JP2007307574A - Continuous casting method of billet - Google Patents

Continuous casting method of billet Download PDF

Info

Publication number
JP2007307574A
JP2007307574A JP2006137465A JP2006137465A JP2007307574A JP 2007307574 A JP2007307574 A JP 2007307574A JP 2006137465 A JP2006137465 A JP 2006137465A JP 2006137465 A JP2006137465 A JP 2006137465A JP 2007307574 A JP2007307574 A JP 2007307574A
Authority
JP
Japan
Prior art keywords
slab
temperature
billet
cooling
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006137465A
Other languages
Japanese (ja)
Other versions
JP4899629B2 (en
Inventor
Akihiro Yamanaka
章裕 山中
Toru Kato
徹 加藤
Manabu Adachi
学 足立
Masaaki Yamade
雅章 山出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006137465A priority Critical patent/JP4899629B2/en
Publication of JP2007307574A publication Critical patent/JP2007307574A/en
Application granted granted Critical
Publication of JP4899629B2 publication Critical patent/JP4899629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method which can prevent γ-grain-boundary cracks on the surface layer of a cast billet without causing bending of the cast billet, the γ-grain-boundary cracks being easily caused at a brittle temperature range below A<SB>3</SB>transformation temperature. <P>SOLUTION: In the continuous casting method of a cast billet using a continuous casting machine having a correcting portion, a secondary cooling of the cast billet is carried out from the position just below the outlet of a casting mold in such a manner that the cooling speed is within the range from 5 to 10°C/s or less during the period in which the temperature of the portion at a depth of 5 mm from the surface of the cast billet drops from the A<SB>3</SB>transformation temperature to 800°C or lower. Then, the temperature of the portion at a depth of 5 mm from the surface of the cast billet is once returned to 950°C or higher until the cast billet is corrected. After that, the cast billet is corrected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ビレットの表層部に発生しやすいオーステナイト粒界割れを低減することが可能なビレット鋳片の連続鋳造に関し、さらに詳しくは、ビレット鋳片の二次冷却速度を適正範囲に制御して冷却後、鋳片の表層部を復熱させ、その後にビレット鋳片を矯正する連続鋳造方法に関する。   The present invention relates to continuous casting of a billet slab capable of reducing austenite grain boundary cracking that is likely to occur in the surface layer portion of the billet. More specifically, the secondary cooling rate of the billet slab is controlled within an appropriate range. The present invention relates to a continuous casting method in which after cooling, a surface layer portion of a slab is reheated, and thereafter a billet slab is straightened.

連続鋳造された鋳片から、圧延または鍛造工程を経へずにマンネスマン法などにより継目無鋼管を製造する工程においては、連続鋳造鋳片の表層部にしばしば割れが発生し、この割れに起因して製管時に外面疵が生じ、それが製品欠陥となる。また、継目無鋼管以外の棒鋼や線材の製造を行う場合においても、ビレット鋳片の表層部の割れが圧延時に拡大して製品の欠陥となるおそれがある。   In the process of producing seamless steel pipes from the continuously cast slab by the Mannesmann method etc. without going through the rolling or forging process, cracks often occur in the surface layer of the continuous cast slab. As a result, external flaws occur during pipe making, which becomes a product defect. Moreover, when manufacturing steel bars and wires other than seamless steel pipes, cracks in the surface layer of billet slabs may expand during rolling, resulting in product defects.

上記の鋳片表層部の割れは、オーステナイト結晶粒界に沿った割れ(以下、「γ粒界割れ」とも記す)であり、一般的にオーステナイト相(以下、「γ相」とも記す)からフェライト相(以下、「α相」とも記す)への変態(以下、「A3変態」とも称する)にともなう860℃〜600℃程度の高温脆化温度域で発生するといわれている。鋳片表層部の割れは、スラブ鋳片の鋳造時において問題となることが多い。鋳片の曲げ矯正による歪および熱応力による歪がこの温度域で大きくなると、表層部割れが発生すると考えられている。 The cracks in the slab surface layer are cracks along the austenite grain boundaries (hereinafter also referred to as “γ grain boundary cracks”), and generally from austenite phase (hereinafter also referred to as “γ phase”) to ferrite. It is said that it occurs in a high temperature embrittlement temperature range of about 860 ° C. to 600 ° C. accompanying transformation (hereinafter also referred to as “A 3 transformation”) to a phase (hereinafter also referred to as “α phase”). Cracks in the slab surface layer often become a problem when casting slab slabs. It is believed that surface layer cracking occurs when strain due to bending correction of a slab and strain due to thermal stress increase in this temperature range.

そこで、鋳片を過度に冷却することなく、弱冷却条件で冷却しながらで鋳造することより、曲げ矯正時における鋳片表層部の温度をA3点より高温に保って脆化温度域を回避したり、冷却による熱応力の発生を低減することにより、γ粒界割れの発生の抑制が図られている。 Therefore, without unduly cool the slab, avoiding than be cast in while cooling with weak cooling conditions, the embrittlement temperature range kept at a temperature higher than the temperature of the A 3 point of the slab surface portion during bending straightening In addition, the occurrence of γ grain boundary cracks is suppressed by reducing the generation of thermal stress due to cooling.

また、例えば、特許文献1には、厚さに対する幅の比が1.8〜10.5である鋳片の鋳造時、鋳型出口直後から冷却を開始し鋳造方向に少なくとも1.5mまでの間において特定の水量で冷却し鋳片表面温度を一旦A3変態温度以下とした後、復熱させて鋳片表面温度を850℃以上として、鋳片の矯正を行うことにより矯正時のγ粒界割れを抑制する連続鋳造方法が開示されている。特許文献2には、特許文献1と同様な方法により、A3変態温度以上の温度まで復熱させた後、鋳片を矯正する連続鋳造方法も開示されている。 Further, for example, Patent Document 1 discloses that when casting a slab having a width to thickness ratio of 1.8 to 10.5, cooling is started immediately after the mold outlet, and at least 1.5 m in the casting direction. after cooling to the cast slab surface temperature once more than a 3 transformation temperature in a specific amount of water in the slab surface temperature by recuperation as 850 ° C. or higher, gamma grain boundaries at the time of correction by performing correction of the slab A continuous casting method for suppressing cracking is disclosed. Patent Document 2, by the same as Patent Document 1 method, after recuperation to A 3 transformation temperature or higher, even continuous casting method of correcting slab is disclosed.

さらに、鋳片を600℃以下にまで強冷却することにより、脆化域を回避する方法も考えられるが、ビレット鋳片の場合には横断面の面積が小さいことから、強冷却による熱応力に起因して鋳片の曲がり(反り)が発生するおそれがある。   Furthermore, a method of avoiding the embrittlement region by strongly cooling the slab to 600 ° C. or less is conceivable, but in the case of a billet slab, the area of the cross section is small, so the thermal stress due to strong cooling is reduced. As a result, the slab may be bent (warped).

これらに加えて、ビレット鋳片の鋳造の場合には、上記のとおり断面積が小さいことから、一般に鋳造速度(引き抜き速度)が大きく、したがって、冷却が弱すぎると凝固シェルの強度が低下し、鋳片の横断面形状を適切に保持することが困難となる。例えば、円形断面のビレットを鋳造する場合には、ビレットの横断面が楕円形に変形し、鋳片横断面の真円性が損なわれる。したがって、ビレット鋳片の鋳造では、最小限度の冷却効果を確保しつつビレット鋳片の表面割れの抑制を図る必要がある。   In addition to these, in the case of casting a billet slab, since the cross-sectional area is small as described above, generally the casting speed (drawing speed) is large. Therefore, if the cooling is too weak, the strength of the solidified shell decreases, It becomes difficult to properly maintain the cross-sectional shape of the slab. For example, when a billet with a circular cross section is cast, the cross section of the billet is deformed into an ellipse, and the roundness of the cross section of the slab is impaired. Therefore, in the casting of the billet slab, it is necessary to suppress the surface cracking of the billet slab while ensuring a minimum cooling effect.

特開2001−138019号公報(特許請求の範囲および段落[0040])JP 2001-138019 A (claims and paragraph [0040]) 特開2002−86252号公報(特許請求の範囲および段落[0036])JP 2002-86252 A (Claims and paragraph [0036])

本発明は、上記の問題を解決するためになされたものであり、その課題は、ビレット鋳片の連続鋳造において鋳片の横断面形状の精度を確保しつつ、鋳片の曲がりを発生させることなく、A3変態温度以下の脆化温度域において発生しやすい鋳片表層部のγ粒界割れを防止することのできる連続鋳造方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and the problem is to generate the bending of the slab while ensuring the accuracy of the cross-sectional shape of the slab in the continuous casting of the billet slab. It is another object of the present invention to provide a continuous casting method capable of preventing the γ grain boundary cracking of the slab surface layer portion, which is likely to occur in the embrittlement temperature range below the A 3 transformation temperature.

本発明者は、上述の課題を解決するために、鋳片の横断面形状の精度を確保しつつ、曲がりを発生させずに、鋳片表層部のγ粒界割れを防止することのできる連続鋳造方法について研究開発を行い、下記の(a)〜(e)の知見を得て、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventor has been able to prevent the γ grain boundary cracking of the slab surface layer portion without causing bending while ensuring the accuracy of the cross-sectional shape of the slab. Research and development was conducted on the casting method, and the following findings (a) to (e) were obtained to complete the present invention.

(a)γ粒界割れを防止するためには、鋳造初期の鋳型出口直下における二次冷却により鋳片を強冷却し、鋳片表層部においてγ粒界に発生しやすいフィルム状のフェライトの生成を抑制することにより、γ粒界割れの原因となる高温脆化を低減することが有効である。   (A) In order to prevent γ grain boundary cracking, the slab is strongly cooled by secondary cooling immediately under the mold outlet at the beginning of casting, and film-like ferrite that is likely to occur at the γ grain boundary in the slab surface layer is generated. It is effective to reduce high-temperature embrittlement that causes γ grain boundary cracking by suppressing.

(b)しかし、ビレット鋳片は横断面積が小さいため、鋳造過程において鋳型内での収縮が大きく、鋳型と鋳片表面の密着性が悪く、鋳型を出た後も高温の状態が続き、鋳片表面よりも内部の温度は低下しにくい。   (B) However, since the billet slab has a small cross-sectional area, the shrinkage in the mold is large during the casting process, the adhesion between the mold and the surface of the slab is poor, and the high-temperature state continues even after the mold exits. The internal temperature is less likely to drop than the single surface.

(c)γ粒界割れを有効に防止するためには、鋳片表面から少なくとも深さ5mmの厚さで鋳片の全面にわたって、上記(a)のフィルム状フェライトの生成が抑制された組織を形成させる必要があり、そのためには、二次冷却において鋳片表面から深さ5mmの部位における冷却速度を5℃/s以上とする必要がある。   (C) In order to effectively prevent γ grain boundary cracking, the structure in which the formation of the film-like ferrite (a) is suppressed over the entire surface of the slab with a thickness of at least 5 mm from the surface of the slab. For this purpose, it is necessary to set the cooling rate at a part 5 mm deep from the slab surface to 5 ° C./s or more in the secondary cooling.

(d)ビレット鋳片に曲がりが発生するのを防止するためには、上記(d)の鋳片表面から深さ5mmの部位における冷却速度を10℃/s未満とし、さらに、冷却過程において上記部位の温度を一旦950℃以上に復熱させることにより、鋳片内の残留応力を低減する必要がある。   (D) In order to prevent the billet slab from being bent, the cooling rate at a part having a depth of 5 mm from the surface of the slab of (d) is set to less than 10 ° C./s, and further, It is necessary to reduce the residual stress in the slab by once reheating the temperature of the part to 950 ° C. or higher.

(e)上記の鋳型直下の二次冷却は、鋳型出口直下から鋳造方向に長くとも4mまでの範囲内において行い、冷却水の比水量は1.1〜1.8リットル/kg−鋼(以下、「L/kg−鋼」とも記す)とすることが好ましい。   (E) The secondary cooling just below the mold is performed within the range from the position immediately below the mold outlet to 4 m at the longest in the casting direction, and the specific water amount of the cooling water is 1.1 to 1.8 liters / kg-steel (hereinafter referred to as “the cooling water”). And “L / kg-steel”).

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記のビレット鋳片の連続鋳造方法にある。   The present invention has been completed based on the above findings, and the gist thereof is the following continuous casting method for billet cast pieces.

「矯正部を有する連続鋳造機を用いるビレット鋳片の連続鋳造方法であって、ビレット鋳片の表面から深さ5mmの部位における温度がA3変態温度から800℃以下まで低下する間の冷却速度が5℃/s以上、10℃/s未満となるビレット鋳片の二次冷却を、鋳型出口直下から行い、その後、鋳片を矯正するまでに、ビレット鋳片の表面から深さ5mmの部位の温度を一旦950℃以上に復熱させ、その後にビレット鋳片を矯正することを特徴とするビレット鋳片の連続鋳造方法。」
上記の連続鋳造方法において、上記二次冷却は、鋳型出口直後から鋳造方向に長くとも4mまでの範囲内で行い、比水量は1.1〜1.8L/kg−鋼とすることが好ましい。
“Continuous casting method of billet slab using continuous casting machine having straightening part, and cooling rate while temperature at portion of depth of 5 mm from surface of billet slab is lowered from A 3 transformation temperature to 800 ° C. or less The secondary cooling of the billet slab is 5 ° C./s or more and less than 10 ° C./s from directly under the mold outlet, and then the part 5 mm deep from the surface of the billet slab until the slab is corrected. The billet slab is continuously reheated to 950 ° C. or higher and then the billet slab is straightened. ”
In the above continuous casting method, the secondary cooling is preferably performed within the range of at most 4 m in the casting direction immediately after the mold outlet, and the specific water amount is preferably 1.1 to 1.8 L / kg-steel.

本発明において、「ビレット鋳片」とは、鋳片の横断面形状が150mm角〜400mm角程度の角鋳片または横断面形状が直径150mm〜400mm程度の丸鋳片を意味する。   In the present invention, the “billet slab” means a square slab having a cross-sectional shape of about 150 mm square to 400 mm square or a round slab having a diameter of about 150 mm to 400 mm.

本発明のビレット鋳片の連続鋳造方法によれば、鋳片の横断面形状の精度を確保しつつ、鋳片の曲がりを発生させることなく、かつ、A3変態温度以下の脆化温度域において発生しやすい鋳片表層部のγ粒界割れが著しく低減されたビレット鋳片を製造することができる。したがって、本発明の鋳造方法により得られたビレット鋳片を製管用素材として用いることにより、継目無管製造時における外面疵の発生を効果的に抑制することが可能となる。 According to the continuous casting method of the billet slab of the present invention, while securing the accuracy of the cross-sectional shape of the slab, without causing bending of the slab, and, at the embrittlement temperature range of A 3 transformation temperature or less It is possible to produce a billet slab in which the γ grain boundary cracking of the slab surface layer portion that is likely to occur is significantly reduced. Therefore, by using the billet slab obtained by the casting method of the present invention as a raw material for pipe making, it is possible to effectively suppress the occurrence of outer surface defects during the production of seamless pipes.

(1)発明の基本的構成
本発明は、前記のとおり、矯正部を有する連続鋳造機を用いるビレット鋳片の連続鋳造方法であって、ビレット鋳片の表面から深さ5mmの部位における温度がA3変態温度から800℃以下まで低下する間の冷却速度が5℃/s以上、10℃/s未満となるビレット鋳片の二次冷却を、鋳型出口直下から行い、その後、鋳片を矯正するまでに、ビレット鋳片の表面から深さ5mmの部位の温度を一旦950℃以上に復熱させ、その後にビレット鋳片を矯正するビレット鋳片の連続鋳造方法である。
(1) Basic configuration of the invention As described above, the present invention is a continuous casting method of a billet cast using a continuous casting machine having a correction portion, and the temperature at a part having a depth of 5 mm from the surface of the billet cast is The secondary cooling of the billet slab where the cooling rate is 5 ° C./s or more and less than 10 ° C./s while decreasing from the A 3 transformation temperature to 800 ° C. or less is performed immediately below the mold outlet, and then the slab is straightened. This is a billet slab continuous casting method in which the temperature at a part 5 mm deep from the surface of the billet slab is once reheated to 950 ° C. or higher and then the billet slab is corrected.

本発明は前記のビレット鋳造の問題点や課題を考慮して完成されたものである。前記のとおり、特許文献1または特許文献2には、横断面の偏平比が1.8〜10.5である鋳片の鋳造時に、鋳型出口直後から冷却を開始し、鋳造方向に1.5mまでの間において強冷却により鋳片表面温度を一旦A3変態温度以下とした後、鋳片表面温度を850℃以上またはA3変態温度以上の温度にまで復熱させて矯正を行うことによりγ粒界割れを抑制する連続鋳造方法が開示されている。本発明の連続鋳造方法も、上記特許文献に開示された方法と同様に、鋳造初期の鋳型直下において鋳片を強冷することにより鋳片表層部におけるγ粒界に発生するフィルム状のフェライトの生成を抑制して、γ粒界割れの原因となる高温脆化を低減させる作用・効果を利用している。 The present invention has been completed in consideration of the problems and problems of the billet casting. As described above, in Patent Document 1 or Patent Document 2, when casting a slab having a cross-sectional flatness ratio of 1.8 to 10.5, cooling is started immediately after the mold outlet and 1.5 m in the casting direction. After the slab surface temperature is once lowered to the A 3 transformation temperature or less by strong cooling until the slab surface temperature is reheated to a temperature of 850 ° C. or more or a temperature of the A 3 transformation temperature or more, γ is obtained. A continuous casting method for suppressing grain boundary cracking is disclosed. Similarly to the method disclosed in the above-mentioned patent document, the continuous casting method of the present invention is a film-like ferrite generated at the γ grain boundary in the slab surface layer portion by strongly cooling the slab directly under the casting mold. It suppresses the formation and utilizes the action and effect of reducing high temperature embrittlement that causes γ grain boundary cracking.

しかし、特許文献1および2に開示された方法は、偏平比が1.8〜10.5である鋳片を対象としているのに対して、本発明はビレット、すなわち偏平比が1.0の鋳片を対象としていることにおいて基本的に相違する。一般にビレット鋳造の場合は、鋳片の横断面が小さいことに起因して鋳型内における鋳片の収縮量が大きく、鋳型と鋳片表面との密着性が悪く、鋳型を出てからも高温の状態が続き鋳片表皮下の温度はそれ程低下しない。   However, the methods disclosed in Patent Documents 1 and 2 are intended for slabs having a flatness ratio of 1.8 to 10.5, whereas the present invention is a billet, that is, the flatness ratio is 1.0. Basically, it is different in that the slab is targeted. Generally, in the case of billet casting, due to the small cross section of the slab, the shrinkage of the slab in the mold is large, the adhesion between the mold and the surface of the slab is poor, and the high temperature after exiting the mold. The condition continues and the slab surface temperature does not drop so much.

本発明者らの実験および考察から、γ粒界割れを有効に防止するためには、上記のフィルム状フェライトの生成が抑制された鋼組織を鋳片の表面から少なくとも5mmの厚さにわたり、鋳片全面に形成させる必要のあることが判明した。鋳片表面の温度のみに着目して温度制御を行うと、目的とする鋳片組織の厚さが甚だ不十分なものとなり、鋳片表層部の極めて浅い領域においてγ粒界割れが発生することが明らかとなった。   From the experiments and considerations of the present inventors, in order to effectively prevent the γ grain boundary cracking, the steel structure in which the formation of the film-like ferrite is suppressed over a thickness of at least 5 mm from the surface of the slab is cast. It was found that it was necessary to form the entire surface. If temperature control is performed focusing only on the temperature of the slab surface, the thickness of the target slab structure becomes extremely insufficient, and γ grain boundary cracking occurs in a very shallow region of the slab surface layer. Became clear.

したがって、表層部の温度のみに着目して温度制御を行うのではなく、必要とする表層部の厚さを考慮した部位における鋼組織を制御するように温度管理を行う必要のあることが判明した。また、ビレット鋳片の場合には、鋳片の横断面が小さいことから、過度に強冷却を行うと、鋳片全体に曲がりを発生するおそれがあるため、曲がりの発生を防止する必要がある。この視点からも、鋳片表面から少なくとも5mmの厚さで、鋳片温度を把握し、これを管理することが有効であることがわかった。   Therefore, it was found that it is necessary to perform temperature management so as to control the steel structure in the part in consideration of the required thickness of the surface layer portion, not focusing on the temperature of the surface layer portion alone. . Further, in the case of billet slab, since the cross section of the slab is small, excessively strong cooling may cause the entire slab to bend, so it is necessary to prevent the occurrence of bending. . Also from this viewpoint, it has been found that it is effective to grasp the slab temperature and manage it with a thickness of at least 5 mm from the slab surface.

(2)発明の限定理由および好ましい範囲
本発明の範囲を前記のように規定した理由および好ましい範囲について下記に説明する。
(2) Reason for limitation and preferred range of the invention The reason and preferred range for defining the scope of the present invention as described above will be described below.

1)鋳片の冷却速度および鋳片内における冷却速度規定対象部位
本発明では、鋳片表面から深さ5mmの部位の冷却速度を5℃/s以上10℃/s未満に制御する。
1) Cooling rate of cast slab and target part for regulating cooling rate in slab In the present invention, the cooling rate of a part having a depth of 5 mm from the slab surface is controlled to 5 ° C./s or more and less than 10 ° C./s.

本発明が目的とする鋼組織は、フィルム状フェライト相の出現が抑制された鋼組織であり、そのような鋼組織を得るためには、所定速度以上の速い速度で冷却する必要がある。その理由は、γ相からα相が出現する場合に、冷却速度が遅いと、変態に要するエネルギーの低いγ粒界において優先的にα相が出現しやすくなり、γ粒界にフィルム状のフェライト(α)相を形成する。フィルム状のα相の出現を抑制するためには、γ粒内にもα相を析出させることが有効であり、種々の実験および検討を行った結果、A3変態温度から800℃以下の温度にまで冷却する際の冷却速度を5℃/s以上とする必要のあることが判明した。 The steel structure targeted by the present invention is a steel structure in which the appearance of a film-like ferrite phase is suppressed, and in order to obtain such a steel structure, it is necessary to cool at a high speed of a predetermined speed or higher. The reason is that when the α phase appears from the γ phase, if the cooling rate is slow, the α phase tends to preferentially appear at the γ grain boundary where the energy required for transformation is low, and the film-like ferrite is present at the γ grain boundary. (Α) phase is formed. In order to suppress the appearance of the film-like α phase, it is effective to precipitate the α phase in the γ grains. As a result of various experiments and examinations, the temperature from the A 3 transformation temperature to 800 ° C. or less. It has been found that it is necessary to set the cooling rate for cooling to 5 ° C./s or more.

ここで、鋳片内の半径方向位置による冷却効果の相違を考慮する必要がある。鋳片の表面から浅い部分では鋳片外表面からの冷却効果が大きく、したがって、鋳片表面から深さ5mm未満の表層部分における冷却速度は、鋳片表面から深さ5mmの部位における冷却速度よりも大きい。本発明が目的とする鋼組織は、フィルム状のα相の出現が抑制された鋼組織であり、この鋼組織を得るには、前記のとおり、鋳片の表面から少なくとも深さ5mmの領域を5℃/s以上の冷却速度で冷却することが必要である。このような理由から、鋳片表面から深さ5mmの部位における鋼組織を本発明で目的とする鋼組織に制御することにより、鋳片表面から深さ5mm以内の領域における鋼組織を目的の鋼組織に制御することができる。   Here, it is necessary to consider the difference in cooling effect depending on the radial position in the slab. The cooling effect from the outer surface of the slab is large at a portion shallow from the surface of the slab, and therefore the cooling rate at the surface layer portion less than 5 mm deep from the surface of the slab is higher than the cooling rate at the portion 5 mm deep from the slab surface. Is also big. The steel structure targeted by the present invention is a steel structure in which the appearance of a film-like α phase is suppressed, and in order to obtain this steel structure, as described above, an area at least 5 mm deep from the surface of the slab is used. It is necessary to cool at a cooling rate of 5 ° C./s or more. For this reason, the steel structure in the region within 5 mm depth from the slab surface is controlled by controlling the steel structure in the region 5 mm deep from the slab surface to the target steel structure in the present invention. Can be controlled by the organization.

しかしながら、冷却速度が過度に速くなると、低温域のマルテンサイト変態温度域に達し、その変態速度が速くなるので、マルテンサイト変態による急激な体積膨張が発生し、これがビレット鋳片に曲がりを発生させる原因となる。また、強冷却自体も、鋳片表層部の不均一な冷却を招きやすく、強冷却による温度不均一も鋳片の曲がり発生の原因となる。鋳造過程においては、鋳片はサポートロールなどにより支持されているため、曲がりを生じにくいが、連続鋳造機を出た後、カッターなどにより定尺に切断され、支持がなくなると、鋳片内の残留応力により鋳片の曲がりを生じる。この曲がりを発生させないためには、冷却速度を10℃/s以下にする必要のあることが判明した。   However, if the cooling rate becomes excessively fast, it reaches the low temperature martensitic transformation temperature range, and the transformation rate becomes fast, so that rapid volume expansion occurs due to martensitic transformation, which causes the billet slab to bend. Cause. Further, strong cooling itself tends to cause uneven cooling of the slab surface layer, and uneven temperature due to strong cooling also causes bending of the slab. In the casting process, since the slab is supported by a support roll or the like, it is difficult to bend, but after leaving the continuous casting machine, it is cut to a fixed size by a cutter or the like, and if the support is lost, The slab is bent due to the residual stress. In order to prevent this bending from occurring, it has been found that the cooling rate needs to be 10 ° C./s or less.

2)冷却速度の規定対象温度範囲、二次冷却位置および比水量
鋳片表面から深さ5mmの部位の温度がA3変態温度から800℃以下の温度に低下するまでの温度領域で冷却速度を前記のとおり規定した理由は、A3変態温度以下800℃付近までの範囲における冷却速度が最も速くなりやすいことから、冷却速度が最大となる温度領域における冷却速度を規定したことによる。これに対して、上記温度領域よりも低温領域では、鋳片と冷却媒体との温度差が縮小することから、鋳片の冷却速度は遅くなり、したがって、A3変態速度も小さくなるので、鋼の組織制御を行う場合の冷却速度を規定する温度範囲としては適切でない。
2) define the target temperature range of the cooling rate, the cooling rate in the temperature range up to temperature of a portion of a depth of 5mm from the secondary cooling position and the specific amount of water slab surface is reduced to a temperature below 800 ° C. from A 3 transformation temperature The reason defined as described above is that the cooling rate in the range from the A 3 transformation temperature to about 800 ° C. is most likely to be the fastest, and therefore the cooling rate in the temperature region where the cooling rate is maximum is specified. In contrast, in the low temperature region than the temperature range, since the temperature difference between the cooling medium slab is reduced, the cooling rate of the slab is slower, therefore, since the A 3 transformation rate also decreases, steel It is not appropriate as a temperature range that defines the cooling rate when performing tissue control.

また、鋳片の二次冷却を鋳型出口直下のスプレーゾーンで行う理由は、下記のとおりである。すなわち、鋳型直下の位置では、鋳片内部にはまだ十分な未凝固溶鋼が存在しているので、鋳片表層部を一旦強冷却した後においても、鋳片内部の未凝固溶鋼が凝固する際に放出される潜熱のみにより、鋳片表層部の温度を十分に復熱(昇温)させることが可能だからである。   The reason for performing secondary cooling of the slab in the spray zone directly under the mold outlet is as follows. That is, at the position immediately below the mold, there is still enough unsolidified molten steel inside the slab, so that the solidified molten steel inside the slab solidifies even after the slab surface layer has been strongly cooled. This is because it is possible to sufficiently recuperate (heat up) the temperature of the slab surface layer portion only by the latent heat released to.

この鋳型直下の二次冷却は、鋳型出口直下から鋳造方向に長くとも4mまでの範囲内において行い、冷却水の比水量は1.1〜1.8L/kg−鋼とすることが好ましい。この鋳型直下の二次冷却を上記の範囲内の位置で行うのが好ましい理由は、好ましくは冷却時間を短時間として、冷却期間を通じての冷却速度を速めることにより、冷却効果の現れにくいビレット鋳片の表層部におけるフィルム状フェライト相の形成を防止し、その後に、鋳片内部に存在する未凝固溶鋼の凝固時の潜熱により復熱させることを容易にするためである。   The secondary cooling just below the mold is preferably performed within the range of at most 4 m in the casting direction from directly below the mold outlet, and the specific water amount of the cooling water is preferably 1.1 to 1.8 L / kg-steel. The reason why it is preferable to perform the secondary cooling immediately below the mold at a position within the above range is that the billet slab is less likely to exhibit a cooling effect by preferably shortening the cooling time and increasing the cooling rate throughout the cooling period. This is to prevent the formation of a film-like ferrite phase in the surface layer portion of the steel sheet, and to make it easy to reheat by latent heat at the time of solidification of the unsolidified molten steel existing inside the slab.

また、比水量を上記の範囲内とするのが好ましい理由は、比水量の値を、例えば特許文献1に記載された0.4〜0.75L/kg−鋼や、特許文献2に開示された約1.3L/kg−鋼などに比して大きくすることにより、ビレット鋳片の冷却効果を高めやすいからである。   The reason why the specific water amount is preferably within the above range is that the specific water amount is disclosed in, for example, 0.4 to 0.75 L / kg-steel described in Patent Document 1 or Patent Document 2. It is because it is easy to improve the cooling effect of billet slab by increasing it compared with about 1.3 L / kg-steel.

さらに、後述する鋳型の二次冷却後の復熱温度を確保する限りにおいて、鋳型直下の二次冷却後の鋳造方向の下流側で、さらに二次冷却を適宜実施してもよいし、また、実施しなくてもよい。   Furthermore, as long as the recuperation temperature after secondary cooling of the mold to be described later is ensured, secondary cooling may be further appropriately performed on the downstream side in the casting direction after the secondary cooling immediately below the mold, It is not necessary to carry out.

3)鋳片の復熱温度および復熱温度規定対象部位
鋳片の表面から深さ5mmの部位の温度を950℃以上に復熱させる理由は、鋳片の矯正時の温度を高温としておき、鋳片からの反力の低い状態で矯正操作を行うためである。なお、矯正時の鋳片の温度は800℃以上であることが好ましい。
3) Recuperation temperature and recuperation temperature regulation target part of the slab The reason for reheating the temperature of the part 5 mm deep from the surface of the slab to 950 ° C. or higher is that the temperature during straightening of the slab is set high. This is because the straightening operation is performed in a state where the reaction force from the slab is low. In addition, it is preferable that the temperature of the slab at the time of correction is 800 degreeC or more.

この復熱により鋳片内は一旦A3変態温度を超えるので、鋼組織は、一旦α相が消失した組織となるが、鋳片の再度の温度低下により、表層部はA3変態温度以下となり、α相が析出し始める。このα相は、先の強冷却により析出したα相の析出履歴をたどる性質を有するので、γ粒界にフィルム状のフェライト相は形成されない。矯正力の上昇は、鋳片内に大きな残留応力を発生させる原因となり、この残留応力により鋳片に曲がりが発生するおそれもあることから、本発明の方法のように、低い矯正力のもとで鋳片を矯正する連続鋳造方法は、鋳片の曲がりを防止する上で大きな効果を発揮する。 This recuperation causes the A 3 transformation temperature to once exceed the A 3 transformation temperature, so that the steel structure once loses the α phase, but due to the temperature drop of the slab again, the surface layer becomes below the A 3 transformation temperature. The α phase begins to precipitate. Since this α phase has the property of following the precipitation history of the α phase precipitated by the previous strong cooling, a film-like ferrite phase is not formed at the γ grain boundary. The increase in the straightening force causes a large residual stress in the slab, and this residual stress may cause the slab to bend. Therefore, as in the method of the present invention, the low straightening force is used. The continuous casting method for correcting the slab with a large effect in preventing the bending of the slab.

本発明の連続鋳造方法の効果を確認するため、下記の連続鋳造試験を行い、γ粒界割れおよび鋳片の曲がり発生の有無を評価した。   In order to confirm the effect of the continuous casting method of the present invention, the following continuous casting test was conducted to evaluate the occurrence of γ grain boundary cracking and bending of the cast slab.

(1)鋳造試験方法
図1に、本発明の連続鋳造方法を実施するために用いた連続鋳造装置の縦断面を示した。連続鋳造装置としては、円弧半径10.5m、3点矯正式の丸ビレット鋳造用湾曲型連続鋳造機を使用した。
(1) Casting test method FIG. 1 shows a longitudinal section of a continuous casting apparatus used for carrying out the continuous casting method of the present invention. As the continuous casting apparatus, a curved continuous casting machine for round billet casting with an arc radius of 10.5 m and a three-point correction type was used.

鋳型2の鋳造方向長さは0.9m、溶鋼メニスカス4から鋳型下端までの長さは0.8mであり、メニスカス4から0.8〜1.1mの範囲にわたって鋳型下部スプレー(以下、「MDスプレー」とも称する)が、同じく1.1〜3.1mの範囲にわたってトップゾーン二次冷却装置(以下、「TZスプレー」とも称する)70が、さらに3.1〜6.1mの範囲にわたって第1ゾーン二次冷却装置(以下、「1stゾーンスプレー」とも称する)71が、そして、6.1〜9.3mの範囲にわたって第2ゾーン二次冷却装置(以下、「2ndゾーンスプレー」とも称する)72が、それぞれ設置されている。   The casting direction length of the mold 2 is 0.9 m, the length from the molten steel meniscus 4 to the lower end of the mold is 0.8 m, and the lower mold spray (hereinafter referred to as “MD” over the range of 0.8 to 1.1 m from the meniscus 4. The spray is also referred to as “spray”) over the range of 1.1 to 3.1 m, and the top zone secondary cooling device (hereinafter also referred to as “TZ spray”) 70 is the first over the range of 3.1 to 6.1 m. A zone secondary cooling device (hereinafter also referred to as “1st zone spray”) 71 and a second zone secondary cooling device (hereinafter also referred to as “2nd zone spray”) 72 over a range of 6.1 to 9.3 m. Are installed.

これらのスプレーは、全てエアーミストスプレー方式を採用し、気水比は約50(NL/min−空気/(L/min−水))とし、水量によらず一定条件で試験した。MDスプレーは、鋳型下部で鋳片を冷却することにより鋳型直下でのバルジングを防ぐためのものであり、水量は130L/minとした。また、1stゾーンのスプレーもその水量は130L/minで一定とした。本発明の効果を確認するために、鋳型直下の二次冷却であるTZスプレーの水流量を200〜1400L/minの範囲で大きく変化させた。   These sprays all employed an air mist spray system, and the air-water ratio was about 50 (NL / min-air / (L / min-water)), and the test was performed under a constant condition regardless of the amount of water. The MD spray was for preventing bulging under the mold by cooling the slab at the lower part of the mold, and the amount of water was 130 L / min. Also, the amount of water in the 1st zone spray was constant at 130 L / min. In order to confirm the effect of the present invention, the water flow rate of the TZ spray, which is the secondary cooling directly under the mold, was greatly changed in the range of 200 to 1400 L / min.

タンディッシュ10から浸漬ノズル1を経て鋳型2内に注入された溶鋼3は、鋳型2の直下に設置されたTZスプレー70により強冷却され、次いで1stゾーンスプレー71、2ndゾーンスプレー72により適宜冷却されて、ピンチロール9により引き抜かれて鋳片6となる。鋳片6は上記の二次冷却を終了後、湾曲形状が矯正されるまでに、鋳片内部に存在する未凝固溶鋼11の凝固潜熱により復熱し、その後、直線状形状に矯正される。   The molten steel 3 injected into the mold 2 from the tundish 10 through the immersion nozzle 1 is strongly cooled by the TZ spray 70 installed immediately below the mold 2 and then appropriately cooled by the 1st zone spray 71 and the 2nd zone spray 72. Then, the slab 6 is pulled out by the pinch roll 9. The slab 6 is reheated by the solidification latent heat of the unsolidified molten steel 11 existing in the slab after the secondary cooling is finished and before the curved shape is corrected, and then is corrected to a linear shape.

鋳片6内の温度分布は非定常伝熱計算により求めた。この計算精度については、計算結果を鋳片表面の温度測定結果および打鋲試験の結果と比較することによりにより、また、内部割れの人為的発生試験により得られた凝固シェル厚さを計算温度分布から得られた凝固シェル厚さと照合することにより、高い精度を有することを事前に確認した。冷却開始時の鋳片表面温度、および、冷却過程における鋳片表面から深さ5mmに部位の温度推移などは、本伝熱計算により高い精度で推定可能である。2ndゾーンスプレーでは、通常、水を供給しないが、比較試験のため、一部の試験においては水を供給した。   The temperature distribution in the slab 6 was obtained by unsteady heat transfer calculation. Regarding the calculation accuracy, the solidification shell thickness obtained by comparing the calculation result with the temperature measurement result of the slab surface and the result of the hammering test, and the artificial crack generation test of the internal crack is calculated as the temperature distribution. By confirming with the solidified shell thickness obtained from the above, it was confirmed in advance that it has high accuracy. The slab surface temperature at the start of cooling and the temperature transition of the part at a depth of 5 mm from the slab surface in the cooling process can be estimated with high accuracy by this heat transfer calculation. In the 2nd zone spray, water is not usually supplied, but for comparative tests, water was supplied in some tests.

鋳造試験には、鋼成分組成が質量%で、C:0.05〜0.18%、Si:0.10〜0.3%、Mn:0.5〜1.5%、P:0.01〜0.02%、S:0.005〜0.01%の鋼を用い、直径310mmの丸ビレット鋳片を鋳造速度1.5m/minで鋳造した。   In the casting test, the steel component composition was mass%, C: 0.05 to 0.18%, Si: 0.10 to 0.3%, Mn: 0.5 to 1.5%, P: 0.00. A round billet slab having a diameter of 310 mm was cast at a casting speed of 1.5 m / min using steel of 01 to 0.02% and S: 0.005 to 0.01%.

(2)鋼組織、γ粒界割れおよび鋳片曲がりの調査方法
鋳造後の鋳片の定常鋳造部分を約2mの長さにわたってサンプルを切り出し、2mの全長についてグライダー研磨により表層スケールを軽く落とした後、γ粒界割れの有無をダイチェック法により確認し、γ粒界割れの個数を測定した。その処置後、長さ2mのサンプルの一端から厚さ15mmの横断面サンプルを切り出して、その横断面を研磨後、硝酸濃度が5質量%の硝酸水溶液にて横断面を腐食し、その鋼組織を観察した。
(2) Method of investigating steel structure, γ grain boundary cracking and slab bend The sample was cut out over a length of about 2 m after casting, and the surface scale was lightly dropped by glider polishing for a total length of 2 m. Thereafter, the presence or absence of γ grain boundary cracks was confirmed by a die check method, and the number of γ grain boundary cracks was measured. After the treatment, a 15 mm thick cross section sample was cut out from one end of the 2 m long sample, the cross section was polished, the cross section was corroded with a nitric acid aqueous solution having a nitric acid concentration of 5 mass%, and the steel structure Was observed.

マクロ的組織観察により、円形の鋳片横断面の周囲の表層部から内部にかけて、フィルム状フェライトの出現が抑制された組織、つまり本発明で目的とする鋼組織が生成していることを明瞭に判別することができた。横断面の円周方向に等間隔に区切った16点において、上記フィルム状フェライトの出現が抑制された鋼組織の厚さを測定し、これらを算術平均して、フィルム状フェライトが抑制された組織の厚さとした。   By macroscopic structure observation, it is clear that the structure in which the appearance of film-like ferrite is suppressed, that is, the target steel structure in the present invention, is generated from the surface layer portion around the circular slab cross section to the inside. I was able to determine. At 16 points divided at equal intervals in the circumferential direction of the cross section, the thickness of the steel structure in which the appearance of the film-like ferrite was suppressed was measured, and these were arithmetically averaged to obtain the structure in which the film-like ferrite was suppressed. And the thickness.

鋳片の曲がりの有無については、前記の長さが2mのサンプルにおいて、鋳片により長手方向に形成される円弧とその円弧に対応する弦との距離が20mm以上の場合を「曲がり有り」と判断した。各TZスプレー冷却条件に対応する鋳片表面から深さ5mmの部位の温度および冷却速度は、それぞれの条件における伝熱解析により求めた。   Regarding the presence or absence of bending of the slab, in the above-mentioned sample having a length of 2 m, when the distance between the arc formed in the longitudinal direction by the slab and the string corresponding to the arc is 20 mm or more, “being bent” It was judged. The temperature and cooling rate of the part 5 mm deep from the slab surface corresponding to each TZ spray cooling condition were determined by heat transfer analysis under each condition.

(3)試験結果の評価
本発明の効果を確認するために行った試験条件および試験結果を表1に示した。
(3) Evaluation of test results Table 1 shows the test conditions and test results performed to confirm the effects of the present invention.

Figure 2007307574
Figure 2007307574

試験番号1〜4は、本発明で規定する条件を満足する本発明例についての試験であり、試験番号5〜11は、本発明で規定する条件の少なくとも1つを満足しない比較例についての試験である。   Test Nos. 1 to 4 are tests for examples of the present invention that satisfy the conditions specified in the present invention, and Test Nos. 5 to 11 are tests for comparative examples that do not satisfy at least one of the conditions specified by the present invention. It is.

本発明例の試験番号1〜4は、フィルム状フェライトの生成が抑制された鋼組織が鋳片表面から5mm以上の厚さにわたって形成されており、γ粒界割れは防止され、かつ鋳片の曲がりも発生していない。特に、二次冷却が鋳型出口直後から鋳造方向に4m以内の範囲内で行われ、かつ比水量が1.1〜1.8L/kg−鋼の範囲内にある試験番号1〜3では、γ粒界割れの防止状況および鋳片の曲がり防止状況ともに極めて良好である。   In Test Nos. 1 to 4 of the present invention example, the steel structure in which the formation of film-like ferrite is suppressed is formed over a thickness of 5 mm or more from the slab surface, γ grain boundary cracking is prevented, and No bending has occurred. In particular, in the test numbers 1 to 3 where the secondary cooling is performed within 4 m in the casting direction immediately after the mold outlet and the specific water amount is in the range of 1.1 to 1.8 L / kg-steel, γ Both the prevention of grain boundary cracking and the prevention of bending of the slab are very good.

比較例の試験番号5〜7は、TZスプレーの流量を低下させたことにより、鋳片表面から深さ5mmの部位における冷却速度が5℃/s未満となり、フィルム状フェライトの生成が抑制された鋼組織の形成厚さが5mmよりも薄くなった結果、γ粒界割れが発生した。比較例の試験番号8は、TZスプレーの流量が特に少なかったため、トップゾーンでの鋳片の冷却が弱すぎ、鋳片内部からの熱伝導により鋳片表面から深さ5mmの部位において温度が上昇し、復熱が発生した。その結果、上記部位の最低到達温度は800℃以下とならず、γ粒界割れが発生した。   In the test numbers 5 to 7 of the comparative examples, by reducing the flow rate of the TZ spray, the cooling rate at the part having a depth of 5 mm from the slab surface was less than 5 ° C./s, and the formation of film ferrite was suppressed. As a result of the formation thickness of the steel structure being thinner than 5 mm, γ grain boundary cracking occurred. In test number 8 of the comparative example, the flow rate of the TZ spray was particularly small, so the cooling of the slab in the top zone was too weak, and the temperature rose at a part 5 mm deep from the slab surface due to heat conduction from the inside of the slab. Then, recuperation occurred. As a result, the minimum temperature reached at the above site was not 800 ° C. or lower, and γ grain boundary cracking occurred.

比較例の試験番号9では、TZスプレーの流量が極度に多いことから、鋳片表面から深さ5mmの部位における冷却速度は11.6℃/sと極めて速くなり、最低到達温度も433℃まで低下した結果、鋳片の曲がりが発生した。   In the test number 9 of the comparative example, since the flow rate of the TZ spray is extremely large, the cooling rate at the part 5 mm deep from the slab surface is extremely high at 11.6 ° C./s, and the minimum temperature reached 433 ° C. As a result, the slab was bent.

比較例の試験番号10および11は、試験番号2の本発明例の条件下において、さらに2ndゾーンスプレーを作動させて鋳片を冷却した試験である。その結果、950℃以上にまで復熱せず、鋳片の矯正力が大きくなって残留応力も増大し、鋳片の曲がりが発生した。   The test numbers 10 and 11 of the comparative examples are tests in which the slab was cooled by operating the 2nd zone spray under the conditions of the test example 2 of the present invention. As a result, it did not reheat to 950 ° C. or higher, the slab straightening force increased, the residual stress increased, and the slab was bent.

以上の実施例の結果により、本発明の連続鋳造方法の優れた効果が確認された。本実施例は丸ビレット鋳片を用いた場合の例であるが、角ビレット鋳片を用いた場合においても同様の効果が得られる。   From the results of the above examples, the excellent effect of the continuous casting method of the present invention was confirmed. The present embodiment is an example in which a round billet slab is used, but the same effect can be obtained in the case of using a square billet slab.

本発明の連続鋳造方法によれば、鋳片の横断面形状の精度を確保しつつ、鋳片の曲がりを発生させることなく、かつA3変態温度以下の脆化温度域において発生しやすい鋳片表層部のγ粒界割れの著しく低減されたビレット鋳片を製造することができる。したがって、本発明の方法は、継目無管製造工程における外面疵の発生を抑制可能な高品質の素材を供給できるビレット鋳片の連続鋳造方法として、鋳造および製管工程を通じて広範に適用できる技術である。 According to the continuous casting method of the present invention, while securing the accuracy of the cross-sectional shape of the slab, without causing bending of the slab, and tends to occur in the A 3 transformation temperature below the embrittlement temperature range slab A billet cast slab in which γ grain boundary cracking in the surface layer part is remarkably reduced can be produced. Therefore, the method of the present invention is a technique that can be widely applied throughout the casting and pipe making processes as a continuous casting method of billet cast pieces that can supply high-quality materials capable of suppressing the occurrence of external flaws in the seamless pipe manufacturing process. is there.

本発明の連続鋳造方法を実施するために用いた連続鋳造装置の縦断面を模式的に示す図である。It is a figure which shows typically the longitudinal cross-section of the continuous casting apparatus used in order to implement the continuous casting method of this invention.

符号の説明Explanation of symbols

1:浸漬ノズル、 2:鋳型、 3:溶鋼、 4:溶鋼メニスカス、
5:凝固シェル、 6:鋳片、 70:トップゾーン二次冷却装置(TZスプレー)、
71:第1ゾーン二次冷却装置(1stゾーンスプレー)、 72:第2ゾーン二次冷却装置(2ndゾーンスプレー)、 8:サポートロール、 9:ピンチロール、
10:タンディッシュ、11:未凝固溶鋼
1: immersion nozzle, 2: mold, 3: molten steel, 4: molten steel meniscus,
5: Solidified shell, 6: Slab, 70: Top zone secondary cooling device (TZ spray),
71: 1st zone secondary cooling device (1st zone spray), 72: 2nd zone secondary cooling device (2nd zone spray), 8: Support roll, 9: Pinch roll,
10: Tundish, 11: Unsolidified molten steel

Claims (1)

矯正部を有する連続鋳造機を用いるビレット鋳片の連続鋳造方法であって、ビレット鋳片の表面から深さ5mmの部位における温度がA3変態温度から800℃以下まで低下する間の冷却速度が5℃/s以上、10℃/s未満となるビレット鋳片の二次冷却を、鋳型出口直下から行い、その後、鋳片を矯正するまでに、ビレット鋳片の表面から深さ5mmの部位の温度を一旦950℃以上に復熱させ、その後にビレット鋳片を矯正することを特徴とするビレット鋳片の連続鋳造方法。
A continuous casting method for billets slab using a continuous casting machine having a straightening portion, the cooling rate during the temperature at the site of a depth of 5mm from the surface of the billet slab decreases from A 3 transformation temperature to 800 ° C. or less Secondary cooling of the billet slab at 5 ° C./s or more and less than 10 ° C./s is performed immediately below the mold outlet, and then the part of the 5 mm depth from the surface of the billet slab is corrected until the slab is corrected. A continuous casting method for a billet slab, characterized in that the temperature is once reheated to 950 ° C. or higher and then the billet slab is corrected.
JP2006137465A 2006-05-17 2006-05-17 Billet continuous casting method Active JP4899629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137465A JP4899629B2 (en) 2006-05-17 2006-05-17 Billet continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137465A JP4899629B2 (en) 2006-05-17 2006-05-17 Billet continuous casting method

Publications (2)

Publication Number Publication Date
JP2007307574A true JP2007307574A (en) 2007-11-29
JP4899629B2 JP4899629B2 (en) 2012-03-21

Family

ID=38840891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137465A Active JP4899629B2 (en) 2006-05-17 2006-05-17 Billet continuous casting method

Country Status (1)

Country Link
JP (1) JP4899629B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167964A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 continuous casting method of steel
JP2015217435A (en) * 2014-05-21 2015-12-07 新日鐵住金株式会社 Continuous casting method for steel
EP2656946A4 (en) * 2010-12-23 2017-10-25 Institute of Metal Research Chinese Academy of Sciences Method for enhancing self-feeding ability of heavy section casting blank
CN108672668A (en) * 2018-03-29 2018-10-19 马鞍山钢铁股份有限公司 The method and its control device of casting blank solidification institutional framework in a kind of control casting process
CN113102715A (en) * 2021-04-13 2021-07-13 福建三宝钢铁有限公司 Preparation method of non-oriented silicon steel 50SBW600 for high-voltage motor
CN113145817A (en) * 2020-12-24 2021-07-23 山东寿光巨能特钢有限公司 Method for controlling surface microcracks of manganese-containing steel round billet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229653A (en) * 1989-03-01 1990-09-12 Nippon Steel Corp Method of preventing surface flaw in cast billet
JPH1133688A (en) * 1997-07-18 1999-02-09 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH11244902A (en) * 1998-02-27 1999-09-14 Sumitomo Metal Ind Ltd Device for forming round cast billet
JP2000237855A (en) * 1999-02-17 2000-09-05 Nippon Steel Corp Method for continuously casting billet
JP2002086252A (en) * 2000-09-12 2002-03-26 Sumitomo Metal Ind Ltd Continous casting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229653A (en) * 1989-03-01 1990-09-12 Nippon Steel Corp Method of preventing surface flaw in cast billet
JPH1133688A (en) * 1997-07-18 1999-02-09 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH11244902A (en) * 1998-02-27 1999-09-14 Sumitomo Metal Ind Ltd Device for forming round cast billet
JP2000237855A (en) * 1999-02-17 2000-09-05 Nippon Steel Corp Method for continuously casting billet
JP2002086252A (en) * 2000-09-12 2002-03-26 Sumitomo Metal Ind Ltd Continous casting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656946A4 (en) * 2010-12-23 2017-10-25 Institute of Metal Research Chinese Academy of Sciences Method for enhancing self-feeding ability of heavy section casting blank
JP2015167964A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 continuous casting method of steel
JP2015217435A (en) * 2014-05-21 2015-12-07 新日鐵住金株式会社 Continuous casting method for steel
CN108672668A (en) * 2018-03-29 2018-10-19 马鞍山钢铁股份有限公司 The method and its control device of casting blank solidification institutional framework in a kind of control casting process
CN113145817A (en) * 2020-12-24 2021-07-23 山东寿光巨能特钢有限公司 Method for controlling surface microcracks of manganese-containing steel round billet
CN113102715A (en) * 2021-04-13 2021-07-13 福建三宝钢铁有限公司 Preparation method of non-oriented silicon steel 50SBW600 for high-voltage motor

Also Published As

Publication number Publication date
JP4899629B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4899629B2 (en) Billet continuous casting method
JP6115735B2 (en) Steel continuous casting method
JP2010110813A (en) Secondary cooling method and apparatus for continuously cast slab
JP4600436B2 (en) Continuous casting method for slabs
JP2008100249A (en) Continuous casting method and continuous casting equipment for steel
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
JP5085451B2 (en) Billet continuous casting method
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP7147477B2 (en) Continuous casting method for billet slab
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
US7137437B2 (en) Method and device for producing continuously cast steel slabs
JP2002307149A (en) Continuous casting method
JP2018099704A (en) Continuous casting method for steel
JP2001138019A (en) Continuous casting method
JP5962206B2 (en) Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe
JP2001191158A (en) Continuous casting method of steel
JP2008261036A (en) Method for cooling continuously cast bloom
JP4205652B2 (en) Method for producing bloom slab with few cracks
JP2008087055A (en) Method for completing continuous casting
JP2004330252A (en) Continuous casting method for round billet, and round billet
JP2010005634A (en) Method for producing cast metal
JP2009142876A (en) Method for continuously casting steel
JP2019076931A (en) Continuous casting method for slab for seamless steel pipe
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JPH0890182A (en) Method for continuously casting wide and thin cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350