JPH0813062A - Gold wire for bonding - Google Patents

Gold wire for bonding

Info

Publication number
JPH0813062A
JPH0813062A JP14512694A JP14512694A JPH0813062A JP H0813062 A JPH0813062 A JP H0813062A JP 14512694 A JP14512694 A JP 14512694A JP 14512694 A JP14512694 A JP 14512694A JP H0813062 A JPH0813062 A JP H0813062A
Authority
JP
Japan
Prior art keywords
bonding
weight
wire
gold
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14512694A
Other languages
Japanese (ja)
Inventor
Koichiro Mukoyama
光一郎 向山
Kenichi Kurihara
健一 栗原
Kazuhiko Yasuhara
和彦 安原
Shin Takaura
伸 高浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP14512694A priority Critical patent/JPH0813062A/en
Publication of JPH0813062A publication Critical patent/JPH0813062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0107Ytterbium [Yb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To produce a gold alloy wire for bonding, extremely useful for accelerating the miniaturization, thinning, and increase of pins of semiconductor equipment. CONSTITUTION:A bonding wire can be obtained by incorporating, by weight, 0.0001-0.005% Yb, further at least one kind among 0.0001-0.001% Be, 0.0001-0.003% Ca, and 0.0001-0.005% Ge, or further, besides the above, 0.0001-0.005% Eu into high purity gold of >=99.999% purity. By this method, the reliability in a bonding neck part and joining strength at the time of bonding can be enhanced and a greater number of electrodes can be disposed, and further, stable loop formation is made possible because of excellent high temp. strength and a small ball can be formed into perfect sphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の電極と外
部リード部を接続するために使用するボンディング用金
合金線に関し、さらに詳しくは半導体装置組立ての際、
超音波出力の増加等によってボンディングワイヤーのネ
ック部が損傷を受ける程度を大幅に低減するボンディン
グ用金合金線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonding gold alloy wire used for connecting an electrode of a semiconductor element and an external lead portion, and more specifically, in assembling a semiconductor device.
The present invention relates to a bonding gold alloy wire that significantly reduces the extent to which the neck portion of the bonding wire is damaged due to an increase in ultrasonic output.

【0002】[0002]

【従来の技術】従来、半導体装置の組立てにおいて、半
導体素子上電極とリードフレームのAuめっき端子部を
金属線でボンディングする方法として、超音波併用熱圧
着ボンディング方法が主として用いられている。最近の
半導体装置は、小型、薄型、多ピン化にするために実装
密度が高くなり、これに伴い半導体素子上の電極面積が
縮小されボンディング部の接着面積が小さくなり、従来
同様の接合力を確保することが困難となりつつある。こ
れに対し、ボンディング時の超音波出力を増大させるこ
とにより高周波振動を加える対応が試みられている。
2. Description of the Related Art Conventionally, in assembling a semiconductor device, an ultrasonic combined thermocompression bonding method has been mainly used as a method for bonding a semiconductor element upper electrode and an Au plated terminal portion of a lead frame with a metal wire. In recent semiconductor devices, the mounting density has increased to make them smaller, thinner, and have more pins, and as a result, the electrode area on the semiconductor element is reduced and the bonding area of the bonding part is reduced, resulting in a bonding force similar to the conventional one. It is becoming difficult to secure them. On the other hand, attempts have been made to apply high frequency vibration by increasing the ultrasonic output during bonding.

【0003】一方、多ピン化への要求として多数のリー
ド線を用いながら短く配線を行うことが要求され、これ
に対応するために、ボンディング装置を用いてループを
形成する過程で、ループ形成と逆方向へボールネック部
を苛酷に屈曲させて変形させた後にループを形成する、
所謂リバース変形を行うことによってループ高さとルー
プ形状を安定化させる対応が試みられている。この様な
状況下で、ボンディングワイヤーのネック部は超音波出
力の増大に伴う高周波振動が加わり、さらに苛酷なリバ
ース変形を受けボールネック部に苛酷な負担がかかるた
め該部分が弱くなり、ボンディングした状態における振
動試験での信頼性が低いこと、及び半導体の発熱に伴う
熱サイクルの環境に晒された場合ボールネック部に断線
不良が発生するという問題が生じていた。
On the other hand, as a demand for increasing the number of pins, short wiring is required while using a large number of lead wires, and in order to cope with this, in the process of forming a loop using a bonding apparatus, a loop formation Form a loop after severely bending and deforming the ball neck in the opposite direction,
Attempts have been made to stabilize the loop height and loop shape by performing so-called reverse deformation. In such a situation, the neck portion of the bonding wire is subjected to high-frequency vibration due to an increase in ultrasonic output, and the ball neck portion is subjected to a severe reverse deformation and a severe load is applied to the neck portion. There are problems that the reliability in the vibration test in the state is low and that the ball neck has a disconnection defect when exposed to the environment of the heat cycle due to the heat generation of the semiconductor.

【0004】この様な問題に対して、特開平5−962
4号公報には、繰り返し曲げ試験により金ボール直上の
ネック部を破断されにくくすることを目的として、9
9.999重量%以上の高純度金にEu、Ca、Ge、
Beを所定量含有させたボンディングワイヤーが提案さ
れている。しかし乍ら、より厳しいボンディング条件で
ある超音波出力の増大に伴う高周波振動が加わり、且つ
リバース変形のような苛酷なループ形成を行った場合、
ボールネック部の信頼性は十分なものとはいえない状態
にある。
With respect to such a problem, Japanese Patent Laid-Open No. 962/962
No. 4 gazette discloses that a neck portion immediately above a gold ball is less likely to be broken by a repeated bending test.
Eu, Ca, Ge, high purity gold of 9.999% by weight or more,
A bonding wire containing a predetermined amount of Be has been proposed. However, when high-frequency vibration is applied due to an increase in ultrasonic output, which is a more severe bonding condition, and when severe loop formation such as reverse deformation is performed,
The reliability of the ball neck is not sufficient.

【0005】[0005]

【発明が解決しようとする課題】ここに本発明は、半導
体装置の小型、薄型、多ピン化に対応するため、下記
(1)〜(3)に記載される目的を同時に達成しうるボ
ンディング用金合金線を提供することを課題とする。 (1)超音波出力を増大させた超音波併用熱圧着ボンデ
ィングを行い、且つループ形成の際にリバース変形を加
えたボンディングワイヤーのネック部の信頼性におい
て、疲労特性に優れた金合金線であることに加えて、熱
サイクルの環境に晒された場合の破断性能に優れた金合
金線であること。 (2)電極数の増加に伴って、より多くの電極を配置す
るために電極の寸法を小さくすることが要求されてお
り、そのために小さいボールが真球に形成可能なこと及
び接合強度の高い金合金線であること。 (3)安定したループ形成を可能にするため、高温強度
の高い金合金線であること。
SUMMARY OF THE INVENTION The present invention is directed to a semiconductor device that is small, thin, and has a large number of pins. Therefore, for bonding, the objects (1) to (3) below can be achieved at the same time. An object is to provide a gold alloy wire. (1) A gold alloy wire that has excellent fatigue characteristics in terms of reliability of the neck portion of a bonding wire that has undergone thermocompression bonding in which ultrasonic waves are used in combination with ultrasonic waves and reverse deformation is applied during loop formation. In addition, the gold alloy wire has excellent breaking performance when exposed to a heat cycle environment. (2) As the number of electrodes increases, it is required to reduce the size of the electrodes in order to arrange more electrodes. Therefore, it is possible to form a small ball into a true sphere and high bonding strength. Must be a gold alloy wire. (3) A gold alloy wire with high strength at high temperature to enable stable loop formation.

【0006】[0006]

【課題を解決するための手段】以上の目的を達成するた
めに、本願第1発明は、99.999重量%以上の高純
度金にイッテルビウム(Yb):0.0001〜0.0
05重量%を含有し、さらにベリリウム(Be):0.
0001〜0.001重量%、カルシウム(Ca):
0.0001〜0.003重量%、ゲルマニウム(G
e):0.0001〜0.005重量%の内少なくとも
1種を含有させたことを特徴とする半導体素子ボンディ
ング用金線である。
In order to achieve the above object, the first invention of the present application is to provide 99.999% by weight or more of high-purity gold with ytterbium (Yb): 0.0001 to 0.0.
Beryllium (Be): 0.
0001 to 0.001% by weight, calcium (Ca):
0.0001 to 0.003% by weight, germanium (G
e): A gold wire for semiconductor element bonding, containing at least one of 0.0001 to 0.005% by weight.

【0007】また本願第2発明は、99.999重量%
以上の高純度金にイッテルビウム(Yb):0.000
1〜0.005重量%及びユーロピウム(Eu):0.
0001〜0.005重量%を含有し、さらにベリリウ
ム(Be):0.0001〜0.001重量%、カルシ
ウム(Ca):0.0001〜0.003重量%、ゲル
マニウム(Ge):0.0001〜0.005重量%の
内少なくとも1種を含有させたことを特徴とする半導体
素子ボンディング用金線である。
The second invention of the present application is 99.999% by weight.
Ytterbium (Yb): 0.000 in the above high-purity gold
1 to 0.005% by weight and europium (Eu): 0.
0001 to 0.005% by weight, beryllium (Be): 0.0001 to 0.001% by weight, calcium (Ca): 0.0001 to 0.003% by weight, germanium (Ge): 0.0001 It is a gold wire for semiconductor element bonding, characterized in that it contains at least one of 0.005% by weight to 0.005% by weight.

【0008】上記第1発明及び第2発明において、イッ
テルビウム(Yb)含有量を0.0005〜0.005
重量%とすることがより好ましい。
In the first and second inventions, the ytterbium (Yb) content is 0.0005 to 0.005.
It is more preferable to set it as the weight%.

【0009】[0009]

【作用】以下、本発明の詳細な構成とその作用について
説明する。本発明で使用する出発原料は、純度が99.
999重量%以上の金を含有し残部が不可避不純物から
なるものである。該出発原料にYb、Be、Ca、G
e、Euを上記構成になるよう含有した組成にすること
により、それら金属元素同士の相乗効果によって、超音
波出力を増大させた超音波併用熱圧着ボンディングを行
い、且つループ形成の際にリバース変形を加えたボンデ
ィングワイヤーのネック部の信頼性において、疲労特性
に優れ、熱サイクルの環境に晒された場合の破断性能に
優れた金合金線を得ることが出来る。
The detailed structure of the present invention and its operation will be described below. The starting material used in the present invention has a purity of 99.
It contains 999% by weight or more of gold and the balance consists of unavoidable impurities. Yb, Be, Ca, G as the starting material
By combining e and Eu so as to have the above-mentioned composition, the ultrasonic combined thermocompression bonding with increased ultrasonic output is performed by the synergistic effect of the metal elements, and the reverse deformation is performed during the loop formation. With respect to the reliability of the neck portion of the bonding wire added with, it is possible to obtain a gold alloy wire having excellent fatigue characteristics and excellent breaking performance when exposed to a heat cycle environment.

【0010】次に、本発明の金合金細線の成分組成を上
記の通り限定した理由を説明する。 〔Yb〕Ybは、Be、Ca、Geのうち少なくとも1
種との共存において、ボールネック部の信頼性向上に優
れた効果を示す。Yb含有量が0.0001重量%未満
ではボールネック部の信頼性が小さく、0.005重量
%を超えると良好なボール形成が出来なくなってくる。
このためYb含有量を0.0001〜0.005重量%
と定めた。Ybを単独で含有させた場合はボールネック
部の信頼性向上の効果が不十分であるため、Be、C
a、Geのうち少なくとも1種との共存が必要である。
Yb含有量のより好ましい範囲は0.0005〜0.0
05重量%であり、この範囲において、ボールネック部
の信頼性向上にさらに優れた効果を示す。
Next, the reason why the composition of the gold alloy thin wire of the present invention is limited as described above will be explained. [Yb] Yb is at least 1 of Be, Ca, and Ge.
In coexistence with seeds, it shows an excellent effect in improving the reliability of the ball neck portion. If the Yb content is less than 0.0001% by weight, the reliability of the ball neck portion is low, and if it exceeds 0.005% by weight, good ball formation cannot be achieved.
Therefore, the Yb content is 0.0001 to 0.005% by weight.
I decided. When Yb is contained alone, the effect of improving the reliability of the ball neck portion is insufficient, so Be, C
It is necessary to coexist with at least one of a and Ge.
A more preferable range of Yb content is 0.0005 to 0.0.
It is 05% by weight, and in this range, a more excellent effect is exhibited in improving the reliability of the ball neck portion.

【0011】〔Be、Ca、Ge〕Be、Ca、Geの
うち少なくとも1種の成分は、Ybとの共存においてボ
ールネック部の信頼性向上及び高温強さの向上に優れた
効果を示す。Be、Ca、Geの含有量がいずれも0.
0001重量%未満ではボールネック部の信頼性向上が
不十分であり、また高温強さが得られない。Be含有量
が0.001重量%を超えると良好なボール形成が出来
なくなってくる。Ca含有量が0.003重量%を超え
ると良好なボール形状が出来なくなり、ボンディグ時の
電極割れが発生し易くなると共にボンディング時の接合
強度が小さくなってくる。Ge含有量が0.005重量
%を超えるとボンディング時の電極割れが発生し易くな
る。このため、Be含有量を0.0001〜0.001
重量%、Ca含有量を0.0001〜0.003重量
%、Ge含有量を0.0001〜0.005重量%と定
めた。
[Be, Ca, Ge] At least one component of Be, Ca, and Ge exhibits excellent effects in improving the reliability of the ball neck portion and improving the high temperature strength in the coexistence with Yb. The content of Be, Ca, and Ge is 0.
If it is less than 0001% by weight, the reliability of the ball neck portion is insufficiently improved, and high temperature strength cannot be obtained. If the Be content exceeds 0.001% by weight, good ball formation cannot be achieved. If the Ca content exceeds 0.003% by weight, a good ball shape cannot be formed, electrode cracks are likely to occur during bonding, and the bonding strength during bonding becomes smaller. If the Ge content exceeds 0.005% by weight, electrode cracking during bonding tends to occur. Therefore, the Be content is 0.0001 to 0.001.
% By weight, a Ca content of 0.0001 to 0.003% by weight, and a Ge content of 0.0001 to 0.005% by weight.

【0012】〔Eu〕Euは、Yb、及びBe、Ca、
Geのうち少なくとも1種の成分との共存において、ボ
ールネック部の信頼性向上に優れた効果を示す。本発明
においてはYb及びBe、Ca、Geのうち少なくとも
1種の成分を共存させることが必要であり、Euを0.
0001〜0.005重量%の範囲で共存させてもボー
ルネック部の信頼性向上に同様の効果が得られる。
[Eu] Eu is Yb, Be, Ca,
In the coexistence with at least one component of Ge, it exhibits an excellent effect of improving the reliability of the ball neck portion. In the present invention, it is necessary to coexist at least one component of Yb and Be, Ca, Ge, and Eu of 0.
Even if they coexist in the range of 0001 to 0.005% by weight, the same effect can be obtained in improving the reliability of the ball neck portion.

【0013】[0013]

【実施例】以下、実施例について説明する。 〔実施例1〕表1に示す組成となるように、99.99
9重量%の金地金と各元素を含む母合金を真空溶解炉で
溶解したのち鋳造し、溝ロール、伸線機を用いた冷間加
工と熱処理を繰り返し、最終線径30μm、伸び率4%
の細線になるように仕上げた。この細線をボンディング
ワイヤーとして、高速自動ボンダーを用いて半導体素子
電極上に超音波熱圧着ボンディングを行った。超音波出
力を0.5Wとし最初のボール接合を行った後、ループ
形成と逆方向にキャピラリーを一旦動かしそのリバース
角度を垂直方向に対して60度に設定し、ボールネック
部を苛酷に屈曲させて変形させ、次いで正規のループを
形成した。まず細線を用いて高温強さ、ボール形状、振
動試験を行い、さらに半導体素子電極上にボンディング
を行った後、接合強さ、接合時の電極割れ、熱サイクル
試験を行った。測定結果を表2、表3に示す。
EXAMPLES Examples will be described below. Example 1 The composition shown in Table 1 was adjusted to 99.99.
9% by weight of a metal alloy and a master alloy containing each element are melted in a vacuum melting furnace, cast, and then repeatedly subjected to cold working and heat treatment using a groove roll and a wire drawing machine to obtain a final wire diameter of 30 μm and an elongation of 4%
It was finished so that it would be a fine line. Using this thin wire as a bonding wire, ultrasonic thermocompression bonding was performed on the semiconductor element electrode using a high-speed automatic bonder. After making the ultrasonic wave output 0.5 W and performing the first ball joining, once move the capillary in the direction opposite to the loop formation and set the reverse angle to 60 degrees with respect to the vertical direction, and bend the ball neck part severely. To deform and then form a regular loop. First, a high-temperature strength, ball shape, and vibration test were performed using a thin wire, and after bonding on a semiconductor element electrode, bonding strength, electrode cracking at the time of bonding, and a heat cycle test were performed. The measurement results are shown in Tables 2 and 3.

【0014】〔実施例2〜19/比較例1〜8〕表1に
示す組成としたこと以外は実施例1と同様にして細線に
仕上げ、試験を行った。測定結果を表2、表3に示す。
[Examples 2 to 19 / Comparative Examples 1 to 8] Fine lines were finished and tested in the same manner as in Example 1 except that the compositions shown in Table 1 were used. The measurement results are shown in Tables 2 and 3.

【0015】測定方法は以下の通り行った。 〔接合強さ〕高速自動ボンダーを用いてボンディングを
行った後、ボンディング強度試験装置(シェアーテス
タ)を用いてボール圧着部とA1電極との剪断荷重を測
定し表示した。 〔高温強さ〕引張試験機を用いて250℃の雰囲気で2
0秒保持した後そのまま引張試験を行い、その最大荷重
を表示した。 〔ボール形状〕高速自動ボンダーに組み込まれている電
気トーチを用いて金ボールを作成し、走査型電子顕微鏡
を用いて金ボールの大きさ、真球度、表面状態を観察し
た。金ボールの大きさは線径の2.5倍、即ち直径75
μmを基準とし、真球度、表面状態は比較サンプル対比
で測定した。10個測定して全て良好な時は「良好」、
1個でも不良がある時は「不良」と評価した。 〔接合時の電極割れ〕高速自動ボンダーを用いて100
個のボンディングテストを行い、電極割れ不良のないも
のを「○」、1個でも割れ不良の発生があるものを
「×」で表示した。
The measuring method was as follows. [Bonding Strength] After bonding was performed using a high-speed automatic bonder, the shear load between the ball pressure bonding portion and the A1 electrode was measured and displayed using a bonding strength tester (shear tester). [High temperature strength] Using a tensile tester in an atmosphere of 250 ° C for 2
After holding for 0 seconds, a tensile test was performed as it was, and the maximum load was displayed. [Ball shape] Gold balls were prepared using an electric torch incorporated in a high-speed automatic bonder, and the size, sphericity, and surface state of the gold balls were observed using a scanning electron microscope. The size of the gold ball is 2.5 times the wire diameter, that is, the diameter is 75
The sphericity and the surface condition were measured in comparison with a comparative sample with μm as a reference. When 10 pieces are measured and all are good, "good",
When even one piece was defective, it was evaluated as "poor". [Electrode cracking during joining] 100 using a high-speed automatic bonder
A bonding test was performed on each piece, and those having no electrode cracking defect were indicated by “◯”, and those having even one cracking defect were indicated by “x”.

【0016】〔熱サイクル試験〕ループを形成した後エ
ポキシ樹脂にて封止した後、−10℃×30分と150
℃×30分の熱サイクルテストを2000回行った。1
00個の試料を測定に供し、導通テストにより断線の有
無を確認した。断線した個数を破断率(%)で表示し
た。 〔振動試験〕 試験材料作成方法 基板材料として、半導体素子電極に代えて銀めっきした
リードフレーム1を用いたこと以外は実施例1と同様に
してボンディングを行い、振動試験の試料とした。 試験方法 図1に示す振動試験機2を用い、リードフレーム1に先
端をボンディングしたワイヤー3をクランプ4で保持
し、軸5を中心に左右両側へ振幅させる振動試験を次の
条件で行い、破断に至る迄の振動回数を測定した。 スパン距離(L1 ):150μm 両側振幅(L2 ):26μm 振動周波数:40Hz(1秒間に40回) 同様の試験を3回繰り返し、得られた平均値を表3に示
した。
[Heat Cycle Test] After forming a loop and sealing with an epoxy resin, the temperature was set to −10 ° C. for 30 minutes and 150 minutes.
A heat cycle test was conducted 2000 times at a temperature of 30 minutes. 1
00 samples were subjected to measurement, and the presence or absence of disconnection was confirmed by a continuity test. The number of broken wires was expressed as a breakage rate (%). [Vibration Test] Test Material Preparation Method Bonding was carried out in the same manner as in Example 1 except that the lead frame 1 plated with silver was used as the substrate material instead of the semiconductor element electrode, and used as a sample for the vibration test. Test method Using the vibration tester 2 shown in FIG. 1, the wire 3 having the tip bonded to the lead frame 1 is held by the clamp 4, and a vibration test is performed under the following conditions in which the wire 5 is oscillated to the left and right sides about the axis 5 and fracture The number of vibrations up to was measured. Span distance (L 1 ): 150 μm Bilateral amplitude (L 2 ): 26 μm Vibration frequency: 40 Hz (40 times per second) The same test was repeated 3 times, and the average values obtained are shown in Table 3.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】表2、表3の測定結果から明らかなよう
に、実施例1〜19に示した本発明実施品は、超音波出
力を増大させた超音波併用熱圧着ボンディングを行い、
且つループ形成の際にリバース変形を加えた厳しい条件
でボンディングされた場合においても、ボール接合部に
おける剪断力で測定した接合強さは46.5g以上、引
張り試験による高温強さが13.5g以上であると共
に、ボール形状は大きさ、真球度、表面状態の点で全て
良好であり、しかもボンディング時の電極割れ不良の発
生がなく、且つボンディング部信頼性試験として熱サイ
クルを加えた加速試験でも破断率が1%以下と良好であ
り、振動試験では破断に至る振動回数が10,000回
以上と優れた効果を示した。さらにYb含有量が0.0
005〜0.005重量%である実施品2〜19におい
ては、振動試験での破断に至る振動回数が12,000
回以上とより優れた効果を示した。
As is apparent from the measurement results of Tables 2 and 3, the products of the present invention shown in Examples 1 to 19 were subjected to ultrasonic thermocompression bonding with increased ultrasonic output,
Also, even when bonded under severe conditions with reverse deformation applied during loop formation, the bonding strength measured by the shearing force at the ball bonding part is 46.5 g or more, and the high temperature strength by the tensile test is 13.5 g or more. In addition, the ball shape is all good in terms of size, sphericity, and surface condition, and there are no electrode cracking defects during bonding, and an accelerated test that includes a thermal cycle as a bonding part reliability test. However, the fracture rate was as good as 1% or less, and in the vibration test, the number of vibrations leading to fracture was 10,000 or more, which was an excellent effect. Furthermore, the Yb content is 0.0
In Examples 2 to 19 which are 005 to 0.005% by weight, the number of vibrations leading to breakage in the vibration test is 12,000.
More than one times and showed a better effect.

【0021】これに対して、同様に厳しい条件でボンデ
ィングを行ったYbを含有しない比較例1の場合、熱サ
イクル試験での破断率は8%であり、振動試験では64
00回で破断に至った。またYb含有量が本発明の範囲
を越える比較例2の場合、ボール形状において満足な効
果が得られなかった。本発明品のYbに代えてEuを含
有した比較例3の場合、比較例1の場合より若干の改善
効果はみられるもののその効果は未だ不十分であり、熱
サイクル試験での破断率は5%であり、振動試験では7
800回で破断に至った。またYbに代えてCeを含有
した比較例4の場合、熱サイクル試験の破断率、振動試
験の双方で比較例1を下回る結果であった。またYbを
含有してもBe、Ca、Geのいずれも含有しない比較
例5の場合、比較例3と同様に比較例1の場合より若干
の改善効果はみられるもののその効果は未だ不十分であ
り、熱サイクル試験での破断率は4%であり、振動試験
では7200回で破断に至り、また高温強さが小さいと
いう欠点を有する。さらにYbを含有してもBe、C
a、Geの含有量が本発明の範囲を越える比較例6、
7、8の場合、接合強さ、ボール形状、電極割れのいず
れかで満足な結果が得られなかった。
On the other hand, in the case of Comparative Example 1 containing no Yb, which was similarly bonded under severe conditions, the fracture rate in the thermal cycle test was 8%, and in the vibration test it was 64%.
Fracture occurred at 00 times. Further, in the case of Comparative Example 2 in which the Yb content exceeds the range of the present invention, a satisfactory effect was not obtained in the shape of the ball. In the case of Comparative Example 3 containing Eu instead of Yb of the product of the present invention, although a slight improvement effect was observed as compared with the case of Comparative Example 1, the effect was still insufficient and the fracture rate in the heat cycle test was 5 %, 7 in vibration test
Fracture occurred at 800 times. Further, in the case of Comparative Example 4 containing Ce instead of Yb, the results were lower than those of Comparative Example 1 in both the fracture rate in the thermal cycle test and the vibration test. In addition, in the case of Comparative Example 5 containing Yb but not containing Be, Ca, or Ge, a slight improvement effect was observed as compared with Comparative Example 1 as in Comparative Example 3, but the effect was still insufficient. However, the fracture rate in the heat cycle test is 4%, the fracture rate is 7200 times in the vibration test, and the high temperature strength is small. Furthermore, even if Yb is included, Be, C
Comparative Example 6 in which the contents of a and Ge exceed the range of the present invention,
In the case of Nos. 7 and 8, satisfactory results were not obtained in any of the bonding strength, the ball shape, and the electrode crack.

【0022】[0022]

【発明の効果】以上説明した様に本発明は、99.99
9重量%以上の高純度金にYb及びBe、Ca、Geの
内少なくとも1種を各々所定量含有させ、またはそれに
加えてEuを所定量含有させたことを特徴とするボンデ
ィング用金合金線としたので、超音波出力を増大させた
超音波併用熱圧着ボンディングを行い、且つループ形成
の際にリバース変形を加えた厳しい条件でボンディング
された場合においても、熱サイクル試験での破断率が小
さく、振動試験での断線に至る振動回数が大きいことか
ら、ボンディングネック部の信頼性が従来品に比べて極
めて高いことが分かる。また、ボンディング時の接合強
度が高いことからより多くの電極を配置することが可能
であり、高温強度に優れることから安定したループ形成
を可能にし、小さいボールが真球に形成可能であるとい
う利点を同時に達成することが出来る。従って、半導体
装置の小型化、薄型化、多ピン化を促進するに極めて有
用なボンディング用金合金線を提供することが出来た。
As described above, the present invention is 99.99.
A gold alloy wire for bonding, characterized by containing a predetermined amount of at least one of Yb and Be, Ca, Ge in high-purity gold of 9% by weight or more, or a predetermined amount of Eu in addition thereto. Therefore, ultrasonic combined thermocompression bonding with increased ultrasonic output was performed, and even when bonded under severe conditions with reverse deformation added during loop formation, the fracture rate in the thermal cycle test was small, Since the number of vibrations leading to disconnection in the vibration test is large, it can be seen that the reliability of the bonding neck portion is extremely higher than that of the conventional product. In addition, since the bonding strength during bonding is high, more electrodes can be arranged, and the excellent high temperature strength enables stable loop formation, and the advantage that small balls can be formed into a true sphere. Can be achieved at the same time. Therefore, it is possible to provide a gold alloy wire for bonding which is very useful for promoting miniaturization, thinning and multi-pinning of a semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】振動試験の概要を示す簡略図。FIG. 1 is a simplified diagram showing an outline of a vibration test.

【符号の説明】[Explanation of symbols]

1:リードフレーム 2:振動試験機 3:ボンディングワイヤー 4:クランプ 5:振幅中心軸 1: Lead frame 2: Vibration tester 3: Bonding wire 4: Clamp 5: Amplitude center axis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高浦 伸 東京都三鷹市下連雀8−5−1 田中電子 工業株式会社三鷹工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shin Takaura 8-5-1 Shimorenjaku, Mitaka City, Tokyo Tanaka Denshi Kogyo Co., Ltd. Mitaka Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 99.999重量%以上の高純度金にイ
ッテルビウム(Yb):0.0001〜0.005重量
%を含有し、さらにベリリウム(Be):0.0001
〜0.001重量%、カルシウム(Ca):0.000
1〜0.003重量%、ゲルマニウム(Ge):0.0
001〜0.005重量%の内少なくとも1種を含有さ
せたことを特徴とする半導体素子ボンディング用金線。
1. High purity gold of 99.999% by weight or more contains ytterbium (Yb): 0.0001 to 0.005% by weight, and further beryllium (Be): 0.0001.
~ 0.001% by weight, calcium (Ca): 0.000
1 to 0.003% by weight, germanium (Ge): 0.0
A gold wire for semiconductor element bonding, containing at least one of 001 to 0.005% by weight.
【請求項2】 99.999重量%以上の高純度金にイ
ッテルビウム(Yb):0.0001〜0.005重量
%及びユーロピウム(Eu):0.0001〜0.00
5重量%を含有し、さらにベリリウム(Be):0.0
001〜0.001重量%、カルシウム(Ca):0.
0001〜0.003重量%、ゲルマニウム(Ge):
0.0001〜0.005重量%の内少なくとも1種を
含有させたことを特徴とする半導体素子ボンディング用
金線。
2. Ytterbium (Yb): 0.0001 to 0.005 wt% and europium (Eu): 0.0001 to 0.00 in high purity gold of 99.999 wt% or more.
Beryllium (Be): 0.0
001 to 0.001% by weight, calcium (Ca): 0.
0001 to 0.003% by weight, germanium (Ge):
A gold wire for bonding a semiconductor element, containing at least one of 0.0001 to 0.005% by weight.
JP14512694A 1994-06-27 1994-06-27 Gold wire for bonding Pending JPH0813062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14512694A JPH0813062A (en) 1994-06-27 1994-06-27 Gold wire for bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14512694A JPH0813062A (en) 1994-06-27 1994-06-27 Gold wire for bonding

Publications (1)

Publication Number Publication Date
JPH0813062A true JPH0813062A (en) 1996-01-16

Family

ID=15378008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14512694A Pending JPH0813062A (en) 1994-06-27 1994-06-27 Gold wire for bonding

Country Status (1)

Country Link
JP (1) JPH0813062A (en)

Similar Documents

Publication Publication Date Title
JP3382918B2 (en) Gold wire for connecting semiconductor elements
JP3337049B2 (en) Gold wire for bonding
JP2000040710A (en) Gold alloy fine wire for bonding
JPS6117896B2 (en)
JPH08109425A (en) Gold wire for bonding
JP3628139B2 (en) Gold alloy wire for semiconductor element bonding
JP3612179B2 (en) Gold-silver alloy fine wire for semiconductor devices
JPH08325657A (en) Bonding gold wire
JPH10326803A (en) Gold and silver alloy thin wire for semiconductor element
JP3585993B2 (en) Gold wire for bonding
JP3312348B2 (en) Gold alloy wire for bonding
JPH0813062A (en) Gold wire for bonding
JP3612180B2 (en) Gold-silver alloy fine wire for semiconductor devices
JPH1098063A (en) Gold alloy wire for wedge bonding
JP2007019349A (en) Bonding wire
KR20010113459A (en) Gold wire for semiconductor element bonding
JPH08316262A (en) Gold wire for bonding
JP3085090B2 (en) Bonding wire
JP3586909B2 (en) Bonding wire
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JPH08321523A (en) Gold wire for bonding
JP4134261B1 (en) Gold alloy wire for ball bonding
JPH08109424A (en) Gold wire for bonding
JP3358295B2 (en) Bonding wire
JP3426397B2 (en) Gold alloy fine wire for semiconductor devices

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203