0.05
%以下、Ca:0.01%以下、Mg:0.01%以下
を含有し、残部はFeおよび不純物からなる高クロム・
フェライト系耐熱鋼材である。なお、上記成分のうち、
Ni、Mo、Cu、Co、B、Ti、Ta、Hf、N
d、La、Ce、Y、CaおよびMgの含有率は、不純
物レベルであってもよい。
[0015] The steel material to which the present invention is applied is, in mass%,
C: 0.03-0.2%, Si: 0.05-0.7%,
Mn: 0.1 to 1.5, Cr: 8 to 14%, W: 0.8
-4%, V: 0.1-0.3%, Nb: 0.01-0.
2%, N: 0.005 to 0.2%, Al: 0.002
0.05%, Ni: 1% or less, Mo: 1.2% or less, C
u: 3.5% or less, Co: 4% or less, B: 0.02% or less, Ti: 0.05% or less, Ta: 0.05% or less, H
f: 0.05% or less, Nd: 0.05% or less, La:
0.05% or less, Ce: 0.05% or less, Y: 0.05
% Or less, Ca: 0.01% or less, Mg: 0.01% or less, with the balance being high chromium.
Ferritic heat-resistant steel. In addition, among the above components,
Ni, Mo, Cu, Co, B, Ti, Ta, Hf, N
The contents of d, La, Ce, Y, Ca and Mg may be at the impurity level.

【0016】このようなCr含有率が8〜14質量%の
高クロム・フェライト系耐熱鋼材の連続鋳造鋳片におい
て、とくに、鋳片厚さが薄い場合に、鋳片両側の短辺部
近傍に著しく大きな縦割れまたは横割れ(以下、単に表
面割れと記す)が発生しやすい。表面から深さ30mm
に達する著しい表面割れが発生する場合がある。また、
これらの表面割れが時間の経過とともに拡大する傾向が
ある。
In such a continuous cast slab of a high chromium / ferritic heat-resistant steel material having a Cr content of 8 to 14% by mass, especially when the slab thickness is small, it is close to the short sides on both sides of the slab. Extremely large vertical cracks or horizontal cracks (hereinafter simply referred to as surface cracks) are likely to occur. 30 mm deep from the surface
Remarkable surface cracks may occur. Also,
These surface cracks tend to increase over time.

【0017】Cr含有率が高いので、割れ感受性が高
く、凝固組織が粗大で、また鋳片の冷却過程でマルテン
サイト変態を伴うので、厚さが薄い鋳片において、とく
に冷却速度の速い鋳片両側の短辺部近傍に、表面割れが
発生しやすい。このような表面割れを手入れで除去する
ことは困難であり、表面割れの発生した鋳片は屑化処理
せざるを得ない。
[0017] Since the Cr content is high, the crack sensitivity is high, the solidification structure is coarse, and martensitic transformation is involved in the cooling process of the slab. Surface cracks are likely to occur near the short sides on both sides. It is difficult to remove such surface cracks by care, and the slab having the surface cracks has to be debris-treated.

【0018】厚さ中心部が凝固開始する時期に鋳片表面
を継続して二次冷却している場合に、鋳片の厚さ中心部
近傍に二枚割れが発生しやすい。これは、鋳片表面を二
次冷却すると、通常、鋳片表面が収縮するので厚さ中心
部には引張り応力が作用するからである。Crを多く含
有する鋼の鋳片の割れ感受性は高いので、厚さ中心部が
凝固開始する段階で、鋳片表面を二次冷却すると、最終
凝固部が割れて二枚割れが発生する。
When the surface of the slab is continuously subjected to secondary cooling at the time when the center of the thickness starts to solidify, cracks tend to occur near the center of the thickness of the slab. This is because, when the slab surface is secondarily cooled, the slab surface usually contracts, so that a tensile stress acts on the central portion of the thickness. Since the slab of steel containing a large amount of Cr has high cracking susceptibility, when the surface of the slab is secondarily cooled at the stage of the start of solidification at the center portion of the thickness, the final solidified portion is cracked, and a double crack occurs.

【0019】また、Crなど多くの合金元素を含有する
ので、鋳片の厚さ中心部に中心偏析が発生しやすい。こ
のような鋳片を素材として熱間圧延した製品鋼材(以
下、単に鋼材と記す)には、厚さ中心部に中心割れ(以
下、単に中心割れと記す)が発生する。鋳片の中心偏析
が鋼材にまで残存し、鋼材への圧延中または鋼材に圧延
後に、その部分に中心割れが発生するからである。
Also, since it contains many alloying elements such as Cr, center segregation is likely to occur at the center of the thickness of the slab. A hot-rolled product steel material (hereinafter simply referred to as “steel material”) using such a slab has a center crack (hereinafter simply referred to as “center crack”) at the center of thickness. This is because the center segregation of the slab remains in the steel material, and a center crack is generated in that portion during rolling to the steel material or after rolling to the steel material.

【0020】さらに、連続鋳造した鋳片をガス切断する
際に、切断面に微細な割れが発生しやすい。その理由
は、ガス切断時に切断面が急激に加熱および冷却され、
切断面に熱応力が作用することと、その際に、切断後の
鋳片の冷却過程でマルテンサイト変態を起こすからであ
る。
Further, when a continuously cast slab is subjected to gas cutting, fine cracks are apt to occur on the cut surface. The reason is that the cut surface is rapidly heated and cooled during gas cutting,
This is because thermal stress acts on the cut surface, and at that time, martensitic transformation occurs in the process of cooling the cast slab after cutting.

【0021】本発明の方法では、鋳片厚さを150mm
以上とするので、鋳片が保有する熱量が多く、かつ鋳片
表面の冷却が緩やかになるので、鋳片両側の短辺部近傍
の表面温度の低下が緩やかになる。したがって、短辺部
近傍の表面割れの発生を抑制できる。
In the method of the present invention, the slab thickness is set to 150 mm.
As described above, since the slab has a large amount of heat and the slab surface cools slowly, the surface temperature near the short sides on both sides of the slab gradually decreases. Therefore, the occurrence of surface cracks near the short sides can be suppressed.

【0022】鋳片の二次冷却の比水量を0.1〜0.6
リットル/kg−鋼とし、鋳片の厚さ中心部が凝固開始
するまでに二次冷却を終了する。鋳片の厚さ中心部が凝
固開始するまでに二次冷却を終了するので、厚さ中心部
近傍の二枚割れの発生を抑制できる。また、上記の適正
な比水量で二次冷却するので、鋳片両側の短辺部近傍の
表面温度の低下を抑制でき、短辺部近傍の表面割れの発
生を抑制できる。さらに、鋳片が反ることなどが抑制さ
れるので、鋳片厚さ方向に大きな力が作用することを防
止でき、厚さ中心部での二枚割れの発生を抑制できる。
The specific water amount of the secondary cooling of the slab is 0.1 to 0.6.
Liter / kg-steel, and the secondary cooling is completed before the center of the thickness of the slab starts to solidify. Since the secondary cooling is completed before the solidification of the center of the thickness of the slab starts, it is possible to suppress the occurrence of splits near the center of the thickness. In addition, since the secondary cooling is performed with the above-described appropriate specific water amount, a decrease in the surface temperature near the short sides on both sides of the slab can be suppressed, and the occurrence of surface cracks near the short sides can be suppressed. Further, since warpage of the slab is suppressed, it is possible to prevent a large force from acting in the thickness direction of the slab, and it is possible to suppress the occurrence of splits at the center of the thickness.

【0023】また、鋳片の二次冷却を終了し、その後凝
固完了した後の鋳片の表面温度を400℃以上である間
に、圧下比0.1〜0.4の条件で鋳片を一次圧延し、
その後、一次圧延した鋳片を熱間圧延して鋼材に仕上げ
る。鋳片の表面温度を400℃以上に保持したまま鋳片
を一次圧延すること、すなわち、凝固完了した鋳片が冷
却過程でマルテンサイト変態する前に所定量の一次圧延
を鋳片に加えることにより、脆弱な凝固組織が再結晶し
て微細な凝固組織となり、鋳片の割れ感受性が低下す
る。そのような一次圧延した鋳片を熱間圧延して鋼材と
するので、品質の良好な鋼材を得ることができる。
Further, while the secondary cooling of the slab is completed and thereafter the solidification is completed and the surface temperature of the slab is 400 ° C. or higher, the slab is subjected to a reduction ratio of 0.1 to 0.4. Primary rolling,
Thereafter, the primary rolled slab is hot-rolled to finish the steel. Primary rolling of the slab while maintaining the surface temperature of the slab at 400 ° C. or higher, that is, by adding a predetermined amount of primary rolling to the slab before the solidified slab undergoes martensitic transformation in the cooling process. The brittle solidified structure is recrystallized into a fine solidified structure, and the susceptibility of the slab to cracking is reduced. Since such a primary-rolled slab is hot-rolled into a steel material, a high-quality steel material can be obtained.

【0024】また、本発明の方法では、一次圧延後の鋳
片の表面温度が400℃になるまでは、平均50℃/時
間以下の冷却速度で鋳片を徐冷し、その後、一次圧延し
た鋳片を熱間圧延し、一次圧延前の鋳片からの合計圧下
比が0.67以上である鋼材に仕上げるのが望ましい。
Further, in the method of the present invention, the slab is gradually cooled at an average cooling rate of 50 ° C./hour or less until the surface temperature of the slab after the primary rolling reaches 400 ° C., and then the slab is subjected to the primary rolling. It is desirable that the slab is hot-rolled and finished to a steel material having a total reduction ratio of 0.67 or more from the slab before the primary rolling.

【0025】一次圧延後の鋳片の表面温度が400℃に
なるまでは、鋳片を平均50℃/時間以下の冷却速度で
徐冷することにより、マルテンサイト変態の速度を抑制
でき、割れ感受性が低下した状態を保持できる。また、
鋼材の厚さを、一次圧延前の鋳片からの合計圧下比が
0.67以上となる厚さとする、すなわち、鋳片の厚さ
は、鋼材の厚さの3倍以上とするので、鋳片に発生した
中心偏析が、鋼材にまで残存することを抑制でき、鋼材
の中心割れの発生を効果的に抑制できる。
Until the surface temperature of the slab after the primary rolling reaches 400 ° C., the slab is gradually cooled at an average cooling rate of 50 ° C./hour or less, so that the rate of martensitic transformation can be suppressed and crack susceptibility can be suppressed. Can be maintained. Also,
The thickness of the steel material is set to a thickness such that the total reduction ratio from the slab before the primary rolling becomes 0.67 or more, that is, the thickness of the slab is three times or more the thickness of the steel material. The center segregation generated in the piece can be suppressed from remaining in the steel material, and the generation of the center crack in the steel material can be effectively suppressed.

【0026】さらに、本発明の方法では、一次圧延前、
すなわち鋳造直後の鋳片、または一次圧延後の鋳片を切
断用ガスを用いて切断するに際し、切断部分近傍の鋳片
の表面温度が350℃以上である間に、鋳片を切断する
のが、より望ましい。切断面が急激に加熱および冷却さ
れることを抑制し、切断面に作用する熱応力を小さくす
るので、切断面に微細な割れが発生するのを、より効果
的に抑制できる。
Further, in the method of the present invention, before the primary rolling,
That is, when cutting the slab immediately after casting or the slab after primary rolling using a cutting gas, cutting the slab while the surface temperature of the slab near the cut portion is 350 ° C. or higher. More desirable. Since the sudden heating and cooling of the cut surface is suppressed and the thermal stress acting on the cut surface is reduced, the occurrence of minute cracks in the cut surface can be more effectively suppressed.

【0027】[0027]

【発明の実施の形態】本発明の方法が対象とする高クロ
ム・フェライト系耐熱鋼材とは、連続鋳造方法にて得ら
れる鋳片を、その鋼材の熱間圧延用素材とするものであ
る。その鋳片はスラブでもよいし、ブルームでもよい。
耐熱鋼材とは、ボイラ、原子力、化学工業などの分野で
使用される鋼管などをいう。
BEST MODE FOR CARRYING OUT THE INVENTION A high chromium / ferrite heat-resistant steel material to which the method of the present invention is applied is one in which a slab obtained by a continuous casting method is used as a material for hot rolling the steel material. The slab may be a slab or a bloom.
The heat-resistant steel material refers to a steel pipe used in fields such as a boiler, a nuclear power plant, and a chemical industry.

【0028】本発明の方法が対象とする高クロム・フェ
ライト系耐熱鋼材の化学組成および製造方法について、
以下に詳しく説明する。なお、各成分の含有率の%表示
は質量%を意味する。 (イ)化学組成 C:0.03〜0.2% Cは、Cr、Fe、W、V、Nbなどとともに炭化物を
形成し、高温強度を増加させる。C含有率が0.03%
未満では、炭化物の析出量が少なく、またδフェライト
が多く生成するので、強度および靱性が低下する。しか
し、C含有率が0.2%を超えると、炭化物が過剰に形
成されて強度が高くなりすぎ、加工性および溶接性が悪
化する。したがって、C含有率は0.03〜0.2%と
する。
The chemical composition of the high chromium / ferritic heat resistant steel and the method for producing the same, which are targeted by the method of the present invention, are as follows:
This will be described in detail below. In addition,% display of the content of each component means mass%. (A) Chemical composition C: 0.03 to 0.2% C forms a carbide together with Cr, Fe, W, V, Nb and the like, and increases the high-temperature strength. C content is 0.03%
If it is less than 10, the amount of precipitated carbide is small and a large amount of δ ferrite is formed, so that the strength and the toughness decrease. However, if the C content exceeds 0.2%, carbides are excessively formed and the strength becomes too high, resulting in poor workability and weldability. Therefore, the C content is set to 0.03 to 0.2%.

【0029】Si:0.05〜0.7% Siは、鋼の脱酸に有効な元素であり、また、耐水蒸気
酸化特性を高めるのに有効な元素である。これらの効果
を発揮させるためには、0.05%以上含有させる必要
がある。しかし、Si含有率が0.7%を超えると、靱
性が著しく低下し、クリープ強度も低下する。したがっ
て、Si含有率は0.05〜0.7%とする。
Si: 0.05-0.7% Si is an element effective for deoxidizing steel and an element effective for improving steam oxidation resistance. In order to exhibit these effects, it is necessary to contain 0.05% or more. However, if the Si content exceeds 0.7%, the toughness is significantly reduced, and the creep strength is also reduced. Therefore, the Si content is set to 0.05 to 0.7%.

【0030】Mn:0.1〜1.5% Mnは、強度を向上させるのに有効な元素である。この
効果を発揮させるためには、0.1%以上含有させる必
要がある。しかし、Mn含有率が1.5%を超えると、
加工性および溶接性が悪化する。したがって、Mn含有
率は0.1〜1.5%とする。
Mn: 0.1-1.5% Mn is an element effective for improving the strength. In order to exhibit this effect, it is necessary to contain 0.1% or more. However, when the Mn content exceeds 1.5%,
Workability and weldability deteriorate. Therefore, the Mn content is set to 0.1 to 1.5%.

【0031】Cr:8〜14% Crは、耐酸化性および高温耐食性を向上させるのに有
効な基本的な元素である。これらの効果を発揮させるた
めには、8%以上含有させる必要がある。しかし、Cr
含有率が14%を超えると、δフェライトが多く生成す
るので、強度および靱性が低下する。したがって、Cr
含有率は8〜14%とする。
Cr: 8 to 14% Cr is a basic element effective for improving oxidation resistance and high-temperature corrosion resistance. In order to exhibit these effects, it is necessary to contain 8% or more. However, Cr
When the content exceeds 14%, a large amount of δ ferrite is generated, and thus the strength and the toughness decrease. Therefore, Cr
The content is 8 to 14%.

【0032】W:0.8〜4% Wは、固溶強化元素および微細な炭窒化物の析出強化元
素としてクリープ強度の向上に有効な元素である。この
効果を発揮させるためには、0.8%以上含有させる必
要がある。しかし、W含有率が4%を超えると、靱性が
低下し、また加工性が悪化する。したがって、W含有率
は0.8〜4%とする。より好ましい範囲は1.5〜
2.5%である。
W: 0.8-4% W is an element effective for improving creep strength as a solid solution strengthening element and a precipitation strengthening element for fine carbonitrides. In order to exhibit this effect, the content needs to be 0.8% or more. However, if the W content exceeds 4%, the toughness decreases and the workability deteriorates. Therefore, the W content is set to 0.8 to 4%. A more preferred range is 1.5 to
2.5%.

【0033】V:0.1〜0.3% Vは、CおよびNと結合して微細な窒化物および炭窒化
物を析出することにより、クリープ強度を向上させるの
に有効な元素である。この効果を発揮させるためには、
0.1%以上含有させる必要がある。0.1%未満では
鋳片を加熱する際に、これら窒化物および炭窒化物が再
固溶するので、その効果が得られない。しかし、V含有
率が0.3%を超えると固溶V量が増加し、かえって強
度が低下する。したがって、V含有率は0.1〜0.3
%とする。
V: 0.1-0.3% V is an element effective for improving the creep strength by combining with C and N to precipitate fine nitrides and carbonitrides. To achieve this effect,
It is necessary to contain 0.1% or more. If the content is less than 0.1%, when the slab is heated, these nitrides and carbonitrides re-dissolve, so that the effect cannot be obtained. However, if the V content exceeds 0.3%, the amount of solid solution V increases, and on the contrary, the strength decreases. Therefore, the V content is 0.1 to 0.3.
%.

【0034】Nb:0.01〜0.2% Nbは、Vと同様にCおよびNと結合して微細な窒化物
および炭窒化物を析出することにより、クリープ強度を
向上させるのに有効な元素である。この効果を発揮させ
るためには、0.01%以上含有させる必要がある。し
かし、Nb含有率が0.2%を超えると、焼きならし処
理中に未固溶の炭窒化物が増加し、強度が低下するとと
もに溶接性が悪化する。さらに高温状態で微細な析出物
が凝集粗大化しやすく、クリープ強度が低下する。した
がって、Nb含有率は0.01〜0.2%とする。
Nb: 0.01 to 0.2% Nb is effective for improving creep strength by combining with C and N like V to precipitate fine nitrides and carbonitrides. Element. In order to exhibit this effect, it is necessary to contain 0.01% or more. However, when the Nb content exceeds 0.2%, the amount of undissolved carbonitrides increases during the normalizing treatment, and the strength decreases and the weldability deteriorates. Further, fine precipitates are easily aggregated and coarsened at a high temperature, and the creep strength is reduced. Therefore, the Nb content is set to 0.01 to 0.2%.

【0035】N:0.005〜0.2% Nは、V、NbおよびCと結合して炭窒化物を形成し、
クリープ強度を向上させるのに有効な元素である。この
効果を発揮させるためには、0.005%以上含有させ
る必要がある。しかし、N含有率が0.2%を超える
と、溶接性および加工性が顕著に悪化する。したがっ
て、N含有率は0.005〜0.2%とする。N含有率
が0.1%を超えると、鋳片にブローホールが形成され
ることがあり、望ましい範囲は0.005〜0.1%で
ある。
N: 0.005 to 0.2% N combines with V, Nb and C to form a carbonitride,
It is an element effective for improving creep strength. In order to exhibit this effect, the content needs to be 0.005% or more. However, when the N content exceeds 0.2%, weldability and workability are significantly deteriorated. Therefore, the N content is set to 0.005 to 0.2%. If the N content exceeds 0.1%, blow holes may be formed in the slab, and the desirable range is 0.005 to 0.1%.

【0036】Al:0.002〜0.05% Alは、鋼の脱酸に有効な元素であり、その効果を発揮
させるためには、0.002%以上含有させる必要があ
る。しかし、0.05%を超えて含有させると、クリー
プ強度が低下する。したがって、Al含有率は0.00
2〜0.05%とする。
Al: 0.002 to 0.05% Al is an effective element for deoxidizing steel, and it is necessary to contain 0.002% or more in order to exert its effect. However, when the content exceeds 0.05%, the creep strength decreases. Therefore, the Al content is 0.00
2 to 0.05%.

【0037】Ni:1%以下 Niは、含有させなくてもよいが、含有させると、マル
テンサイトを安定化する。しかし、Ni含有率が1%を
超えると変態点を著しく低下させ、焼戻し処理に支障が
生じ、またクリープ強度が低下する。したがって、含有
させる場合のNi含有率は1%以下とするのがよい。た
だし、後述するCuを0.3%以上含有させる場合に
は、上記Niの上限内で、Cuの結晶粒界への析出を防
止するために、質量比でCu含有率の1/3以上のNi
を同時に含有させるのが望ましい。
Ni: 1% or less Ni does not have to be contained, but when it is contained, martensite is stabilized. However, if the Ni content exceeds 1%, the transformation point is remarkably lowered, and the tempering treatment is hindered, and the creep strength is lowered. Therefore, the content of Ni is preferably set to 1% or less. However, in the case where Cu described later is contained in an amount of 0.3% or more, in order to prevent the precipitation of Cu at the crystal grain boundary within the upper limit of Ni, the Cu content is 1/3 or more of the Cu content by mass ratio. Ni
Is desirably contained at the same time.

【0038】Mo:1.2%以下 Moは、含有させなくてもよいが、含有させると、Wと
同様に固溶強化元素および微細な炭窒化物の析出強化元
素としてクリープ強度の向上に有効な元素である。しか
し、Mo含有率が1.2%を超えると、δフェライトが
多く生成するので、強度および靱性が低下する。したが
って、含有させる場合のMo含有率は1.2%以下とす
るのがよい。Moを含有させる場合には、W含有率より
少ない含有率とするのがより望ましい。その理由は、炭
窒化物の成長および粗大化を抑制する効果が、Wより小
さいためである。
Mo: 1.2% or less Mo does not have to be contained, but when it is contained, it is effective for improving creep strength as a solid solution strengthening element and a precipitation strengthening element for fine carbonitride similarly to W. Element. However, when the Mo content exceeds 1.2%, a large amount of δ ferrite is generated, so that strength and toughness are reduced. Therefore, when Mo is contained, the Mo content is preferably 1.2% or less. When Mo is contained, it is more desirable that the content be less than the W content. The reason is that the effect of suppressing the growth and coarsening of carbonitride is smaller than W.

【0039】Cu;3.5%以下、Co;4%以下:C
uおよびCoは、含有させなくてもよいが、含有させる
と、いずれの元素もオーステナイト安定化元素としてδ
フェライトの生成を抑制し、強度および靱性を向上させ
るのに有効な元素である。その効果を得る場合には、C
u、Coをそれぞれ0.1%以上含有させるのが望まし
い。しかし、Cu含有率が3.5%を超えると、結晶粒
界に析出するCu量が多くなり、延性および高温強度が
低下し、また溶接性および加工性が悪化する。また、C
o含有率が4%を超えても、その効果は飽和する。した
がって、含有させる場合の含有率は、Cu:3.5%以
下、Co:4%以下が望ましく、さらに、Cu:0.1
〜3.5%、Co:0.1〜4%とするのがより望まし
い。
Cu: 3.5% or less, Co: 4% or less: C
Although u and Co do not have to be contained, if they are contained, both elements become δ as an austenite stabilizing element.
It is an effective element for suppressing the formation of ferrite and improving the strength and toughness. To obtain the effect, C
It is desirable to contain 0.1% or more of each of u and Co. However, when the Cu content exceeds 3.5%, the amount of Cu precipitated at the crystal grain boundary increases, the ductility and high-temperature strength decrease, and the weldability and workability deteriorate. Also, C
Even if the o content exceeds 4%, the effect is saturated. Therefore, in the case where Cu is contained, it is desirable that Cu: 3.5% or less and Co: 4% or less.
-3.5%, Co: 0.1-4% is more desirable.

【0040】B:0.02%以下 Bは、含有させなくてもよいが、微量含有させることに
より、炭化物を均一に分散させ強度を向上させるのに有
効な元素である。その効果を得る場合には、0.000
1%以上含有させるのがよい。しかし、B含有率が0.
02%を超えると、溶接性および加工性が悪化する。し
たがって、含有させる場合のB含有率は0.02%以下
が望ましく、さらに、0.0001〜0.02%とする
のがより望ましい。
B: 0.02% or less B does not need to be contained, but is an element effective to improve the strength by uniformly dispersing carbides by adding a small amount of B. 0.000 to get the effect
It is preferable to contain 1% or more. However, when the B content is 0.1%.
If it exceeds 02%, weldability and workability deteriorate. Therefore, when B is contained, the B content is desirably 0.02% or less, and more desirably 0.0001 to 0.02%.

【0041】Ti;0.05%以下、Ta;0.05%
以下、Hf;0.05%以下、Nd;0.05%以下、
La;0.05%以下、Ce;0.05%以下、Y;
0.05%以下、Ca;0.01%以下、Mg;0.0
1%以下:Ti、Ta、Hf、Nd、La、Ce、Y、
CaおよびMgは、含有させなくてもよいが、含有させ
ることにより、鋼中のO(酸素)やSなどの不純物元素
を固定して安定化する効果、すなわち非金属介在物の形
態制御の効果がある。Ti、Ta、Hf、Nd、La、
Ce、Y、CaおよびMgを含有させる場合に、1種で
もよいし、2種以上でもよい。
Ti: 0.05% or less, Ta: 0.05%
Hf: 0.05% or less, Nd: 0.05% or less,
La: 0.05% or less, Ce: 0.05% or less, Y;
0.05% or less, Ca: 0.01% or less, Mg: 0.0
1% or less: Ti, Ta, Hf, Nd, La, Ce, Y,
Ca and Mg need not be contained, but by containing them, the effect of fixing and stabilizing impurity elements such as O (oxygen) and S in steel, that is, the effect of controlling the form of nonmetallic inclusions There is. Ti, Ta, Hf, Nd, La,
When Ce, Y, Ca and Mg are contained, one kind or two or more kinds may be used.

【0042】その効果を得る場合には、Ti、Ta、H
fおよびNdは、それぞれ0.005%以上含有させる
のがよい。しかし、Ti、Ta、HfおよびNdを、そ
れぞれ0.05%を超えて含有させると、非金属介在物
が増加し、かえって、強度および靱性が低下し、また耐
食性が悪化する。したがって、含有させる場合のTi、
Ta、HfおよびNdのそれぞれの含有率は、それぞれ
0.05%以下とするのが望ましい。さらに、それぞれ
0.005〜0.05%とするのがより望ましい。
In order to obtain the effect, Ti, Ta, H
f and Nd are preferably contained in each of 0.005% or more. However, when each of Ti, Ta, Hf and Nd exceeds 0.05%, the amount of nonmetallic inclusions increases, and on the contrary, the strength and toughness decrease, and the corrosion resistance deteriorates. Therefore, when Ti is contained,
It is desirable that the respective contents of Ta, Hf and Nd are each 0.05% or less. Furthermore, it is more desirable to set each to 0.005 to 0.05%.

【0043】また、上記効果を得るためにLa、Ceお
よびYを含有させる場合に、それぞれ0.05%を超え
て含有させると、非金属介在物が増加し、かえって、強
度および靱性が低下し、また耐食性が悪化する。したが
って、含有させる場合のLa、CeおよびYのそれぞれ
の含有率は0.05%以下とするのがよい。
In the case where La, Ce and Y are contained in order to obtain the above-mentioned effects, if each exceeds 0.05%, nonmetallic inclusions increase, and strength and toughness decrease. , And the corrosion resistance deteriorates. Therefore, when they are contained, it is preferable that the respective contents of La, Ce and Y be 0.05% or less.

【0044】さらに、上記効果を得るためにCaおよび
Mgを含有させる場合に、それぞれ0.01%を超えて
含有させると、非金属介在物が増加し、かえって、強度
および靱性が低下し、また耐食性が悪化する。したがっ
て、含有させる場合のCaおよびMgのそれぞれの含有
率は0.01%以下とするのがよい。
Furthermore, when Ca and Mg are contained in order to obtain the above-mentioned effects, if each contains more than 0.01%, nonmetallic inclusions increase, and on the contrary, strength and toughness decrease, and Corrosion resistance deteriorates. Therefore, when they are contained, the respective contents of Ca and Mg are preferably set to 0.01% or less.

【0045】本発明の方法が対象とする高クロム・フェ
ライト系耐熱鋼材における不純物として代表的なものは
PおよびSである。これらの元素はいずれも強度および
靱性を低下させ、溶接性および加工性を悪化させるの
で、できるだけ少なく抑えるのがよい。そこで、Pは
0.025%以下、Sは0.015%以下とするのが望
ましい。より好ましいのは、P:0.015%以下、
S:0.01%以下である。 (ロ)製造方法 本発明の鋼材の製造方法では、鋳片の二次冷却の比水量
を0.1〜0.6リットル/kg−鋼とし、鋳片の厚さ
中心部が凝固開始するまでに二次冷却を終了する条件
で、150mm以上の厚さで断面形状が長方形の鋳片を
連続鋳造し、厚さ中心部が凝固完了した後の鋳片の表面
温度が400℃以上である間に、圧下比0.1〜0.4
の条件で鋳片を一次圧延し、その後、一次圧延した鋳片
を熱間圧延して鋼材に仕上げる。
P and S are typical impurities in the high chromium / ferritic heat-resistant steel material to which the method of the present invention is applied. All of these elements reduce strength and toughness and deteriorate weldability and workability. Therefore, it is preferable that P is 0.025% or less and S is 0.015% or less. More preferred is P: 0.015% or less,
S: 0.01% or less. (B) Manufacturing method In the method for manufacturing a steel material according to the present invention, the specific water volume of the secondary cooling of the slab is set to 0.1 to 0.6 liter / kg-steel, and until the center of the thickness of the slab starts to solidify. Under the condition of terminating the secondary cooling, continuously cast a slab having a thickness of 150 mm or more and a rectangular cross section, and while the surface temperature of the slab after solidification of the thickness center is 400 ° C. or more, In addition, reduction ratio 0.1-0.4
The slab is subjected to primary rolling under the conditions described above, and then the primary-rolled slab is hot-rolled to finish the steel.

【0046】鋳片厚さを150mm以上とするので、鋳
片の短辺部近傍の表面割れの発生が抑制できる。150
mm未満の厚さの鋳片を鋳造し、鋳片両側の短辺部近傍
の表面温度が低下しないように、連続鋳造機内で鋳片を
加熱、保温する方法も考えられるが、連続鋳造設備が過
大なものとなり、現実的でない。また、鋳片の厚さを鋼
材の厚さの3倍未満とすると、鋳片の中心偏析が鋼材に
まで残存し、鋼材に中心割れが発生しやすい。
Since the slab thickness is 150 mm or more, the occurrence of surface cracks near the short side of the slab can be suppressed. 150
It is also possible to cast a slab with a thickness of less than 1 mm and heat the slab in a continuous casting machine to keep the surface temperature near the short sides on both sides of the slab and keep it warm. It is overkill and unrealistic. When the thickness of the slab is less than three times the thickness of the steel material, the center segregation of the slab remains in the steel material, and the steel material is likely to have a center crack.

【0047】鋳片の厚さ中心部が凝固開始するまでに二
次冷却を終了するので、厚さ中心部近傍での二枚割れの
発生を抑制できる。二次冷却の比水量が0.1リットル
/kg−鋼未満では、鋳型出口近傍での凝固殻の厚さが
薄くなり、凝固殻がバルジングしやすく、それに伴って
鋳型内の湯面レベル変動が発生しやすい。また極端な場
合には、凝固殻が破れてブレークアウトが発生すること
がある。また、比水量が0.6リットル/kg−鋼を超
えると、鋳片両側の短辺部近傍のみならず、鋳片全体が
強く冷却されて鋳片の表面温度が低下しすぎ、鋳片表面
全体に割れが発生しやすい。さらに、鋳片が反るなどに
より、鋳片の厚さ方向に大きな力が作用して、厚さ中心
部近傍に二枚割れが発生する。
Since the secondary cooling is completed before the solidification of the center of the thickness of the slab starts, it is possible to suppress the occurrence of splits near the center of the thickness. If the specific water volume of the secondary cooling is less than 0.1 liter / kg-steel, the thickness of the solidified shell near the outlet of the mold becomes thin, and the solidified shell tends to bulge. Likely to happen. In an extreme case, the solidified shell may be broken and breakout may occur. On the other hand, when the specific water volume exceeds 0.6 liter / kg-steel, not only near the short sides on both sides of the slab, but also the entire slab is strongly cooled, and the surface temperature of the slab is excessively lowered. Cracks easily occur throughout. Furthermore, a large force acts in the thickness direction of the slab due to the warpage of the slab, etc., and a two-piece crack occurs near the center of the thickness.

【0048】厚さ中心部が凝固完了した後の鋳片の表面
温度が400℃以上である間に、鋳片を一次圧延し、そ
の際、鋳片の表面温度が400℃以上であっても、その
まま一次圧延するには、鋳片の表面温度が低下し過ぎる
場合があるので、鋳片をいったん加熱炉などに装入し、
一次圧延可能な温度にまで加熱するのが望ましい。連続
鋳造機内に鋳片の保温設備があって、鋳片の温度が圧延
するのに十分な温度であれば、加熱せずにそのまま一次
圧延することもできる。
While the surface temperature of the slab after the solidification of the center of the thickness is 400 ° C. or higher, the slab is subjected to primary rolling. In this case, even if the surface temperature of the slab is 400 ° C. or higher, However, to perform primary rolling as it is, the surface temperature of the slab may be too low, so the slab is once charged into a heating furnace, etc.
It is desirable to heat to a temperature at which primary rolling is possible. If there is a slab heat retaining facility in the continuous casting machine and the slab temperature is sufficient for rolling, the primary rolling can be performed without heating.

【0049】一次圧延する前に、鋳片の表面温度が40
0℃未満に低下すると、脆弱な凝固組織のままでマルテ
ンサイト変態が起こり、その変態応力などにより、鋳片
の表面割れ、および厚さ中心部近傍の二枚割れが発生し
やすい。マルテンサイト変態を起こす前に一次圧延する
ことにより、粗大な凝固組織が再結晶して微細な組織と
なるので、割れ感受性を低下させることができる。
Before the primary rolling, the surface temperature of the slab is 40
When the temperature falls below 0 ° C., martensitic transformation occurs with the brittle solidified structure, and surface cracks of the slab and double cracks near the center of the thickness tend to occur due to the transformation stress. By performing the primary rolling before the martensitic transformation occurs, the coarse solidified structure is recrystallized into a fine structure, so that the susceptibility to cracking can be reduced.

【0050】一次圧延の際、鋳片の圧下比が0.1未満
では、粗大な凝固組織が再結晶して微細な組織となる効
果が小さく、鋳片の表面割れが発生しやすい。また、鋳
片の圧下比が0.4を超えると、粗大な凝固組織が再結
晶して微細な組織となる効果は飽和しており、さらに、
その後の一次圧延された鋳片を用いて、鋼材への熱間圧
延時の圧下比が減少し、鋼材の機械的特性が低下する場
合がある。望ましくは、鋳片の圧下比を0.2〜0.3
5とする。
If the reduction ratio of the slab during the primary rolling is less than 0.1, the effect of recrystallization of the coarse solidified structure to a fine structure is small, and the surface crack of the slab is likely to occur. Further, when the rolling reduction ratio of the slab exceeds 0.4, the effect of the coarse solidified structure recrystallizing into a fine structure is saturated,
Using the subsequently primary-rolled slab, the reduction ratio during hot rolling to steel may decrease, and the mechanical properties of the steel may decrease. Preferably, the reduction ratio of the slab is 0.2 to 0.3.
5 is assumed.

【0051】また、本発明の鋼材の製造方法では、一次
圧延後の鋳片の表面温度が400℃になるまでは、平均
50℃/時間以下の冷却速度で鋳片を徐冷し、その後、
一次圧延した鋳片を熱間圧延し、一次圧延前の鋳片から
の合計圧下比が0.67以上である鋼材に仕上げるのが
望ましい。
In the method for producing a steel material according to the present invention, the slab is gradually cooled at an average cooling rate of 50 ° C./hour or less until the surface temperature of the slab after the primary rolling reaches 400 ° C., and thereafter,
It is desirable that the primary-rolled slab is hot-rolled and finished to a steel material having a total reduction ratio of 0.67 or more from the slab before the primary rolling.

【0052】鋳片を平均50℃/時間を超えた冷却速度
で冷却すると、とくに鋳片両側の短辺部近傍の表面温度
の低下が速くなり、マルテンサイト変態時の大きな変態
応力が鋳片に作用し、たとえ再結晶して結晶粒の小さい
鋳片でも、短辺部近傍の鋳片に表面割れが発生しやすく
なる。
When the slab is cooled at a cooling rate exceeding the average of 50 ° C./hour, the surface temperature decreases particularly near the short sides on both sides of the slab, and large transformation stress during martensitic transformation is applied to the slab. Even if the slab is recrystallized and has small crystal grains, surface slabs are likely to occur in the slab near the short side.

【0053】一次圧延した鋳片を熱間圧延し、一次圧延
前の鋳片からの合計圧下比が0.67以上である鋼材に
仕上げるので、鋼材の中心割れの発生を抑制できるの
は、前述のとおりである。
The primary rolled slab is hot-rolled and finished to a steel material having a total reduction ratio of 0.67 or more from the slab before the primary rolling, so that the center crack of the steel material can be suppressed as described above. It is as follows.

【0054】さらに、本発明の鋼材の製造方法では、一
次圧延前または一次圧延後の鋳片を切断用ガスを用いて
切断するに際し、切断部分近傍の鋳片の表面温度が35
0℃以上である間に鋳片を切断するのがより望ましい。
つまり、鋳造直後および一次圧延する前後の必要時に鋳
片を切断する際に、少なくとも切断部分近傍の温度が3
50℃以上で鋳片を切断するのが望ましい。
Further, in the method for producing a steel material according to the present invention, when the slab before or after the primary rolling is cut by using a cutting gas, the surface temperature of the slab near the cut portion is 35%.
It is more desirable to cut the slab while it is at 0 ° C. or higher.
That is, when cutting the slab immediately after casting and when necessary before and after the primary rolling, the temperature at least in the vicinity of the cut portion is 3 ° C.
It is desirable to cut the slab at 50 ° C. or higher.

【0055】たとえば、鋳造直後に連続鋳造機内の鋳片
切断装置により、鋳片を切断する際には、鋳片の表面温
度は、通常、350℃以上である。しかし、一次圧延し
た後に徐冷した鋳片の表面温度は、通常、350℃未満
であり、その場合に、切断面近傍を加熱するのが望まし
く、たとえば、別に鋳造した鋳造直後の2つに鋳片を用
いて、徐冷後の鋳片を挟むことにより、鋳片の切断面近
傍を加熱するのがよい。また、加熱炉を用いて加熱して
もよい。切断面が急激に加熱および冷却されることを抑
制し、切断面に作用する熱応力を小さくして、切断面に
微細な割れが発生するのを抑制できる。
For example, when a slab is cut by a slab cutting device in a continuous casting machine immediately after casting, the surface temperature of the slab is usually 350 ° C. or higher. However, the surface temperature of the slab that has been gradually cooled after the primary rolling is usually lower than 350 ° C. In this case, it is desirable to heat the vicinity of the cut surface. It is preferable to heat the vicinity of the cut surface of the cast piece by sandwiching the cast piece after slow cooling using the piece. Moreover, you may heat using a heating furnace. It is possible to suppress rapid heating and cooling of the cut surface, reduce the thermal stress acting on the cut surface, and suppress the occurrence of fine cracks in the cut surface.

【0056】[0056]

【実施例】垂直型連続鋳造機を用い、表1に示す化学組
成の高クロム・フェライト系耐熱鋼材を、厚さ120で
幅800mm、厚さ150mmで幅800mm、または
厚さ280mmで幅1000mmの鋳片に、速度0.4
m/分または0.6m/分で鋳造した。
EXAMPLE Using a vertical continuous casting machine, a high chromium / ferritic heat resistant steel material having the chemical composition shown in Table 1 was prepared with a thickness of 120 mm and a width of 800 mm, a thickness of 150 mm and a width of 800 mm, or a thickness of 280 mm and a width of 1000 mm. Speed 0.4
Cast at m / min or 0.6 m / min.

【0057】[0057]

【表1】 鋳片の二次冷却の比水量を0.09〜0.7リットル/
kg−鋼の範囲で変化させた。一部の試験では、凝固開
始しても二次冷却を行う条件で試験したが、その他は、
鋳片厚さ中心部が凝固開始するまでに二次冷却を終了し
た。その際、鋳片の厚さ中心部が凝固開始する時期は、
鋳造する鋼の化学組成、鋳片サイズ、鋳造速度、鋳片の
二次冷却の比水量の条件に基づいて、通常の凝固伝熱解
析による方法で求めた。以下に記載する鋳片の表面温度
および切断面近傍の表面温度は、放射温度計により測定
した。
[Table 1] The specific water volume of the secondary cooling of the slab is 0.09-0.7 liter /
It was varied in the kg-steel range. In some tests, secondary cooling was performed even after solidification started, but in others,
Secondary cooling was completed before the center of the slab thickness started to solidify. At that time, when the thickness center of the slab starts to solidify,
Based on the conditions of the chemical composition of the steel to be cast, the size of the slab, the casting speed, and the specific water content of the secondary cooling of the slab, it was obtained by a method based on ordinary solidification heat transfer analysis. The surface temperature of the slab and the surface temperature near the cut surface described below were measured by a radiation thermometer.

【0058】鋳造直後に連続鋳造機内で鋳片を切断し、
その後、鋳片を搬送台車に搭載し、鋼製のカバーを掛け
て加熱炉まで搬送した。この鋳片切断時の鋳片の表面温
度は約780℃であった。カバーを掛けることにより、
厚さ中心部が凝固完了した後の鋳片の表面温度が400
℃未満に低下することなく、鋳片を加熱炉に装入でき
た。一部の試験では、カバーを掛けなかったので、鋳片
の表面温度が400℃未満に低下した。加熱炉では12
80℃で3時間加熱し、その後一次圧延を行った。一次
圧延後の鋳片の表面温度は1020〜1090℃程度と
した。ただし、一部の試験では一次圧延は行わなかっ
た。
Immediately after casting, the slab is cut in a continuous casting machine,
Thereafter, the slab was mounted on a transport trolley, transported to a heating furnace with a steel cover. The surface temperature of the slab at the time of cutting the slab was about 780 ° C. By hanging the cover,
The surface temperature of the slab after solidification of the center of the thickness is 400
The cast slab could be charged to the heating furnace without dropping below ℃. In some tests, the surface temperature of the slab dropped to less than 400 ° C. because no cover was applied. 12 in heating furnace
After heating at 80 ° C. for 3 hours, primary rolling was performed. The surface temperature of the slab after the primary rolling was about 1020 to 1090 ° C. However, primary rolling was not performed in some tests.

【0059】一次圧延後、鋳片を徐冷炉に装入して徐冷
し、鋳片の表面温度が200℃になるまで約250時間
掛けて冷却し、その間の平均の冷却速度を3℃/時間と
した。その後、徐冷炉から鋳片を取り出して、室温まで
冷却した。ただし、一部の試験では、鋳片の表面温度が
200℃になるまで平均の冷却速度を60℃/時間に調
整して、鋳片を冷却した。
After the primary rolling, the slab was placed in an annealing furnace and gradually cooled, and cooled for about 250 hours until the surface temperature of the slab reached 200 ° C., and the average cooling rate during that time was 3 ° C./hour. And Thereafter, the slab was taken out from the annealing furnace and cooled to room temperature. However, in some tests, the slab was cooled by adjusting the average cooling rate to 60 ° C./hour until the surface temperature of the slab reached 200 ° C.

【0060】一次圧延し、室温まで冷却した鋳片を、別
に鋳造した直後の通常の鋼の高温の鋳片2つを用いて約
10〜15時間挟むことにより加熱し、その後その鋳片
を切断した。高温の鋳片で挟むことにより、切断する鋳
片の表面温度を350℃以上とすることができた。ただ
し、一部の試験では、鋳片を挟む時間を短くし、鋳片の
表面温度を350℃未満とした。切断した鋳片を熱間圧
延して鋼材とし、その際の鋳片の加熱温度、在炉時間な
どは、通常の高クロム・フェライト系耐熱鋼材の条件と
同じとした。
The slab which has been subjected to the primary rolling and cooled to room temperature is heated by sandwiching it between two cast slabs of ordinary steel immediately after casting for about 10 to 15 hours, and thereafter the slab is cut. did. The surface temperature of the slab to be cut could be 350 ° C. or higher by sandwiching the slab between the high-temperature slabs. However, in some tests, the time for sandwiching the slab was shortened, and the surface temperature of the slab was set to less than 350 ° C. The cut slab was hot-rolled into a steel material, and the heating temperature, furnace time, and the like of the slab were the same as those of a normal high chromium / ferrite heat-resistant steel material.

【0061】鋳片を加熱炉に装入するときの鋳片の表面
温度、一次圧延の際の圧下量、圧下比、一次圧延した後
の徐冷後に鋳片を切断する際の切断面近傍の表面温度、
製品の鋼材の厚さなどの試験条件を後述する表2および
表3に示す範囲内で変化させて試験した。
The surface temperature of the slab when the slab is charged into the heating furnace, the amount of reduction in the primary rolling, the reduction ratio, and the vicinity of the cut surface when the slab is cut after slow cooling after the primary rolling. Surface temperature,
The test was performed by changing the test conditions such as the thickness of the steel material of the product within the ranges shown in Tables 2 and 3 described below.

【0062】一次圧延後の鋳片の表面割れ、および厚さ
中心部近傍の二枚割れの状況を目視により観察した。ま
た、徐冷後に鋳片を加熱して切断した際の鋳片の切断面
の割れを目視により観察した。さらに、製品鋼材の表面
割れおよび中心割れの発生状況を、磁気探傷法および超
音波探傷法により調査した。試験条件および試験結果を
表2および表3に示す。
The surface cracks of the slab after the primary rolling and the double cracks near the center of the thickness were visually observed. Further, after the slab was heated and cut after annealing, cracks in the cut surface of the slab were visually observed. Furthermore, the occurrence of surface cracks and center cracks in the product steel was investigated by magnetic flaw detection and ultrasonic flaw detection. Tables 2 and 3 show the test conditions and test results.

【0063】[0063]

【表2】 [Table 2]

【表3】 本発明例の試験No.1〜試験No.8では、表2に示
すように、鋼a〜鋼fを用い、厚さ280mm、幅10
00mmの鋳片を速度0.4m/分、二次冷却の比水量
0.42リットル/kg−鋼の条件で鋳造した。二次冷
却は鋳片の厚さ中心部が凝固開始する前に終了した。一
次圧延時、圧下比が約0.2〜0.3となるように、鋳
片を3〜5パスで60〜80mm圧下し、厚さ200〜
220mmの鋳片とした。一次圧延後の鋳片を徐冷炉に
装入し、表面温度が200℃になるまで、試験No.1
〜試験No.7では平均約3℃/時間の冷却速度で徐冷
し、試験No.8では平均約60℃/時間の冷却速度で
冷却した。その後、常温近くまで表面温度を低下させ
た。
[Table 3] Test No. of the present invention example. 1 to Test No. 8, as shown in Table 2, steel a to steel f were used, the thickness was 280 mm, and the width was 10 mm.
A 00 mm slab was cast at a speed of 0.4 m / min and a secondary cooling specific water volume of 0.42 liter / kg-steel. Secondary cooling was completed before the center of thickness of the slab started to solidify. At the time of primary rolling, the slab is reduced by 60 to 80 mm in 3 to 5 passes so that the reduction ratio is about 0.2 to 0.3, and the thickness is 200 to
A 220 mm slab was used. The cast slab after the primary rolling was placed in an annealing furnace, and the test sample No. was cooled until the surface temperature reached 200 ° C. 1
~ Test No. In Test No. 7, the sample was gradually cooled at an average cooling rate of about 3 ° C./hour. In No. 8, cooling was performed at a cooling rate of about 60 ° C./hour on average. Thereafter, the surface temperature was lowered to near normal temperature.

【0064】試験No.1〜試験No.6および試験N
o.8では、徐冷後の厚さ200〜220mmの鋳片
を、別の連続鋳造機で鋳造した直後の通常の鋼の鋳片2
つを用いて約10〜15時間挟み、この鋳片の表面温度
が350〜420℃になるように鋳片を加熱した後、鋳
片を切断した。試験No.7では、徐冷後の厚さ200
mmの鋳片を、別の高温の鋳片で約3時間しか挟まず、
鋳片の表面温度が270℃になった後、鋳片を切断し
た。これら一次圧延後の鋳片を厚さ50〜80mmの製
品鋼材に熱間圧延した。このときの鋳造時の鋳片からの
合計の圧下比は3.5〜5.6である。
Test No. 1 to Test No. 6 and test N
o. 8, a slab of 200 to 220 mm in thickness after slow cooling is cast on a normal steel slab 2 immediately after being cast by another continuous casting machine.
The slab was sandwiched for about 10 to 15 hours, and the slab was heated so that the surface temperature of the slab was 350 to 420 ° C., and then the slab was cut. Test No. 7, the thickness after slow cooling is 200
mm slab is sandwiched by another high temperature slab for only about 3 hours.
After the surface temperature of the slab reached 270 ° C., the slab was cut. The slabs after the primary rolling were hot-rolled into product steel materials having a thickness of 50 to 80 mm. At this time, the total reduction ratio from the slab at the time of casting is 3.5 to 5.6.

【0065】試験No.1〜試験No.8における鋳片
の厚さ、二次冷却の比水量とその終了時期、一次圧延す
る前の鋳片の表面温度、一次圧延の際の圧下比の条件
は、いずれも本発明の方法で規定する条件の範囲内であ
る。
Test No. 1 to Test No. The conditions of the thickness of the slab, the specific water amount of the secondary cooling and the end time thereof, the surface temperature of the slab before the primary rolling, and the reduction ratio at the time of the primary rolling are all defined by the method of the present invention. It is within the range of the condition.

【0066】試験No.1〜試験No.6では、一次圧
延後の鋳片の表面および厚さ中心部に、表面割れまたは
二枚割れの発生はなかった。また、徐冷後に切断した鋳
片の切断面にも、割れは発生しなかった。さらに、製品
鋼材には、表面割れおよび中心割れの発生はなかった。
Test No. 1 to Test No. In No. 6, no surface cracks or double cracks occurred on the surface and the center of the thickness of the slab after the primary rolling. Also, no cracks occurred on the cut surface of the cast piece cut after the slow cooling. Further, the product steel did not have any surface cracks or center cracks.

【0067】試験No.7では、一次圧延後の鋳片の表
面および厚さ中心部に、表面割れまたは二枚割れの発生
はなかったが、徐冷後に切断した鋳片の切断面には微細
な割れが発生した。ただし、この切断面の微細な割れ
は、その後の熱間圧延には支障ない程度の割れで、製品
鋼材の端部に割れが少し発生したのみであった。また、
製品鋼材には、表面割れおよび中心割れの発生はなかっ
た。
Test No. In No. 7, no surface cracks or double cracks occurred on the surface and the center of the thickness of the cast slab after the primary rolling, but fine cracks occurred on the cut surface of the cast slab cut after slow cooling. However, the fine cracks on the cut surface were small enough not to hinder the subsequent hot rolling, and only slight cracks occurred at the end of the product steel material. Also,
No surface cracks or center cracks occurred in the product steel.

【0068】試験No.8では、一次圧延後の鋳片の表
面に、微細な表面割れが発生した。ただし、この微細な
表面割れは、その後の熱間圧延には支障ない程度の割れ
で、製品鋼材の表面に割れは発生しなかった。
Test No. In No. 8, fine surface cracks occurred on the surface of the slab after the primary rolling. However, the fine surface cracks were cracks that would not hinder subsequent hot rolling, and no cracks occurred on the surface of the product steel material.

【0069】本発明例の試験No.9では、鋼fを用
い、厚さ150mm、幅800mmの鋳片を速度0.6
m/分、二次冷却の比水量0.42リットル/kg−鋼
で鋳造し、二次冷却は鋳片厚さ中心部が凝固開始するま
でに終了した。一次圧延時の圧下は2パスで30mm圧
下した。この一次圧延の圧下比は0.2である。また、
一次圧延後、鋳片を徐冷炉に装入し、表面温度が200
℃になるまで、平均約3℃/時間以下の冷却速度で徐冷
した。冷却途中の温度測定によれば、表面温度が400
℃までの冷却速度は平均約6℃/時間であった。その
後、常温近くまで表面温度を低下させた。その後、鋳片
を別の連続鋳造機で鋳造した直後の通常の鋼の鋳片2つ
を用いて約12時間挟み、この鋳片の表面温度が350
℃になるように鋳片を加熱した後、鋳片を切断した。切
断した厚さ120mmの鋳片を厚さ55mmの製品鋼材
に圧延した。
Test No. of the present invention example In No. 9, a slab having a thickness of 150 mm and a width of 800 mm was formed at a speed of 0.6 using steel f.
Casting was performed at a rate of 0.42 l / kg of steel at a specific water rate of m / min and secondary cooling, and the secondary cooling was completed before the center of the slab thickness started to solidify. The rolling during the primary rolling was reduced by 30 mm in two passes. The rolling reduction of this primary rolling is 0.2. Also,
After the primary rolling, the slab was placed in a lehr and the surface temperature was 200
The temperature was gradually cooled to a temperature of about 3 ° C./hour or less on average. According to the temperature measurement during cooling, the surface temperature was 400
The cooling rate to ° C. averaged about 6 ° C./hour. Thereafter, the surface temperature was lowered to near normal temperature. Thereafter, the slab was sandwiched between two ordinary steel slabs immediately after being cast by another continuous casting machine for about 12 hours, and the surface temperature of the slab was 350
After heating the slab to ℃, the slab was cut. The cut slab having a thickness of 120 mm was rolled into a product steel material having a thickness of 55 mm.

【0070】試験No.9では、二次冷却の比水量とそ
の終了時期、一次圧延する前の鋳片の表面温度、および
一次圧延の際の圧下量の試験条件は、本発明の方法で規
定する条件の範囲内である。ただし、鋳片から鋼材まで
の合計の圧下比は2.7であり、望ましい条件より低い
圧下比である。
Test No. In 9, the specific water amount of secondary cooling and the end time thereof, the surface temperature of the slab before the primary rolling, and the test conditions of the rolling reduction during the primary rolling are within the conditions specified by the method of the present invention. is there. However, the total reduction ratio from the slab to the steel material is 2.7, which is lower than the desired condition.

【0071】試験No.9では、一次圧延後の鋳片に表
面割れは発生しなかった。また、切断後の鋳片切断面に
も割れは発生しなかった。ただし、熱間圧延した厚さ5
5mmの製品鋼材では、超音波探傷法により少し欠陥エ
コーが認められるが、問題のある欠陥エコーレベルでは
なかった。
Test No. In No. 9, no surface crack occurred in the slab after the primary rolling. Also, no cracks occurred on the cut surface of the cast slab after cutting. However, hot-rolled thickness 5
In the case of a 5 mm product steel material, a slight defect echo was observed by the ultrasonic flaw detection method, but the defect echo level was not a problem.

【0072】比較例の試験No.10〜試験No.15
では、表3に示すように、鋼fを用いて試験した。その
うち、試験No.10〜試験No.14では、厚さ28
0mm、幅1000mmの鋳片を速度0.4m/分の条
件で、試験No.15では、厚さ120mm、幅800
mmの鋳片を速度0.6m/分の条件で、それぞれ鋳造
した。
Test No. of Comparative Example 10 to Test No. Fifteen
Then, as shown in Table 3, a test was performed using steel f. Test No. 10 to Test No. In 14, the thickness 28
Test No. 0 was cast on a slab having a width of 1000 mm and a speed of 0.4 m / min. For 15, the thickness is 120 mm and the width is 800
mm was cast at a speed of 0.6 m / min.

【0073】試験No.10では、一次圧延時の圧下量
を1パスで20mmとした以外は、試験No.1と同じ
鋳造条件、一次圧延および一圧延後の鋳片徐冷の条件と
した。この一次圧延時の圧下量20mmは、鋳片の圧下
比0.07に相当し、本発明の方法で規定する条件の下
限を外した小さな圧下比を意味する。また、試験No.
11では、鋳片を搬送台車に搭載して加熱炉まで搬送す
る際に、鋼製のカバーを掛けず、一次圧延する前の加熱
炉に装入する鋳片の表面温度を330℃とした以外は、
試験No.1と同じ鋳造条件、一次圧延および一圧延後
の鋳片徐冷の条件とした。この加熱炉へ装入する鋳片の
表面温度は、本発明の方法で規定する条件の下限を外し
た低い表面温度を意味する。
Test No. In Test No. 10, except that the rolling reduction during the primary rolling was set to 20 mm in one pass. The same casting conditions as those of No. 1 were used, such as the conditions of primary rolling and slab cooling after the first rolling. The reduction amount of 20 mm during the primary rolling corresponds to a reduction ratio of 0.07 of the slab, and means a small reduction ratio excluding the lower limit of the condition specified by the method of the present invention. Test No.
In No. 11, when the slab was mounted on a transport trolley and transported to the heating furnace, a steel cover was not hung, and the surface temperature of the slab charged to the heating furnace before the primary rolling was set to 330 ° C. Is
Test No. The same casting conditions as those of No. 1 were used, such as the conditions of primary rolling and slab cooling after the first rolling. The surface temperature of the slab charged into the heating furnace means a low surface temperature excluding the lower limit of the condition specified by the method of the present invention.

【0074】試験No.10では、一次圧延の際の圧下
比が小さく、粗大な凝固組織が再結晶して微細な組織と
なる効果が小さかったため、一次圧延後の鋳片短辺部に
表面割れが発生した。これら表面割れが著しく大きいの
で、その後の熱間圧延が困難と判断し、鋳片の切断と製
品鋼材への熱間圧延は行わなかった。
Test No. In No. 10, the rolling reduction in the primary rolling was small, and the effect of recrystallizing a coarse solidified structure into a fine structure was small, so that a surface crack occurred on the short side of the slab after the primary rolling. Since these surface cracks were extremely large, it was judged that subsequent hot rolling was difficult, and cutting of the slab and hot rolling to the product steel material were not performed.

【0075】試験No.11では、一次圧延時の加熱炉
に鋳片を装入する際に、鋳片の表面温度が400℃未満
に低下したので、マルテンサイト変態が起こり、その変
態応力などにより、一次圧延後の鋳片短辺部に表面割れ
が発生した。これら表面割れが著しく大きいので、その
後の熱間圧延が困難と判断し、鋳片の切断と製品鋼材へ
の熱間圧延は行わなかった。
Test No. In the case of No. 11, when the slab was charged into the heating furnace at the time of the primary rolling, the surface temperature of the slab dropped to less than 400 ° C., so that martensitic transformation occurred, and the casting stress after the primary rolling was caused by the transformation stress. A surface crack occurred on one short side. Since these surface cracks were extremely large, it was judged that subsequent hot rolling was difficult, and cutting of the slab and hot rolling to the product steel material were not performed.

【0076】試験No.12では、二次冷却の比水量を
0.09リットル/kg−鋼とした以外は、試験No.
1と同じ鋳造条件とした。この比水量は、本発明の方法
で規定する条件の下限を外した少ない比水量を意味す
る。この試験No.12では、鋳型内の湯面レベルが大
きく変動し、鋳造の継続が困難となり、途中で鋳造を中
止し、一次圧延以降の試験を行わなかった。鋳造初期に
得られた鋳片の表面には、湯面レベルが変動したことに
より、横割れが著しく発生した。
Test No. In Test No. 12, except that the specific water volume of the secondary cooling was 0.09 liter / kg-steel.
The same casting conditions as in No. 1 were used. This specific water amount means a small specific water amount excluding the lower limit of the condition specified by the method of the present invention. This test no. In No. 12, the level of the molten metal in the mold fluctuated greatly, and it became difficult to continue casting. Therefore, casting was stopped halfway, and the test after primary rolling was not performed. The surface of the cast slab obtained in the early stage of casting had a remarkable lateral crack due to the fluctuation of the molten metal level.

【0077】試験No.13では、二次冷却の比水量を
0.7リットル/kg−鋼とする以外は、試験No.1
と同じ鋳造条件、一次圧延および一圧延後の鋳片徐冷の
条件とした。この比水量は、本発明の方法で規定する条
件の上限を外した多い比水量を意味する。この試験N
o.13では、二次冷却の比水量が多すぎて、連続鋳造
機の出側でも鋳片の表面全体に著しい割れが発生してい
るのが確認された。さらに、一次圧延後の鋳片の表面全
体にも表面割れが著しく発生していた。これら表面割れ
が著しく、その後の熱間圧延が困難と判断されたので、
鋳片の切断と製品鋼材への熱間圧延は行わなかった。
Test No. In Test No. 13, except that the specific water amount of the secondary cooling was set to 0.7 liter / kg-steel. 1
The same casting conditions as those described above, and the conditions of primary rolling and slab gradual cooling after the first rolling were used. This specific water amount means a large specific water amount excluding the upper limit of the condition specified by the method of the present invention. This test N
o. In No. 13, it was confirmed that the specific water amount of the secondary cooling was too large, and significant cracks were generated on the entire surface of the slab at the outlet side of the continuous casting machine. Furthermore, surface cracks were also remarkably generated on the entire surface of the cast slab after the primary rolling. Since these surface cracks were remarkable and it was judged that subsequent hot rolling was difficult,
Cutting of the slab and hot rolling to the product steel material were not performed.

【0078】試験No.14では、二次冷却の終了時期
を鋳片厚さ中心部が凝固開始後とする以外は、試験N
o.1と同じ鋳造条件、一次圧延および一次圧延後の鋳
片徐冷の条件とした。この二次冷却の終了時期は、本発
明の方法で規定する条件を外れていることを意味する。
この試験No.14では、厚さ中心部が凝固開始する段
階で、鋳片表面を二次冷却したので、鋳片の最終凝固部
が割れ、一次圧延後の鋳片においても、厚さ中心部近傍
に二枚割れが発生した。この二枚割れが著しく、その後
の熱間圧延が困難と判断されたので、鋳片の切断と製品
鋼材への熱間圧延は行わなかった。
Test No. In Test No. 14, except that the end time of the secondary cooling was after the start of solidification at the center of the slab thickness, the test N
o. The same casting conditions as those of No. 1 were used, and primary rolling and the slab gradual cooling after the primary rolling were performed. The end time of the secondary cooling means that the condition specified by the method of the present invention is not satisfied.
This test no. In 14, at the stage where the thickness center portion starts to solidify, the slab surface was secondarily cooled, so that the final solidification portion of the slab was cracked, and even in the slab after the primary rolling, two sheets were formed near the thickness center portion. Cracks occurred. Since the splitting was remarkable and it was judged that the subsequent hot rolling was difficult, the cutting of the slab and the hot rolling to the product steel material were not performed.

【0079】試験No.15では、厚さ120mmの鋳
片を、二次冷却の比水量0.35リットル/kg−鋼で
鋳造し、二次冷却は鋳片厚さ中心部が凝固開始するまで
に終了させた。この鋳片厚さ120mmは、本発明の方
法で規定する鋳片の厚さの条件を外して薄いことを意味
する。二次冷却の比水量とその終了時期の試験条件は、
本発明の方法で規定する条件の範囲内である。
Test No. In No. 15, a slab having a thickness of 120 mm was cast with a secondary cooling specific water volume of 0.35 l / kg-steel, and the secondary cooling was terminated before the center of the slab thickness started to solidify. The slab thickness of 120 mm means that the slab thickness is thin except for the slab thickness condition specified by the method of the present invention. The test conditions for the specific water volume of secondary cooling and the end time are as follows:
It is within the range defined by the method of the present invention.

【0080】この試験No.15では、鋳片短辺部近傍
の冷却が速く、鋳片短辺部に著しい表面割れが発生して
いるのが、連続鋳造機の出側で認められた。これら表面
割れが著しく大きいので、一次圧延以降の試験を行わな
かった。
This test no. In No. 15, the cooling near the short side of the slab was fast, and remarkable surface cracking occurred on the short side of the slab on the exit side of the continuous casting machine. Since these surface cracks were extremely large, tests after the primary rolling were not performed.

【0081】[0081]

【発明の効果】本発明の方法を適用することにより、高
クロム・フェライト系耐熱鋼材の製造に用いられる熱間
圧延用素材として、割れの発生のない品質良好な鋳片を
得ることができる。
By applying the method of the present invention, a high quality cast slab free of cracks can be obtained as a material for hot rolling used in the production of high chromium / ferritic heat resistant steel.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 302 C22C 38/00 302Z 38/54 38/54 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int. Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/00 302 C22C 38/00 302Z 38/54 38/54

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.03〜0.2%、S
i:0.05〜0.7%、Mn:0.1〜1.5、C
r:8〜14%、W:0.8〜4%、V:0.1〜0.
3%、Nb:0.01〜0.2%、N:0.005〜
0.2%、Al:0.002〜0.05%、Ni:1%
以下、Mo:1.2%以下、Cu:3.5%以下、C
o:4%以下、B:0.02%以下、Ti:0.05%
以下、Ta:0.05%以下、Hf:0.05%以下、
Nd:0.05%以下、La:0.05%以下、Ce:
0.05%以下、Y:0.05%以下、Ca:0.01
%以下、Mg:0.01%以下を含有し、残部はFeお
よび不純物からなる高クロム・フェライト系耐熱鋼材の
製造方法であって、鋳片の二次冷却の比水量を0.1〜
0.6リットル/kg−鋼とし、鋳片の厚さ中心部が凝
固開始するまでに二次冷却を終了する条件で、150m
m以上の厚さで断面形状が長方形の鋳片を連続鋳造し、
厚さ中心部が凝固完了した後の鋳片の表面温度が400
℃以上である間に、圧下比0.1〜0.4の条件で鋳片
を一次圧延し、その後、一次圧延した鋳片を熱間圧延し
て鋼材に仕上げることを特徴とする高クロム・フェライ
ト系耐熱鋼材の製造方法。
(1) C: 0.03 to 0.2% by mass%, S
i: 0.05 to 0.7%, Mn: 0.1 to 1.5, C
r: 8-14%, W: 0.8-4%, V: 0.1-0.
3%, Nb: 0.01 to 0.2%, N: 0.005 to
0.2%, Al: 0.002 to 0.05%, Ni: 1%
Mo: 1.2% or less, Cu: 3.5% or less, C
o: 4% or less, B: 0.02% or less, Ti: 0.05%
Hereinafter, Ta: 0.05% or less, Hf: 0.05% or less,
Nd: 0.05% or less, La: 0.05% or less, Ce:
0.05% or less, Y: 0.05% or less, Ca: 0.01
% Or less, Mg: 0.01% or less, the balance being a method for producing a high chromium / ferrite heat resistant steel material comprising Fe and impurities, wherein the specific water amount of the secondary cooling of the slab is 0.1 to
0.6 liter / kg-steel, 150 m under the condition that secondary cooling is completed before solidification of the center of the slab thickness starts.
continuous casting of a rectangular piece with a thickness of at least m
The surface temperature of the slab after solidification of the center of the thickness is 400
While the temperature is not less than 0 ° C., the slab is primarily rolled under a reduction ratio of 0.1 to 0.4, and then the primary-rolled slab is hot-rolled to finish it into a steel material. Manufacturing method of heat-resistant ferritic steel.
【請求項2】上記一次圧延後の鋳片の表面温度が400
℃になるまでは、平均50℃/時間以下の冷却速度で冷
却し、その後、一次圧延した鋳片を熱間圧延し、一次圧
延前の鋳片からの合計圧下比が0.67以上である鋼材
に仕上げることを特徴とする請求項1に記載の高クロム
・フェライト系耐熱鋼材の製造方法。
2. The surface temperature of the slab after the primary rolling is 400
Until the temperature reaches 50 ° C., the steel is cooled at an average cooling rate of 50 ° C./hour or less, and then the primary-rolled slab is hot-rolled, and the total reduction ratio from the slab before the primary rolling is 0.67 or more. The method for producing a high chromium / ferritic heat-resistant steel material according to claim 1, wherein the steel material is finished.
【請求項3】一次圧延前または一次圧延後の鋳片を切断
用ガスを用いて切断するに際し、切断部分近傍の鋳片の
表面温度が350℃以上である間に鋳片を切断すること
を特徴とする請求項1または請求項2に記載の高クロム
・フェライト系耐熱鋼材の製造方法。
3. A method for cutting a slab before or after primary rolling using a cutting gas while cutting the slab while the surface temperature of the slab near the cut portion is 350 ° C. or higher. The method for producing a high chromium / ferritic heat-resistant steel material according to claim 1 or 2, wherein:
JP2001027841A 2001-02-05 2001-02-05 Manufacturing method of high chromium / ferritic heat resistant steel Expired - Lifetime JP3518517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001027841A JP3518517B2 (en) 2001-02-05 2001-02-05 Manufacturing method of high chromium / ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001027841A JP3518517B2 (en) 2001-02-05 2001-02-05 Manufacturing method of high chromium / ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JP2002224798A true JP2002224798A (en) 2002-08-13
JP3518517B2 JP3518517B2 (en) 2004-04-12

Family

ID=18892436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001027841A Expired - Lifetime JP3518517B2 (en) 2001-02-05 2001-02-05 Manufacturing method of high chromium / ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JP3518517B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116591A (en) * 2004-10-25 2006-05-11 Jfe Steel Kk Method for casting steel
JP2008018439A (en) * 2006-07-11 2008-01-31 Kobe Steel Ltd Continuous casting method for slab steel with less center segregation
KR100986908B1 (en) 2003-12-18 2010-10-08 주식회사 포스코 method for manufacturing of continuous cating slab of austenitic stainless steel
KR101246390B1 (en) * 2011-02-24 2013-03-21 현대제철 주식회사 Fire-resistant steel and method of manufacturing the fire-resistant steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986908B1 (en) 2003-12-18 2010-10-08 주식회사 포스코 method for manufacturing of continuous cating slab of austenitic stainless steel
JP2006116591A (en) * 2004-10-25 2006-05-11 Jfe Steel Kk Method for casting steel
JP4613579B2 (en) * 2004-10-25 2011-01-19 Jfeスチール株式会社 Steel casting method
JP2008018439A (en) * 2006-07-11 2008-01-31 Kobe Steel Ltd Continuous casting method for slab steel with less center segregation
JP4515419B2 (en) * 2006-07-11 2010-07-28 株式会社神戸製鋼所 Continuous casting method of slab steel with little center segregation
KR101246390B1 (en) * 2011-02-24 2013-03-21 현대제철 주식회사 Fire-resistant steel and method of manufacturing the fire-resistant steel

Also Published As

Publication number Publication date
JP3518517B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
RU2680041C2 (en) Method for producing high-strength steel sheet and produced sheet
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
JP4725216B2 (en) Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
WO2016068139A1 (en) Ferrite-based stainless steel plate, steel pipe, and production method therefor
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP6264468B2 (en) High strength oil well steel and oil well pipe
JP6103156B2 (en) Low alloy oil well steel pipe
JP5362582B2 (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
WO2017110027A1 (en) High strength seamless stainless steel pipe for oil wells and manufacturing method therefor
US10988819B2 (en) High-strength steel material and production method therefor
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
CN107119241A (en) A kind of 1000MPa grades of non-magnetic rustproof steel hot-rolled sheet and manufacture method
TWI326714B (en) Low-carbon resulfurized free-machining steel excellent in machinability
JP3711959B2 (en) Heat resistant low alloy steel pipe and method for producing the same
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JPH04224659A (en) Seamless martensitic steel tube and its production
RU2465346C1 (en) Manufacturing method of high-strength strip for pipes of main pipelines
JP5195802B2 (en) Billet manufacturing method
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JPH08120345A (en) Production of martensitic stainless steel seamless tube excellent in corrosion resistance
KR101889176B1 (en) High strength duplex stainless steel reduced cracking and method for manufacturing the same
RU2276695C1 (en) Stainless steel for production of pipes and method of production of stainless steel pipes
JP4513551B2 (en) Billet manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

R150 Certificate of patent or registration of utility model

Ref document number: 3518517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term