JPH0812600A - Phenylanthracene derivative and organic el element - Google Patents

Phenylanthracene derivative and organic el element

Info

Publication number
JPH0812600A
JPH0812600A JP7125753A JP12575395A JPH0812600A JP H0812600 A JPH0812600 A JP H0812600A JP 7125753 A JP7125753 A JP 7125753A JP 12575395 A JP12575395 A JP 12575395A JP H0812600 A JPH0812600 A JP H0812600A
Authority
JP
Japan
Prior art keywords
group
compound
layer
organic
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7125753A
Other languages
Japanese (ja)
Other versions
JP3816969B2 (en
Inventor
Tetsuji Inoue
鉄司 井上
Kenji Nakatani
賢司 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP12575395A priority Critical patent/JP3816969B2/en
Publication of JPH0812600A publication Critical patent/JPH0812600A/en
Application granted granted Critical
Publication of JP3816969B2 publication Critical patent/JP3816969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Luminescent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide the subject new phenylanthracene derivative having a specified structure, exhibiting a low crystallinity, capable of forming a thin film having a stable amorphous state and useful for, e.g. a light-emitting layer of an organic EL device capable of stably emitting high-brightness blue light. CONSTITUTION:This is a new phenylanthracene derivative having a structure of the formula, A1LA2 (A1 and A2 are each monophenylanthryl or diphenylanthryl; L is a single bond or a divalent bonding group), represented by formula I (R1 and R2 are each an alkyl, a cyclo-alkyl, an aryl, an alkenyl, an alkoxy, an aryloxy, amino or a heterocyclic group; r1 and r2 are each 0 or 1 to 5; L1 is single bond, an arylene, etc.) or formula II (R3 and R4 are each same as R1; r3 and r4 are each 0 or 1 to 5; L2 is same as L1) and useful for, e.g. a light-emitting layer for emitting blue light in an organic EL device. This compound is synthesized by coupling 2-chloro-9,10-diphenylanthracene, etc., in the presence of bis(1,5-cyclooctadiene)nickel, 2,2'-bipyridyl, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機EL(電界発光)
素子に関し、詳しくは、有機化合物からなる積層構造薄
膜に電界を印加して光を放出する素子に関する。
FIELD OF THE INVENTION The present invention relates to an organic EL (electroluminescence).
More specifically, the present invention relates to an element that emits light by applying an electric field to a laminated thin film made of an organic compound.

【0002】[0002]

【従来の技術】有機EL素子は、蛍光性有機化合物を含
む薄膜を、陰極と陽極とで挟んだ構成を有し、前記薄膜
に電子および正孔を注入して再結合させることにより励
起子(エキシトン)を生成させ、このエキシトンが失活
する際の光の放出(蛍光・燐光)を利用して発光する素
子である。
2. Description of the Related Art An organic EL device has a structure in which a thin film containing a fluorescent organic compound is sandwiched between a cathode and an anode, and electrons and holes are injected into the thin film to recombine to generate excitons ( An element that emits light by utilizing the emission of light (fluorescence/phosphorescence) when the exciton is deactivated.

【0003】有機EL素子の特徴は、10V 程度の低電
圧で100〜10000cd/m2 程度の高輝度の面発光が
可能であり、また蛍光物質の種類を選択することにより
青色から赤色までの発光が可能なことである。
The characteristic of the organic EL element is that it is capable of surface emission with high luminance of about 100 to 10000 cd/m 2 at a low voltage of about 10 V, and it emits light from blue to red by selecting the type of fluorescent substance. Is possible.

【0004】一方、有機EL素子の問題点は、発光寿命
が短く、保存耐久性、信頼性が低いことであり、この原
因としては、 有機化合物の物理的変化 (結晶ドメインの成長などにより界面の不均一化が生
じ、素子の電荷注入能の劣化・短絡・絶縁破壊の原因と
なる。特に分子量500以下の低分子化合物を用いると
結晶粒の出現・成長が起こり、膜性が著しく低下する。
また、ITO等の界面が荒れていても、顕著な結晶粒の
出現・成長が起こり、発光効率の低下や、電流のリーク
を起こし、発光しなくなる。また、部分的非発光部であ
るダークスポットの原因にもなる。)
On the other hand, the problems of the organic EL device are that the emission life is short, the storage durability and the reliability are low, and the cause of this is that the physical change of the organic compound (such as the growth of crystal domains causes the interface This causes non-uniformity, which causes deterioration of the charge injection capability of the device, short circuit, and dielectric breakdown.In particular, when a low molecular weight compound having a molecular weight of 500 or less is used, the appearance and growth of crystal grains occur, and the film property is significantly deteriorated.
Further, even if the interface of ITO or the like is rough, the appearance and growth of crystal grains occur remarkably, the luminous efficiency is lowered, the current leaks, and no light is emitted. It also causes a dark spot, which is a partially non-luminous portion. )

【0005】 陰極の酸化・剥離 (電子の注入を容易にするために仕事関数の小さな金属
としてNa・Mg・Alなどを用いてきたが、これらの
金属は大気中の水分や酸素と反応したり、有機層と陰極
の剥離が起こり、電荷注入ができなくなる。特に高分子
化合物などを用い、スピンコートなどで成膜した場合、
成膜時の残留溶媒や分解物が電極の酸化反応を促進し、
電極の剥離が起こり部分的な非発光部を生じさせる。)
Oxidation/peeling of cathode (Na, Mg, Al, etc. have been used as a metal having a small work function in order to facilitate injection of electrons. These metals react with moisture and oxygen in the atmosphere. , Peeling of the organic layer from the cathode occurs and charge injection becomes impossible.In particular, when a film is formed by spin coating using a polymer compound or the like,
Residual solvent and decomposition products during film formation accelerate the oxidation reaction of the electrode,
The peeling of the electrode occurs and a partial non-light emitting portion is generated. )

【0006】 発光効率が低く、発熱量が多いこと (有機化合物中に電流を流すので、高い電界強度下に有
機化合物を置かねばならず、発熱からは逃れられない。
その熱のため、有機化合物の溶融・結晶化・熱分解など
により素子の劣化・破壊が起こる。)
Low luminous efficiency and high calorific value (Because a current is passed through the organic compound, the organic compound must be placed under a high electric field strength and cannot escape from heat generation.
Due to the heat, deterioration and destruction of the element occur due to melting, crystallization, thermal decomposition of the organic compound. )

【0007】有機化合物層の光化学的変化・電気化学
的変化 などが挙げられる。
Examples include photochemical changes and electrochemical changes of the organic compound layer.

【0008】特に、青色発光素子に関しては、信頼性が
高く安定な素子を提供する青色発光材料は少ない。一般
に、青色発光材料は結晶性が高い。例えば、ジフェニル
アントラセンは高い蛍光量子収率を持つにも関わらず、
結晶性が高く、この化合物を発光材料に用いて、素子を
作製しても高輝度・高効率で信頼性の高い素子を提供で
きなかった〔 C.Adachi,et al., Appli.Phys.Lett,.56,
799(1990) 〕。
In particular, regarding blue light emitting devices, there are few blue light emitting materials that provide highly reliable and stable devices. Generally, blue light emitting materials have high crystallinity. For example, although diphenylanthracene has a high fluorescence quantum yield,
Due to its high crystallinity, it was not possible to provide a device with high brightness, high efficiency and high reliability even if a device was manufactured using this compound as a light emitting material [C.Adachi, et al., Appli.Phys.Lett ,.56,
799 (1990) ].

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、特に
物理的変化や光化学的変化、電気化学的変化の少ない光
・電子機能材料として新規なフェニルアントラセン誘導
体を提供し、このフェニルアントラセン誘導体を用い、
信頼性および発光効率の高い種々の発光色を持った、特
に青色の発光色を持った有機EL素子を実現することで
ある。特に、分子量の大きな化合物を蒸着法で形成した
有機薄膜を用い、素子の駆動時の駆動電圧上昇や輝度の
低下、電流のリーク、部分的な非発光部の出現・成長を
抑えた高信頼性の高輝度発光素子を実現することであ
る。
The object of the present invention is to provide a novel phenylanthracene derivative as an optoelectronic functional material which is less susceptible to physical changes, photochemical changes and electrochemical changes. Used,
It is to realize an organic EL element having various emission colors with high reliability and emission efficiency, particularly an emission color of blue. In particular, using an organic thin film formed by vapor deposition of a compound with a large molecular weight, high reliability that suppresses the rise and decrease in driving voltage when driving the device, current leakage, and the appearance/growth of partial non-light emitting parts. It is to realize a high brightness light emitting device.

【0010】[0010]

〔式(I)において、A1 およびA2 は、各々モノフェニルアントリル基またはジフェニルアントリル基を表し、これらは同一でも異なるものであってもよい。Lは単結合または二価の連結基を表す。〕[In the formula (I), A 1 and A 2 each represent a monophenylanthryl group or a diphenylanthryl group, and these may be the same or different. L represents a single bond or a divalent linking group. ]

(2)下記化3または化4で表される上記(1)のフェ
ニルアントラセン誘導体。
(2) The phenylanthracene derivative of the above (1) represented by the following chemical formula 3 or chemical formula 4.

【0011】[0011]

【化3】 [Chemical 3]

【0012】[0012]

【化4】 [Chemical 4]

【0013】〔化3において、R1 およびR2 は、各々
アルキル基、シクロアルキル基、アリール基、アルケニ
ル基、アルコキシ基、アリーロキシ基、アミノ基または
複素環基を表し、これらは同一でも異なるものであって
もよい。r1およびr2は、各々、0または1〜5の整
数を表す。r1およびr2が、各々、2以上の整数であ
るとき、R1 同士およびR2 同士は各々同一でも異なる
ものであってもよく、R1 同士またはR2 同士は結合し
て環を形成してもよい。L1 は単結合またはアリーレン
基を表し、アリーレン基はアルキレン基、−O−、−S
−または−NR−(ここで、Rはアルキル基またはアリ
ール基を表す。)が介在するものであってもよい。化4
において、R3 およびR4 は、各々アルキル基、シクロ
アルキル基、アリール基、アルケニル基、アルコキシ
基、アリーロキシ基、アミノ基または複素環基を表し、
これらは同一でも異なるものであってもよい。r3およ
びr4は、各々、0または1〜5の整数を表す。r3お
よびr4が、各々、2以上の整数であるとき、R3 同士
およびR4 同士は各々同一でも異なるものであってもよ
く、R3 同士またはR4 同士は結合して環を形成しても
よい。L2 は単結合またはアリーレン基を表し、アリー
レン基はアルキレン基、−O−、−S−または−NR−
(ここで、Rはアルキル基またはアリール基を表す。)
が介在するものであってもよい。〕 (3)上記(1)または(2)のフェニルアントラセン
誘導体を含有する少なくとも1層の有機化合物層を有す
る有機EL素子。 (4)前記フェニルアントラセン誘導体を含有する有機
化合物層が発光層である上記(3)の有機EL素子。 (5)さらに、少なくとも1層の正孔注入層と、少なく
とも1層の正孔輸送層と、少なくとも1層の電子注入輸
送層とを有する上記(4)の有機EL素子。 (6)さらに、少なくとも1層の正孔注入層と、少なく
とも1層の正孔輸送層と、少なくとも1層の電子輸送層
と、少なくとも1層の電子注入層とを有する上記(4)
の有機EL素子。 (7)前記フェニルアントラセン誘導体を含有する有機
化合物層が電子注入輸送層であり、さらに発光層を有す
る上記(3)の有機EL素子。 (8)少なくとも1層の発光層を有し、この発光層が電
子注入輸送性化合物と正孔注入輸送性化合物との混合層
であって、この混合層が前記フェニルアントラセン誘導
体を含有する上記(3)の有機EL素子。
[In Chemical Formula 3, R 1 and R 2 each represent an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, an amino group or a heterocyclic group, which may be the same or different. May be r1 and r2 each represent 0 or an integer of 1 to 5. When each of r1 and r2 is an integer of 2 or more, R 1 s and R 2 s may be the same or different, and R 1 s or R 2 s are bonded to each other to form a ring. Good. L 1 represents a single bond or an arylene group, and the arylene group is an alkylene group, —O—, or —S.
-Or-NR- (wherein R represents an alkyl group or an aryl group) may be present. Conversion 4
In the formula, R 3 and R 4 each represent an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, an amino group or a heterocyclic group,
These may be the same or different. r3 and r4 each represent 0 or an integer of 1 to 5. When r3 and r4 are each an integer of 2 or more, R 3 s and R 4 s may be the same or different, and R 3 s or R 4 s are bonded to each other to form a ring. Good. L 2 represents a single bond or an arylene group, and the arylene group is an alkylene group, —O—, —S— or —NR—.
(Here, R represents an alkyl group or an aryl group.)
May intervene. (3) An organic EL device having at least one organic compound layer containing the phenylanthracene derivative of (1) or (2) above. (4) The organic EL device according to (3), wherein the organic compound layer containing the phenylanthracene derivative is a light emitting layer. (5) The organic EL device according to (4), further including at least one hole injection layer, at least one hole transport layer, and at least one electron injection transport layer. (6) The above (4), further having at least one hole injection layer, at least one hole transport layer, at least one electron transport layer, and at least one electron injection layer.
Organic EL device. (7) The organic EL device according to (3), wherein the organic compound layer containing the phenylanthracene derivative is an electron injecting and transporting layer, and further has a light emitting layer. (8) At least one light emitting layer is provided, and the light emitting layer is a mixed layer of an electron injecting and transporting compound and a hole injecting and transporting compound, and the mixed layer contains the phenylanthracene derivative. 3) Organic EL device.

【0014】[0014]

【作用】本発明の有機EL素子は上記式(I)、好まし
くは上記化3、化4に示される化合物を発光層に用いる
ため、10000cdm-2 程度、あるいはそれ以上の高輝
度が安定して得られる。また、耐熱性・耐久性が高く、
素子電流密度も1000mAcm-2程度でも安定した駆動が
可能である。
In the organic EL device of the present invention, the compound represented by the above formula (I), preferably the chemical formulas 3 and 4 is used for the light emitting layer, and therefore, a high brightness of about 10,000 cdm -2 or more is stable. can get. It also has high heat resistance and durability,
Stable driving is possible even when the device current density is about 1000 mAcm -2 .

【0015】上記化合物の蒸着膜は安定なアモルファス
状態なので、薄膜の膜物性が良好となりムラがなく均一
な発光が可能である。また、大気下で一年以上安定であ
り結晶化を起こさない。
Since the vapor-deposited film of the above compound is in a stable amorphous state, the physical properties of the thin film are good and uniform light emission is possible without unevenness. Also, it is stable for more than a year in the atmosphere and does not cause crystallization.

【0016】また、クロロホルム溶液でスピンコートし
ても安定なアモルファス状態の薄膜を形成することが可
能である。
Further, it is possible to form a stable amorphous thin film by spin coating with a chloroform solution.

【0017】また、本発明の有機EL素子は、低駆動電
圧で効率よく発光する。
Further, the organic EL device of the present invention efficiently emits light at a low driving voltage.

【0018】なお、本発明の有機EL素子の発光極大波
長は、400〜700nm程度である。
The maximum emission wavelength of the organic EL device of the present invention is about 400 to 700 nm.

【0019】[0019]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
[Specific Structure] The specific structure of the present invention will be described in detail below.

【0020】本発明のフェニルアントラセン誘導体は式
(I)で示されるものである。式(I)について説明す
ると、A1 およびA2 は、各々モノフェニルアントリル
基またはジフェニルアントリル基を表し、これらは同一
でも異なるものであってもよい。
The phenylanthracene derivative of the present invention is represented by the formula (I). Explaining the formula (I), A 1 and A 2 each represent a monophenylanthryl group or a diphenylanthryl group, and these may be the same or different.

【0021】A1 、A2 で表されるモノフェニルアント
リル基またはジフェニルアントリル基は、無置換でも置
換基を有するものであってもよく、置換基を有する場合
の置換基としては、アルキル基、アリール基、アルコキ
シ基、アリーロキシ基、アミノ基等が挙げられ、これら
の置換基はさらに置換されていてもよい。これらの置換
基については後述する。また、このような置換基の置換
位置は特に限定されないが、アントラセン環ではなく、
アントラセン環に結合したフェニル基であることが好ま
しい。
The monophenylanthryl group or diphenylanthryl group represented by A 1 or A 2 may be unsubstituted or may have a substituent. When the substituent is present, the substituent is alkyl. A group, an aryl group, an alkoxy group, an aryloxy group, an amino group and the like can be mentioned, and these substituents may be further substituted. These substituents will be described later. Further, the substitution position of such a substituent is not particularly limited, but not an anthracene ring,
It is preferably a phenyl group bonded to the anthracene ring.

【0022】また、アントラセン環におけるフェニル基
の結合位置はアントラセン環の9位、10位であること
が好ましい。
Further, the bonding position of the phenyl group in the anthracene ring is preferably 9-position and 10-position in the anthracene ring.

【0023】式(I)において、Lは単結合または二価
の基を表すが、Lで表される二価の基としてはアルキレ
ン基等が介在してもよいアリーレン基が好ましい。この
ようなアリーレン基については後述する。
In the formula (I), L represents a single bond or a divalent group, and the divalent group represented by L is preferably an arylene group in which an alkylene group or the like may be present. Such an arylene group will be described later.

【0024】式(I)で示されるフェニルアントラセン
誘導体のなかでも、化3、化4で示されるものが好まし
い。化3について説明すると、化3において、R1 およ
びR2 は、各々アルキル基、シクロアルキル基、アリー
ル基、アルコキシ基、アリーロキシ基、アミノ基または
複素環基を表す。
Among the phenylanthracene derivatives represented by the formula (I), those represented by Chemical formulas 3 and 4 are preferable. Explaining Chemical formula 3, in Chemical formula 3, R 1 and R 2 each represent an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group or a heterocyclic group.

【0025】R1 、R2 で表されるアルキル基として
は、直鎖状でも分岐を有するものであってもよく、炭素
数1〜10、さらには1〜4の置換もしくは無置換のア
ルキル基が好ましい。特に、炭素数1〜4の無置換のア
ルキル基が好ましく、具体的にはメチル基、エチル基、
(n−,i−)プロピル基、(n−,i−,s−,t
−)ブチル基等が挙げられる。
The alkyl group represented by R 1 and R 2 may be linear or branched, and is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms. Is preferred. In particular, an unsubstituted alkyl group having 1 to 4 carbon atoms is preferable, and specifically, a methyl group, an ethyl group,
(N-,i-)propyl group, (n-,i-,s-,t
-) Butyl group and the like can be mentioned.

【0026】R1 、R2 で表されるシクロアルキル基と
しては、シクロヘキシル基、シクロペンチル基等が挙げ
られる。
Examples of the cycloalkyl group represented by R 1 and R 2 include a cyclohexyl group and a cyclopentyl group.

【0027】R1 、R2 で表されるアリール基として
は、炭素数6〜20のものが好ましく、さらにはフェニ
ル基、トリル基等の置換基を有するものであってもよ
い。具体的には、フェニル基、(o−,m−,p−)ト
リル基、ピレニル基、ナフチル基、アントリル基、ビフ
ェニル基、フェニルアントリル基、トリルアントリル基
等が挙げられる。
The aryl group represented by R 1 and R 2 preferably has 6 to 20 carbon atoms and may have a substituent such as a phenyl group and a tolyl group. Specific examples thereof include a phenyl group, (o-, m-, p-)tolyl group, pyrenyl group, naphthyl group, anthryl group, biphenyl group, phenylanthryl group and tolylanthryl group.

【0028】R1 、R2 で表されるアルケニル基として
は、総炭素数6〜50のものが好ましく、無置換のもの
であってもよいが置換基を有するものであってもよく、
置換基を有する方が好ましい。このときの置換基として
は、フェニル基等のアリール基が好ましい。具体的に
は、トリフェニルビニル基、トリトリルビニル基、トリ
ビフェニルビニル基等が挙げられる。
The alkenyl group represented by R 1 and R 2 preferably has 6 to 50 carbon atoms in total, and may be unsubstituted or may have a substituent.
It is preferable to have a substituent. At this time, the substituent is preferably an aryl group such as a phenyl group. Specific examples include a triphenyl vinyl group, a tritolyl vinyl group, a tribiphenyl vinyl group and the like.

【0029】R1 、R2 で表されるアルコキシ基として
は、アルキル基部分の炭素数が1〜6のものが好まし
く、具体的にはメトキシ基、エトキシ基等が挙げられ
る。アルコキシ基は、さらに置換されていてもよい。
The alkoxy group represented by R 1 and R 2 preferably has an alkyl group moiety having 1 to 6 carbon atoms, and specific examples thereof include a methoxy group and an ethoxy group. The alkoxy group may be further substituted.

【0030】R1 、R2 で表されるアリーロキシ基とし
ては、フェノキシ基等が挙げられる。
Examples of the aryloxy group represented by R 1 and R 2 include a phenoxy group.

【0031】R1 、R2 で表されるアミノ基は、無置換
でも置換基を有するものであってもよいが、置換基を有
することが好ましく、この場合の置換基としてはアルキ
ル基(メチル基、エチル基等)、アリール基(フェニル
基等)などが挙げられる。具体的にはジエチルアミノ
基、ジフェニルアミノ基、ジ(m−トリル)アミノ基等
が挙げられる。
The amino group represented by R 1 and R 2 may be unsubstituted or may have a substituent, but preferably has a substituent. In this case, the substituent is an alkyl group (methyl group). Group, ethyl group, etc.), aryl group (phenyl group, etc.) and the like. Specific examples thereof include a diethylamino group, a diphenylamino group and a di(m-tolyl)amino group.

【0032】R1 、R2 で表される複素環基としては、
ビピリジル基、ピリミジル基、キノリル基、ピリジル
基、チエニル基、フリル基、オキサジアゾイル基等が挙
げられる。これらは、メチル基、フェニル基等の置換基
を有していてもよい。
The heterocyclic group represented by R 1 and R 2 is
Examples thereof include a bipyridyl group, a pyrimidyl group, a quinolyl group, a pyridyl group, a thienyl group, a furyl group and an oxadiazoyl group. These may have a substituent such as a methyl group and a phenyl group.

【0033】化3において、r1およびr2は、各々、
0または1〜5の整数を表し、特に、0または1である
ことが好ましい。r1およびr2が、各々、1〜5の整
数、特に1または2であるとき、R1 およびR2 は、各
々、アルキル基、アリール基、アルケニル基、アルコキ
シ基、アリーロキシ基、アミノ基であることが好まし
い。
In the chemical formula 3, r1 and r2 are respectively
It represents 0 or an integer of 1 to 5, and 0 or 1 is particularly preferable. When r1 and r2 are each an integer of 1 to 5, particularly 1 or 2, R 1 and R 2 are each an alkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, an amino group. Is preferred.

【0034】化3において、R1 とR2 とは同一でも異
なるものであってもよく、R1 とR2 とが各々複数存在
するとき、R1 同士、R2 同士は各々同一でも異なるも
のであってもよく、R1 同士あるいはR2 同士は結合し
てベンゼン環等の環を形成してもよく、環を形成する場
合も好ましい。
In Chemical Formula 3, R 1 and R 2 may be the same or different, and when a plurality of R 1 and R 2 are present, R 1 and R 2 are the same or different. may also be, R 1 or between R 2 together may form a ring of benzene ring, attached, preferably even when they form a ring.

【0035】化3において、L1 は単結合またはアリー
レン基を表す。L1 で表されるアリーレン基としては、
無置換であることが好ましく、具体的にはフェニレン
基、ビフェニレン基、アントリレン基等の通常のアリー
レン基の他、2個ないしそれ以上のアリーレン基が直接
連結したものが挙げられる。L1 としては、単結合、p
−フェニレン基、4,4′−ビフェニレン基等が好まし
い。
In the chemical formula 3, L 1 represents a single bond or an arylene group. As the arylene group represented by L 1 ,
It is preferably unsubstituted, and specific examples thereof include ordinary arylene groups such as a phenylene group, a biphenylene group, and an anthrylene group, as well as those in which two or more arylene groups are directly linked. L 1 is a single bond, p
-Phenylene group, 4,4'-biphenylene group and the like are preferable.

【0036】また、L1 で表されるアリーレン基は、2
個ないしそれ以上のアリーレン基がアルキレン基、−O
−、−S−または−NR−が介在して連結するものであ
ってもよい。ここで、Rはアルキル基またはアリール基
を表す。アルキル基としてはメチル基、エチル基等が挙
げられ、アリール基としてはフェニル基等が挙げられ
る。なかでも、アリール基が好ましく、上記のフェニル
基のほか、A1 、A2 であってもよく、さらにはフェニ
ル基にA1 またはA2 が置換したものであってもよい。
The arylene group represented by L 1 is 2
One or more arylene groups are alkylene groups, -O
It may be linked via -, -S- or -NR-. Here, R represents an alkyl group or an aryl group. Examples of the alkyl group include a methyl group and an ethyl group, and examples of the aryl group include a phenyl group. Among them, the aryl group is preferred, other phenyl group of the above, A 1, may be A 2, further it may be those A 1 or A 2 is substituted in the phenyl group.

【0037】また、アルキレン基としてはメチレン基、
エチレン基等がこの好ましい。このようなアリーレン基
の具体例を以下に示す。
As the alkylene group, a methylene group,
Ethylene groups and the like are preferred. Specific examples of such an arylene group are shown below.

【0038】[0038]

【化5】 [Chemical 5]

【0039】次に、化4について説明すると、化4にお
いて、R3 およびR4 は化3におけるR1 およびR2
と、またr3およびr4は化3におけるr1およびr2
と、さらにL2 は化3におけるL1 とそれぞれ同義であ
り、好ましいものも同様である。
Next, the chemical formula 4 will be explained. In the chemical formula 4, R 3 and R 4 are the same as the R 1 and R 2 in the chemical formula 3.
And also r3 and r4 are r1 and r2 in Chemical formula 3.
Further, L 2 has the same meaning as L 1 in Chemical formula 3, and preferred ones are also the same.

【0040】化4において、R3 とR4 とは同一でも異
なるものであってもよく、R3 とR4 が各々複数存在す
るとき、R3 同士、R4 同士は、各々同一でも異なるも
のであってもよく、R3 同士あるいはR4 同士は結合し
てベンゼン環等の環を形成してもよく、環を形成する場
合も好ましい。
The reduction in the 4 may be one that is different even in the same R 3 and R 4, when R 3 and R 4 there are a plurality each, R 3 together, R 4 together are different in each identical R 3 s or R 4 s may be bonded to each other to form a ring such as a benzene ring, and the case of forming a ring is also preferable.

【0041】化3、化4で表される化合物を以下に例示
するが、本発明はこれらに限定されるものではない。な
お、化6、化8、化10、化12、化14、化16、化
18では一般式を示し、化7、化9、化11、化13、
化15、化17、化19、化20で、各々対応する具体
例をR11〜R15、R21〜R25あるいはR31〜R35、R41
〜R45の組合せで示している。
The compounds represented by Chemical formulas 3 and 4 are exemplified below, but the present invention is not limited thereto. It should be noted that in Chemical formula 6, Chemical formula 8, Chemical formula 10, Chemical formula 12, Chemical formula 14, Chemical formula 16, and Chemical formula 18, general formulas are shown, and Chemical formula 7, Chemical formula 9, Chemical formula 11, Chemical formula 13,
Specific examples corresponding to Chemical formula 15, Chemical formula 17, Chemical formula 19, and Chemical formula 20 are R 11 to R 15 , R 21 to R 25, or R 31 to R 35 , R 41.
It is shown as a combination of R 45 .

【0042】[0042]

【化6】 [Chemical 6]

【0043】[0043]

【化7】 [Chemical 7]

【0044】[0044]

【化8】 [Chemical 8]

【0045】[0045]

【化9】 [Chemical 9]

【0046】[0046]

【化10】 [Chemical 10]

【0047】[0047]

【化11】 [Chemical 11]

【0048】[0048]

【化12】 [Chemical formula 12]

【0049】[0049]

【化13】 [Chemical 13]

【0050】[0050]

【化14】 [Chemical 14]

【0051】[0051]

【化15】 [Chemical 15]

【0052】[0052]

【化16】 [Chemical 16]

【0053】[0053]

【化17】 [Chemical 17]

【0054】[0054]

【化18】 [Chemical 18]

【0055】[0055]

【化19】 [Chemical 19]

【0056】[0056]

【化20】 [Chemical 20]

【0057】[0057]

【化21】 [Chemical 21]

【0058】[0058]

【化22】 [Chemical formula 22]

【0059】[0059]

【化23】 [Chemical formula 23]

【0060】[0060]

【化24】 [Chemical formula 24]

【0061】本発明のフェニルアントラセン誘導体(以
下、「本発明の化合物」ともいう。)は、(1)ハロゲ
ン化ジフェニルアントラセン化合物を、Ni(cod)
2 〔cod:1,5−シクロオクタジエン〕でカップリ
ング、もしくはジハロゲン化アリールをグリニャール化
しNiCl2 (dppe)[dppe:ジフェニルフォ
スフィノエタン]、NiCl2 (dppp)〔dpp
p:ジフェニルフォスフィノプロパン〕、などのNi錯
体などを用いてクロスカップリングする方法、(2)ア
ントラキノン、ベンゾキノン、フェニルアンスロンもし
くはビアントロンとグリニャール化したアリールもしく
はリチオ化したアリールとの反応および還元によりクロ
スカップリングする方法、等により得られる。
The phenylanthracene derivative of the present invention (hereinafter, also referred to as "the compound of the present invention") is prepared by converting (1) a halogenated diphenylanthracene compound into Ni(cod)
2 [cod: 1,5-cyclooctadiene], or a dihalogenated aryl is Grignard to form NiCl 2 (dppe) [dppe: diphenylphosphinoethane], NiCl 2 (dpppp) [dpp
p: diphenylphosphinopropane], etc., and a method of cross-coupling using a Ni complex or the like, It can be obtained by a method such as cross coupling.

【0062】このようにして得られた化合物は、元素分
析、質量分析、赤外吸収スペクトル、 1Hまたは13C核
磁気共鳴吸収(NMR)スペクトルなどによって同定す
ることができる。
The compound thus obtained can be identified by elemental analysis, mass spectrometry, infrared absorption spectrum, 1 H or 13 C nuclear magnetic resonance absorption (NMR) spectrum and the like.

【0063】本発明のフェニルアントラセン誘導体は、
400〜2000程度、さらには400〜1000程度
の分子量をもち、200〜500℃の高融点を有し、8
0〜250℃、さらには100〜250℃、よりさらに
は130〜250℃、特に150〜250℃のガラス転
移温度(Tg)を示す。従って、通常の真空蒸着等によ
り透明で室温以上でも安定なアモルファス状態の平滑で
良好な膜を形成し、しかもその良好な膜の状態が長期間
に渡って維持される。
The phenylanthracene derivative of the present invention is
It has a molecular weight of about 400 to 2000, further about 400 to 1000, a high melting point of 200 to 500° C., and 8
It exhibits a glass transition temperature (Tg) of 0-250°C, even 100-250°C, even more 130-250°C, especially 150-250°C. Therefore, a smooth and good film in an amorphous state, which is transparent and stable even at room temperature or more, is formed by ordinary vacuum vapor deposition and the good film state is maintained for a long period of time.

【0064】本発明の有機EL素子(以下、「EL素
子」ともいう。)は、少なくとも1層の有機化合物層を
有し、少なくとも1層の有機化合物層が本発明の化合物
を含有する。本発明の有機EL素子の構成例を図1に示
す。同図に示される有機EL素子1は、基板2上に、陽
極3、正孔注入輸送層4、発光層5、電子注入輸送層
6、陰極7を順次有する。
The organic EL device of the present invention (hereinafter, also referred to as “EL device”) has at least one organic compound layer, and at least one organic compound layer contains the compound of the present invention. An example of the structure of the organic EL device of the present invention is shown in FIG. The organic EL device 1 shown in the figure has an anode 3, a hole injecting and transporting layer 4, a light emitting layer 5, an electron injecting and transporting layer 6, and a cathode 7 in this order on a substrate 2.

【0065】発光層は、正孔および電子の注入機能、そ
れらの輸送機能、正孔と電子の再結合により励起子を生
成させる機能を有する。正孔注入輸送層は、陽極からの
正孔の注入を容易にする機能、正孔を輸送する機能およ
び電子の輸送を妨げる機能を有し、電子注入輸送層は、
陰極からの電子の注入を容易にする機能、電子を輸送す
る機能および正孔の輸送を妨げる機能を有するものであ
り、これらの層は、発光層へ注入される正孔や電子を増
大・閉じ込めさせ、再結合領域を最適化させ、発光効率
を改善する。電子注入輸送層および正孔注入輸送層は、
発光層に用いる化合物の電子注入、電子輸送、正孔注
入、正孔輸送の各機能の高さを考慮し、必要に応じて設
けられる。例えば、発光層に用いる化合物の正孔注入輸
送機能または電子注入輸送機能が高い場合には、正孔注
入輸送層または電子注入輸送層を設けずに、発光層が正
孔注入輸送層または電子注入輸送層を兼ねる構成とする
ことができる。また、場合によっては正孔注入輸送層お
よび電子注入輸送層のいずれも設けなくてよい。また、
正孔注入輸送層および電子注入輸送層は、それぞれにお
いて、注入機能をもつ層と輸送機能をもつ層とを別個に
設けてもよい。
The light emitting layer has a function of injecting holes and electrons, a function of transporting them, and a function of generating excitons by recombination of holes and electrons. The hole injecting and transporting layer has a function of facilitating injection of holes from the anode, a function of transporting holes and a function of hindering electron transport, and the electron injecting and transporting layer is
These layers have the function of facilitating the injection of electrons from the cathode, the function of transporting electrons, and the function of hindering the transport of holes. These layers increase and confine holes and electrons injected into the light emitting layer. To optimize the recombination region and improve the luminous efficiency. The electron injecting and transporting layer and the hole injecting and transporting layer are
It is provided as necessary in consideration of the electron injection, electron transport, hole injection, and hole transport functions of the compound used for the light emitting layer. For example, when the compound used for the light emitting layer has a high hole injecting/transporting function or an electron injecting/transporting function, the light emitting layer is not provided with the hole injecting/transporting layer or the electron injecting/transporting layer. It can be configured to also serve as a transport layer. In some cases, neither the hole injecting/transporting layer nor the electron injecting/transporting layer may be provided. Also,
The hole injecting and transporting layer and the electron injecting and transporting layer may each be provided with a layer having an injection function and a layer having a transport function separately.

【0066】本発明の化合物は、比較的ニュートラルな
化合物なので発光層に用いることが好ましいが、正孔注
入輸送層や電子注入輸送層にも適用可能である。
Since the compound of the present invention is a relatively neutral compound, it is preferably used for the light emitting layer, but it is also applicable to the hole injecting and transporting layer and the electron injecting and transporting layer.

【0067】また、組み合わせる発光層や電子注入輸送
層や正孔注入輸送層のキャリア移動度やキャリア密度
(イオン化ポテンシャル・電子親和力により決まる)を
考慮しながら、膜厚をコントロールすることで、再結合
領域・発光領域を自由に設計することが可能であり、発
光色の設計や、両電極の干渉効果による発光輝度・発光
スペクトルの制御や、発光の空間分布の制御を可能にで
きる。
Further, recombination is achieved by controlling the film thickness while considering the carrier mobility and carrier density (determined by the ionization potential and electron affinity) of the light emitting layer, electron injecting and transporting layer and hole injecting and transporting layer to be combined. It is possible to freely design the region and the light emitting region, and it is possible to design the emission color, control the emission brightness and emission spectrum by the interference effect of both electrodes, and control the spatial distribution of emission.

【0068】本発明の化合物を発光層に用いる場合につ
いて説明する。発光層には本発明の化合物のほか、他の
蛍光性物質を用いてもよく、他の蛍光性物質としては、
例えば、特開昭63−264692号公報に開示されて
いるような化合物、例えば、キナクリドン、ルブレン、
スチリル系色素等の化合物から選択される少なくとも1
種が挙げられる。このような蛍光性物質の含有量は、本
発明の化合物の10モル%以下とすることが好ましい。
このような化合物を適宜選択して添加することにより、
発光光を長波長側にシフトすることができる。
The case where the compound of the present invention is used in the light emitting layer will be described. In addition to the compound of the present invention, other fluorescent substances may be used in the light emitting layer. As other fluorescent substances,
For example, compounds such as those disclosed in JP-A-63-264692, such as quinacridone, rubrene,
At least one selected from compounds such as styryl dyes
Seed. The content of such a fluorescent substance is preferably 10 mol% or less of the compound of the present invention.
By appropriately selecting and adding such a compound,
The emitted light can be shifted to the long wavelength side.

【0069】また、発光層には、一重項酸素クエンチャ
ーが含有されていてもよい。このようなクエンチャーと
しては、ニッケル錯体や、ルブレン、ジフェニルイソベ
ンゾフラン、三級アミン等が挙げられる。このようなク
エンチャーの含有量は、本発明の化合物の10モル%以
下とすることが好ましい。
The light emitting layer may contain a singlet oxygen quencher. Examples of such a quencher include nickel complex, rubrene, diphenylisobenzofuran, and tertiary amine. The content of such a quencher is preferably 10 mol% or less of the compound of the present invention.

【0070】本発明の化合物を発光層に用いる場合、正
孔注入輸送層および電子注入輸送層には、通常の有機E
L素子に用いられている各種有機化合物、例えば、特開
昭63−295695号公報、特開平2−191694
号公報、特開平3−792号公報等に記載されている各
種有機化合物を用いることができる。例えば、正孔注入
輸送層には、芳香族三級アミン、ヒドラゾン誘導体、カ
ルバゾール誘導体、トリアゾール誘導体、イミダゾール
誘導体等を用いることができ、また、電子注入輸送層に
は、アルミキノリノールなどの有機金属錯体誘導体、オ
キサジアゾール誘導体、ピリジン誘導体、ピリミジン誘
導体、キノリン誘導体、キノキサリン誘導体、ジフェニ
ルキノン誘導体、ペリレン誘導体、フルオレン誘導体等
を用いることができる。
When the compound of the present invention is used in the light emitting layer, the hole injecting and transporting layer and the electron injecting and transporting layer may be formed in the usual organic E
Various organic compounds used in the L element, for example, JP-A-63-295695 and JP-A-2-191694.
Various organic compounds described in, for example, Japanese Patent Laid-Open No. 3-792 can be used. For example, an aromatic tertiary amine, a hydrazone derivative, a carbazole derivative, a triazole derivative, an imidazole derivative or the like can be used for the hole injecting/transporting layer, and an organic metal complex such as aluminum quinolinol is used for the electron injecting/transporting layer. A derivative, an oxadiazole derivative, a pyridine derivative, a pyrimidine derivative, a quinoline derivative, a quinoxaline derivative, a diphenylquinone derivative, a perylene derivative, a fluorene derivative, or the like can be used.

【0071】正孔注入輸送層を正孔注入層と正孔輸送層
とに分けて設層する場合は、正孔注入輸送層用の化合物
のなかから好ましい組合せを選択して用いることができ
る。このとき、陽極(ITO等)側からイオン化ポテン
シャルの小さい化合物の層の順に積層することが好まし
い。また陽極表面には薄膜性の良好な化合物を用いるこ
とが好ましい。このような積層順については、正孔注入
輸送層を2層以上設けるときも同様である。このような
積層順とすることによって、駆動電圧が低下し、電流リ
ークの発生やダークスポットの発生・成長を防ぐことが
できる。また、素子化する場合、蒸着を用いているので
1〜10nm程度の薄い膜も、均一かつピンホールフリー
とすることができるため、正孔注入層にイオン化ポテン
シャルが小さく、可視部に吸収をもつような化合物を用
いても、発光色の色調変化や再吸収による効率の低下を
防ぐことができる。
When the hole injecting and transporting layer is separately formed into the hole injecting layer and the hole transporting layer, preferred combinations can be selected and used from the compounds for the hole injecting and transporting layer. At this time, it is preferable to stack layers of a compound having a small ionization potential in this order from the anode (ITO or the like) side. Further, it is preferable to use a compound having a good thin film property on the surface of the anode. This stacking order is the same when two or more hole injecting and transporting layers are provided. By adopting such a stacking order, the driving voltage is lowered, and it is possible to prevent the occurrence of current leakage and the generation/growth of dark spots. In addition, since vapor deposition is used for device formation, a thin film of about 1 to 10 nm can be made uniform and pinhole-free, so that the hole injection layer has a small ionization potential and absorption in the visible region. Even if such a compound is used, it is possible to prevent a decrease in efficiency due to a change in the color tone of the emission color or reabsorption.

【0072】電子注入輸送層を電子注入層と電子輸送層
とに分けて設層する場合は、電子注入輸送層用の化合物
のなかから好ましい組合せを選択して用いることができ
る。このとき、陰極側から電子親和力の値の大きい化合
物の層の順に積層することが好ましい。このような積層
順については電子注入輸送層を2層以上設けるときも同
様である。
When the electron injecting and transporting layer is separately formed into the electron injecting layer and the electron transporting layer, preferred combinations can be selected and used from the compounds for the electron injecting and transporting layer. At this time, it is preferable to stack the layers of the compound having a large electron affinity value in this order from the cathode side. This stacking order is the same when two or more electron injecting and transporting layers are provided.

【0073】なお、本発明では、発光層を電子注入輸送
性化合物と正孔注入輸送性化合物との混合層とすること
も好ましい。そして、このような混合層に本発明の化合
物を含有させる。本発明の化合物は、通常、蛍光性物質
として含有されるため、より具体的には、本発明の化合
物が電子注入輸送性化合物であるとき、他の正孔注入輸
送性化合物をさらに添加することが好ましく、本発明の
化合物が正孔注入輸送性化合物であるときは、他の電子
注入輸送性化合物をさらに添加することが好ましい。上
記の混合層における電子注入輸送性化合物と正孔注入輸
送性化合物との混合比は、重量比で、電子注入輸送性化
合物:正孔注入輸送性化合物が60:40〜40:60
であることが好ましく、特には50:50程度であるこ
とが好ましい。
In the present invention, it is also preferable that the light emitting layer is a mixed layer of an electron injecting/transporting compound and a hole injecting/transporting compound. Then, the compound of the present invention is contained in such a mixed layer. Since the compound of the present invention is usually contained as a fluorescent substance, more specifically, when the compound of the present invention is an electron injecting and transporting compound, another hole injecting and transporting compound may be further added. Is preferable, and when the compound of the present invention is a hole injecting/transporting compound, it is preferable to add another electron injecting/transporting compound. The mixing ratio of the electron injecting and transporting compound and the hole injecting and transporting compound in the above mixed layer is 60:40 to 40:60 in terms of weight ratio of electron injecting and transporting compound:hole injecting and transporting compound.
Is preferable, and particularly about 50:50 is preferable.

【0074】この混合に供する電子注入輸送性化合物
は、上記の電子注入輸送層用の化合物のなかから、また
正孔注入輸送性化合物は、上記の正孔注入輸送層用の化
合物のなかから選択して用いることができる。また、場
合によっては本発明の化合物から選択して用いてもよ
い。さらに、混合層において、電子注入輸送性化合物、
正孔注入輸送性化合物は各々1種のみ用いても2種以上
を併用してもよい。また、混合層には発光強度を高める
ために、本発明の化合物や他の蛍光性物質をドープして
用いてもよい。
The electron injecting and transporting compound used for this mixing is selected from the above compounds for the electron injecting and transporting layer, and the hole injecting and transporting compound is selected from the above compounds for the hole injecting and transporting layer. Can be used. Moreover, you may select and use from the compound of this invention depending on the case. Furthermore, in the mixed layer, an electron injecting and transporting compound,
The hole injecting and transporting compounds may be used alone or in combination of two or more. The mixed layer may be doped with the compound of the present invention or another fluorescent substance in order to increase the emission intensity.

【0075】さらに、他の電子注入輸送性化合物および
他の正孔注入輸送性化合物の混合層とし、このような混
合層に本発明の化合物をドープして用いてもよい。
Further, a mixed layer of another electron injecting/transporting compound and another hole injecting/transporting compound may be formed, and such a mixed layer may be doped with the compound of the present invention.

【0076】このような混合層をEL素子に適用するこ
とによって、素子の安定性が向上する。
By applying such a mixed layer to an EL device, the stability of the device is improved.

【0077】本発明の化合物は電子注入輸送層に用いる
ことも好ましい。この場合、発光層に用いる蛍光性物質
は、本発明の化合物より長波長もしくは同程度の波長の
蛍光をもつものを用いることが好ましい。例えば、上記
した、発光層において本発明の化合物と併用できる蛍光
性物質のなかから選択して用いることができる。また、
本発明の化合物は、このような構成において、さらに発
光層にも用いることができる。また、本発明の化合物は
電子注入輸送層を兼ねた発光層にも用いることができ
る。
The compound of the present invention is also preferably used in the electron injecting and transporting layer. In this case, as the fluorescent substance used in the light emitting layer, it is preferable to use a substance having fluorescence having a wavelength longer than or about the same as the wavelength of the compound of the present invention. For example, it can be selected and used from the above-mentioned fluorescent substances that can be used in combination with the compound of the present invention in the light emitting layer. Also,
In such a constitution, the compound of the present invention can be further used in the light emitting layer. The compound of the present invention can also be used in a light emitting layer which also serves as an electron injecting and transporting layer.

【0078】本発明の化合物は正孔注入輸送層に用いる
ことができる。
The compound of the present invention can be used in the hole injecting and transporting layer.

【0079】本発明の化合物を正孔注入輸送層に用いる
場合、発光層に用いる蛍光性物質は、本発明の化合物よ
り長波長の蛍光をもつものから選択すればよく、例え
ば、上記した、発光層において本発明の化合物と併用さ
れる蛍光性物質の1種以上から適宜選択すればよい。こ
のような場合、発光層にも本発明の化合物を用いること
ができる。
When the compound of the present invention is used in the hole injecting and transporting layer, the fluorescent substance used in the light emitting layer may be selected from those having fluorescence of a longer wavelength than that of the compound of the present invention. It may be appropriately selected from one or more fluorescent substances used in combination with the compound of the present invention in the layer. In such a case, the compound of the present invention can be used in the light emitting layer.

【0080】なお、上記において、他の蛍光性物質を主
に発光層に用いる場合、本発明の化合物を蛍光性物質と
して10モル%以下添加して併用してもよい。
In the above, when another fluorescent substance is mainly used in the light emitting layer, the compound of the present invention may be added as a fluorescent substance in an amount of 10 mol% or less and used in combination.

【0081】発光層の厚さ、正孔注入輸送層の厚さおよ
び電子注入輸送層の厚さは特に限定されず、形成方法に
よっても異なるが、通常、5〜1000nm程度、特に8
〜200nmとすることが好ましい。
The thickness of the light emitting layer, the thickness of the hole injecting and transporting layer, and the thickness of the electron injecting and transporting layer are not particularly limited, and are usually about 5 to 1000 nm, especially 8 depending on the forming method.
It is preferable that the thickness is ˜200 nm.

【0082】正孔注入輸送層の厚さおよび電子注入輸送
層の厚さは、再結合・発光領域の設計によるが、発光層
の厚さと同程度もしくは1/10〜10倍程度とすれば
よい。電子もしくは正孔の、各々の注入層と輸送層を分
ける場合は、注入層は1nm以上、輸送層は20nm以上と
するのが好ましい。このときの注入層、輸送層の厚さの
上限は、通常、注入層で100nm程度、輸送層で100
0nm程度である。
The thickness of the hole injecting/transporting layer and the thickness of the electron injecting/transporting layer may be the same as the thickness of the light emitting layer or about 1/10 to 10 times, although it depends on the design of the recombination/light emitting region. .. When the electron injection layer and the electron injection layer are separated from the transport layer, it is preferable that the injection layer has a thickness of 1 nm or more and the transport layer has a thickness of 20 nm or more. At this time, the upper limit of the thickness of the injection layer and the transport layer is usually about 100 nm in the injection layer and 100 in the transport layer.
It is about 0 nm.

【0083】陰極には、仕事関数の小さい材料、例え
ば、Li、Na、Mg、Al、Ag、Inあるいはこれ
らの1種以上を含む合金を用いることが好ましい。ま
た、陰極は結晶粒が細かいことが好ましく、特に、アモ
ルファス状態であることが好ましい。陰極の厚さは10
〜1000nm程度とすることが好ましい。
For the cathode, it is preferable to use a material having a low work function, for example, Li, Na, Mg, Al, Ag, In or an alloy containing at least one of these. The cathode preferably has fine crystal grains, and particularly preferably is in an amorphous state. The thickness of the cathode is 10
It is preferably about 1000 nm.

【0084】EL素子を面発光させるためには、少なく
とも一方の電極が透明ないし半透明である必要があり、
上記したように陰極の材料には制限があるので、好まし
くは発光光の透過率が80%以上となるように陽極の材
料および厚さを決定することが好ましい。具体的には、
例えば、ITO、SnO2 、Ni、Au、Pt、Pd、
ドーパントをドープしたポリピロールなどを陽極に用い
ることが好ましい。また、陽極の厚さは10〜500nm
程度とすることが好ましい。また、素子の信頼性を向上
するために駆動電圧が低いことが必要であるが、好まし
いものとして10〜30Ω/□程度なしし10Ω/□以
下(通常5〜10Ω/□)のITOが挙げられる。
At least one of the electrodes must be transparent or semi-transparent in order to allow the EL element to emit surface light.
Since the material of the cathode is limited as described above, it is preferable to determine the material and thickness of the anode so that the transmittance of emitted light is 80% or more. In particular,
For example, ITO, SnO 2 , Ni, Au, Pt, Pd,
It is preferable to use polypyrrole doped with a dopant for the anode. The thickness of the anode is 10-500nm
It is preferable to set it to a degree. Further, it is necessary that the driving voltage is low in order to improve the reliability of the element, but as a preferable example, ITO having about 10 to 30Ω/□ or less and 10Ω/□ or less (usually 5 to 10Ω/□) can be mentioned. ..

【0085】基板材料に特に制限はないが、図示例では
基板側から発光光を取り出すため、ガラスや樹脂等の透
明ないし半透明材料を用いる。また、基板に色フィルタ
ー膜や誘電体反射膜を用いて発光色をコントロールして
もよい。
The substrate material is not particularly limited, but in the illustrated example, a transparent or semitransparent material such as glass or resin is used in order to take out emitted light from the substrate side. In addition, the emission color may be controlled by using a color filter film or a dielectric reflection film on the substrate.

【0086】なお、基板に不透明な材料を用いる場合に
は、図1に示される積層順序を逆にしてもよい。
When an opaque material is used for the substrate, the stacking order shown in FIG. 1 may be reversed.

【0087】次に、本発明の有機EL素子の製造方法を
説明する。
Next, a method for manufacturing the organic EL device of the present invention will be described.

【0088】陰極および陽極は、蒸着法やスパッタ法等
の気相成長法により形成することが好ましい。
The cathode and the anode are preferably formed by vapor phase growth methods such as vapor deposition and sputtering.

【0089】正孔注入輸送層、発光層および電子注入輸
送層の形成には、均質な薄膜が形成できることから真空
蒸着法を用いることが好ましい。真空蒸着法を用いた場
合、アモルファス状態または結晶粒径が0.1μm 以下
(通常0.01μm 以上)の均質な薄膜が得られる。結
晶粒径が0.1μm を超えていると、不均一な発光とな
り、素子の駆動電圧を高くしなければならなくなり、電
荷の注入効率も著しく低下する。
For forming the hole injecting/transporting layer, the light emitting layer and the electron injecting/transporting layer, it is preferable to use the vacuum deposition method because a uniform thin film can be formed. When the vacuum deposition method is used, a homogeneous thin film having an amorphous state or a crystal grain size of 0.1 μm or less (usually 0.01 μm or more) can be obtained. If the crystal grain size exceeds 0.1 μm, non-uniform light emission occurs, the drive voltage of the device must be increased, and the charge injection efficiency is significantly reduced.

【0090】真空蒸着の条件は特に限定されないが、1
-5Torr以下の真空度とし、蒸着速度は0.1〜1nm/
sec 程度とすることが好ましい。また、真空中で連続し
て各層を形成することが好ましい。真空中で連続して形
成すれば、各層の界面に不純物が吸着することを防げる
ため、高特性が得られる。また、素子の駆動電圧を低く
することができる。
The conditions of vacuum vapor deposition are not particularly limited, but 1
The degree of vacuum is 0 -5 Torr or less, and the deposition rate is 0.1 to 1 nm/
It is preferably about sec. Moreover, it is preferable to form each layer continuously in a vacuum. If they are continuously formed in vacuum, impurities can be prevented from adsorbing to the interface of each layer, so that high characteristics can be obtained. Further, the driving voltage of the element can be lowered.

【0091】これら各層の形成に真空蒸着法を用いる場
合において、1層に複数の化合物を含有させる場合、化
合物を入れた各ボートを個別に温度制御して水晶振動子
膜厚計でモニターしながら共蒸着することが好ましい。
When a vacuum vapor deposition method is used to form each of these layers, when a plurality of compounds are contained in one layer, the temperature of each boat containing the compounds is individually controlled while monitoring with a quartz oscillator film thickness meter. Co-deposition is preferred.

【0092】本発明のEL素子は、通常、直流駆動型の
EL素子として用いられるが、交流駆動またはパルス駆
動することもできる。印加電圧は、通常、2〜20V 程
度とされる。
The EL device of the present invention is usually used as a DC drive type EL device, but it can also be AC drive or pulse drive. The applied voltage is usually about 2 to 20V.

【0093】[0093]

【実施例】以下、本発明の具体的実施例を比較例ととも
に示し、本発明をさらに詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail by showing specific examples of the present invention together with comparative examples.

【0094】<実施例1>化合物I−1の合成 ビス(1,5−シクロオクタジエン)ニッケル(Ni
(cod)2 )0.37g (1.35mmol)、2,2’
−ビピリジン0.20g (1.28mmol)と、1,5−
シクロオクタジエン0.20mlを、N,N−ジメチルホ
ルムアミド20mlに窒素雰囲気中で混合し、さらに2−
クロロ−9,10−ジフェニルアントラセン1.00g
(2.74mmol)を加え、60℃で24時間攪拌した。
この反応溶液を1N塩酸水溶液に投入し、トルエンとク
ロロホルムで抽出し、水洗後、硫酸マグネシウムで乾燥
した。得られた生成物をアセトンで再沈し、クロロホル
ムより3回再結晶し、トルエンを抽出溶媒としてシリカ
カラム精製し、0.53g の黄白色固体を得た。得られ
た黄白色固体0.5g を昇華精製し、0.23g の青色
蛍光をもつ黄白色固体を得た。
Example 1 Synthesis of Compound I-1 Bis(1,5-cyclooctadiene)nickel (Ni
(Cod) 2 ) 0.37 g (1.35 mmol), 2,2'
-0.20 g (1.28 mmol) of bipyridine and 1,5-
Cyclooctadiene (0.20 ml) was mixed with N,N-dimethylformamide (20 ml) in a nitrogen atmosphere, followed by addition of 2-
Chloro-9,10-diphenylanthracene 1.00 g
(2.74 mmol) was added, and the mixture was stirred at 60° C. for 24 hours.
The reaction solution was poured into a 1N aqueous hydrochloric acid solution, extracted with toluene and chloroform, washed with water, and dried over magnesium sulfate. The obtained product was reprecipitated with acetone, recrystallized three times from chloroform, and purified with silica column using toluene as an extraction solvent to obtain 0.53 g of a yellowish white solid. 0.5 g of the obtained yellow-white solid was purified by sublimation to obtain 0.23 g of a yellow-white solid having blue fluorescence.

【0095】 元素分析: C H 計算値/% 94.80 5.20 測定値/% 94.96 4.90 質量分析:m/e 658(M+ ) 赤外吸収スペクトル:図2 NMRスペクトル: 図3 示差走査熱量測定(DSC):融点450℃、ガラス転
移温度181℃
Elemental analysis: C H calculated value/% 94.80 5.20 Measured value/% 94.96 4.90 Mass spectrometry: m/e 658 (M + ) Infrared absorption spectrum: FIG. 2 NMR spectrum: FIG. 3 Differential scanning calorimetry (DSC): melting point 450°C, glass transition temperature 181°C

【0096】<実施例2>化合物II−1の合成 ビス(1,5−シクロオクタジエン)ニッケル(Ni
(cod)2 )0.37g (1.35mmol)、2,2’
−ビピリジン0.20g (1.28mmol)と、1,5−
シクロオクタジエン0.20mlを、N,N−ジメチルホ
ルムアミド20mlに窒素雰囲気中で混合し、さらに1−
クロロ−9,10−ジフェニルアントラセン1.00g
(2.74mmol)を加え、60℃で24時間攪拌した。
この反応溶液を1N塩酸水溶液に投入し、トルエンとク
ロロホルムで抽出し、水洗後、硫酸マグネシウムで乾燥
した。得られた生成物をアセトンで再沈し、クロロホル
ムより3回再結晶し、トルエンを抽出溶媒としてシリカ
カラム精製し、0.20g の黄白色固体を得た。
Example 2 Synthesis of Compound II-1 Bis(1,5-cyclooctadiene)nickel (Ni
(Cod) 2 ) 0.37 g (1.35 mmol), 2,2'
-0.20 g (1.28 mmol) of bipyridine and 1,5-
Cyclooctadiene (0.20 ml) was mixed with 20 ml of N,N-dimethylformamide in a nitrogen atmosphere, and 1-
Chloro-9,10-diphenylanthracene 1.00 g
(2.74 mmol) was added, and the mixture was stirred at 60° C. for 24 hours.
The reaction solution was poured into a 1N aqueous hydrochloric acid solution, extracted with toluene and chloroform, washed with water, and dried over magnesium sulfate. The obtained product was reprecipitated with acetone, recrystallized from chloroform three times, and purified with silica column using toluene as an extraction solvent to obtain 0.20 g of a yellowish white solid.

【0097】 元素分析: C H 計算値/% 94.80 5.20 測定値/% 94.60 4.97 質量分析:m/e 658(M+ ) 赤外吸収スペクトル:図4 NMRスペクトル: 図5Elemental analysis: C H calculated value/% 94.80 5.20 Measured value/% 94.60 4.97 Mass spectrometry: m/e 658 (M + ) Infrared absorption spectrum: FIG. 4 NMR spectrum: FIG. 5

【0098】<実施例3>化合物 III−1の合成 シュレンクフラスコにアルゴン下で活性化したマグネシ
ウム0.267g (10mmol)に、4,4’−ジ−ヨー
ドビフェニル2.22g (5.46mmol)のテトラヒド
ロフラン(THF)溶液50mlを滴下しグリニャール化
した。この反応溶液にNiCl2 (dppe)0.4g
と2−クロロ−9,10−ジフェニルアントラセン4.
00g (10mmol)を加え、60℃で4時間還流した。
この反応溶液を1N塩酸水溶液に投入しトルエンとクロ
ロホルムで抽出し、水洗後、硫酸マグネシウムで乾燥し
た。溶媒を留去後、アセトン/ジクロロメタンにより再
結晶し、さらにトルエンとヘキサンを抽出溶媒としてシ
リカカラム精製し、2.0g の青緑色蛍光を示す黄白色
固体を得た。この黄白色固体1.0g を昇華精製し、
0.6g の純粋な黄白色固体を得た。
Example 3 Synthesis of compound III-1 0.267 g (10 mmol) of magnesium activated under argon in a Schlenk flask and 2.22 g (5.46 mmol) of 4,4'-di-iodobiphenyl. 50 ml of a tetrahydrofuran (THF) solution was added dropwise to form a Grignard. 0.4 g of NiCl 2 (dppe) was added to this reaction solution.
And 2-chloro-9,10-diphenylanthracene 4.
00 g (10 mmol) was added, and the mixture was refluxed at 60° C. for 4 hours.
The reaction solution was poured into a 1N aqueous hydrochloric acid solution, extracted with toluene and chloroform, washed with water, and dried over magnesium sulfate. After the solvent was distilled off, the residue was recrystallized from acetone/dichloromethane and further purified by silica column using toluene and hexane as extraction solvents to obtain 2.0 g of a yellowish white solid exhibiting blue-green fluorescence. 1.0 g of this yellowish white solid was purified by sublimation,
0.6 g of a pure yellowish white solid was obtained.

【0099】 元素分析: C H 計算値/% 94.54 5.45 測定値/% 94.50 5.40 質量分析:m/e 586(M+ ) 示差走査熱量測定(DSC):融点350℃、ガラス転
移温度120℃ イオン化ポテンシャル:5.95eV
Elemental analysis: C H calculated value/% 94.54 5.45 Measured value/% 94.50 5.40 Mass spectrometry: m/e 586 (M + ) Differential scanning calorimetry (DSC): Melting point 350° C. , Glass transition temperature 120℃, ionization potential: 5.95eV

【0100】なお、赤外吸収スペクトル、NMRスペク
トルの結果からも、上記化合物と同定した。
The above compound was identified also from the results of infrared absorption spectrum and NMR spectrum.

【0101】<実施例4>化合物V−1の合成 シュレンクフラスコにアルゴン下で活性化したマグネシ
ウム0.267g (10mmol)に、4,4’−ジ−ヨー
ドビフェニル2.02g (4.97mmol)のTHF溶液
50mlを滴下しグリニャール化した。この反応溶液をア
ントラキノン1.04g (5mmol)のTHF溶液中に滴
下し1時間攪拌した。この後フェニルマグネシウムアイ
オダイドのTHF溶液を滴下し、60℃で2時間還流し
た。反応溶液を1N塩酸水溶液に投入しトルエンとクロ
ロホルムで抽出し、水洗後、硫酸マグネシウムで乾燥し
た。次に、この生成物を酢酸100mlに溶解し沃化水素
水溶液を滴下後4時間攪拌した。この溶液に二塩化スズ
(SnCl2 )の塩酸溶液を遊離した沃素が消えるまで
入れた。クロロホルムとトルエンで抽出し硫酸マグネシ
ウムで乾燥した。溶媒を留去後、トルエンを溶出溶媒と
してシリカカラム精製した後、アセトン/トルエンより
再結晶した。 元素分析: C H 計算値/% 94.80 5.20 測定値/% 94.58 5.10 質量分析:m/e 658(M+ ) なお、赤外吸収スペクトル、NMRスペクトルの結果か
らも、上記化合物と同定した。
Example 4 Synthesis of compound V-1 0.267 g (10 mmol) of magnesium activated under argon in a Schlenk flask and 2.02 g (4.97 mmol) of 4,4'-di-iodobiphenyl. 50 ml of THF solution was added dropwise to form Grignard. This reaction solution was added dropwise to a THF solution containing 1.04 g (5 mmol) of anthraquinone and stirred for 1 hour. Thereafter, a THF solution of phenylmagnesium iodide was added dropwise, and the mixture was refluxed at 60°C for 2 hours. The reaction solution was poured into a 1N aqueous hydrochloric acid solution, extracted with toluene and chloroform, washed with water, and dried over magnesium sulfate. Next, this product was dissolved in 100 ml of acetic acid, an aqueous hydrogen iodide solution was added dropwise, and the mixture was stirred for 4 hours. A solution of tin dichloride (SnCl 2 ) in hydrochloric acid was added to this solution until free iodine disappeared. It was extracted with chloroform and toluene and dried over magnesium sulfate. After the solvent was distilled off, the residue was purified with a silica column using toluene as an elution solvent and then recrystallized from acetone/toluene. Elemental analysis: C H calculated value/% 94.80 5.20 Measured value/% 94.58 5.10 Mass spectrometry: m/e 658 (M + ) In addition, from the results of infrared absorption spectrum and NMR spectrum, The compound was identified as the above compound.

【0102】<実施例5>化合物 VII−2の合成 シュレンクフラスコにアルゴン下で、ビアントロン1.
0g (2.6mmol)をTHF50mlに溶解し、この溶液
中に、4−メチルフェニルマグネシウムブロマイドのエ
ーテル溶液(6.0mmol)を滴下し、4時間還流した。
この反応溶液を、塩化アンモニウム水溶液に投入し、ト
ルエンとクロロホルムで抽出し、水洗後、硫酸マグネシ
ウムで乾燥した。次にこの生成物を酢酸100mlに溶解
し、沃化水素水溶液を滴下後、4時間攪拌し、二塩化ス
ズ(SnCl2 )の塩酸溶液を滴下し、さらに100℃
で1時間攪拌した。この後、水を加え、クロロホルムと
トルエンで抽出し、硫酸マグネシウムで乾燥した。溶媒
を留去した後、アセトン、メタノールで洗浄し、トルエ
ンとヘキサン(1:4)を溶出溶媒としてシリカカラム
精製後、トルエンより再結晶し、0.8g の白色固体を
得た。 質量分析:m/e 535(M+1)+ 赤外吸収スペクトル:図6 NMRスペクトル: 図7 示差走査熱量測定(DSC):融点365℃、ガラス転
移温度162℃
Example 5 Synthesis of Compound VII-2 A Schlenk flask was charged with Biantron 1.
0 g (2.6 mmol) was dissolved in 50 ml of THF, an ether solution of 4-methylphenylmagnesium bromide (6.0 mmol) was added dropwise to this solution, and the mixture was refluxed for 4 hours.
The reaction solution was poured into an aqueous solution of ammonium chloride, extracted with toluene and chloroform, washed with water, and dried over magnesium sulfate. Next, this product was dissolved in 100 ml of acetic acid, an aqueous solution of hydrogen iodide was added dropwise, the mixture was stirred for 4 hours, a hydrochloric acid solution of tin dichloride (SnCl 2 ) was added dropwise, and the temperature was further increased to 100°C.
It was stirred for 1 hour. After this, water was added, extracted with chloroform and toluene, and dried over magnesium sulfate. After the solvent was distilled off, the residue was washed with acetone and methanol, purified by a silica column using toluene and hexane (1:4) as an elution solvent, and recrystallized from toluene to obtain 0.8 g of a white solid. Mass spectrum: m/e 535 (M+1) + infrared absorption spectrum: FIG. 6 NMR spectrum: FIG. 7 Differential scanning calorimetry (DSC): melting point 365° C., glass transition temperature 162° C.

【0103】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0104】<実施例6>化合物 VII−1の合成 実施例5に準じて合成した。 質量分析:m/e 506(M+ ) 赤外吸収スペクトル:図8 NMRスペクトル: 図9 示差走査熱量測定(DSC):融点350℃、ガラス転
移温度130℃
Example 6 Synthesis of Compound VII-1 Synthesized according to Example 5. Mass spectrum: m/e 506 (M + ) Infrared absorption spectrum: FIG. 8 NMR spectrum: FIG. 9 Differential scanning calorimetry (DSC): melting point 350° C., glass transition temperature 130° C.

【0105】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0106】<実施例7>化合物 VII−3の合成 実施例5に準じて合成した。 質量分析:m/e 619(M+1)+ 赤外吸収スペクトル:図10 NMRスペクトル: 図11 示差走査熱量測定(DSC):融点411℃<Example 7> Compound VII-3 was synthesized according to Example 5. Mass spectrum: m/e 619 (M+1) + infrared absorption spectrum: FIG. 10 NMR spectrum: FIG. 11 Differential scanning calorimetry (DSC): melting point 411° C.

【0107】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0108】<実施例8>化合物 VII−4の合成 実施例5に準じて合成した。 質量分析:m/e 566(M+1)+ 赤外吸収スペクトル:図12 NMRスペクトル: 図13Example 8 Synthesis of Compound VII-4 Synthesized according to Example 5. Mass spectrum: m/e 566 (M+1) + infrared absorption spectrum: FIG. 12 NMR spectrum: FIG.

【0109】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0110】<実施例9>化合物 VII−8の合成 実施例5に準じて合成した。 質量分析:m/e 658(M+ ) 赤外吸収スペクトル:図14 NMRスペクトル: 図15 示差走査熱量測定(DSC):融点345℃、ガラス転
移温度188℃
Example 9 Synthesis of compound VII-8 was synthesized according to Example 5. Mass spectrum: m/e 658 (M + ) Infrared absorption spectrum: FIG. 14 NMR spectrum: FIG. 15 Differential scanning calorimetry (DSC): melting point 345° C., glass transition temperature 188° C.

【0111】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0112】<実施例10>化合物 VII−12の合成 実施例5に準じて合成した。 質量分析:m/e 535(M+1)+ 赤外吸収スペクトル:図16 NMRスペクトル: 図17 示差走査熱量測定(DSC):融点391℃、ガラス転
移温度166℃
Example 10 Synthesis of Compound VII-12 Synthesized according to Example 5. Mass spectrum: m/e 535 (M+1) + infrared absorption spectrum: FIG. 16 NMR spectrum: FIG. 17 Differential scanning calorimetry (DSC): melting point 391° C., glass transition temperature 166° C.

【0113】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0114】<実施例11>化合物 VII−14の合成 実施例5に準じて合成した。 質量分析:m/e 647(M+1)+ 赤外吸収スペクトル:図18 NMRスペクトル: 図19 示差走査熱量測定(DSC):融点414℃で昇華Example 11 Synthesis of Compound VII-14 Synthesized according to Example 5. Mass spectrum: m/e 647 (M+1) + infrared absorption spectrum: FIG. 18 NMR spectrum: FIG. 19 Differential scanning calorimetry (DSC): Sublimation at melting point 414° C.

【0115】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0116】<実施例12>化合物 VII−15の合成 実施例5に準じて合成した。 質量分析:m/e 659(M+1)+ 赤外吸収スペクトル:図20 NMRスペクトル: 図21 示差走査熱量測定(DSC):融点323℃、ガラス転
移温度165℃
Example 12 Synthesis of compound VII-15 Synthesized according to Example 5. Mass spectrum: m/e 659 (M+1) + infrared absorption spectrum: FIG. 20 NMR spectrum: FIG. 21 Differential scanning calorimetry (DSC): melting point 323° C., glass transition temperature 165° C.

【0117】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0118】<実施例13>化合物 VII−16の合成 実施例5に準じて合成した。 質量分析:m/e 659(M+1)+ 赤外吸収スペクトル:図22 NMRスペクトル: 図23 示差走査熱量測定(DSC):融点295℃、ガラス転
移温度141℃
<Example 13> Synthesis of compound VII-16 was carried out according to Example 5. Mass spectrum: m/e 659 (M+1) + infrared absorption spectrum: FIG. 22 NMR spectrum: FIG. 23 Differential scanning calorimetry (DSC): melting point 295° C., glass transition temperature 141° C.

【0119】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0120】<実施例14>化合物 VII−24の合成 実施例5に準じて合成した。 質量分析:m/e 618(M+ ) 赤外吸収スペクトル:図24 NMRスペクトル: 図25 示差走査熱量測定(DSC):融点273℃、ガラス転
移温度105℃
<Example 14> Synthesis of compound VII-24 was synthesized according to Example 5. Mass spectrum: m/e 618 (M + ) Infrared absorption spectrum: FIG. 24 NMR spectrum: FIG. 25 Differential scanning calorimetry (DSC): melting point 273° C., glass transition temperature 105° C.

【0121】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0122】<実施例15>化合物 VII−25の合成 実施例5に準じて合成した。 質量分析:m/e 567(M+1)+ 赤外吸収スペクトル:図26 NMRスペクトル: 図27<Example 15> Synthesis of compound VII-25 was synthesized according to Example 5. Mass spectrum: m/e 567 (M+1) + infrared absorption spectrum: FIG. 26 NMR spectrum: FIG. 27

【0123】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0124】<実施例16>化合物 VII−26の合成 実施例5に準じて合成した。 質量分析:m/e 606(M+ ) 赤外吸収スペクトル:図28 NMRスペクトル: 図29 示差走査熱量測定(DSC):融点453℃、ガラス転
移温度235℃
<Example 16> Synthesis of compound VII-26 was synthesized according to Example 5. Mass spectrum: m/e 606 (M + ) Infrared absorption spectrum: FIG. 28 NMR spectrum: FIG. 29 Differential scanning calorimetry (DSC): melting point 453° C., glass transition temperature 235° C.

【0125】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0126】<実施例17>化合物 I−20の合成 実施例1に準じて合成した。 質量分析:m/e 883(M+1)+ 赤外吸収スペクトル:図30 NMRスペクトル: 図31 示差走査熱量測定(DSC):融点342.6℃、ガラ
ス転移温度103℃
Example 17 Synthesis of compound I-20 Synthesis was carried out according to Example 1. Mass spectrum: m/e 883 (M+1) + infrared absorption spectrum: FIG. 30 NMR spectrum: FIG. 31 Differential scanning calorimetry (DSC): melting point 342.6° C., glass transition temperature 103° C.

【0127】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0128】<実施例18>化合物 VII−27の合成 実施例5に準じて合成した。 質量分析:m/e 896(M+ ) 赤外吸収スペクトル:図32 NMRスペクトル: 図33 示差走査熱量測定(DSC):融点361.5℃、ガラ
ス転移温度164℃
<Example 18> Synthesis of compound VII-27 was synthesized according to Example 5. Mass spectrum: m/e 896 (M + ) Infrared absorption spectrum: FIG. 32 NMR spectrum: FIG. 33 Differential scanning calorimetry (DSC): Melting point 361.5° C., glass transition temperature 164° C.

【0129】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0130】<実施例19>化合物 VII−23の合成 実施例5に準じて合成した。 赤外吸収スペクトル:図34 NMRスペクトル: 図35 示差走査熱量測定(DSC):融点423℃、ガラス転
移温度190℃
<Example 19> Synthesis of compound VII-23 was synthesized according to Example 5. Infrared absorption spectrum: FIG. 34 NMR spectrum: FIG. 35 Differential scanning calorimetry (DSC): melting point 423° C., glass transition temperature 190° C.

【0131】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0132】<実施例20>化合物 I−17の合成 実施例1に準じて合成した。 赤外吸収スペクトル:図36 NMRスペクトル: 図37 示差走査熱量測定(DSC):ガラス転移温度177℃<Example 20> Synthesis of compound I-17 was synthesized according to Example 1. Infrared absorption spectrum: FIG. 36 NMR spectrum: FIG. 37 Differential scanning calorimetry (DSC): Glass transition temperature 177° C.

【0133】なお、元素分析における計算値と測定値も
よく一致した。
The calculated and measured values in elemental analysis were in good agreement.

【0134】化6〜化24に示される他の例示化合物も
実施例1〜20に準じて合成した。これらの化合物は、
元素分析、赤外吸収スペクトル、NMRスペクトル、質
量分析等の結果から同定した。
Other exemplified compounds represented by Chemical formulas 6 to 24 were also synthesized according to Examples 1 to 20. These compounds are
It was identified from the results of elemental analysis, infrared absorption spectrum, NMR spectrum, mass spectrometry and the like.

【0135】<実施例21>厚さ100nmのITO透明
電極(陽極)を有するガラス基板を、中性洗剤、アセト
ン、エタノールを用いて超音波洗浄し、煮沸エタノール
中から引き上げて乾燥し、蒸着装置の基板ホルダーに固
定して、1×10-6Torrまで減圧した。
Example 21 A glass substrate having an ITO transparent electrode (anode) having a thickness of 100 nm is ultrasonically washed with a neutral detergent, acetone, and ethanol, and then pulled out from boiling ethanol and dried to deposit the vapor deposition apparatus. After fixing to the substrate holder of No. 1, the pressure was reduced to 1×10 −6 Torr.

【0136】次いで、N,N’−ジフェニル−N,N’
−m−トリル−4,4’−ジアミノ−1,1’−ビフェ
ニル(TPD−1)を蒸着速度0.2nm/secで50nmの
厚さに蒸着し、正孔注入輸送層とした。
Then, N,N'-diphenyl-N,N'
-M-Tolyl-4,4'-diamino-1,1'-biphenyl (TPD-1) was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 50 nm to form a hole injecting and transporting layer.

【0137】次いで、実施例1の化合物I−1を蒸着速
度0.2nm/secで50nmの厚さに蒸着し、発光層とし
た。
Then, the compound I-1 of Example 1 was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 50 nm to form a light-emitting layer.

【0138】次いで、減圧状態を保ったまま、電子注入
輸送層として、トリス(8−キノリノラト)アルミニウ
ムを蒸着速度0.2nm/secで10nmの厚さに蒸着した。
Then, while maintaining the reduced pressure, tris(8-quinolinolato)aluminum was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 10 nm as an electron injecting and transporting layer.

【0139】さらに、減圧状態を保ったまま、MgAg
(重量比10:1)を蒸着速度0.2nm/secで200nm
の厚さに蒸着して陰極とし、有機EL素子を得た。
Further, while maintaining the reduced pressure state, MgAg
(Weight ratio 10:1) 200nm at deposition rate 0.2nm/sec
Was evaporated to a cathode to obtain an organic EL device.

【0140】この有機EL素子に電圧を印加して電流を
流したところ、15V 、217mA/cm2で4500cd/m2
の青色(発光極大波長λmax =485nm)の発光が確認
され、この発光は乾燥窒素雰囲気中で500時間以上安
定していた。部分的非発光部の出現および成長は全くな
かった。輝度の半減期は10mA/cm2の定電流駆動で10
0時間であった。
[0140] When a current flows by applying a voltage to the organic EL element, 15V, 217mA / cm 2 at 4500 cd / m 2
Of blue (maximum emission wavelength λ max =485 nm) was confirmed, and this emission was stable for 500 hours or more in a dry nitrogen atmosphere. There was no appearance or growth of partial non-emissive areas. Brightness half-life is 10 mA/cm 2 at constant current drive of 10
It was 0 hours.

【0141】<実施例22>厚さ100nmのITO透明
電極(陽極)を有するガラス基板を、中性洗剤、アセト
ン、エタノールを用いて超音波洗浄し、煮沸エタノール
中から引き上げて乾燥し、蒸着装置の基板ホルダーに固
定して、1×10-6Torrまで減圧した。
Example 22 A glass substrate having an ITO transparent electrode (anode) having a thickness of 100 nm is ultrasonically washed with a neutral detergent, acetone, and ethanol, and is pulled out from boiling ethanol and dried to obtain a vapor deposition apparatus. After fixing to the substrate holder of No. 1, the pressure was reduced to 1×10 −6 Torr.

【0142】次いで、ポリ(チオフェン−2,5−ジイ
ル)を10nmの厚さに蒸着し、正孔注入層とした。
Then, poly(thiophene-2,5-diyl) was vapor-deposited to a thickness of 10 nm to form a hole injection layer.

【0143】次いで、N,N’−ジフェニル−N,N’
−m−トリル−4,4’−ジアミノ−1,1’−ビフェ
ニル(TPD−1)を蒸着速度0.2nm/secで50nmの
厚さに蒸着し、正孔輸送層とした。
Then, N,N'-diphenyl-N,N'
-M-Tolyl-4,4'-diamino-1,1'-biphenyl (TPD-1) was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 50 nm to form a hole-transporting layer.

【0144】次いで、実施例1の化合物I−1を50nm
の厚さに蒸着し、発光層とした。
Then, the compound I-1 of Example 1 was added at 50 nm.
Was evaporated to a light emitting layer.

【0145】次いで、減圧状態を保ったまま、電子注入
輸送層として、トリス(8−キノリノラト)アルミニウ
ムを蒸着速度0.2nm/secで10nmの厚さに蒸着した。
Then, while keeping the reduced pressure, tris(8-quinolinolato)aluminum was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 10 nm as an electron injecting and transporting layer.

【0146】さらに、減圧状態を保ったまま、MgAg
(重量比10:1)を蒸着速度0.2nm/secで200nm
の厚さに蒸着して陰極とし、有機EL素子を得た。
Further, with the reduced pressure maintained, MgAg
(Weight ratio 10:1) 200nm at deposition rate 0.2nm/sec
Was evaporated to a cathode to obtain an organic EL device.

【0147】この有機EL素子に電圧を印加して電流を
流したところ、12V 、625mA/cm2で10000cd/m
2 の青色(発光極大波長λmax =485nm)の発光が確
認され、この発光は乾燥窒素雰囲気中で1000時間以
上安定していた。部分的非発光部の出現および成長は全
くなかった。輝度の半減期は10mA/cm2の定電流駆動で
400時間であった。
When a voltage was applied to this organic EL element to pass a current, it was 10,000 cd/m 2 at 12 V and 625 mA/cm 2.
The emission of blue color 2 (maximum emission wavelength λmax =485 nm) was confirmed, and this emission was stable in a dry nitrogen atmosphere for 1000 hours or more. There was no appearance or growth of partial non-emissive areas. The luminance half-life was 400 hours when driven at a constant current of 10 mA/cm 2 .

【0148】<実施例23>実施例22において、電子
注入輸送層を設けないほかは同様にして有機EL素子を
得た。
<Example 23> An organic EL device was obtained in the same manner as in Example 22 except that the electron injecting and transporting layer was not provided.

【0149】この有機EL素子に電圧を印加して電流を
流したところ、12V 、825mA/cm2で2260cd/m2
の青色(発光極大波長λmax =485nm)の発光が確認
され、この発光は乾燥窒素雰囲気中で500時間以上安
定していた。部分的非発光部の出現および成長は全くな
かった。輝度の半減期は10mA/cm2の定電流駆動で10
0時間であった。
[0149] When a current flows by applying a voltage to the organic EL element, 12V, 825mA / cm 2 at 2260cd / m 2
Of blue (maximum emission wavelength λ max =485 nm) was confirmed, and this emission was stable for 500 hours or more in a dry nitrogen atmosphere. There was no appearance or growth of partial non-emissive areas. Brightness half-life is 10 mA/cm 2 at constant current drive of 10
It was 0 hours.

【0150】<実施例24>実施例22と同様に素子を
作製した。ただし、ホール輸送材料TPD−1の代わり
に、N,N,N’,N’−テトラキス(3−ビフェニ
ル)−4,4’−ジアミノ−1,1’−ビフェニル(T
PD−2)を用いた。
Example 24 An element was manufactured in the same manner as in Example 22. However, instead of the hole transport material TPD-1, N,N,N′,N′-tetrakis(3-biphenyl)-4,4′-diamino-1,1′-biphenyl(T
PD-2) was used.

【0151】この有機EL素子に電圧を印加して電流を
流したところ、12V 、675mA/cm2で5500cd/m2
の青色(発光極大波長λmax =485nm)の発光が確認
され、この発光は乾燥窒素雰囲気中で1000時間以上
安定していた。部分的非発光部の出現および成長は全く
なかった。輝度の半減期は10mA/cm2の定電流駆動で6
00時間であった。
[0151] When a current flows by applying a voltage to the organic EL element, 12V, 675mA / cm 2 at 5500cd / m 2
Of blue (maximum emission wavelength λ max =485 nm) was confirmed, and this emission was stable for 1000 hours or more in a dry nitrogen atmosphere. There was no appearance or growth of partial non-emissive areas. Brightness half-life is 6 with constant current drive of 10 mA/cm 2.
It was 00 hours.

【0152】<実施例25>実施例24と同様に正孔輸
送層を形成した後、次いで発光層として、TPD−2と
実施例1の化合物I−1とを1:1の比率(重量比)で
蒸着速度0.2nm/secで20nmの厚さに、共蒸着した。
Example 25 A hole transport layer was formed in the same manner as in Example 24, and then TPD-2 and the compound I-1 of Example 1 were used as a light emitting layer in a ratio of 1:1 (weight ratio). ) Was vapor-deposited at a deposition rate of 0.2 nm/sec to a thickness of 20 nm.

【0153】次いで、減圧状態を保ったまま、電子輸送
層として、化合物I−1を50nmの厚さに蒸着した。
Then, while maintaining the reduced pressure, Compound I-1 was vapor-deposited to a thickness of 50 nm as an electron transport layer.

【0154】次いで、減圧状態を保ったまま、電子注入
層として、トリス(8−キノリノナト)アルミニウムを
蒸着速度0.2nm/secで10nmの厚さに蒸着した。
Then, while keeping the reduced pressure, tris(8-quinolinonato)aluminum was vapor-deposited as an electron injection layer at a vapor deposition rate of 0.2 nm/sec to a thickness of 10 nm.

【0155】さらに、減圧状態を保ったまま、MgAg
(重量比10:1)を蒸着速度0.2nm/secで200nm
の厚さに蒸着して陰極とし、有機EL素子を得た。
Further, with the reduced pressure maintained, MgAg
(Weight ratio 10:1) 200nm at deposition rate 0.2nm/sec
Was evaporated to a cathode to obtain an organic EL device.

【0156】この素子に電圧を印加して電流を流したと
ころ、12V 、540mA/cm2で12000cd/m2 の青色
(発光極大波長λmax =480nm)の発光が確認され
た。この発光は乾燥窒素雰囲気中で5000時間以上安
定していた。部分的非発光部の出現、成長および電流リ
ークは全くなかった。輝度の半減期は10mA/cm2の定電
流駆動で1500時間であった。
When a voltage was applied to this device and a current was passed through it, blue light emission (maximum emission wavelength λmax =480 nm) of 12000 cd/m 2 was confirmed at 12 V and 540 mA/cm 2 . This luminescence was stable for more than 5000 hours in a dry nitrogen atmosphere. There was no appearance, growth, or current leakage of the partial non-emission area. The luminance half-life was 1500 hours when driven at a constant current of 10 mA/cm 2 .

【0157】<実施例26>厚さ100nmのITO透明
電極(陽極)を有するガラス基板を、中性洗剤、アセト
ン、エタノールを用いて超音波洗浄し、煮沸エタノール
中から引き上げて乾燥し、蒸着装置の基板ホルダーに固
定して、1×10-6Torrまで減圧した。
Example 26 A glass substrate having an ITO transparent electrode (anode) having a thickness of 100 nm is ultrasonically cleaned with a neutral detergent, acetone, and ethanol, and is pulled up from boiling ethanol and dried to deposit the vapor deposition apparatus. After fixing to the substrate holder of No. 1, the pressure was reduced to 1×10 −6 Torr.

【0158】次いで、ポリ(チオフェン−2,5−ジイ
ル)を10nmの厚さに蒸着し、正孔注入層とした。
Next, poly(thiophene-2,5-diyl) was evaporated to a thickness of 10 nm to form a hole injection layer.

【0159】次いで、N,N’−ジフェニル−N,N’
−m−トリル−4,4’−ジアミノ−1,1’−ビフェ
ニル(TPD−1)を蒸着速度0.2nm/secで50nmの
厚さに蒸着し、正孔輸送層とした。
Then, N,N'-diphenyl-N,N'
-M-Tolyl-4,4'-diamino-1,1'-biphenyl (TPD-1) was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 50 nm to form a hole-transporting layer.

【0160】次いで、実施例2の化合物II−1を50nm
の厚さに蒸着し、発光層とした。
Then, the compound II-1 of Example 2 was added to 50 nm.
Was evaporated to a light emitting layer.

【0161】次いで、減圧状態を保ったまま、電子注入
輸送層として、トリス(8−キノリノラト)アルミニウ
ムを蒸着速度0.2nm/secで10nmの厚さに蒸着した。
Then, while maintaining the reduced pressure, tris(8-quinolinolato)aluminum was vapor-deposited to a thickness of 10 nm as an electron injecting and transporting layer at a vapor deposition rate of 0.2 nm/sec.

【0162】さらに、減圧状態を保ったまま、MgAg
(重量比10:1)を蒸着速度0.2nm/secで200nm
の厚さに蒸着して陰極とし、有機EL素子を得た。
Further, with the reduced pressure maintained, MgAg
(Weight ratio 10:1) 200nm at deposition rate 0.2nm/sec
Was evaporated to a cathode to obtain an organic EL device.

【0163】この有機EL素子に電圧を印加して電流を
流したところ、12V 、625mA/cm2で12000cd/m
2 の青緑色(発光極大波長λmax =495nm)の発光が
確認され、この発光は乾燥窒素雰囲気中で1000時間
以上安定していた。部分的非発光部の出現および成長は
全くなかった。輝度の半減期は10mA/cm2の定電流駆動
で100時間であった。
When a voltage was applied to this organic EL element to pass a current, it was 12000 cd/m 2 at 12 V and 625 mA/cm 2.
The emission of bluish green (maximum emission wavelength λ max =495 nm) of 2 was confirmed, and this emission was stable for 1000 hours or more in a dry nitrogen atmosphere. There was no appearance or growth of partial non-emissive areas. The half-life of luminance was 100 hours when driven with a constant current of 10 mA/cm 2 .

【0164】<実施例27>実施例21において、化合
物I−1のかわりに実施例5の化合物VII −2を用いて
有機EL素子を得た。
<Example 27> An organic EL device was obtained by using the compound VII-2 of Example 5 in place of the compound I-1 in Example 21.

【0165】この素子に電圧を印加して電流を流したと
ころ、14V 、450mA/cm2で1921cdm-2 の青色発
光(発光極大波長λmax =460nm)の発光が確認さ
れ、この発光は乾燥窒素雰囲気中で1000時間以上安
定していた。部分的非発光部の出現および成長は全くな
かった。輝度の半減期は10mA/cm2の定電流駆動で30
0時間であった。
When a voltage was applied to this element and a current was applied, blue light emission of 1921 cdm -2 (emission maximum wavelength λ max =460 nm) was confirmed at 14 V and 450 mA/cm 2 , and this light emission was performed in a dry nitrogen atmosphere. It was stable for more than 1000 hours. There was no appearance or growth of partial non-emissive areas. Luminance half-life is 30 with constant current drive of 10 mA/cm 2.
It was 0 hours.

【0166】<実施例28>実施例22において、発光
層を形成した後、トリス(8−キノリナト)アルミニウ
ムを蒸着速度0.2nm/secで20nmの厚さに蒸着し、電
子輸送層とした。次いで、テトラブチルジフェノキノン
を10nmの厚さに蒸着し、電子注入層とした。その後、
実施例22と同様にして有機EL素子を得た。
Example 28 In Example 22, after forming the light emitting layer, tris(8-quinolinato)aluminum was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 20 nm to form an electron transport layer. Next, tetrabutyldiphenoquinone was vapor-deposited to a thickness of 10 nm to form an electron injection layer. afterwards,
An organic EL device was obtained in the same manner as in Example 22.

【0167】この有機EL素子に実施例22と同様の条
件で電圧を印加したところ、12V、625mA/cm2で1
0000cd/m2 の青色(発光極大波長λmax =485n
m)の発光が確認され、この発光は乾燥窒素雰囲気中で
1000時間以上安定していた。部分的非発光部の出現
および成長は全くなかった。輝度の半減期は10mA/cm2
の定電流駆動で80時間であった。
When a voltage was applied to this organic EL device under the same conditions as in Example 22, it was 1 at 12 V and 625 mA/cm 2 .
Blue at 0000 cd/m 2 (Maximum emission wavelength λmax =485n
Light emission of m) was confirmed, and this light emission was stable for 1000 hours or more in a dry nitrogen atmosphere. There was no appearance or growth of partial non-emissive areas. Luminance half-life is 10mA/cm 2
It was a constant current drive for 80 hours.

【0168】<実施例29>厚さ100nmのITO透明
電極(陽極)を有するガラス基板を、中性洗剤、アセト
ン、エタノールを用いて超音波洗浄し、煮沸エタノール
中から引き上げて乾燥し、蒸着装置の基板ホルダーに固
定して、1×10-6Torrまで減圧した。
Example 29 A glass substrate having an ITO transparent electrode (anode) having a thickness of 100 nm is ultrasonically cleaned with a neutral detergent, acetone, and ethanol, and is pulled up from boiling ethanol and dried to obtain a vapor deposition apparatus. After fixing to the substrate holder of No. 1, the pressure was reduced to 1×10 −6 Torr.

【0169】次いで、ポリ(チオフェン−2,5−ジイ
ル)を10nmの厚さに蒸着し、正孔注入層とした。
Next, poly(thiophene-2,5-diyl) was evaporated to a thickness of 10 nm to form a hole injection layer.

【0170】次いで、N,N’−ジフェニル−N,N’
−m−トリル−4,4’−ジアミノ−1,1’−ビフェ
ニル(TPD−1)を蒸着速度0.2nm/secで50nmの
厚さに蒸着し、正孔輸送層とした。
Then, N,N'-diphenyl-N,N'
-M-Tolyl-4,4'-diamino-1,1'-biphenyl (TPD-1) was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 50 nm to form a hole-transporting layer.

【0171】次いで、テトラフェニルシクロペンタジエ
ンを50nmの厚さに蒸着し、発光層とした。
Next, tetraphenylcyclopentadiene was evaporated to a thickness of 50 nm to form a light emitting layer.

【0172】次いで、減圧状態を保ったまま、電子注入
輸送層として、実施例1の化合物I−1を蒸着速度0.
2nm/secで10nmの厚さに蒸着した。
Then, with the vacuum kept, the compound I-1 of Example 1 was deposited as an electron injecting and transporting layer at a deposition rate of 0.
It was vapor-deposited at a thickness of 10 nm at 2 nm/sec.

【0173】さらに、減圧状態を保ったまま、MgAg
(重量比10:1)を蒸着速度0.2nm/secで200nm
の厚さに蒸着して陰極とし、有機EL素子を得た。
Further, while keeping the reduced pressure, MgAg
(Weight ratio 10:1) 200nm at deposition rate 0.2nm/sec
Was evaporated to a cathode to obtain an organic EL device.

【0174】この有機EL素子に電圧を印加して電流を
流したところ、12V 、100mA/cm2で800cd/m2
青色(発光極大波長λmax =460nm)の発光が確認さ
れ、この発光は乾燥窒素雰囲気中で100時間以上安定
していた。部分的非発光部の出現および成長は全くなか
った。輝度の半減期は10mA/cm2の定電流駆動で10時
間であった。
When a voltage was applied to this organic EL element to pass a current, blue emission of 800 cd/m 2 (maximum emission wavelength λ max =460 nm) was confirmed at 12 V and 100 mA/cm 2 , and this emission was dried. It was stable in a nitrogen atmosphere for 100 hours or more. There was no appearance or growth of partial non-emissive areas. The half-life of brightness was 10 hours when driven with a constant current of 10 mA/cm 2 .

【0175】実施例21〜29において、化6〜化24
に掲げた本発明の化合物の1種または2種以上を適宜選
択して、上記実施例以外の組合せで、発光層や電子注入
輸送層に用いたところ、有機EL素子の層構成等に応じ
て、上記実施例と同様の結果が得られた。
In Examples 21 to 29, chemical formulas 6 to 24 were used.
One or two or more of the compounds of the present invention listed in 1 above are appropriately used and used in a light emitting layer or an electron injecting and transporting layer in a combination other than the above examples, depending on the layer structure of the organic EL device. The same results as in the above example were obtained.

【0176】<比較例1>厚さ100nmのITO透明電
極(陽極)を有するガラス基板を、中性洗剤、アセト
ン、エタノールを用いて超音波洗浄し、煮沸エタノール
中から引き上げて乾燥し、蒸着装置の基板ホルダーに固
定して、1×10-6Torrまで減圧した。
Comparative Example 1 A glass substrate having a 100 nm thick ITO transparent electrode (anode) was ultrasonically cleaned using a neutral detergent, acetone, and ethanol, and was pulled up from boiling ethanol and dried to obtain a vapor deposition apparatus. After fixing to the substrate holder of No. 1, the pressure was reduced to 1×10 −6 Torr.

【0177】次いで、N,N’ビス(m−メチルフェニ
ル)−N,N’−ジフェニル−1,1’−ビフェニル−
4,4’−ジアミン(TPD−1)を50nmの厚さに蒸
着し、正孔注入輸送層とした。
Then, N,N'bis(m-methylphenyl)-N,N'-diphenyl-1,1'-biphenyl-
4,4'-diamine (TPD-1) was evaporated to a thickness of 50 nm to form a hole injecting and transporting layer.

【0178】次いで、減圧状態を保ったまま、1,3−
ビス(5−(4−t−ブチルフェニル)−1,3,4−
オキサジアゾ−2−イル)ベンゼン(OXD−7)を蒸
着速度0.2nm/secで50nmの厚さに蒸着して、発光層
とした。
Then, while maintaining the reduced pressure state, 1,3-
Bis(5-(4-t-butylphenyl)-1,3,4-
Oxadiazo-2-yl)benzene (OXD-7) was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 50 nm to form a light emitting layer.

【0179】次いで、減圧状態を保ったまま、電子注入
輸送層としてトリス(8−キノリノナト)アルミニウム
を蒸着速度0.2nm/secで10nmの厚さに蒸着した。
Next, while maintaining the reduced pressure, tris(8-quinolinonato)aluminum was vapor-deposited as an electron injecting/transporting layer at a vapor deposition rate of 0.2 nm/sec to a thickness of 10 nm.

【0180】さらに、減圧状態を保ったまま、MgAg
(重量比10:1)を蒸着速度0.2nm/secで200nm
の厚さに蒸着して陰極とし、EL素子を得た。
Further, while maintaining the reduced pressure, MgAg
(Weight ratio 10:1) 200nm at deposition rate 0.2nm/sec
The EL element was obtained by evaporating to a thickness of 4 to form a cathode.

【0181】このEL素子に電圧を印加して電流を流し
たところ、14V 、127mA/cm2で550cd/m2 の青色
(発光極大波長λmax =480nm)の発光が確認され、
この発光は乾燥窒素雰囲気中で10時間にて、部分的非
発光部の出現および成長がみられ、20時間にて絶縁破
壊を起こした。輝度の半減期は10mA/cm2の定電流駆動
で20分であった。
When a voltage was applied to this EL element and a current was passed through it, blue light emission (maximum emission wavelength λ max =480 nm) of 550 cd/m 2 at 14 V and 127 mA/cm 2 was confirmed.
In this light emission, the appearance and growth of a partial non-light emitting portion were observed in a dry nitrogen atmosphere for 10 hours, and dielectric breakdown occurred in 20 hours. The half-life of luminance was 20 minutes when driven with a constant current of 10 mA/cm 2 .

【0182】<比較例2>C.Adachi et al., Appli. Ph
ys. Lett.,56,799 (1990) に記載の9,10−ジフェニ
ルアントラセンを発光層に用いて、この文献と同構成の
有機EL素子を組み立てた。すなわち、比較例1におい
て、電子注入輸送層を設けることなく、9,10−ジフ
ェニルアントラセンを同様に50nmの厚さに蒸着して、
電子注入輸送層を兼ねる発光層とした。
Comparative Example 2 C. Adachi et al., Appli. Ph
An organic EL device having the same structure as this document was assembled by using 9,10-diphenylanthracene described in ys. Lett., 56 , 799 (1990) for the light emitting layer. That is, in Comparative Example 1, 9,10-diphenylanthracene was similarly evaporated to a thickness of 50 nm without providing an electron injecting and transporting layer,
The light emitting layer also serves as an electron injecting and transporting layer.

【0183】このEL素子は、有機化合物層が結晶化し
ており、電気的にショートした状態で、電圧を印加した
ところ青色の発光はみられたものの絶縁破壊した。
In this EL device, the organic compound layer was crystallized, and when a voltage was applied in a state where it was electrically short-circuited, blue emission was observed, but dielectric breakdown occurred.

【0184】[0184]

【発明の効果】本発明のフェニルアントラセン誘導体
は、結晶性が低く、アモルファス状態の良好な膜を形成
することができるので、有機EL素子用化合物、特に青
色発光材料や電子注入輸送材料として用いることができ
る。実際、本発明のフェニルアントラセン誘導体を用い
た本発明の有機EL素子は電流リークがなく、非発光部
分(ダークスポット)の発生・成長がなく、膜中の結晶
化が抑制されるので連続発光の信頼性の高い素子とな
る。特に発光層に用いた場合1万cd/m2 以上の高輝度の
青色発光が可能となる。
INDUSTRIAL APPLICABILITY The phenylanthracene derivative of the present invention has low crystallinity and can form a film in a good amorphous state. Therefore, it is used as a compound for organic EL devices, particularly as a blue light emitting material or an electron injecting/transporting material. You can In fact, the organic EL device of the present invention using the phenylanthracene derivative of the present invention has no current leakage, no generation/growth of non-light emitting portions (dark spots), and crystallization in the film is suppressed. It becomes a highly reliable element. In particular, when it is used for the light emitting layer, blue light emission with high brightness of 10,000 cd/m 2 or more is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のEL素子の構成例を示す側面図であ
る。
FIG. 1 is a side view showing a configuration example of an EL element of the present invention.

【図2】本発明の化合物の赤外吸収スペクトルを示すグ
ラフである。
FIG. 2 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図3】本発明の化合物のNMRスペクトルを示すグラ
フである。
FIG. 3 is a graph showing an NMR spectrum of the compound of the present invention.

【図4】本発明の化合物の赤外吸収スペクトルを示すグ
ラフである。
FIG. 4 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図5】本発明の化合物のNMRスペクトルを示すグラ
フである。
FIG. 5 is a graph showing an NMR spectrum of the compound of the present invention.

【図6】本発明の化合物の赤外吸収スペクトルを示すグ
ラフである。
FIG. 6 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図7】本発明の化合物のNMRスペクトルを示すグラ
フである。
FIG. 7 is a graph showing an NMR spectrum of the compound of the present invention.

【図8】本発明の化合物の赤外吸収スペクトルを示すグ
ラフである。
FIG. 8 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図9】本発明の化合物のNMRスペクトルを示すグラ
フである。
FIG. 9 is a graph showing an NMR spectrum of the compound of the present invention.

【図10】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 10 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図11】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 11 is a graph showing an NMR spectrum of the compound of the present invention.

【図12】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 12 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図13】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 13 is a graph showing an NMR spectrum of the compound of the present invention.

【図14】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 14 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図15】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 15 is a graph showing an NMR spectrum of the compound of the present invention.

【図16】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 16 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図17】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 17 is a graph showing an NMR spectrum of the compound of the present invention.

【図18】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 18 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図19】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 19 is a graph showing an NMR spectrum of the compound of the present invention.

【図20】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 20 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図21】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 21 is a graph showing an NMR spectrum of the compound of the present invention.

【図22】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 22 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図23】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 23 is a graph showing an NMR spectrum of the compound of the present invention.

【図24】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 24 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図25】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 25 is a graph showing an NMR spectrum of the compound of the present invention.

【図26】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 26 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図27】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 27 is a graph showing an NMR spectrum of the compound of the present invention.

【図28】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 28 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図29】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 29 is a graph showing an NMR spectrum of the compound of the present invention.

【図30】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 30 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図31】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 31 is a graph showing an NMR spectrum of the compound of the present invention.

【図32】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 32 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図33】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 33 is a graph showing an NMR spectrum of the compound of the present invention.

【図34】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 34 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図35】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 35 is a graph showing an NMR spectrum of the compound of the present invention.

【図36】本発明の化合物の赤外吸収スペクトルを示す
グラフである。
FIG. 36 is a graph showing an infrared absorption spectrum of the compound of the present invention.

【図37】本発明の化合物のNMRスペクトルを示すグ
ラフである。
FIG. 37 is a graph showing an NMR spectrum of the compound of the present invention.

【符号の説明】[Explanation of symbols]

1 有機EL素子 2 基板 3 陽極 4 正孔注入輸送層 5 発光層 6 電子注入輸送層 7 陰極 1 Organic EL Element 2 Substrate 3 Anode 4 Hole Injecting and Transporting Layer 5 Light Emitting Layer 6 Electron Injecting and Transporting Layer 7 Cathode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 211/54 211/61 217/78 7457−4H 217/94 7457−4H 321/30 7419−4H C07D 271/10 333/08 C09K 11/06 Z 9280−4H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C07C 211/54 211/61 217/78 7457-4H 217/94 7457-4H 321/30 7419-4H C07D 271/10 333/08 C09K 11/06 Z 9280-4H

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 下記式(I)で表されるフェニルアント
ラセン誘導体。 式(I) A1 −L−A2 〔式(I)において、A1 およびA2 は、各々モノフェ
ニルアントリル基またはジフェニルアントリル基を表
し、これらは同一でも異なるものであってもよい。Lは
単結合または二価の連結基を表す。〕
1. A phenylanthracene derivative represented by the following formula (I): Formula (I) A 1 -LA 2 [In Formula (I), A 1 and A 2 each represent a monophenylanthryl group or a diphenylanthryl group, and these may be the same or different. .. L represents a single bond or a divalent linking group. ]
【請求項2】 下記化1または化2で表される請求項1
のフェニルアントラセン誘導体。 【化1】 【化2】 〔化1において、R1 およびR2 は、各々アルキル基、
シクロアルキル基、アリール基、アルケニル基、アルコ
キシ基、アリーロキシ基、アミノ基または複素環基を表
し、これらは同一でも異なるものであってもよい。r1
およびr2は、各々、0または1〜5の整数を表す。r
1およびr2が、各々、2以上の整数であるとき、R1
同士およびR2 同士は各々同一でも異なるものであって
もよく、R1 同士またはR2 同士は結合して環を形成し
てもよい。L1 は単結合またはアリーレン基を表し、ア
リーレン基はアルキレン基、−O−、−S−または−N
R−(ここで、Rはアルキル基またはアリール基を表
す。)が介在するものであってもよい。化2において、
3 およびR4 は、各々アルキル基、シクロアルキル
基、アリール基、アルケニル基、アルコキシ基、アリー
ロキシ基、アミノ基または複素環基を表し、これらは同
一でも異なるものであってもよい。r3およびr4は、
各々、0または1〜5の整数を表す。r3およびr4
が、各々、2以上の整数であるとき、R3 同士およびR
4 同士は各々同一でも異なるものであってもよく、R3
同士またはR4 同士は結合して環を形成してもよい。L
2 は単結合またはアリーレン基を表し、アリーレン基は
アルキレン基、−O−、−S−または−NR−(ここ
で、Rはアルキル基またはアリール基を表す。)が介在
するものであってもよい。〕
2. The method according to claim 1 or 2 below.
Phenylanthracene derivative of. [Chemical 1] [Chemical 2] [In Chemical Formula 1, R 1 and R 2 are each an alkyl group,
It represents a cycloalkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, an amino group or a heterocyclic group, which may be the same or different. r1
And r2 each represent 0 or an integer of 1 to 5. r
When 1 and r2 are each an integer of 2 or more, R 1
R 1 and R 2 may be the same or different, and R 1 or R 2 may be bonded to each other to form a ring. L 1 represents a single bond or an arylene group, and the arylene group is an alkylene group, —O—, —S— or —N.
R- (wherein R represents an alkyl group or an aryl group) may be present. In chemical formula 2,
R 3 and R 4 each represent an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, an amino group or a heterocyclic group, and these may be the same or different. r3 and r4 are
Each represents 0 or an integer of 1 to 5. r3 and r4
Each is an integer of 2 or more, R 3 s and R 3
The four groups may be the same or different, and R 3
R 4 and R 4 may combine with each other to form a ring. L
2 represents a single bond or an arylene group, and the arylene group may be an alkylene group, -O-, -S- or -NR- (wherein R represents an alkyl group or an aryl group). Good. ]
【請求項3】 請求項1または2のフェニルアントラセ
ン誘導体を含有する少なくとも1層の有機化合物層を有
する有機EL素子。
3. An organic EL device having at least one organic compound layer containing the phenylanthracene derivative according to claim 1.
【請求項4】 前記フェニルアントラセン誘導体を含有
する有機化合物層が発光層である請求項3の有機EL素
子。
4. The organic EL device according to claim 3, wherein the organic compound layer containing the phenylanthracene derivative is a light emitting layer.
【請求項5】 さらに、少なくとも1層の正孔注入層
と、少なくとも1層の正孔輸送層と、少なくとも1層の
電子注入輸送層とを有する請求項4の有機EL素子。
5. The organic EL device according to claim 4, further comprising at least one hole injection layer, at least one hole transport layer, and at least one electron injection transport layer.
【請求項6】 さらに、少なくとも1層の正孔注入層
と、少なくとも1層の正孔輸送層と、少なくとも1層の
電子輸送層と、少なくとも1層の電子注入層とを有する
請求項4の有機EL素子。
6. The method according to claim 4, further comprising at least one hole injection layer, at least one hole transport layer, at least one electron transport layer, and at least one electron injection layer. Organic EL device.
【請求項7】 前記フェニルアントラセン誘導体を含有
する有機化合物層が電子注入輸送層であり、さらに発光
層を有する請求項3の有機EL素子。
7. The organic EL device according to claim 3, wherein the organic compound layer containing the phenylanthracene derivative is an electron injecting and transporting layer, and further has a light emitting layer.
【請求項8】 少なくとも1層の発光層を有し、この発
光層が電子注入輸送性化合物と正孔注入輸送性化合物と
の混合層であって、この混合層が前記フェニルアントラ
セン誘導体を含有する請求項3の有機EL素子。
8. At least one light emitting layer is provided, and the light emitting layer is a mixed layer of an electron injecting and transporting compound and a hole injecting and transporting compound, and the mixed layer contains the phenylanthracene derivative. The organic EL device according to claim 3.
JP12575395A 1994-04-26 1995-04-26 Organic EL device Expired - Lifetime JP3816969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12575395A JP3816969B2 (en) 1994-04-26 1995-04-26 Organic EL device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11056994 1994-04-26
JP6-110569 1994-04-26
JP12575395A JP3816969B2 (en) 1994-04-26 1995-04-26 Organic EL device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006029058A Division JP4190542B2 (en) 1994-04-26 2006-02-06 Phenylanthracene derivative

Publications (2)

Publication Number Publication Date
JPH0812600A true JPH0812600A (en) 1996-01-16
JP3816969B2 JP3816969B2 (en) 2006-08-30

Family

ID=26450175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12575395A Expired - Lifetime JP3816969B2 (en) 1994-04-26 1995-04-26 Organic EL device

Country Status (1)

Country Link
JP (1) JP3816969B2 (en)

Cited By (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182776A (en) * 1998-12-09 2000-06-30 Eastman Kodak Co Organic multilayered electroluminescence element
WO2000041443A1 (en) 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2001052870A (en) * 1999-06-03 2001-02-23 Tdk Corp Organic electroluminescent element
JP2001250690A (en) * 1999-12-28 2001-09-14 Idemitsu Kosan Co Ltd White system organic electroluminescence element
JP2001322952A (en) * 2000-03-06 2001-11-20 Wako Pure Chem Ind Ltd Method for producing 9,10-diphenylanthracene
WO2002014244A1 (en) 2000-08-10 2002-02-21 Mitsui Chemicals, Inc. Hydrocarbon compound, material for organic electroluminescent element and organic electroluminescent element
WO2002043448A1 (en) * 2000-11-27 2002-05-30 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2002329580A (en) * 2001-02-22 2002-11-15 Canon Inc Organic luminescent element
WO2003040255A1 (en) * 2001-11-09 2003-05-15 Sk Corporation Blue light-emitting polymer containing 9,10-diphenylanthracene moiety and electroluminescent device using the same
US6582837B1 (en) 1997-07-14 2003-06-24 Nec Corporation Organic electroluminescence device
US6660408B1 (en) 1998-05-22 2003-12-09 Nec Corporation Organic electroluminescent device
US6713192B2 (en) * 2000-03-30 2004-03-30 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US6797848B2 (en) 2000-03-29 2004-09-28 Idemitsu Kosan, Ltd. Anthracene derivative and organic electroluminescence device using the derivative
US6806643B2 (en) 2001-05-10 2004-10-19 Samsung Sdi Co., Ltd. Light-emitting body, light emitting device and light-emitting display
EP1491610A2 (en) 2003-06-27 2004-12-29 Canon Kabushiki Kaisha Organic electroluminescent device
WO2005000787A1 (en) * 2003-06-27 2005-01-06 Canon Kabushiki Kaisha Aminoanthryl derivative substitution compound and organic electroluminescence device using the same
WO2005011333A1 (en) * 2003-07-28 2005-02-03 Idemitsu Kosan Co., Ltd. White organic electroluminescence element
JP3654909B2 (en) * 1996-12-28 2005-06-02 Tdk株式会社 Organic EL device
JP2005281210A (en) * 2004-03-30 2005-10-13 Tdk Corp Compound for organic el element, and organic el element
US7049011B2 (en) 2002-03-14 2006-05-23 Tdk Corporation Organic electroluminescent device
WO2006085434A1 (en) * 2005-02-10 2006-08-17 Idemitsu Kosan Co., Ltd. Bisanthracene derivative and organic electroluminescent device using same
JP2006282533A (en) * 2005-03-31 2006-10-19 Sony Corp Bianthracene derivative, organic electroluminescent device, and display device
JP2006287248A (en) * 1999-09-21 2006-10-19 Idemitsu Kosan Co Ltd Organic electroluminescence element and organic luminous medium
US7129386B2 (en) 2003-06-27 2006-10-31 Canon Kabushiki Kaisha Substituted anthryl derivative and electroluminescence device using the same
WO2007007553A1 (en) 2005-07-14 2007-01-18 Idemitsu Kosan Co., Ltd. Biphenyl derivatives, organic electroluminescent materials, and organic electroluminescent devices made by using the same
US7173131B2 (en) 2003-06-27 2007-02-06 Canon Kabushiki Kaisha Anthryl derivative group substituted compound, and organic luminescent device making use of same
WO2007058227A1 (en) 2005-11-18 2007-05-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
JP2007201491A (en) * 1999-12-28 2007-08-09 Idemitsu Kosan Co Ltd White color organic electroluminescence element
WO2007100010A1 (en) 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US7282276B2 (en) 2004-11-08 2007-10-16 Fujifilm Corporation Organic electroluminescent device
WO2007123137A1 (en) 2006-04-18 2007-11-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
JP2008069100A (en) * 2006-09-13 2008-03-27 Tdk Corp Compound for organic el element and organic el element
US7365198B2 (en) 2006-03-02 2008-04-29 Canon Kabushiki Kaisha Silyl compound, light emitting material, and organic light emitting device using the same
JP2008110965A (en) * 2006-10-03 2008-05-15 Semiconductor Energy Lab Co Ltd Stilbene derivative, light-emitting device, display, and electronic apparatus
JP2008141217A (en) * 2002-03-11 2008-06-19 Tdk Corp Organic el element
JP2008244424A (en) * 2006-11-02 2008-10-09 Mitsubishi Chemicals Corp Organic field fluorescence element, organic field fluorescence layer coating liquid, and color display unit
KR100864308B1 (en) * 2006-12-28 2008-10-20 주식회사 두산 Noble anthracene derivatives and organic light emitting diode using the same
EP1992672A1 (en) 1996-08-19 2008-11-19 TDK Corporation Organic electroluminescent device
JP2008545631A (en) * 2005-05-21 2008-12-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Oligomer polyacene and semiconductor preparations
US7504526B2 (en) 2004-06-09 2009-03-17 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescence device employing the same
JP2009076450A (en) * 2007-08-31 2009-04-09 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic equipment
JP2009518342A (en) * 2005-12-08 2009-05-07 メルク パテント ゲーエムベーハー New materials for organic electroluminescent devices
JP2009524653A (en) * 2006-01-27 2009-07-02 エルジー・ケム・リミテッド NOVEL ANTHRACENE DERIVATIVE, PROCESS FOR PRODUCING THE SAME AND ORGANIC ELECTRIC ELEMENT USING THE SAME
WO2009084512A1 (en) 2007-12-28 2009-07-09 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
JP2009534376A (en) * 2006-04-21 2009-09-24 エルジー・ケム・リミテッド NOVEL ANTHRACENE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND ORGANIC ELECTRONIC DEVICE USING THE SAME
JP2009535813A (en) * 2006-04-27 2009-10-01 イーストマン コダック カンパニー Electroluminescent devices containing anthracene derivatives
JP2009299049A (en) * 2008-05-16 2009-12-24 Semiconductor Energy Lab Co Ltd Composition, method for preparing thin film, and method for preparing light emitting element
US7651786B2 (en) 2002-07-19 2010-01-26 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
WO2010010924A1 (en) * 2008-07-25 2010-01-28 出光興産株式会社 Anthracene derivative, and organic electroluminescence element comprising same
US7683225B2 (en) 2004-06-16 2010-03-23 Idemitsu Kosan Co., Ltd. Fluorene-based derivative and organic electroluminescence device employing the same
EP2177586A1 (en) 2004-07-09 2010-04-21 Chisso Corporation Luminescent material and organic electroluminescent device using the same
US7709104B2 (en) 2004-11-26 2010-05-04 Canon Kabushiki Kaisha Aminoanthryl derivative-substituted pyrene compound and organic light-emitting device
JP2010528426A (en) * 2007-05-18 2010-08-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for forming organic light-emitting diode and device manufactured by the method
JP2010529030A (en) * 2007-06-01 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Charge transport materials for light emitting applications
US7790892B2 (en) 2002-04-17 2010-09-07 Idemitsu Kosan Co., Ltd. Aromatic compound and organic electroluminescent element containing the same
US7838130B2 (en) 2006-11-01 2010-11-23 Idemitsu Kosan Co., Ltd. Aminodibenzofluorene derivative and organic electroluminescence device using the same
US7839074B2 (en) 2002-08-23 2010-11-23 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and anthracene derivative
US7888863B2 (en) 2008-03-28 2011-02-15 Gracel Display Inc. Organic electroluminescent compounds and organic electroluminescent device using the same
US7906228B2 (en) 2008-04-17 2011-03-15 Gracel Display Inc. Compounds for electronic material and organic electronic device using the same
US7929209B2 (en) 2006-02-28 2011-04-19 Canon Kabushiki Kaisha Optical element and method of manufacturing optical element with each of first and second layers having a repetition structure
JP2011093931A (en) * 2011-01-21 2011-05-12 Mitsui Chemicals Inc Aromatic compound and organic electroluminescent element including the compound
US7952269B2 (en) 2004-11-26 2011-05-31 Canon Kabushiki Kaisha Organic light-emitting device
US7985491B2 (en) 2005-03-28 2011-07-26 Idemitsu Kosan Co., Ltd. Anthrylarylene derivative, material for organic electroluminescence device and organic electroluminescence device using same
US7990046B2 (en) 2002-03-15 2011-08-02 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
WO2011096506A1 (en) 2010-02-05 2011-08-11 出光興産株式会社 Aminoanthracene derivative and organic electroluminescent element formed using same
US20110295017A1 (en) * 2010-05-28 2011-12-01 Tdk Corporation Organic EL Device
EP2448374A2 (en) 2003-12-01 2012-05-02 Idemitsu Kosan Co., Ltd. Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
WO2012134191A2 (en) 2011-03-29 2012-10-04 대주전자재료 주식회사 Naphthalene derivatives, organic material using same, and organic electroluminescent device using same
US8384074B2 (en) 2010-04-06 2013-02-26 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US8420874B2 (en) 2006-10-03 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Stilbene derivative, light-emitting element, display apparatus, and electronic appliance
KR20130042900A (en) 2011-10-19 2013-04-29 삼성디스플레이 주식회사 Heterocyclic compound, organic light-emitting diode comprising the same, and flat display device comprising the organic light-emitting diode
US8431251B2 (en) 2011-06-29 2013-04-30 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device comprising the same
US8455866B2 (en) 2010-04-06 2013-06-04 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US8455867B2 (en) 2010-10-26 2013-06-04 Samsung Display Co., Ltd. Organic light-emitting device
JP2013136582A (en) * 2006-03-06 2013-07-11 Lg Chem Ltd New anthracene derivative and organic electronic element using the same
US8546793B2 (en) 2010-10-26 2013-10-01 Samsung Display Co., Ltd. Organic light-emitting device
US8551624B2 (en) 2008-12-01 2013-10-08 E I Du Pont De Nemours And Company Electroactive materials
KR20130110347A (en) 2012-03-29 2013-10-10 에스에프씨 주식회사 Indenophenanthrene derivatives and organic light emitting diodes comprising the derivatives
KR20130112690A (en) 2010-06-02 2013-10-14 제이엔씨 주식회사 Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element
US8580391B2 (en) 2002-03-22 2013-11-12 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence devices and organic electroluminescence device using the material
US8597801B2 (en) 2011-05-09 2013-12-03 Samsung Display Co., Ltd. Heterocyclic compound, organic light-emitting device including the heterocyclic compound, and flat display device including the organic light-emitting device
JP2013251564A (en) * 1998-12-25 2013-12-12 Konica Minolta Inc Electroluminescent material
US8614009B2 (en) 2005-04-26 2013-12-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
US8623521B2 (en) 2011-06-22 2014-01-07 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting diode and flat display device including the heterocyclic compound
WO2014042197A1 (en) 2012-09-11 2014-03-20 Jnc株式会社 Material for organic electroluminescent elements, organic electroluminescent element, display device, and lighting device
JP2014515188A (en) * 2011-04-08 2014-06-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electronic devices
US8771844B2 (en) 2011-06-22 2014-07-08 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting diode and flat display device including the heterocyclic compound
US8815417B2 (en) 2010-10-25 2014-08-26 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
JP2014160840A (en) * 2004-11-06 2014-09-04 Merck Patent Gmbh Organic electroluminescent device
US8890131B2 (en) 2009-02-27 2014-11-18 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
US8889270B2 (en) 2011-04-22 2014-11-18 Samsung Display Co., Ltd. Organic light-emitting device
US8974921B2 (en) 2011-06-16 2015-03-10 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode comprising the same
US8986855B2 (en) 2011-06-29 2015-03-24 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US8993128B2 (en) 2011-06-16 2015-03-31 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device containing same
US8999528B2 (en) 2012-08-03 2015-04-07 Samsung Display Co., Ltd. Condensation compound and organic light emitting device including the same
US9006721B2 (en) 2013-02-08 2015-04-14 Samsung Display Co., Ltd. Organic light-emitting diode
US9054321B2 (en) 2011-10-18 2015-06-09 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device containing the same
US9079903B2 (en) 2011-11-03 2015-07-14 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9118021B2 (en) 2012-07-26 2015-08-25 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
EP2910619A1 (en) 2003-12-19 2015-08-26 Idemitsu Kosan Co., Ltd Light-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device
US9172050B2 (en) 2012-10-19 2015-10-27 Samsung Display Co., Ltd. Compound and organic light emitting device including the same
US9196838B2 (en) 2012-10-30 2015-11-24 Samsung Display Co., Ltd. Organic compound and organic light-emitting device comprising the same
US9209407B2 (en) 2012-11-19 2015-12-08 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
US9224961B2 (en) 2010-10-25 2015-12-29 Samsung Display Co., Ltd. Condensed-cyclic compound, organic light-emitting diode comprising the same and flat panel display device comprising the organic light-emitting diode
US9246109B2 (en) 2012-10-19 2016-01-26 Samsung Display Co., Ltd. Compound and organic light emitting device including the same
US9252370B2 (en) 2012-11-05 2016-02-02 Samsung Display Co., Ltd. Heterocyclic compounds and organic light emitting devices including the same
US9255084B2 (en) 2011-08-22 2016-02-09 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device containing the same
US9276227B2 (en) 2012-12-20 2016-03-01 Samsung Display Co., Ltd. Organic light-emitting device and flat panel display including the same
US9278927B2 (en) 2011-08-03 2016-03-08 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9288869B2 (en) 2011-11-10 2016-03-15 Samsung Display Co., Ltd. Styryl-based compound, composition containing styryl-based compound, and organic light emitting diode including styryl-based compound
US9312497B2 (en) 2011-06-28 2016-04-12 Samsung Display Co., Ltd. Heterocyclic compound, organic light-emitting diode including the heterocyclic compound, and flat display device including the organic light-emitting diode
US9371270B2 (en) 2012-06-12 2016-06-21 Samsung Display Co., Ltd. Compound for organic light-emitting device and organic light-emitting device including the same
US9385327B2 (en) 2012-08-01 2016-07-05 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9385325B2 (en) 2012-11-05 2016-07-05 Samsung Display Co., Ltd. Heterocyclic compound and organic light emitting device including the same
US9401481B2 (en) 2012-01-03 2016-07-26 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US9403795B2 (en) 2011-08-05 2016-08-02 Samsung Display Co., Ltd. Carbazole-based compound and organic light-emitting diode comprising the same
US9412957B2 (en) 2012-08-22 2016-08-09 Samsung Display Co., Ltd. Cascade-type compound and organic light-emitting device including the same
US9416107B2 (en) 2011-06-29 2016-08-16 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9425410B2 (en) 2013-02-13 2016-08-23 Samsung Display Co., Ltd. Organic light-emitting diode
US9455409B2 (en) 2012-10-29 2016-09-27 Samsung Display Co., Ltd. Amine-based compound and organic light emitting device including the same
US9478752B2 (en) 2013-01-11 2016-10-25 Samsung Display Co., Ltd. Organic light-emitting diode comprising amine-based compounds and pyrene-based compounds
US9496501B2 (en) 2013-05-23 2016-11-15 Samsung Display Co., Ltd. Organic light-emitting diode
US9520568B2 (en) 2013-05-23 2016-12-13 Industry-Academic Cooperation Foundation Gyeongsang National University Organic light-emitting diode
US9525144B2 (en) 2013-02-08 2016-12-20 Samsung Display Co., Ltd. Organic light-emitting diode
JP2016225575A (en) * 2015-06-03 2016-12-28 セイコーエプソン株式会社 Light-emitting element, light-emitting device, authentication device and electronic apparatus
US9537104B2 (en) 2012-09-17 2017-01-03 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode including the condensed-cyclic compound
US9548456B2 (en) 2013-04-12 2017-01-17 Samsung Display Co., Ltd. Organic compound and organic light emitting diode device including the same
US9559310B2 (en) 2012-07-11 2017-01-31 Samsung Display Co., Ltd. Compound with electron injection and/or electron transport capabilities and organic light-emitting device including the same
US9570687B2 (en) 2013-05-23 2017-02-14 Samsung Display Co., Ltd. Organic light-emitting diode
US9567287B2 (en) 2012-04-17 2017-02-14 Samsung Display Co., Ltd. Compound for organic light-emitting diode and organic light-emitting diode including the same
US9590184B2 (en) 2012-12-27 2017-03-07 Samsung Display Co., Ltd. Organic light-emitting diode
US9601700B2 (en) 2013-09-10 2017-03-21 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9627624B2 (en) 2013-07-12 2017-04-18 Samsung Display Co., Ltd. Compound for organic optoelectronic device organic light emitting diode including the same and display including the organic light emitting diode
US9634257B2 (en) 2013-07-30 2017-04-25 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
TWI583661B (en) * 2015-04-23 2017-05-21 上海和輝光電有限公司 A compound and the method for preparing the same and its application
US9711736B2 (en) 2014-05-19 2017-07-18 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device comprising the same
US9722182B2 (en) 2012-10-30 2017-08-01 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9761808B2 (en) 2013-08-22 2017-09-12 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device comprising the same
US9773987B2 (en) 2013-01-28 2017-09-26 Samsung Display Co., Ltd. Silicon-based compound and organic light-emitting diode comprising the same
US9831438B2 (en) 2014-07-16 2017-11-28 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US9865828B2 (en) 2012-08-22 2018-01-09 Samsung Display Co., Ltd. Organic light emitting device
US9893301B2 (en) 2012-07-25 2018-02-13 Samsung Display Co., Ltd. Heterocyclic compounds and organic light-emitting devices including the same
US9960359B2 (en) 2013-06-03 2018-05-01 Samsung Display Co., Ltd. Arylamine-based compound and organic light emitting diode comprising the same
US9966543B2 (en) 2014-11-10 2018-05-08 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10008676B2 (en) 2014-12-31 2018-06-26 Samsung Display Co., Ltd. Compound and organic light-emitting device comprising the compound
US10026906B2 (en) 2015-01-12 2018-07-17 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10062850B2 (en) 2013-12-12 2018-08-28 Samsung Display Co., Ltd. Amine-based compounds and organic light-emitting devices comprising the same
US10147882B2 (en) 2013-05-09 2018-12-04 Samsung Display Co., Ltd. Styrl-based compound and organic light emitting diode comprising the same
US10193072B2 (en) 2013-02-25 2019-01-29 Samsung Display Co., Ltd. Pyrene-based compound and organic light-emitting diode comprising the same
US10193073B2 (en) 2014-06-05 2019-01-29 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
US10224487B2 (en) 2013-09-17 2019-03-05 Samsung Display Co., Ltd. Organic light-emitting device
US10249824B2 (en) 2012-05-03 2019-04-02 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode comprising the same
US10256412B2 (en) 2013-08-14 2019-04-09 Samsung Display Co., Ltd. Anthracene-based compound and organic light-emitting device including the same
US10256416B2 (en) 2013-07-01 2019-04-09 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10290811B2 (en) 2014-05-16 2019-05-14 Samsung Display Co., Ltd. Organic light-emitting device
US10297756B2 (en) 2012-12-27 2019-05-21 Samsung Display Co., Ltd. Organic light-emitting diode
US10333071B2 (en) 2015-10-27 2019-06-25 Samsung Display Co., Ltd. Organic light emitting device
US10340462B2 (en) 2015-09-11 2019-07-02 Samsung Display Co., Ltd. Compound and organic light-emitting device including same
US10361380B2 (en) 2012-11-01 2019-07-23 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10388882B2 (en) 2013-03-04 2019-08-20 Samsung Display Co., Ltd. Anthracene derivatives and organic light emitting devices comprising the same
CN110380005A (en) * 2019-06-12 2019-10-25 欧格尼材料科技江苏有限公司 A kind of organic lithium-rich anode material, preparation method and applications
US10573825B2 (en) 2016-05-13 2020-02-25 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10686142B2 (en) 2014-10-22 2020-06-16 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light emitting device including the same
JP2020537647A (en) * 2017-10-13 2020-12-24 ノヴァレッド ゲーエムベーハー Organic electronic devices including organic semiconductor layers
JP2021109841A (en) * 2020-01-09 2021-08-02 エルジー・ケム・リミテッド Bisanthracene derivatives having solubilizing substituent, and organic electroluminescent element using the same
US11114622B2 (en) 2015-10-22 2021-09-07 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
WO2021206488A1 (en) 2020-04-09 2021-10-14 에스에프씨 주식회사 Novel anthracene compound and organic light-emitting element comprising same
US11552260B2 (en) 2016-07-11 2023-01-10 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
KR20230094213A (en) 2021-12-20 2023-06-28 에스에프씨 주식회사 Novel Organic light emitting diode comprising two light emission layer
US11730053B2 (en) 2015-05-06 2023-08-15 Samsung Display Co., Ltd. Organic light-emitting device

Cited By (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992672A1 (en) 1996-08-19 2008-11-19 TDK Corporation Organic electroluminescent device
JP3654909B2 (en) * 1996-12-28 2005-06-02 Tdk株式会社 Organic EL device
US6582837B1 (en) 1997-07-14 2003-06-24 Nec Corporation Organic electroluminescence device
US6660408B1 (en) 1998-05-22 2003-12-09 Nec Corporation Organic electroluminescent device
JP2000182776A (en) * 1998-12-09 2000-06-30 Eastman Kodak Co Organic multilayered electroluminescence element
JP2013251564A (en) * 1998-12-25 2013-12-12 Konica Minolta Inc Electroluminescent material
WO2000041443A1 (en) 1998-12-28 2000-07-13 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
EP2270117A2 (en) 1998-12-28 2011-01-05 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2001052870A (en) * 1999-06-03 2001-02-23 Tdk Corp Organic electroluminescent element
JP2006287248A (en) * 1999-09-21 2006-10-19 Idemitsu Kosan Co Ltd Organic electroluminescence element and organic luminous medium
JP4630300B2 (en) * 1999-12-28 2011-02-09 出光興産株式会社 White organic electroluminescence device
JP2001250690A (en) * 1999-12-28 2001-09-14 Idemitsu Kosan Co Ltd White system organic electroluminescence element
JP2007201491A (en) * 1999-12-28 2007-08-09 Idemitsu Kosan Co Ltd White color organic electroluminescence element
JP2001322952A (en) * 2000-03-06 2001-11-20 Wako Pure Chem Ind Ltd Method for producing 9,10-diphenylanthracene
JP4719988B2 (en) * 2000-03-06 2011-07-06 和光純薬工業株式会社 Method for producing 9,10-diphenylanthracene
US6797848B2 (en) 2000-03-29 2004-09-28 Idemitsu Kosan, Ltd. Anthracene derivative and organic electroluminescence device using the derivative
KR100843819B1 (en) * 2000-03-29 2008-07-03 이데미쓰 고산 가부시키가이샤 Anthracene derivatives and organic electroluminescent devices made by using the same
US6713192B2 (en) * 2000-03-30 2004-03-30 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
WO2002014244A1 (en) 2000-08-10 2002-02-21 Mitsui Chemicals, Inc. Hydrocarbon compound, material for organic electroluminescent element and organic electroluminescent element
WO2002043448A1 (en) * 2000-11-27 2002-05-30 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
KR100842980B1 (en) * 2000-11-27 2008-07-01 이데미쓰 고산 가부시키가이샤 Organic electroluminescence device
JP2002329580A (en) * 2001-02-22 2002-11-15 Canon Inc Organic luminescent element
US6806643B2 (en) 2001-05-10 2004-10-19 Samsung Sdi Co., Ltd. Light-emitting body, light emitting device and light-emitting display
US7423382B2 (en) 2001-05-10 2008-09-09 Samsung Sdi Co., Ltd. Light-emitting body, light emitting device and light-emitting display
WO2003040255A1 (en) * 2001-11-09 2003-05-15 Sk Corporation Blue light-emitting polymer containing 9,10-diphenylanthracene moiety and electroluminescent device using the same
JP2008141217A (en) * 2002-03-11 2008-06-19 Tdk Corp Organic el element
US7049011B2 (en) 2002-03-14 2006-05-23 Tdk Corporation Organic electroluminescent device
US8580398B2 (en) 2002-03-15 2013-11-12 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
EP3290490A1 (en) 2002-03-15 2018-03-07 Idemitsu Kosan Co., Ltd Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
US8911886B2 (en) 2002-03-15 2014-12-16 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
EP2770036A1 (en) 2002-03-15 2014-08-27 Idemitsu Kosan Co., Ltd Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
US7990046B2 (en) 2002-03-15 2011-08-02 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
US8685543B2 (en) 2002-03-15 2014-04-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
USRE46368E1 (en) 2002-03-15 2017-04-18 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
US8580391B2 (en) 2002-03-22 2013-11-12 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence devices and organic electroluminescence device using the material
US8741450B2 (en) 2002-03-22 2014-06-03 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence devices and organic electroluminescence device using the material
US7790892B2 (en) 2002-04-17 2010-09-07 Idemitsu Kosan Co., Ltd. Aromatic compound and organic electroluminescent element containing the same
JP2012019229A (en) * 2002-07-19 2012-01-26 Idemitsu Kosan Co Ltd Organic electroluminescent element and organic light-emitting medium
US8324802B2 (en) 2002-07-19 2012-12-04 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9728727B2 (en) 2002-07-19 2017-08-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US7732063B2 (en) 2002-07-19 2010-06-08 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
EP2295519A1 (en) 2002-07-19 2011-03-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent devices and organic luminescent medium
US7927716B2 (en) 2002-07-19 2011-04-19 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
US7651786B2 (en) 2002-07-19 2010-01-26 Idemitsu Kosan, Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9343682B2 (en) 2002-07-19 2016-05-17 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US9960358B2 (en) 2002-07-19 2018-05-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US8334648B2 (en) 2002-07-19 2012-12-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US10243145B2 (en) 2002-07-19 2019-03-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic light emitting medium
US10217943B2 (en) 2002-08-23 2019-02-26 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and anthracene derivative
US8785006B2 (en) 2002-08-23 2014-07-22 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and anthracene derivative
US7839074B2 (en) 2002-08-23 2010-11-23 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and anthracene derivative
US8318324B2 (en) 2002-08-23 2012-11-27 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and anthracene derivative
US9583716B2 (en) 2002-08-23 2017-02-28 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and anthracene derivative
US7375250B2 (en) 2003-06-27 2008-05-20 Canon Kabushiki Kaisha Aminoanthryl derivative substitution compound and organic electroluminescence device using the same
US7358409B2 (en) 2003-06-27 2008-04-15 Canon Kabushiki Kaisha Substituted anthryl derivative and electroluminescence device using the same
WO2005000787A1 (en) * 2003-06-27 2005-01-06 Canon Kabushiki Kaisha Aminoanthryl derivative substitution compound and organic electroluminescence device using the same
US7309533B2 (en) 2003-06-27 2007-12-18 Canon Kabushiki Kaisha Substituted anthryl derivative and electroluminescence device using the same
US7491450B2 (en) 2003-06-27 2009-02-17 Canon Kabushiki Kaisha Organic electroluminescent device
EP1491610A2 (en) 2003-06-27 2004-12-29 Canon Kabushiki Kaisha Organic electroluminescent device
US7129386B2 (en) 2003-06-27 2006-10-31 Canon Kabushiki Kaisha Substituted anthryl derivative and electroluminescence device using the same
US7173131B2 (en) 2003-06-27 2007-02-06 Canon Kabushiki Kaisha Anthryl derivative group substituted compound, and organic luminescent device making use of same
WO2005011333A1 (en) * 2003-07-28 2005-02-03 Idemitsu Kosan Co., Ltd. White organic electroluminescence element
US8568902B2 (en) 2003-12-01 2013-10-29 Idemitsu Kosan Co., Ltd. Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
US10079344B2 (en) 2003-12-01 2018-09-18 Idemitsu Kosan Co., Ltd. Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
EP2448374A2 (en) 2003-12-01 2012-05-02 Idemitsu Kosan Co., Ltd. Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
EP2910619A1 (en) 2003-12-19 2015-08-26 Idemitsu Kosan Co., Ltd Light-emitting material for organic electroluminescent device, organic electroluminescent device using same, and material for organic electroluminescent device
JP2005281210A (en) * 2004-03-30 2005-10-13 Tdk Corp Compound for organic el element, and organic el element
US7504526B2 (en) 2004-06-09 2009-03-17 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescence device employing the same
US7683225B2 (en) 2004-06-16 2010-03-23 Idemitsu Kosan Co., Ltd. Fluorene-based derivative and organic electroluminescence device employing the same
US7781628B2 (en) 2004-06-16 2010-08-24 Idemitsu Kosan Co., Ltd. Fluorene-based derivative and organic electroluminescence device employing the same
US8013160B2 (en) 2004-06-16 2011-09-06 Idemitsu Kosan Co., Ltd. Fluorene-based derivative and organic electroluminescence device employing the same
EP2177586A1 (en) 2004-07-09 2010-04-21 Chisso Corporation Luminescent material and organic electroluminescent device using the same
JP2014160840A (en) * 2004-11-06 2014-09-04 Merck Patent Gmbh Organic electroluminescent device
US7282276B2 (en) 2004-11-08 2007-10-16 Fujifilm Corporation Organic electroluminescent device
US7709104B2 (en) 2004-11-26 2010-05-04 Canon Kabushiki Kaisha Aminoanthryl derivative-substituted pyrene compound and organic light-emitting device
US7952269B2 (en) 2004-11-26 2011-05-31 Canon Kabushiki Kaisha Organic light-emitting device
WO2006085434A1 (en) * 2005-02-10 2006-08-17 Idemitsu Kosan Co., Ltd. Bisanthracene derivative and organic electroluminescent device using same
US7985491B2 (en) 2005-03-28 2011-07-26 Idemitsu Kosan Co., Ltd. Anthrylarylene derivative, material for organic electroluminescence device and organic electroluminescence device using same
JP2006282533A (en) * 2005-03-31 2006-10-19 Sony Corp Bianthracene derivative, organic electroluminescent device, and display device
US8614009B2 (en) 2005-04-26 2013-12-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
JP2008545631A (en) * 2005-05-21 2008-12-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Oligomer polyacene and semiconductor preparations
WO2007007553A1 (en) 2005-07-14 2007-01-18 Idemitsu Kosan Co., Ltd. Biphenyl derivatives, organic electroluminescent materials, and organic electroluminescent devices made by using the same
US7560604B2 (en) 2005-07-14 2009-07-14 Idemitsu Kosan Co., Ltd. Biphenyl derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
WO2007058227A1 (en) 2005-11-18 2007-05-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
US9017825B2 (en) 2005-12-08 2015-04-28 Merck Patent Gmbh Anthracene derivatives and their use in organic electroluminescent devices
JP2009518342A (en) * 2005-12-08 2009-05-07 メルク パテント ゲーエムベーハー New materials for organic electroluminescent devices
JP2009524653A (en) * 2006-01-27 2009-07-02 エルジー・ケム・リミテッド NOVEL ANTHRACENE DERIVATIVE, PROCESS FOR PRODUCING THE SAME AND ORGANIC ELECTRIC ELEMENT USING THE SAME
WO2007100010A1 (en) 2006-02-28 2007-09-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US7929209B2 (en) 2006-02-28 2011-04-19 Canon Kabushiki Kaisha Optical element and method of manufacturing optical element with each of first and second layers having a repetition structure
US9214636B2 (en) 2006-02-28 2015-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US7365198B2 (en) 2006-03-02 2008-04-29 Canon Kabushiki Kaisha Silyl compound, light emitting material, and organic light emitting device using the same
JP2013136582A (en) * 2006-03-06 2013-07-11 Lg Chem Ltd New anthracene derivative and organic electronic element using the same
WO2007123137A1 (en) 2006-04-18 2007-11-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
JP2009534376A (en) * 2006-04-21 2009-09-24 エルジー・ケム・リミテッド NOVEL ANTHRACENE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND ORGANIC ELECTRONIC DEVICE USING THE SAME
JP2009535813A (en) * 2006-04-27 2009-10-01 イーストマン コダック カンパニー Electroluminescent devices containing anthracene derivatives
JP2008069100A (en) * 2006-09-13 2008-03-27 Tdk Corp Compound for organic el element and organic el element
US8420874B2 (en) 2006-10-03 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Stilbene derivative, light-emitting element, display apparatus, and electronic appliance
JP2008110965A (en) * 2006-10-03 2008-05-15 Semiconductor Energy Lab Co Ltd Stilbene derivative, light-emitting device, display, and electronic apparatus
US7838130B2 (en) 2006-11-01 2010-11-23 Idemitsu Kosan Co., Ltd. Aminodibenzofluorene derivative and organic electroluminescence device using the same
JP2008244424A (en) * 2006-11-02 2008-10-09 Mitsubishi Chemicals Corp Organic field fluorescence element, organic field fluorescence layer coating liquid, and color display unit
KR100864308B1 (en) * 2006-12-28 2008-10-20 주식회사 두산 Noble anthracene derivatives and organic light emitting diode using the same
JP2010528426A (en) * 2007-05-18 2010-08-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for forming organic light-emitting diode and device manufactured by the method
JP2010529030A (en) * 2007-06-01 2010-08-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Charge transport materials for light emitting applications
JP2009076450A (en) * 2007-08-31 2009-04-09 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic equipment
US8617725B2 (en) 2007-08-31 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
US8518560B2 (en) 2007-12-28 2013-08-27 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
US9391279B2 (en) 2007-12-28 2016-07-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
WO2009084512A1 (en) 2007-12-28 2009-07-09 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
US11133478B2 (en) 2007-12-28 2021-09-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
US10297765B2 (en) 2007-12-28 2019-05-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
US7888863B2 (en) 2008-03-28 2011-02-15 Gracel Display Inc. Organic electroluminescent compounds and organic electroluminescent device using the same
US7906228B2 (en) 2008-04-17 2011-03-15 Gracel Display Inc. Compounds for electronic material and organic electronic device using the same
US8231942B2 (en) 2008-05-16 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Composition, method for manufacturing thin film, and method for manufacturing light-emitting element
JP2009299049A (en) * 2008-05-16 2009-12-24 Semiconductor Energy Lab Co Ltd Composition, method for preparing thin film, and method for preparing light emitting element
US8518492B2 (en) 2008-05-16 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Composition, method for manufacturing thin film, and method for manufacturing light-emitting element
US8845926B2 (en) 2008-05-16 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Composition, method for manufacturing thin film, and method for manufacturing light-emitting element
WO2010010924A1 (en) * 2008-07-25 2010-01-28 出光興産株式会社 Anthracene derivative, and organic electroluminescence element comprising same
US8551624B2 (en) 2008-12-01 2013-10-08 E I Du Pont De Nemours And Company Electroactive materials
US8890131B2 (en) 2009-02-27 2014-11-18 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
WO2011096506A1 (en) 2010-02-05 2011-08-11 出光興産株式会社 Aminoanthracene derivative and organic electroluminescent element formed using same
US8455866B2 (en) 2010-04-06 2013-06-04 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US8384074B2 (en) 2010-04-06 2013-02-26 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US20110295017A1 (en) * 2010-05-28 2011-12-01 Tdk Corporation Organic EL Device
US9028976B2 (en) 2010-05-28 2015-05-12 Futaba Corporation Organic EL device
KR20130112690A (en) 2010-06-02 2013-10-14 제이엔씨 주식회사 Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element
US9362506B2 (en) 2010-10-25 2016-06-07 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US8815417B2 (en) 2010-10-25 2014-08-26 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9224961B2 (en) 2010-10-25 2015-12-29 Samsung Display Co., Ltd. Condensed-cyclic compound, organic light-emitting diode comprising the same and flat panel display device comprising the organic light-emitting diode
US8455867B2 (en) 2010-10-26 2013-06-04 Samsung Display Co., Ltd. Organic light-emitting device
US8546793B2 (en) 2010-10-26 2013-10-01 Samsung Display Co., Ltd. Organic light-emitting device
JP2011093931A (en) * 2011-01-21 2011-05-12 Mitsui Chemicals Inc Aromatic compound and organic electroluminescent element including the compound
US9024304B2 (en) 2011-03-29 2015-05-05 Dae Joo Electronic Materials Co., Ltd. Naphthalene derivative, organic material including the same, and organic electroluminescent device including the same
WO2012134191A2 (en) 2011-03-29 2012-10-04 대주전자재료 주식회사 Naphthalene derivatives, organic material using same, and organic electroluminescent device using same
JP2014515188A (en) * 2011-04-08 2014-06-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electronic devices
US8889270B2 (en) 2011-04-22 2014-11-18 Samsung Display Co., Ltd. Organic light-emitting device
US8597801B2 (en) 2011-05-09 2013-12-03 Samsung Display Co., Ltd. Heterocyclic compound, organic light-emitting device including the heterocyclic compound, and flat display device including the organic light-emitting device
US8993128B2 (en) 2011-06-16 2015-03-31 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device containing same
US8974921B2 (en) 2011-06-16 2015-03-10 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode comprising the same
US8623521B2 (en) 2011-06-22 2014-01-07 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting diode and flat display device including the heterocyclic compound
US8771844B2 (en) 2011-06-22 2014-07-08 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting diode and flat display device including the heterocyclic compound
US9312497B2 (en) 2011-06-28 2016-04-12 Samsung Display Co., Ltd. Heterocyclic compound, organic light-emitting diode including the heterocyclic compound, and flat display device including the organic light-emitting diode
US8986855B2 (en) 2011-06-29 2015-03-24 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9416107B2 (en) 2011-06-29 2016-08-16 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US8431251B2 (en) 2011-06-29 2013-04-30 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device comprising the same
US9278927B2 (en) 2011-08-03 2016-03-08 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9403795B2 (en) 2011-08-05 2016-08-02 Samsung Display Co., Ltd. Carbazole-based compound and organic light-emitting diode comprising the same
US9255084B2 (en) 2011-08-22 2016-02-09 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device containing the same
US9054321B2 (en) 2011-10-18 2015-06-09 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device containing the same
US9005777B2 (en) 2011-10-19 2015-04-14 Samsung Display Co., Ltd. Heterocyclic compound, organic light-emitting diode including the heterocyclic compound, and flat display device including the organic light-emitting diode
KR20130042900A (en) 2011-10-19 2013-04-29 삼성디스플레이 주식회사 Heterocyclic compound, organic light-emitting diode comprising the same, and flat display device comprising the organic light-emitting diode
US9079903B2 (en) 2011-11-03 2015-07-14 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9288869B2 (en) 2011-11-10 2016-03-15 Samsung Display Co., Ltd. Styryl-based compound, composition containing styryl-based compound, and organic light emitting diode including styryl-based compound
US9401481B2 (en) 2012-01-03 2016-07-26 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
KR20130110347A (en) 2012-03-29 2013-10-10 에스에프씨 주식회사 Indenophenanthrene derivatives and organic light emitting diodes comprising the derivatives
US9567287B2 (en) 2012-04-17 2017-02-14 Samsung Display Co., Ltd. Compound for organic light-emitting diode and organic light-emitting diode including the same
US10249824B2 (en) 2012-05-03 2019-04-02 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode comprising the same
US9371270B2 (en) 2012-06-12 2016-06-21 Samsung Display Co., Ltd. Compound for organic light-emitting device and organic light-emitting device including the same
US9559310B2 (en) 2012-07-11 2017-01-31 Samsung Display Co., Ltd. Compound with electron injection and/or electron transport capabilities and organic light-emitting device including the same
US9893301B2 (en) 2012-07-25 2018-02-13 Samsung Display Co., Ltd. Heterocyclic compounds and organic light-emitting devices including the same
US9118021B2 (en) 2012-07-26 2015-08-25 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9385327B2 (en) 2012-08-01 2016-07-05 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US8999528B2 (en) 2012-08-03 2015-04-07 Samsung Display Co., Ltd. Condensation compound and organic light emitting device including the same
US9412957B2 (en) 2012-08-22 2016-08-09 Samsung Display Co., Ltd. Cascade-type compound and organic light-emitting device including the same
US9865828B2 (en) 2012-08-22 2018-01-09 Samsung Display Co., Ltd. Organic light emitting device
WO2014042197A1 (en) 2012-09-11 2014-03-20 Jnc株式会社 Material for organic electroluminescent elements, organic electroluminescent element, display device, and lighting device
KR20150056567A (en) 2012-09-11 2015-05-26 제이엔씨 주식회사 Material for organic electroluminescent elements, organic electroluminescent element, display device, and lighting device
US9537104B2 (en) 2012-09-17 2017-01-03 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode including the condensed-cyclic compound
US9172050B2 (en) 2012-10-19 2015-10-27 Samsung Display Co., Ltd. Compound and organic light emitting device including the same
US9246109B2 (en) 2012-10-19 2016-01-26 Samsung Display Co., Ltd. Compound and organic light emitting device including the same
US9455409B2 (en) 2012-10-29 2016-09-27 Samsung Display Co., Ltd. Amine-based compound and organic light emitting device including the same
US9722182B2 (en) 2012-10-30 2017-08-01 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9196838B2 (en) 2012-10-30 2015-11-24 Samsung Display Co., Ltd. Organic compound and organic light-emitting device comprising the same
US10361380B2 (en) 2012-11-01 2019-07-23 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9252370B2 (en) 2012-11-05 2016-02-02 Samsung Display Co., Ltd. Heterocyclic compounds and organic light emitting devices including the same
US9385325B2 (en) 2012-11-05 2016-07-05 Samsung Display Co., Ltd. Heterocyclic compound and organic light emitting device including the same
US9209407B2 (en) 2012-11-19 2015-12-08 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
US9276227B2 (en) 2012-12-20 2016-03-01 Samsung Display Co., Ltd. Organic light-emitting device and flat panel display including the same
US10297756B2 (en) 2012-12-27 2019-05-21 Samsung Display Co., Ltd. Organic light-emitting diode
US9590184B2 (en) 2012-12-27 2017-03-07 Samsung Display Co., Ltd. Organic light-emitting diode
US9478752B2 (en) 2013-01-11 2016-10-25 Samsung Display Co., Ltd. Organic light-emitting diode comprising amine-based compounds and pyrene-based compounds
US9773987B2 (en) 2013-01-28 2017-09-26 Samsung Display Co., Ltd. Silicon-based compound and organic light-emitting diode comprising the same
US9525144B2 (en) 2013-02-08 2016-12-20 Samsung Display Co., Ltd. Organic light-emitting diode
US9006721B2 (en) 2013-02-08 2015-04-14 Samsung Display Co., Ltd. Organic light-emitting diode
US9425410B2 (en) 2013-02-13 2016-08-23 Samsung Display Co., Ltd. Organic light-emitting diode
US10193072B2 (en) 2013-02-25 2019-01-29 Samsung Display Co., Ltd. Pyrene-based compound and organic light-emitting diode comprising the same
US10388882B2 (en) 2013-03-04 2019-08-20 Samsung Display Co., Ltd. Anthracene derivatives and organic light emitting devices comprising the same
US9548456B2 (en) 2013-04-12 2017-01-17 Samsung Display Co., Ltd. Organic compound and organic light emitting diode device including the same
US10147882B2 (en) 2013-05-09 2018-12-04 Samsung Display Co., Ltd. Styrl-based compound and organic light emitting diode comprising the same
US9496501B2 (en) 2013-05-23 2016-11-15 Samsung Display Co., Ltd. Organic light-emitting diode
US9570687B2 (en) 2013-05-23 2017-02-14 Samsung Display Co., Ltd. Organic light-emitting diode
US9520568B2 (en) 2013-05-23 2016-12-13 Industry-Academic Cooperation Foundation Gyeongsang National University Organic light-emitting diode
US9960359B2 (en) 2013-06-03 2018-05-01 Samsung Display Co., Ltd. Arylamine-based compound and organic light emitting diode comprising the same
US10256416B2 (en) 2013-07-01 2019-04-09 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US9627624B2 (en) 2013-07-12 2017-04-18 Samsung Display Co., Ltd. Compound for organic optoelectronic device organic light emitting diode including the same and display including the organic light emitting diode
US9634257B2 (en) 2013-07-30 2017-04-25 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10256412B2 (en) 2013-08-14 2019-04-09 Samsung Display Co., Ltd. Anthracene-based compound and organic light-emitting device including the same
US9761808B2 (en) 2013-08-22 2017-09-12 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device comprising the same
US9601700B2 (en) 2013-09-10 2017-03-21 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10224487B2 (en) 2013-09-17 2019-03-05 Samsung Display Co., Ltd. Organic light-emitting device
US10062850B2 (en) 2013-12-12 2018-08-28 Samsung Display Co., Ltd. Amine-based compounds and organic light-emitting devices comprising the same
US10290811B2 (en) 2014-05-16 2019-05-14 Samsung Display Co., Ltd. Organic light-emitting device
US9711736B2 (en) 2014-05-19 2017-07-18 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device comprising the same
US10193073B2 (en) 2014-06-05 2019-01-29 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
US9831438B2 (en) 2014-07-16 2017-11-28 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10686142B2 (en) 2014-10-22 2020-06-16 Samsung Electronics Co., Ltd. Condensed cyclic compound and organic light emitting device including the same
US9966543B2 (en) 2014-11-10 2018-05-08 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10008676B2 (en) 2014-12-31 2018-06-26 Samsung Display Co., Ltd. Compound and organic light-emitting device comprising the compound
US10026906B2 (en) 2015-01-12 2018-07-17 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
TWI583661B (en) * 2015-04-23 2017-05-21 上海和輝光電有限公司 A compound and the method for preparing the same and its application
US11730053B2 (en) 2015-05-06 2023-08-15 Samsung Display Co., Ltd. Organic light-emitting device
JP2016225575A (en) * 2015-06-03 2016-12-28 セイコーエプソン株式会社 Light-emitting element, light-emitting device, authentication device and electronic apparatus
US10340462B2 (en) 2015-09-11 2019-07-02 Samsung Display Co., Ltd. Compound and organic light-emitting device including same
US11114622B2 (en) 2015-10-22 2021-09-07 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10333071B2 (en) 2015-10-27 2019-06-25 Samsung Display Co., Ltd. Organic light emitting device
US10573825B2 (en) 2016-05-13 2020-02-25 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US11552260B2 (en) 2016-07-11 2023-01-10 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
JP2020537647A (en) * 2017-10-13 2020-12-24 ノヴァレッド ゲーエムベーハー Organic electronic devices including organic semiconductor layers
CN110380005A (en) * 2019-06-12 2019-10-25 欧格尼材料科技江苏有限公司 A kind of organic lithium-rich anode material, preparation method and applications
JP2021109841A (en) * 2020-01-09 2021-08-02 エルジー・ケム・リミテッド Bisanthracene derivatives having solubilizing substituent, and organic electroluminescent element using the same
WO2021206488A1 (en) 2020-04-09 2021-10-14 에스에프씨 주식회사 Novel anthracene compound and organic light-emitting element comprising same
KR20230094213A (en) 2021-12-20 2023-06-28 에스에프씨 주식회사 Novel Organic light emitting diode comprising two light emission layer
WO2023121082A1 (en) 2021-12-20 2023-06-29 에스에프씨 주식회사 Novel organic light emitting device comprising two light emitting layers

Also Published As

Publication number Publication date
JP3816969B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP3816969B2 (en) Organic EL device
EP0681019B1 (en) Phenylanthracene derivative and organic EL element
JP3654909B2 (en) Organic EL device
JP3838816B2 (en) Compound for organic EL device and organic EL device
JP3508984B2 (en) Organic compound and light emitting device using the organic compound
JP4286898B2 (en) Organic EL device
JP4770033B2 (en) Organic electroluminescence device
JP3965063B2 (en) Organic electroluminescence device
JP4364130B2 (en) Organic EL device
JPH08311442A (en) Organic el element
WO2001023496A1 (en) Organic electroluminescent element
JP2008227512A (en) Organic electroluminescence element and display apparatus
US20040142206A1 (en) Binaphthol based chromophores for the fabrication of blue organic light emitting diodes
JP2003026616A (en) Compound for organic el(electroluminescent) device and organic el device using it
JP3642606B2 (en) Organic EL device
JP2000016973A (en) New triarylamine compound and light emission element using the same
JP4588637B2 (en) Conjugated molecules, electroluminescent devices, and electronic devices
JP2001196179A (en) Organic el element
JP2000026334A (en) Compound for organic el element and organic el element
JP2016150920A (en) Compound for organic electroluminescent element and organic electroluminescent element using the same
JP4190542B2 (en) Phenylanthracene derivative
JP4320020B2 (en) Organic EL device
JP3999781B2 (en) Organic EL device
JP4267670B2 (en) Manufacturing method of organic EL element
JP4109292B2 (en) Compounds for organic EL devices

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term