JPH1133688A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH1133688A
JPH1133688A JP19376997A JP19376997A JPH1133688A JP H1133688 A JPH1133688 A JP H1133688A JP 19376997 A JP19376997 A JP 19376997A JP 19376997 A JP19376997 A JP 19376997A JP H1133688 A JPH1133688 A JP H1133688A
Authority
JP
Japan
Prior art keywords
temperature
slab
cooling
steel
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19376997A
Other languages
Japanese (ja)
Other versions
JP3239808B2 (en
Inventor
Toru Kato
徹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19376997A priority Critical patent/JP3239808B2/en
Publication of JPH1133688A publication Critical patent/JPH1133688A/en
Application granted granted Critical
Publication of JP3239808B2 publication Critical patent/JP3239808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the surface cracking of traverse cracking, traverse crazing, etc., while securing sufficiently high correcting temp. without adding Ti. SOLUTION: A steel is cast so as to contain 0.003-0.06 wt.% Al and/or 0.005-0.1 wt.% Nb with a curving type or a vertical and bending type continuous caster. In such a case, a cast slab is cooled at 4-15 deg.C/sec cooling speed of the surface layer just after coming out from a mold and the cooling is stopped in the temp. range of < Ar3 point to the temp. at non-completion of γ phase transformation on the surface layer temp. and then, the surface temp. is returned back to 950-1200 deg.C and the correction is executed with the following inequality. 17-0.002×D>ε. In this inequality, D is the thickness of the cast slab (mm) and εis correcting strain (%).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Nb等を含む鋼の
鋳片の表面割れを防止する鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of continuously casting steel for preventing surface cracks of a steel slab containing Nb or the like.

【0002】[0002]

【従来の技術】近年材料特性上の要求からNb、V、N
i、Cu、など種々の合金元素を含有した低合金鋼の生
産量が増加している。しかしながら、これらの合金元素
の添加に伴ない連続鋳造時に鋳片表面に横割れ、横ひび
割れと呼ばれる表面割れ(以下、「表面割れ」と記す)
が発生する場合があり、製造上の問題となっている。こ
れらの表面割れは、表面付近のAlNやNbCなどの析
出に伴ない脆弱化したオーステナイト(以下、「γ」と
いう)粒界に沿って、またはγ粒界に生成した初析フェ
ライト(以下、フェライトを「α」と記す)に沿って、
鋳片矯正のための矯正応力がかけられる際に発生するこ
とが知られている。したがって、γがαに変態する温度
域である600〜850℃にて矯正されるときに重度の
表面割れが発生する。そこで、通常は、表面の熱間延性
が低下する温度域(以下、「脆化温度域」という)を低
温側または高温側に回避して矯正を行い表面割れを抑制
する方法が採られている。しかし、鋳片矯正時の表面温
度を制御するのみでは表面割れを防止することは不可能
であり、種々の方法が提案されている。
2. Description of the Related Art Nb, V, N
The production of low alloy steels containing various alloying elements such as i, Cu, etc. is increasing. However, during the continuous casting accompanied by the addition of these alloying elements, surface cracks called lateral cracks and lateral cracks on the slab surface (hereinafter referred to as "surface cracks").
May occur, which is a manufacturing problem. These surface cracks are formed along the austenite (hereinafter referred to as “γ”) grain boundaries weakened by precipitation of AlN or NbC or the like near the surface or pro-eutectoid ferrite (hereinafter referred to as “ferrite”) formed at the γ grain boundaries. Along with “α”),
It is known that this occurs when straightening stress for slab straightening is applied. Therefore, severe surface cracking occurs when the temperature is corrected at 600 to 850 ° C., which is a temperature range where γ is transformed into α. Therefore, a method is usually employed in which a temperature range in which the hot ductility of the surface is reduced (hereinafter, referred to as “brittle temperature range”) is avoided on a low temperature side or a high temperature side to perform correction and suppress surface cracking. . However, it is impossible to prevent surface cracking only by controlling the surface temperature at the time of slab correction, and various methods have been proposed.

【0003】例えば、鋳型を出た直後に強制冷却し鋳片
表面温度を650〜700℃として一旦γからαに変態
させ、かつ前述の矯正点での表面温度が延性の低下する
温度域を低温側に回避する冷却パターンを採る方法が提
案されている(特公昭58−3790号公報)。しかし
ながら、Ni等の合金元素の含有率が高いことに起因し
て割れ感受性の高い鋼種では、冷却パターンを変えて鋳
片矯正時の脆化温度域を低温側に回避することはできな
い。
For example, immediately after leaving the mold, the slab surface temperature is changed from γ to α once by forcibly cooling the slab to 650 to 700 ° C. A method of adopting a cooling pattern to be avoided on the side has been proposed (Japanese Patent Publication No. 58-3790). However, in steel types having high crack susceptibility due to the high content of alloying elements such as Ni, it is not possible to change the cooling pattern to avoid the brittle temperature range at the time of slab correction to a lower temperature side.

【0004】また、加熱炉装入前に鋳片表層部を350
〜500℃の温度域に1分間以上冷却し保持する方法も
開示されている(特開平5−329505号公報)。こ
の方法は、一旦鋳片表面温度を低下することにより、鋳
片の大部分または全体をγからαに相変態させ、これに
よりγ粒径を微細化し組織的に割れ感受性を小さくする
方法である。しかし、鋳片の大部分を一旦700℃以下
にまで低下するとその後複熱させても脆化温度域を高温
側に回避することは熱的に不可能である。
[0004] Also, before charging the heating furnace, the surface layer of the slab is 350
There is also disclosed a method of cooling and maintaining the temperature in a temperature range of -500 ° C for 1 minute or more (JP-A-5-329505). This method is a method in which the slab surface temperature is once lowered, thereby transforming most or all of the slab from γ to α, thereby reducing the γ grain size and systematically reducing cracking sensitivity. . However, once most of the slabs have dropped to 700 ° C. or less, it is not thermally possible to avoid the embrittlement temperature range on the high temperature side even if the slabs are subsequently double heated.

【0005】さらに、表面割れはγ粒界に発生するの
で、γ粒径に着目し、γ粒径を微細化しようという提案
が数多くなされている。本出願人はγ粒の成長を抑制す
るために凝固時にγ単相となる温度からの冷却速度を1
0℃/秒以上とする方法(特開昭63−63559号公
報)、および鋳型長さの関係式を設定し、早めに鋳片を
引き出し直ちに2次冷却する方法(特開昭61−195
742号公報)を提案している。しかし、鋳片表面部が
γ単相化温度に達する連続鋳造中の位置は、通常、凝固
直後の鋳型内にあり、冷却速度の制御が困難であり、か
つ鋳型長さを通常より極端に短くすることは操業上のト
ラブルを招きやすいので、実用化の障害となっている。
Further, since surface cracks occur at the γ grain boundaries, many proposals have been made to focus on the γ grain size and to reduce the γ grain size. In order to suppress the growth of γ grains, the applicant has set the cooling rate from the temperature at which γ becomes a single phase during solidification by 1
0 ° C./sec or higher (Japanese Patent Application Laid-Open No. 63-63559) and a method of setting the relational expression of the mold length, drawing out the slab early, and immediately performing secondary cooling (Japanese Patent Application Laid-Open No. 61-195)
742). However, the position during continuous casting where the slab surface reaches the γ single-phase temperature is usually in the mold immediately after solidification, it is difficult to control the cooling rate, and the mold length is extremely shorter than usual. Doing so can easily lead to operational problems, which is an obstacle to practical application.

【0006】一方、割れの発生した粒界にはAlNやN
bCが析出しており、AlN等の析出に伴う応力集中が
割れを助長することが知られている。これに対してγ粒
界への集中したAlN析出を抑制するためにTiを添加
しTiNを高温域で粒界および粒内に析出させることが
しばしば行われており、高い効果を得ている。さらにT
i添加に加えて冷却条件を制御することによりAlN析
出を制御する方法の提案もなされている(特公昭55−
7106号公報)。しかし、材料特性上の要求によりT
iの添加が不可能な鋼種も多く、冷却条件のみに依存す
るAlN等の析出制御は安定性を欠くという問題があ
る。
On the other hand, AlN or N
It is known that bC is precipitated, and stress concentration accompanying precipitation of AlN or the like promotes cracking. On the other hand, in order to suppress AlN precipitation concentrated on the γ grain boundaries, Ti is often added to precipitate TiN in the grain boundaries and in the grains at a high temperature range, and a high effect is obtained. Further T
A method of controlling the precipitation of AlN by controlling the cooling conditions in addition to the addition of i has also been proposed (Japanese Patent Publication No. 55-1979).
No. 7106). However, due to material property requirements, T
There are many steel types to which i cannot be added, and there is a problem in that precipitation control of AlN or the like depending only on cooling conditions lacks stability.

【0007】したがって、鋳片の表面割れの防止方法は
数多く提案されているものの、 (イ)矯正温度の確保が
できない、 (ロ)Tiを含むことができない鋼には適用
できないなどの問題点があり、表面割れは今なお頻発し
ているのが実状である。
Therefore, although many methods have been proposed for preventing the surface cracks of cast slabs, there are problems such as (a) it is not possible to secure the straightening temperature, and (b) it cannot be applied to steel that cannot contain Ti. Yes, surface cracks are still occurring frequently.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、Ti
添加しないで、かつ十分高い矯正温度を確保したうえで
表面割れを防止する鋼の連続鋳造方法を提供することに
ある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the problem of Ti
It is an object of the present invention to provide a continuous casting method of steel that prevents surface cracking while adding a sufficiently high straightening temperature without adding.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために連続鋳造鋳型直下での鋳片表面の冷却
パターンおよび矯正時の歪量等に着目して実際の連続鋳
造機を用いて検討を重ねた結果、下記の事項を確認する
ことができた。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors focused on a cooling pattern of a slab surface immediately below a continuous casting mold and a distortion amount at the time of straightening, and the like. As a result of repeated studies using, the following items could be confirmed.

【0010】(a)表面割れの主因は、AlN、NbC
等の析出物のγ粒界への集中した析出であるが、γ粒界
へのAlN等の集中した析出を防止するためには従来の
ように全てのγが変態を終了する低温域まで冷却する必
要はない。
(A) The main causes of surface cracks are AlN and NbC
Precipitates are concentrated on the γ grain boundaries.However, in order to prevent concentrated precipitation of AlN etc. on the γ grain boundaries, all the γ is cooled to the low temperature region where the transformation is completed as in the past. do not have to.

【0011】(b)γの変態途中で冷却を停止して初析
αを生成させた後、表面を復熱させると、上記の析出物
を粒界と粒内に分散させて析出させることができ、かつ
十分高い矯正温度を確保することができる。
(B) When the surface is reheated after the cooling is stopped during the transformation of γ to produce pro-eutectoid α, the above precipitates can be dispersed and precipitated in the grain boundaries and in the grains. And a sufficiently high correction temperature can be ensured.

【0012】(c)上記の(a)および(b)を前提と
して、矯正の際、矯正歪量と鋳片厚さとの間に一定の関
係を満足させると表面割れは確実に防止することができ
る。
(C) On the premise of the above (a) and (b), in the case of straightening, if a certain relationship is satisfied between the amount of straightening and the thickness of the slab, it is possible to reliably prevent surface cracks. it can.

【0013】本発明は上記の事項を組み合わせて完成さ
れたもので、その要旨は下記の連続鋳造方法にある。
The present invention has been completed by combining the above items, and the gist of the invention resides in the following continuous casting method.

【0014】『重量割合で、Al:0.003〜0.0
6%およびNb:0.005〜0.1%のうち1種また
は2種を含有する鋼の鋳片を湾曲型または垂直曲げ型の
連続鋳造機により製造する方法であって、鋳型から引き
抜いた鋳片を表層での冷却速度が4〜15℃/秒となる
条件で冷却し、表層温度がAr3 点未満で、かつオース
テナイト相の変態が完了しない温度域で冷却を停止した
後、表層を950〜1200℃に復熱させ、下記式の
条件で鋳片の矯正を行う表面割れを防止する鋼の連続鋳
造方法。
"By weight, Al: 0.003 to 0.0
6% and Nb: a method for producing a steel slab containing one or two of 0.005 to 0.1% by a curved or vertical bending type continuous casting machine, and drawn from a mold. After cooling the slab under the condition that the cooling rate in the surface layer is 4 to 15 ° C./sec, the cooling is stopped in a temperature range where the surface temperature is less than the Ar 3 point and the transformation of the austenite phase is not completed, and then the surface layer is cooled. A continuous casting method for steel that is reheated to 950 to 1200 ° C. and that corrects a slab under the following formula to prevent surface cracks.

【0015】 1.7−0.002×D > ε ・・・・・・・・・・・・ ここに、Dは鋳片厚さ(mm)、εは矯正歪(%)を表
す。』上記の発明において、鋼とは低合金鋼、さらに詳
しくは、C含有率が0.2%以下の低合金鋼をさす。
「表層」とは、鋳片表面から内側へ5mmまでの表面部
分をさす。以後の説明において、表層の冷却速度が4〜
15℃/秒となる条件で冷却することを、「急冷」とい
う場合がある。また、急冷温度とは、急冷によって上記
の表層が到達する最低温度をいう。復熱温度とは、復熱
によって表層が到達する最高温度をいう。表層を急冷し
た後に復熱させることを、「急冷復熱」という。矯正歪
量は、表層でなく表面が矯正時に受ける歪量をいい、多
点矯正の場合は各点での矯正歪量の合計をさす。例え
ば、N点矯正の場合は矯正歪量ε=ε1+ε2+・・・・+ε
N、である。
1.7−0.002 × D> ε Here, D represents slab thickness (mm), and ε represents straightening strain (%). In the above invention, the steel refers to a low alloy steel, more specifically, a low alloy steel having a C content of 0.2% or less.
“Surface layer” refers to a surface portion up to 5 mm inward from the slab surface. In the following description, the cooling rate of the surface layer is 4 to
Cooling under the condition of 15 ° C./sec may be referred to as “rapid cooling”. The quenching temperature refers to the lowest temperature at which the surface layer reaches by quenching. The recuperation temperature refers to the maximum temperature that the surface layer reaches by recuperation. Reheating after quenching the surface layer is called "quenching reheating". The correction distortion amount refers to the distortion amount that the surface, not the surface layer, receives at the time of correction. In the case of multipoint correction, it refers to the total correction distortion amount at each point. For example, in the case of N-point correction, the correction distortion amount ε = ε 1 + ε 2 +... + Ε
N.

【0016】つぎに、本発明方法の技術的な内容につい
て詳細に説明する。
Next, the technical contents of the method of the present invention will be described in detail.

【0017】横ひび割れの発生には鋼中で析出するAl
NやNbCが大きな影響を与えることが明らかにされて
いる。
For the generation of lateral cracks, Al precipitated in steel
It has been found that N and NbC have a great effect.

【0018】図3は、AlとNおよびNbとCの鋼中で
の溶解度積を示す図面である。図3(a)はAlとNの
溶解度積、図3(b)はNbとCの溶解度積を示す。温
度の上昇に伴ない溶解度積は増加し、かつα中よりもγ
中の方が溶解度積は大きいことが分かる。例えば、C:
0.07%、Al:0.03%、Nb:0.03%、
N:35ppm含有する鋼(以下、「鋼S」という)の
場合、上記の溶解度積に基づいてAlNおよびNbCの
析出開始温度を求めると、両者はそれぞれ、約1050
℃および970℃となる。鋼Sはこれらの温度ではいず
れもγ相である。すなわち、AlNもNbCも平衡論的
にはγ相中で析出を開始するはずである。鋼Sに限ら
ず、α系ステンレス鋼を除いてほとんどの低合金鋼で
は、AlNおよびNbCはγ相中で析出を開始する。
FIG. 3 is a drawing showing the solubility products of Al and N and Nb and C in steel. FIG. 3A shows the solubility product of Al and N, and FIG. 3B shows the solubility product of Nb and C. The solubility product increases with increasing temperature, and γ
It can be seen that the solubility product is larger in the middle. For example, C:
0.07%, Al: 0.03%, Nb: 0.03%,
In the case of steel containing N: 35 ppm (hereinafter referred to as “steel S”), when the precipitation onset temperatures of AlN and NbC are determined based on the above solubility product, both are about 1050.
° C and 970 ° C. Steel S is in the γ phase at these temperatures. That is, both AlN and NbC should begin to precipitate in the γ phase in an equilibrium manner. AlN and NbC start to precipitate in the γ phase in most low alloy steels except for the α-type stainless steel, not limited to the steel S.

【0019】次に実際の連続鋳造時の析出挙動を考え
る。通常の連続鋳造における温度履歴を模擬した(a)
徐冷の場合と、(b)急冷復熱の場合、の2つの場合に
ついて検討する。
Next, the precipitation behavior during actual continuous casting will be considered. Simulated temperature history in normal continuous casting (a)
Two cases of slow cooling and (b) rapid cooling / reheating will be considered.

【0020】図2は、鋳片表層の温度履歴およびこれら
の温度履歴に伴うAlNやNbCの析出挙動を示す図面
である。図2(a)は徐冷の場合、図2(b)は急冷復
熱の場合を示す。図2(c)は徐冷の場合と急冷復熱の
場合の鋳片表層温度の時間推移を示す。
FIG. 2 is a drawing showing the temperature histories of the surface layer of the slab and the precipitation behavior of AlN and NbC accompanying these temperature histories. FIG. 2A shows the case of slow cooling, and FIG. 2B shows the case of rapid cooling and reheating. FIG. 2 (c) shows the time transition of the surface temperature of the slab in the case of slow cooling and rapid cooling and reheating.

【0021】徐冷の場合には鋳片の表層温度が析出開始
温度以下となり、さらにある程度過冷するとγ粒界1に
AlNやNbCが析出を開始する。この時の析出物2は
粗大であり、かつ粒界に沿って点列状に分布する。鋳片
の矯正時には、矯正応力により粒内には動的析出により
AlN等の析出物3が析出する。粒界1に集中して粗大
なAlN等2が析出すると、粒界近傍に無析出帯4が生
じる。さらにはAr点以下となれば粒界には“初析
α”6が析出するため、この無析出帯4や“初析α”6
などの脆弱な部分に矯正応力が集中し割れが発生する
(Y.Maehara et al:Material
Science Engineering 62(1
984)109)。
In the case of gradual cooling, the surface layer temperature of the slab becomes equal to or lower than the precipitation start temperature, and when the slab is further cooled to some extent, precipitation of AlN and NbC at the γ grain boundary 1 starts. At this time, the precipitates 2 are coarse and distributed in a point sequence along the grain boundaries. At the time of slab rectification, precipitates 3 such as AlN precipitate in the grains by dynamic precipitation due to the correction stress. When coarse AlN or the like 2 precipitates at the grain boundary 1, a non-precipitation zone 4 is generated near the grain boundary. Further, if the Ar content is 3 points or less, “pro-eutectoid α” 6 precipitates at the grain boundary.
The straightening stress concentrates on a fragile part such as the like, and cracks occur (Y. Maehara et al: Material)
Science Engineering 62 (1
984) 109).

【0022】これに対して、鋳型直下で一旦Ar3 点以
下にまで急冷した場合には、γ粒界にAlNやNbCが
析出する十分な時間が得られない。かつ、初析α中の溶
解度積がγ中と比較して著しく小さいことから、初析α
の生成に伴い初析αの内部および界面にAlN等5が析
出する。拡散速度を考えるとこの時生成する初析α粒の
大きさは10μm程度と考えられ、AlNやNbCの析
出物はこの粒内に分散することになる。前述の徐冷時の
AlNやNbCは粒界に点列状に析出するのに対して、
一旦急冷却した場合には粒界周辺に分散した分布を有す
る析出物7となる。
On the other hand, if the alloy is quenched immediately below the mold to the Ar 3 point or lower, sufficient time for AlN or NbC to precipitate at the γ grain boundary cannot be obtained. In addition, since the solubility product in pro-eutectoid α is significantly smaller than that in γ,
With the formation of Al, 5 such as AlN is precipitated inside the pro-eutectoid α and at the interface. Considering the diffusion rate, the size of the pro-eutectoid α grains generated at this time is considered to be about 10 μm, and the precipitates of AlN and NbC are dispersed in these grains. AlN and NbC at the time of the above-mentioned slow cooling precipitate at the grain boundaries in a point sequence, whereas
Once quenched, the precipitates 7 have a distribution distributed around the grain boundaries.

【0023】一方、復熱時の析出物については、前述の
鋼Sのように、平衡状態におけるAlNおよびNbCの
析出開始温度が1050℃および970℃の場合には、
固溶および拡散の速度を考えると、復熱時にはこれらの
析出物はこれらの温度をそれぞれ大きく上回る温度でな
ければ完全に固溶することはない。これまでの経験か
ら、大抵の低合金鋼では復熱温度が1200℃未満の場
合には析出物が残存する。急冷復熱をすると、矯正点で
はAlNやNbCの分布が徐冷時と異なり、粒界近傍の
無析出帯のような脆弱な部分が存在せず、耐表面割れ感
受性が向上する。
On the other hand, with respect to the precipitates at the time of recuperation, as in the case of steel S described above, when the precipitation starting temperatures of AlN and NbC in the equilibrium state are 1050 ° C. and 970 ° C.,
In view of the rate of solid solution and diffusion, these precipitates do not completely dissolve unless the temperature greatly exceeds these temperatures at the time of reheating. From previous experience, precipitates remain in most low alloy steels when the reheat temperature is less than 1200 ° C. When quenched and reheated, the distribution of AlN and NbC at the correction point is different from that at the time of slow cooling, and there is no fragile portion such as a non-precipitation zone near the grain boundary, and the susceptibility to surface cracking is improved.

【0024】[0024]

【発明の実施の形態】つぎに、本発明の限定範囲を上記
のように設定した理由について説明する。以後の説明
で、合金元素の鋼中での含有率を表す「%」は「重量
%」を意味する。
Next, the reason why the limited range of the present invention is set as described above will be described. In the following description, “%” representing the content of alloying elements in steel means “% by weight”.

【0025】1.鋼の化学組成 AlとNbの含有率を限定した理由はつぎの通りであ
る。
1. The chemical composition of steel The reasons for limiting the contents of Al and Nb are as follows.

【0026】本発明方法はAlおよびNbの1種または
2種を含むために表面割れ感受性が高い鋼を対象とす
る。
The method of the present invention is directed to a steel having high surface cracking susceptibility because it contains one or two of Al and Nb.

【0027】Alは脱酸および金属組織制御のために添
加する。Alが0.003%未満では脱酸が不十分であ
り、かつ製品になったときの金属組織を微細にできず、
この結果、靭性を確保しにくくなる。一方、0.06%
を超えるとAlNの析出開始温度が高くなり析出物が粗
大化するため割れ防止効果が得られなくなる。したがっ
て、本発明方法に係る鋼においては、Alを0.003
〜0.06%含む鋼を対象とする。
Al is added for deoxidation and control of metal structure. If the Al content is less than 0.003%, the deoxidation is insufficient, and the metal structure of the product cannot be made fine,
As a result, it becomes difficult to secure toughness. On the other hand, 0.06%
If it exceeds 300, the precipitation start temperature of AlN becomes high and the precipitate becomes coarse, so that the effect of preventing cracking cannot be obtained. Therefore, in the steel according to the method of the present invention, Al is set to 0.003.
For steel containing up to 0.06%.

【0028】Nbは一般的に鋼の強度を向上するために
添加する。Nbの含有率が0.005%未満ではNbC
の析出による強度向上効果が得られない。一方、0.1
%を超えると強度向上の効果は飽和し、溶接熱影響部の
靭性が低下するので上限は0.1%とする。
Nb is generally added to improve the strength of steel. If the Nb content is less than 0.005%, NbC
The effect of improving the strength due to the precipitation cannot be obtained. On the other hand, 0.1
%, The effect of improving strength saturates and the toughness of the heat affected zone decreases, so the upper limit is made 0.1%.

【0029】また、Cを0.04%〜0.2%の範囲に
含む鋼についても、このような表面割れの感受性が高
い。このC含有率の範囲のとき、前述の冷却条件を変化
させることによりNbCの析出の制御が可能であるの
で、本発明方法はCを0.04〜0.2%含む鋼に用い
ることが望ましい。
Also, steel containing C in the range of 0.04% to 0.2% is highly sensitive to such surface cracks. When the C content is in the above range, it is possible to control the precipitation of NbC by changing the above-mentioned cooling conditions. Therefore, the method of the present invention is desirably used for steel containing 0.04 to 0.2% of C. .

【0030】また、表面割れ感受性は下記式の“包晶
反応の炭素当量”(以下、「Cp」と表示する)と密接
な関係があり、Cpが0.1〜0.18で割れ感受性が
大きくなることが知られている。本発明方法は、Cpが
0.1〜0.18の範囲内にあっても表面割れを抑制す
ることができる。したがって、Cpが0.1〜0.18
の範囲の鋼に対して特に有効である。
The surface cracking susceptibility is closely related to the “carbon equivalent of peritectic reaction” (hereinafter referred to as “Cp”) in the following formula. It is known to grow. The method of the present invention can suppress surface cracking even when Cp is in the range of 0.1 to 0.18. Therefore, Cp is 0.1 to 0.18
Is particularly effective for steels in the range of

【0031】 2.冷却 つぎに鋳型を出た直後の鋳片の急冷、すなわち2次冷却
の冷却速度について説明する。
[0031] 2. Cooling Next, the rapid cooling of the slab immediately after leaving the mold, that is, the cooling rate of the secondary cooling will be described.

【0032】表層の冷却速度が小さい場合、前述のよう
にγ域で粗大なAlNやNbCが点列状に析出してしま
い、初析αの生成に伴い内部および界面にAlNやNb
Cが分散して析出する効果が期待できない。このため、
冷却速度の下限を4℃/秒とする。急冷の効果を高める
ためには、2次冷却のスプレーやミストの水量を増加す
ることになるが、過度に水量を増加すると水圧により凝
固シェルが破れ、鋳型と鋳片の隙間より水が吹き上げ
る、等の大きなトラブルにつながる。このため、表層の
冷却速度を15℃/秒を超える冷却速度とすることはで
きない。また、冷却速度が15℃/秒を超えると鋳片表
面に温度むらが生じやすくなり、熱応力による割れの発
生などの危険がある。操業の安定の観点から、Ar3
までの冷却速度は10℃/秒未満とすることが一層望ま
しい。
When the cooling rate of the surface layer is low, coarse AlN or NbC precipitates in a dotted line in the γ region as described above, and AlN or Nb
The effect of dispersing and depositing C cannot be expected. For this reason,
The lower limit of the cooling rate is 4 ° C./sec. In order to enhance the effect of quenching, the amount of water in the secondary cooling spray and mist will be increased, but if the amount of water is excessively increased, the solidification shell is broken by water pressure, and water is blown up from the gap between the mold and the slab, It leads to big troubles such as. Therefore, the cooling rate of the surface layer cannot be made higher than 15 ° C./sec. On the other hand, if the cooling rate exceeds 15 ° C./second, the temperature of the slab surface tends to be uneven, and there is a danger of cracking due to thermal stress. From the viewpoint of stable operation, it is more desirable that the cooling rate to the Ar 3 point be less than 10 ° C./sec.

【0033】冷却を停止する温度、すなわち急冷温度に
ついては、Ar3 点未満で、かつγ相が全て変態を終了
しない温度域の範囲とする。Ar3 点未満まで急冷しな
いと、初析αが粒界に生成せず、γ粒界への集中したA
lN、NbC等の析出を防止できない。一方、γ相が全
て変態を終了するまで急冷すると、γ粒径を微細化する
効果は高くなるが、矯正点における鋳片表層の温度を十
分高く確保できない。かつ、変態終了温度付近ではパー
ライトが析出し、セメンタイトなどの析出が生じ、連続
鋳造後の鋳片の組織に悪影響を与える。したがって、鋳
型通過後の急冷却時には変態を完了してはならず、変態
途中で急冷を停止して復熱させる必要がある。Ar3
は、上記のC含有率等の場合、700〜850℃とな
る。
The temperature at which the cooling is stopped, that is, the quenching temperature, is within a temperature range of less than the Ar 3 point and in which all the γ phases do not end the transformation. Unless quenched to less than the Ar 3 point, pro-eutectoid α does not form at the grain boundaries, and A
Precipitation of 1N, NbC, etc. cannot be prevented. On the other hand, when the γ phase is rapidly cooled until the transformation is completed, the effect of making the γ particle size finer increases, but the temperature of the surface layer of the slab at the correction point cannot be sufficiently high. In the vicinity of the transformation end temperature, pearlite precipitates and precipitates such as cementite occur, which adversely affects the structure of the slab after continuous casting. Therefore, the transformation must not be completed during rapid cooling after passing through the mold, and it is necessary to stop the rapid cooling during the transformation to recover the heat. The Ar 3 point is 700 to 850 ° C. in the case of the above C content and the like.

【0034】また、γ相が変態を完了する温度は400
〜450℃である。なお、Ar3 点およびγ相が変態を
完了する温度ともに、冷却速度依存性があり冷却速度が
大きいほうがともに温度は低くなる傾向にある。しか
し、本発明方法が対象とする低合金鋼の場合には、冷却
速度が4〜15℃/秒の範囲のときには、ほぼ一定とみ
なすことができる。大きく変動する場合には、Ar3
は冷却速度15℃での温度を、また、γ相が変態を完了
する温度は4℃/秒での温度とする。
The temperature at which the transformation of the γ phase is completed is 400
450450 ° C. Note that both the Ar 3 point and the temperature at which the γ phase completes transformation are dependent on the cooling rate, and the higher the cooling rate, the lower the temperature. However, in the case of the low alloy steel targeted by the method of the present invention, when the cooling rate is in the range of 4 to 15 ° C./sec, it can be regarded as substantially constant. If the temperature fluctuates greatly, the Ar 3 point is a temperature at a cooling rate of 15 ° C., and the temperature at which the γ phase completes transformation is 4 ° C./sec.

【0035】実際の連続鋳造の2次冷却においては、ロ
ール間でロール接触部、放熱部、スプレー部、たまり水
部等によって冷却効果の強弱があり、冷却と復熱が繰り
返されている。しかし、これらの温度変動による析出へ
の影響は小さく、本発明における冷却速度はストランド
内の平均的な温度変化により判断すればよい。
In the actual secondary cooling of continuous casting, the cooling effect is varied between the rolls due to the roll contact portion, the heat radiating portion, the spray portion, the accumulated water portion, etc., and the cooling and reheating are repeated. However, the influence of these temperature fluctuations on precipitation is small, and the cooling rate in the present invention may be determined by the average temperature change in the strand.

【0036】3.復熱 鋳片表層の温度をγ相が完全に変態を終了する温度以下
まで下げた後も継続的に冷却すると、矯正点での表層温
度が著しく低下し、鋳片の強度が高くなるため矯正操作
ができないという問題が生じる。冷却水量を減少したと
しても、復熱しなければ徐々に表層温度が低下すること
は避けられず、同じ問題が生じる。さらに復熱時の鋳片
表層温度が十分確保されないと、矯正点における鋳片表
層温度が800℃程度になり、Ar3 点近傍の脆化域に
入るので表面割れが発生する。したがって、復熱の際に
は冷却水の供給を停止し、かつ、復熱温度は950℃以
上とする。矯正温度を安定して確保するためには復熱温
度は1000℃以上とすることがより好ましい。
3. Continuous cooling after reducing the temperature of the slab surface layer below the temperature at which the γ phase completely completes the transformation, remarkably reduces the surface layer temperature at the straightening point and increases the strength of the slab. There is a problem that the operation cannot be performed. Even if the amount of cooling water is reduced, it is inevitable that the surface layer temperature will gradually decrease unless the heat is restored, and the same problem occurs. Furthermore, if the surface temperature of the slab at the time of recuperation is not sufficiently ensured, the surface temperature of the slab at the correction point becomes about 800 ° C. and enters the embrittlement region near the Ar 3 point, so that a surface crack occurs. Therefore, at the time of reheating, the supply of cooling water is stopped, and the reheating temperature is set to 950 ° C. or higher. In order to stably maintain the correction temperature, it is more preferable that the reheating temperature is 1000 ° C. or higher.

【0037】しかしながら、復熱温度が1200℃を超
えると、析出物の溶解が生じ、鋳片表層部の温度をAr
3 点以下まで急冷した効果が消失してしまう。復熱方法
は、表面を加熱する必要はなく、冷却水量を減少あるい
は停止させ、鋳片の持つ熱量により復熱することが経済
的であり、また均一な表層温度が得られる。
However, when the reheating temperature exceeds 1200 ° C., the precipitate is dissolved, and the temperature of the surface layer of the slab is reduced to Ar.
The effect of quenching to 3 points or less disappears. In the recuperation method, it is not necessary to heat the surface, it is economical to reduce or stop the amount of cooling water, and to recuperate by the calorie of the slab, and to obtain a uniform surface temperature.

【0038】4.矯正 次に、矯正における鋳片の厚さと歪量による割れ感受性
の変化について説明する。この矯正に関する知見は、鋼
の組成、矯正温度などの条件をほぼ一定にし、種々の連
続鋳造条件および鋳片厚さの条件で、割れ発生状況を調
査した結果得られたものである。
4. Correction Next, a description will be given of a change in susceptibility to cracking due to the thickness and strain amount of a slab in correction. The knowledge about the straightening was obtained as a result of investigating the state of occurrence of cracks under various continuous casting conditions and slab thickness conditions while keeping conditions such as the composition of the steel and the straightening temperature substantially constant.

【0039】図1は表面割れが発生する矯正歪量と鋳片
厚さの範囲を示す図である。このときの冷却条件はいず
れも鋳型を出てから一旦Ar3 点まで約6℃/秒で冷却
し、その後復熱する温度パターンとした。矯正歪量は連
続鋳造機の仕様と鋳片の厚さにより決まり、下記式に
より求められる。多点矯正の場合は各矯正点の歪量の総
和を歪量とする。
FIG. 1 is a diagram showing the range of the amount of correction strain at which surface cracks occur and the thickness of the slab. In this case, the cooling conditions were such that the mold was once cooled to about the Ar 3 point at a rate of about 6 ° C./sec after leaving the mold, and then reheated. The amount of straightening is determined by the specifications of the continuous casting machine and the thickness of the slab, and is determined by the following equation. In the case of multipoint correction, the sum of the distortion amounts at each correction point is defined as the distortion amount.

【0040】[0040]

【数】 【number】

【0041】ここで、Dは鋳片厚さ(mm)を、また、
RnおよびRn+1は矯正前後の湾曲の曲率半径を表す。
Here, D is the slab thickness (mm), and
Rn and Rn + 1 represent the radius of curvature of the curvature before and after the correction.

【0042】この検討の結果、鋳片厚さが厚くなるほど
少ない歪量で割れが発生することが判明した。図中の割
れ発生有無の境界線から表面割れ防止の条件式を下記
のように設定する。
As a result of this study, it was found that as the thickness of the slab increases, cracking occurs with a smaller amount of strain. The conditional expression for preventing surface cracking is set as follows from the boundary line of the presence or absence of cracking in the figure.

【0043】 1.7−0.002×D>ε ・・・・・・・・・ 本発明の目的は、鋳片の矯正時に発生する表面割れを防
止するものであるから、湾曲型または垂直曲げ型(VB
型)の連続鋳造機を用いて製造する方法が対象となる。
1.7−0.002 × D> ε Since the object of the present invention is to prevent surface cracks that occur when the slab is straightened, it is curved or vertical. Bending type (VB
The target is a method of manufacturing using a continuous casting machine of (type).

【0044】[0044]

【実施例】つぎに本発明方法の効果を実施例により説明
する。
EXAMPLES Next, the effects of the method of the present invention will be described with reference to examples.

【0045】[実施例1]実施例1では、矯正条件は
式を満たす一定の条件、すなわち鋳片の厚さ235m
m、矯正歪量を0.95%とし、2次冷却条件を種々変
化させる試験を行った。連続鋳造機としては、いずれも
実製造ラインで稼働中のもので、機長23mの3点矯正
型の湾曲型連続鋳造機、機長12mの一点矯正型のVB
型連続鋳造機、および機長18mの一点矯正型の湾曲型
連続鋳造機を使用した。2次冷却条件は、冷却水量を種
々変化させ、急冷速度、急冷温度、復熱温度等を変化さ
せた。鋳片の表層温度は鋳型直下より表層に噛み込ませ
た熱電対およびチャンバー内に設置した放射温度計によ
り測定した。
[Embodiment 1] In Embodiment 1, the straightening condition is a fixed condition that satisfies the equation, that is, a slab thickness of 235 m.
m, the correction distortion amount was set to 0.95%, and a test was performed in which the secondary cooling conditions were variously changed. As continuous casting machines, all are operating on the actual production line, a three-point straightening type curved continuous casting machine having a length of 23 m, and a one-point straightening type VB having a length of 12 m.
A mold continuous casting machine and a one-point correction type curved continuous casting machine having a length of 18 m were used. Secondary cooling conditions varied the amount of cooling water, and changed the rapid cooling speed, rapid cooling temperature, reheat temperature, and the like. The surface layer temperature of the slab was measured by a thermocouple biting into the surface layer from immediately below the mold and a radiation thermometer installed in the chamber.

【0046】表1は、連続鋳造試験に使用した溶鋼の化
学組成を示す。この鋼の上記冷却速度範囲でのAr3
は約850℃であり、γ相が100%変態を終了する温
度はおよそ475℃である。
Table 1 shows the chemical composition of the molten steel used in the continuous casting test. The Ar 3 point of the steel in the above cooling rate range is about 850 ° C., and the temperature at which the γ phase completes 100% transformation is about 475 ° C.

【0047】[0047]

【表1】 [Table 1]

【0048】表面割れの発生状況は黒皮ままでは判別が
困難なので、鋳片表面に厚さ約1mmスカーフをかけ目
視観察により評価した。鋳片の定常部の幅中央からエッ
ジまでを含む1m2 以上の面を3ヶ所以上調査し、発生
した割れ長さの総和を1m2あたりに換算し評価した。
また、この調査方法が標準的な鋳片表面の平均的な状況
を抽出して代表する試験方法であることをあらかじめ確
認した。
Since it is difficult to determine the occurrence of surface cracks as it is with black scales, a scarf having a thickness of about 1 mm was applied to the surface of the slab and evaluated by visual observation. Three or more surfaces of 1 m 2 or more including the width from the center to the edge of the steady portion of the slab were inspected, and the total length of cracks generated was converted to about 1 m 2 and evaluated.
In addition, it was previously confirmed that this inspection method was a representative test method by extracting an average condition of a standard slab surface.

【0049】表2は、試験結果を示す一覧表である。Table 2 is a list showing the test results.

【0050】[0050]

【表2】 [Table 2]

【0051】前述のように表面割れを抑制するために
は、矯正点における表層温度が脆化温度域の範囲外にあ
ることが重要である。本発明例である試験番号1〜3、
比較例である試験番号4、6、7では脆化温度域を回避
するように、矯正点における表層温度がほぼ880〜9
20℃程度になるよう冷却の水量を制御している。
As described above, in order to suppress surface cracking, it is important that the surface layer temperature at the correction point is outside the range of the embrittlement temperature range. Test Nos. 1 to 3, which are examples of the present invention,
In Test Nos. 4, 6, and 7, which are comparative examples, the surface temperature at the correction point was almost 880 to 9 so as to avoid the embrittlement temperature range.
The amount of cooling water is controlled so as to be about 20 ° C.

【0052】比較例である試験番号4のように徐冷した
場合には、上述のように同じ矯正温度にも拘らず、鋳片
の全面に深さ5mm以上の割れが発生した。したがっ
て、Ar3 点まで冷却してもその冷却速度が2℃/秒ま
たは3℃/秒と遅い場合には、その後復熱し、同じ矯正
温度であっても割れが発生する結果が得られた。一旦急
冷しても、表層温度がAr3 点直上までしか到達しなか
った試験番号8は、試験番号4と同程度の割れが発生し
ており、急冷の効果が認められない。復熱温度が123
0℃と高すぎる試験番号7では重度の割れが発生した。
急冷後の復熱温度が低かった試験番号5については復熱
温度が低いために矯正温度が確保できず、割れが発生し
た。
When the specimen was gradually cooled as in Test No. 4 which is a comparative example, cracks having a depth of 5 mm or more occurred on the entire surface of the slab despite the same correction temperature as described above. Therefore, when the cooling rate was as low as 2 ° C./sec or 3 ° C./sec even after cooling to the Ar 3 point, the heat was recovered and the crack was generated even at the same correction temperature. Test No. 8 in which the surface layer temperature reached only immediately above the Ar 3 point even after quenching once had cracks similar to Test No. 4, and the quenching effect was not recognized. Reheat temperature is 123
In Test No. 7, which was too high at 0 ° C., severe cracking occurred.
For Test No. 5 in which the recuperation temperature after quenching was low, the correction temperature could not be secured because the recuperation temperature was low, and cracks occurred.

【0053】これに対して、鋳型を出てからAr3 点に
なるまでの冷却速度を5.0℃/秒または9.2℃/秒
とし、960〜1150℃に復熱した本発明例の試験番
号1〜3ではいずれも表面割れは発生しなかった。
On the other hand, the cooling rate from the mold to the Ar 3 point was 5.0 ° C./sec or 9.2 ° C./sec. In Test Nos. 1 to 3, no surface cracks occurred.

【0054】この結果により、矯正時に式を満たすか
ぎり、鋳型直下で一旦急冷し鋳片表面の温度をAr3
未満にまで低下した後、γ相の変態が終了する前に冷却
を停止し未凝固溶鋼の凝固潜熱により950℃以上に復
熱させるような温度履歴とすれば表面割れは防止できる
ことが判明した。
According to the results, as long as the formula is satisfied at the time of straightening, the temperature of the slab surface is once quenched immediately below the mold to reduce the temperature of the slab surface to less than the Ar 3 point. It has been found that surface cracks can be prevented by setting the temperature history so that the temperature of the solidified molten steel is restored to 950 ° C. or higher by the latent heat of solidification.

【0055】[実施例2]次に連続鋳造における冷却条
件は本発明方法の範囲内として、矯正時の歪付加条件を
変化させた結果について説明する。
[Example 2] Next, the results of changing the conditions for applying distortion during straightening while setting the cooling conditions in continuous casting within the scope of the method of the present invention will be described.

【0056】表3は実施例2の2次冷却条件および矯正
条件を示す。
Table 3 shows secondary cooling conditions and correction conditions in Example 2.

【0057】[0057]

【表3】 [Table 3]

【0058】割れ発生の有無の調査方法等は実施例1の
場合と同様である。表3に示した試験結果によれば、鋳
片の厚さを300mmとし式の条件を満たさない試験
番号11では、冷却条件および矯正条件が試験番号1〜
3と同等にも関わらず表面割れが発生した。また、試験
番号11に対してロールレイアウトを変更して歪量を変
化させ、式の範囲外とした試験番号12でも表面割れ
が発生した。
The method for investigating the occurrence of cracks is the same as in the first embodiment. According to the test results shown in Table 3, in Test No. 11 in which the thickness of the slab was 300 mm and the conditions of the formula were not satisfied, the cooling conditions and the straightening conditions were Test Nos.
Despite being equivalent to 3, surface cracks occurred. In addition, the surface layout also occurred in Test No. 12 where the distortion amount was changed by changing the roll layout for Test No. 11 and was outside the range of the formula.

【0059】これに対して、鋳片の厚さおよび歪量を変
化しても本発明方法の2次冷却条件および矯正における
式を満足する場合には、試験番号9、10のように割
れは発生しなかった。
On the other hand, if the secondary cooling conditions and the formula for straightening of the method of the present invention are satisfied even if the thickness and strain amount of the slab are changed, cracks as shown in Test Nos. 9 and 10 are observed. Did not occur.

【0060】この結果、2次冷却条件は本発明方法の範
囲内にあっても矯正において鋳片厚さと歪量とが式を
満足しなければ割れが発生することが明らかになった。
As a result, even if the secondary cooling conditions were within the range of the method of the present invention, it was clarified that cracking would occur if the slab thickness and strain amount did not satisfy the equations in straightening.

【0061】[0061]

【発明の効果】本発明方法によれば、Ti等を添加する
ことなく、十分な矯正温度を確保して、表面割れが抑制
された連続鋳造鋳片を製造することができる。
According to the method of the present invention, it is possible to manufacture a continuous cast slab in which surface cracks are suppressed by securing a sufficient correction temperature without adding Ti or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】矯正における矯正歪と鋳片厚さの表面割れに及
ぼす影響を示す図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a view showing the effects of straightening strain and slab thickness on surface cracking in straightening.

【図2】連続鋳造の析出物の析出挙動を模式的に表した
図である。(a)は徐冷の場合、(b)は急冷の場合、
(c)は(a)と(b)のそれぞれの温度推移を示す。
FIG. 2 is a diagram schematically illustrating a precipitation behavior of a precipitate in continuous casting. (A) is for slow cooling, (b) is for rapid cooling,
(C) shows each temperature transition of (a) and (b).

【図3】析出物の構成元素の溶解度積の温度依存性を示
す図である。(a)はAlとN、(b)はNbとCの場
合である。
FIG. 3 is a diagram showing the temperature dependence of the solubility product of the constituent elements of the precipitate. (A) shows the case of Al and N, and (b) shows the case of Nb and C.

【符号の説明】[Explanation of symbols]

1…オーステナイト粒界 2…オーステナイト粒界に析出したAlN等の析出物 3…粒内に析出したAlN等の析出物 4…無析出帯 5…初析フェライト中に析出したAlN等の析出物 6…初析フェライト 7…復熱時に析出したAlN等の析出物 DESCRIPTION OF SYMBOLS 1 ... Austenitic grain boundary 2 ... Precipitates, such as AlN, which precipitated on austenite grain boundary 3 ... Precipitates, such as AlN, which precipitated in a grain 4 ... No precipitation zone 5 ... Precipitates, such as AlN which precipitated in pro-eutectoid ferrite 6 ... proeutectoid ferrite 7 ... precipitates such as AlN deposited during reheating

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量割合で、Al:0.003〜0.06
%およびNb:0.005〜0.1%のうち1種または
2種を含有する鋼の鋳片を湾曲型または垂直曲げ型の連
続鋳造機により製造する方法であって、鋳型から引き抜
いた鋳片を表層での冷却速度が4〜15℃/秒となる条
件で冷却し、表層温度がAr3 点未満で、かつオーステ
ナイト相の変態が完了しない温度域で冷却を停止した
後、表層を950〜1200℃に復熱させ、下記式の
条件で鋳片の矯正を行うことを特徴とする表面割れを防
止する鋼の連続鋳造方法。 1.7−0.002×D > ε ・・・・・・・・・・・・ ここに、Dは鋳片厚さ(mm)、εは矯正歪量(%)を
表す。
(1) Al: 0.003 to 0.06 by weight.
% And Nb: a method of producing a steel slab containing one or two of 0.005 to 0.1% by a continuous casting machine of a curved type or a vertical bending type, wherein the casting is drawn from a mold. After cooling the piece under the condition that the cooling rate in the surface layer is 4 to 15 ° C./sec, and stopping the cooling in the temperature range where the surface layer temperature is lower than the Ar 3 point and the transformation of the austenite phase is not completed, the surface layer is cooled to 950. A continuous casting method of steel for preventing surface cracks, wherein the method is reheated to ~ 1200 ° C and straightened under a condition of the following formula. 1.7−0.002 × D> ε Here, D represents the thickness of the slab (mm), and ε represents the amount of corrective strain (%).
JP19376997A 1997-07-18 1997-07-18 Steel continuous casting method Expired - Fee Related JP3239808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19376997A JP3239808B2 (en) 1997-07-18 1997-07-18 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19376997A JP3239808B2 (en) 1997-07-18 1997-07-18 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JPH1133688A true JPH1133688A (en) 1999-02-09
JP3239808B2 JP3239808B2 (en) 2001-12-17

Family

ID=16313510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19376997A Expired - Fee Related JP3239808B2 (en) 1997-07-18 1997-07-18 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3239808B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307574A (en) * 2006-05-17 2007-11-29 Sumitomo Metal Ind Ltd Continuous casting method of billet
JP2008307599A (en) * 2007-06-18 2008-12-25 Jfe Steel Kk Continuous casting method, and continuous casting machine
JP2015093278A (en) * 2013-11-08 2015-05-18 新日鐵住金株式会社 CONTINUOUS CASTING METHOD OF Ti DEOXIDIZED STEEL
JP2015167964A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 continuous casting method of steel
JP2015217435A (en) * 2014-05-21 2015-12-07 新日鐵住金株式会社 Continuous casting method for steel
JP2016022498A (en) * 2014-07-18 2016-02-08 新日鐵住金株式会社 Production method of low carbon aluminum-killed steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149789B2 (en) * 2014-04-23 2017-06-21 Jfeスチール株式会社 Steel continuous casting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307574A (en) * 2006-05-17 2007-11-29 Sumitomo Metal Ind Ltd Continuous casting method of billet
JP2008307599A (en) * 2007-06-18 2008-12-25 Jfe Steel Kk Continuous casting method, and continuous casting machine
JP2015093278A (en) * 2013-11-08 2015-05-18 新日鐵住金株式会社 CONTINUOUS CASTING METHOD OF Ti DEOXIDIZED STEEL
JP2015167964A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 continuous casting method of steel
JP2015217435A (en) * 2014-05-21 2015-12-07 新日鐵住金株式会社 Continuous casting method for steel
JP2016022498A (en) * 2014-07-18 2016-02-08 新日鐵住金株式会社 Production method of low carbon aluminum-killed steel

Also Published As

Publication number Publication date
JP3239808B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
KR101797383B1 (en) High strength hot rolled steel sheet having low deviation of mechanical property and excellent surface quality and method for manufacturing the same
JP3239808B2 (en) Steel continuous casting method
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JP3008825B2 (en) Slab surface crack suppression method
JPH0432514A (en) Production of soft wire rod free from surface abnormal phase in as-rolled state
JP4398879B2 (en) Steel continuous casting method
JP5195802B2 (en) Billet manufacturing method
JPS58164751A (en) Cold forging steel and its manufacture
JP2009214122A (en) Composite roll for hot rolling and its manufacturing method
EP2660344A1 (en) Centrifugally cast roll for last finishing stands in hot strip mills
JP4561755B2 (en) Method for continuous casting of steel containing B and N
JP2833442B2 (en) Ni-containing steel for low temperature and secondary cooling method of continuous cast slab thereof
JPH11197809A (en) Method for preventing surface crack on continuously cast slab
KR20180074096A (en) High strength hot rolled steel sheet having low deviation of mechanical property and excellent surface quality and weldability, and method for manufacturing the same
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP3309634B2 (en) Manufacturing method of free-cut non-heat treated steel for hot forging
JP4112785B2 (en) Method for preventing surface cracking of continuous cast slabs under large hot width reduction
JP2917236B2 (en) Manufacturing method of 9% Ni steel with excellent low temperature toughness
JPH054169B2 (en)
JPH0742509B2 (en) Method for producing ERW steel pipe with excellent low temperature toughness
JPS6240902A (en) Method for preventing crack in direct hot rolling of continuously cast steel ingot
JPH0565567B2 (en)
JP4513551B2 (en) Billet manufacturing method
JPS62156056A (en) Continuous casting method for low alloy steel
JP2020204066A (en) Slab management method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees