USRE46368E1 - Material for organic electroluminescent devices and organic electroluminescent devices made by using the same - Google Patents
Material for organic electroluminescent devices and organic electroluminescent devices made by using the same Download PDFInfo
- Publication number
- USRE46368E1 USRE46368E1 US14/849,199 US201514849199A USRE46368E US RE46368 E1 USRE46368 E1 US RE46368E1 US 201514849199 A US201514849199 A US 201514849199A US RE46368 E USRE46368 E US RE46368E
- Authority
- US
- United States
- Prior art keywords
- substituted
- unsubstituted
- group
- pyrazine
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims abstract description 89
- 150000001875 compounds Chemical class 0.000 claims abstract description 140
- 239000010409 thin film Substances 0.000 claims abstract description 27
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims abstract description 20
- 238000005401 electroluminescence Methods 0.000 claims abstract description 19
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims description 45
- AIFRHYZBTHREPW-UHFFFAOYSA-N β-carboline Chemical class N1=CC=C2C3=CC=CC=C3NC2=C1 AIFRHYZBTHREPW-UHFFFAOYSA-N 0.000 claims description 34
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Natural products C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 30
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 claims description 18
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims description 14
- 125000003118 aryl group Chemical group 0.000 claims description 14
- XSCHRSMBECNVNS-UHFFFAOYSA-N benzopyrazine Natural products N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 claims description 12
- 125000001424 substituent group Chemical group 0.000 claims description 11
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 claims description 9
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 8
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 7
- 230000005284 excitation Effects 0.000 claims description 4
- 150000003216 pyrazines Chemical class 0.000 claims 26
- 125000002294 quinazolinyl group Chemical class N1=C(N=CC2=CC=CC=C12)* 0.000 claims 18
- 150000003230 pyrimidines Chemical class 0.000 claims 17
- 150000001541 aziridines Chemical class 0.000 claims 16
- 125000003453 indazolyl group Chemical class N1N=C(C2=C1C=CC=C2)* 0.000 claims 16
- 125000000904 isoindolyl group Chemical class C=1(NC=C2C=CC=CC12)* 0.000 claims 16
- 150000005041 phenanthrolines Chemical class 0.000 claims 16
- 150000002988 phenazines Chemical class 0.000 claims 16
- 125000001042 pteridinyl group Chemical class N1=C(N=CC2=NC=CN=C12)* 0.000 claims 16
- 125000000561 purinyl group Chemical class N1=C(N=C2N=CNC2=C1)* 0.000 claims 16
- 150000003222 pyridines Chemical class 0.000 claims 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 13
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 12
- 125000000623 heterocyclic group Chemical group 0.000 abstract description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 113
- 239000010408 film Substances 0.000 description 57
- 230000015572 biosynthetic process Effects 0.000 description 31
- 238000003786 synthesis reaction Methods 0.000 description 24
- -1 azafluoranthene compound Chemical class 0.000 description 21
- 239000000758 substrate Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 239000013078 crystal Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 7
- 125000002524 organometallic group Chemical group 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 5
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 5
- 150000004866 oxadiazoles Chemical class 0.000 description 5
- SSJXIUAHEKJCMH-PHDIDXHHSA-N (1r,2r)-cyclohexane-1,2-diamine Chemical compound N[C@@H]1CCCC[C@H]1N SSJXIUAHEKJCMH-PHDIDXHHSA-N 0.000 description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 4
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000001072 heteroaryl group Chemical group 0.000 description 4
- 150000002916 oxazoles Chemical class 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- 229910000160 potassium phosphate Inorganic materials 0.000 description 4
- 235000011009 potassium phosphates Nutrition 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 4
- IUXKIEVVAFOZPD-UHFFFAOYSA-N CC.CC(C)C.CC(C)C.CCC.CCC.CCC.CCC(C)C.CCC(C)C.CCC(C)C.CCC(C)C.CCCC.CCCC.CCCC.CCCC.CCCCC Chemical compound CC.CC(C)C.CC(C)C.CCC.CCC.CCC.CCC(C)C.CCC(C)C.CCC(C)C.CCC(C)C.CCCC.CCCC.CCCC.CCCC.CCCCC IUXKIEVVAFOZPD-UHFFFAOYSA-N 0.000 description 3
- 0 Cc1cc(I)cc(NC2(*)*)c1-c1*2cccc1 Chemical compound Cc1cc(I)cc(NC2(*)*)c1-c1*2cccc1 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910001508 alkali metal halide Inorganic materials 0.000 description 3
- 150000008045 alkali metal halides Chemical class 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical compound C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 125000004076 pyridyl group Chemical group 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical group C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- 150000003852 triazoles Chemical class 0.000 description 3
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical class C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 2
- BRSRUYVJULRMRQ-UHFFFAOYSA-N 1-phenylanthracene Chemical class C1=CC=CC=C1C1=CC=CC2=CC3=CC=CC=C3C=C12 BRSRUYVJULRMRQ-UHFFFAOYSA-N 0.000 description 2
- PCMKGEAHIZDRFL-UHFFFAOYSA-N 3,6-diphenyl-9h-carbazole Chemical compound C1=CC=CC=C1C1=CC=C(NC=2C3=CC(=CC=2)C=2C=CC=CC=2)C3=C1 PCMKGEAHIZDRFL-UHFFFAOYSA-N 0.000 description 2
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 2
- 229910017109 AlON Inorganic materials 0.000 description 2
- 229910017107 AlOx Inorganic materials 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229910002616 GeOx Inorganic materials 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical class N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- JLKCWZVECARDAB-UHFFFAOYSA-N [4-(9h-carbazol-1-yl)phenoxy]boronic acid Chemical compound C1=CC(OB(O)O)=CC=C1C1=CC=CC2=C1NC1=CC=CC=C12 JLKCWZVECARDAB-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical class C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 125000005956 isoquinolyl group Chemical group 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 229960003540 oxyquinoline Drugs 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000001296 phosphorescence spectrum Methods 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000548 poly(silane) polymer Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical compound N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- SSMRGFORVHEMEE-UHFFFAOYSA-N 1-(5-bromopyridin-2-yl)-9h-carbazole Chemical compound N1=CC(Br)=CC=C1C1=CC=CC2=C1NC1=CC=CC=C12 SSMRGFORVHEMEE-UHFFFAOYSA-N 0.000 description 1
- MKZHJJQCUIZEDE-UHFFFAOYSA-N 1-[(2-hydroxy-3-naphthalen-1-yloxypropyl)-propan-2-ylamino]-3-naphthalen-1-yloxypropan-2-ol Chemical compound C1=CC=C2C(OCC(O)CN(CC(O)COC=3C4=CC=CC=C4C=CC=3)C(C)C)=CC=CC2=C1 MKZHJJQCUIZEDE-UHFFFAOYSA-N 0.000 description 1
- SMJRIOXZELVGAD-UHFFFAOYSA-N 1-[2-(9h-carbazol-1-yl)-6-chloropyrimidin-4-yl]-9h-carbazole Chemical compound C12=CC=CC=C2NC2=C1C=CC=C2C1=NC(C=2C=3NC4=CC=CC=C4C=3C=CC=2)=NC(Cl)=C1 SMJRIOXZELVGAD-UHFFFAOYSA-N 0.000 description 1
- UVHXEHGUEKARKZ-UHFFFAOYSA-N 1-ethenylanthracene Chemical compound C1=CC=C2C=C3C(C=C)=CC=CC3=CC2=C1 UVHXEHGUEKARKZ-UHFFFAOYSA-N 0.000 description 1
- XOYZGLGJSAZOAG-UHFFFAOYSA-N 1-n,1-n,4-n-triphenyl-4-n-[4-[4-(n-[4-(n-phenylanilino)phenyl]anilino)phenyl]phenyl]benzene-1,4-diamine Chemical group C1=CC=CC=C1N(C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 XOYZGLGJSAZOAG-UHFFFAOYSA-N 0.000 description 1
- GUPMCMZMDAGSPF-UHFFFAOYSA-N 1-phenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1[C](C=C[CH2])C1=CC=CC=C1 GUPMCMZMDAGSPF-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- YTQQIHUQLOZOJI-UHFFFAOYSA-N 2,3-dihydro-1,2-thiazole Chemical compound C1NSC=C1 YTQQIHUQLOZOJI-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- MUNFOTHAFHGRIM-UHFFFAOYSA-N 2,5-dinaphthalen-1-yl-1,3,4-oxadiazole Chemical compound C1=CC=C2C(C3=NN=C(O3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 MUNFOTHAFHGRIM-UHFFFAOYSA-N 0.000 description 1
- PQYIVUDIIIJJDM-UHFFFAOYSA-N 2,5-dinaphthalen-1-yl-1,3,4-thiadiazole Chemical compound C1=CC=C2C(C3=NN=C(S3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 PQYIVUDIIIJJDM-UHFFFAOYSA-N 0.000 description 1
- FEYDZHNIIMENOB-UHFFFAOYSA-N 2,6-dibromopyridine Chemical compound BrC1=CC=CC(Br)=N1 FEYDZHNIIMENOB-UHFFFAOYSA-N 0.000 description 1
- UUNIOFWUJYBVGQ-UHFFFAOYSA-N 2-amino-4-(3,4-dimethoxyphenyl)-10-fluoro-4,5,6,7-tetrahydrobenzo[1,2]cyclohepta[6,7-d]pyran-3-carbonitrile Chemical compound C1=C(OC)C(OC)=CC=C1C1C(C#N)=C(N)OC2=C1CCCC1=CC=C(F)C=C12 UUNIOFWUJYBVGQ-UHFFFAOYSA-N 0.000 description 1
- KXJIIWGGVZEGBD-UHFFFAOYSA-N 2-methyl-n,n-bis(2-methylphenyl)aniline Chemical compound CC1=CC=CC=C1N(C=1C(=CC=CC=1)C)C1=CC=CC=C1C KXJIIWGGVZEGBD-UHFFFAOYSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- MWKLOMOIKCPLOY-UHFFFAOYSA-N 3,5-dinaphthalen-1-yl-1h-1,2,4-triazole Chemical compound C1=CC=C2C(C3=NN=C(N3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 MWKLOMOIKCPLOY-UHFFFAOYSA-N 0.000 description 1
- OAIASDHEWOTKFL-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(4-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=C(C)C=CC=1)C1=CC=CC=C1 OAIASDHEWOTKFL-UHFFFAOYSA-N 0.000 description 1
- CMSGUKVDXXTJDQ-UHFFFAOYSA-N 4-(2-naphthalen-1-ylethylamino)-4-oxobutanoic acid Chemical compound C1=CC=C2C(CCNC(=O)CCC(=O)O)=CC=CC2=C1 CMSGUKVDXXTJDQ-UHFFFAOYSA-N 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical compound C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- XQXRHVPJVHQRIG-UHFFFAOYSA-N 4-(6-bromopyridin-2-yl)-2,6-diphenylpyrimidine Chemical compound BrC1=CC=CC(C=2N=C(N=C(C=2)C=2C=CC=CC=2)C=2C=CC=CC=2)=N1 XQXRHVPJVHQRIG-UHFFFAOYSA-N 0.000 description 1
- CJRRILXBSCRHKN-UHFFFAOYSA-N 4-bromo-2,6-dipyridin-2-ylpyridine Chemical compound C=1C(Br)=CC(C=2N=CC=CC=2)=NC=1C1=CC=CC=N1 CJRRILXBSCRHKN-UHFFFAOYSA-N 0.000 description 1
- MROGDIRYORHJLZ-UHFFFAOYSA-N 5-bromo-2-(2,6-dipyridin-2-ylpyridin-4-yl)pyrimidine Chemical compound N1=CC(Br)=CN=C1C1=CC(C=2N=CC=CC=2)=NC(C=2N=CC=CC=2)=C1 MROGDIRYORHJLZ-UHFFFAOYSA-N 0.000 description 1
- BRDAQGCAQGKFTD-UHFFFAOYSA-N 9-(2,6-dipyridin-2-ylpyridin-4-yl)carbazole Chemical compound N1=CC=CC=C1C1=CC(N2C3=CC=CC=C3C3=CC=CC=C32)=CC(C=2N=CC=CC=2)=N1 BRDAQGCAQGKFTD-UHFFFAOYSA-N 0.000 description 1
- CUQGKGMUSQKHFO-UHFFFAOYSA-N 9-(6-carbazol-9-ylpyridin-2-yl)carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=CC(N2C3=CC=CC=C3C3=CC=CC=C32)=N1 CUQGKGMUSQKHFO-UHFFFAOYSA-N 0.000 description 1
- GJZDQZPYLJAQCB-UHFFFAOYSA-N 9-[2-(2,6-dipyridin-2-ylpyridin-4-yl)pyrimidin-5-yl]carbazole Chemical compound N1=CC=CC=C1C1=CC(C=2N=CC(=CN=2)N2C3=CC=CC=C3C3=CC=CC=C32)=CC(C=2N=CC=CC=2)=N1 GJZDQZPYLJAQCB-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical compound C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- VESMRDNBVZOIEN-UHFFFAOYSA-N 9h-carbazole-1,2-diamine Chemical compound C1=CC=C2C3=CC=C(N)C(N)=C3NC2=C1 VESMRDNBVZOIEN-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- DNKVAKCQVZZBPI-UHFFFAOYSA-N BrC1=CC(C2=CC=CC=N2)=NC(C2=CC=CC=N2)=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=CC(C4=CC=CC=N4)=NC(C4=CC=CC=N4)=C2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1 Chemical compound BrC1=CC(C2=CC=CC=N2)=NC(C2=CC=CC=N2)=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=CC(C4=CC=CC=N4)=NC(C4=CC=CC=N4)=C2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1 DNKVAKCQVZZBPI-UHFFFAOYSA-N 0.000 description 1
- BAHJUAXQWIINCV-UHFFFAOYSA-N BrC1=CC=CC(Br)=N1.C1=CC=C(C2=CC=C3C(=C2)C2=C(C=CC(C4=CC=CC=C4)=C2)N3C2=NC(N3C4=C(C=C(C5=CC=CC=C5)C=C4)C4=C3C=CC(C3=CC=CC=C3)=C4)=CC=C2)C=C1 Chemical compound BrC1=CC=CC(Br)=N1.C1=CC=C(C2=CC=C3C(=C2)C2=C(C=CC(C4=CC=CC=C4)=C2)N3C2=NC(N3C4=C(C=C(C5=CC=CC=C5)C=C4)C4=C3C=CC(C3=CC=CC=C3)=C4)=CC=C2)C=C1 BAHJUAXQWIINCV-UHFFFAOYSA-N 0.000 description 1
- OHKZZOZCVBTZKI-UHFFFAOYSA-N BrC1=CC=CC(C2=CC(C3=CC=CC=C3)=NC(C3=CC=CC=C3)=N2)=N1.C1=CC2=C(C=C1)C1=C(/C=C\C=C/1)N2.C1=CC=C(C2=NC(C3=CC=CC=C3)=NC(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=CC=C3)=C2)C=C1 Chemical compound BrC1=CC=CC(C2=CC(C3=CC=CC=C3)=NC(C3=CC=CC=C3)=N2)=N1.C1=CC2=C(C=C1)C1=C(/C=C\C=C/1)N2.C1=CC=C(C2=NC(C3=CC=CC=C3)=NC(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=CC=C3)=C2)C=C1 OHKZZOZCVBTZKI-UHFFFAOYSA-N 0.000 description 1
- FUGWJTPRZZXQMK-UHFFFAOYSA-N BrC1=CN=C(C2=CC(C3=CC=CC=N3)=NC(C3=CC=CC=N3)=C2)N=C1.C1=CC=C(C2=CC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=CC(C3=CC=CC=N3)=N2)N=C1 Chemical compound BrC1=CN=C(C2=CC(C3=CC=CC=N3)=NC(C3=CC=CC=N3)=C2)N=C1.C1=CC=C(C2=CC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=CC(C3=CC=CC=N3)=N2)N=C1 FUGWJTPRZZXQMK-UHFFFAOYSA-N 0.000 description 1
- PWVLAUZJGPIRPQ-UHFFFAOYSA-N BrC1=CN=C(N2C3=C(C=CC=C3)C3=C2/C=C\C=C/3)C=C1.C1=CC2=C(C=C1)N(C1=NC=C(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)C=C1)C1=C2C=CC=C1.OB(O)C1=CC=C(N2C3=C(C=CC=C3)C3=C2/C=C\C=C/3)C=C1 Chemical compound BrC1=CN=C(N2C3=C(C=CC=C3)C3=C2/C=C\C=C/3)C=C1.C1=CC2=C(C=C1)N(C1=NC=C(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)C=C1)C1=C2C=CC=C1.OB(O)C1=CC=C(N2C3=C(C=CC=C3)C3=C2/C=C\C=C/3)C=C1 PWVLAUZJGPIRPQ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 235000003197 Byrsonima crassifolia Nutrition 0.000 description 1
- 240000001546 Byrsonima crassifolia Species 0.000 description 1
- LFWZSARXBLTHBZ-UHFFFAOYSA-N C.C.CC.CC(C)N Chemical compound C.C.CC.CC(C)N LFWZSARXBLTHBZ-UHFFFAOYSA-N 0.000 description 1
- WKRPYJORRJXILV-UHFFFAOYSA-K C1=CC2=C(C=C1)C1/N=C3/C4=C(C=CC=C4)C4/N=C5/C6=C(C=CC=C6)C6/N=C7/C8=C(C=CC=C8)C8/N=C/2N1[Cu](N78)(N34)N56.C1=CC2=CC=CN3=C2C(=C1)O[Al]312(OC3=CC=CC4=CC=CN1=C43)OC1=CC=C/C3=C\C=C/N2=C\13.C1=CC=C(N(C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C2=CC=CC3=C2C=CC=C3)C=C1.C1=CC=C2C(=C1)[Ir]N1=C2C=CC=C1 Chemical compound C1=CC2=C(C=C1)C1/N=C3/C4=C(C=CC=C4)C4/N=C5/C6=C(C=CC=C6)C6/N=C7/C8=C(C=CC=C8)C8/N=C/2N1[Cu](N78)(N34)N56.C1=CC2=CC=CN3=C2C(=C1)O[Al]312(OC3=CC=CC4=CC=CN1=C43)OC1=CC=C/C3=C\C=C/N2=C\13.C1=CC=C(N(C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C2=CC=CC3=C2C=CC=C3)C=C1.C1=CC=C2C(=C1)[Ir]N1=C2C=CC=C1 WKRPYJORRJXILV-UHFFFAOYSA-K 0.000 description 1
- NDLGFTULJDMFTD-PCDFQMOPSA-M C1=CC2=C(C=C1)C1=N(C=C2)[Ir]C2=C1SC=C2.C1=CC2=CC=N3[Ir]C4=C(C=CC=C4)C3=C2C=C1.CC1=CC(C)=O[Ir@]2(O1)C1=C(C=CN=C1)C1=N2C=CC2=C1C=CC=C2 Chemical compound C1=CC2=C(C=C1)C1=N(C=C2)[Ir]C2=C1SC=C2.C1=CC2=CC=N3[Ir]C4=C(C=CC=C4)C3=C2C=C1.CC1=CC(C)=O[Ir@]2(O1)C1=C(C=CN=C1)C1=N2C=CC2=C1C=CC=C2 NDLGFTULJDMFTD-PCDFQMOPSA-M 0.000 description 1
- QHVZJMOSEATKQP-UHFFFAOYSA-N C1=CC2=C(C=C1)N(C1=CC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N1)C1=C2C=CC=C1 Chemical compound C1=CC2=C(C=C1)N(C1=CC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N1)C1=C2C=CC=C1 QHVZJMOSEATKQP-UHFFFAOYSA-N 0.000 description 1
- MAYMANDYSMQECD-UHFFFAOYSA-N C1=CC2=C(C=C1)N(C1=CC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N1)C1=C2C=CC=C1.C1=CC2=C(C=C1)N(C1=CC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C1)C1=C2C=CC=C1.C1=CC2=C(C=C1)N(C1=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=N1)C1=C2C=CC=C1 Chemical compound C1=CC2=C(C=C1)N(C1=CC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N1)C1=C2C=CC=C1.C1=CC2=C(C=C1)N(C1=CC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C1)C1=C2C=CC=C1.C1=CC2=C(C=C1)N(C1=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=N1)C1=C2C=CC=C1 MAYMANDYSMQECD-UHFFFAOYSA-N 0.000 description 1
- FNDCSPNEXBAHMF-UHFFFAOYSA-N C1=CC2=C(C=C1)N(C1=CC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N1)C1=C2C=CC=C1.C1=CC2=C(C=C1)N(C1=CC=C(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)C=N1)C1=C2C=CC=C1.C1=CC=C(C2=NC(C3=CC=CC=C3)=NC(C3=CC=CC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=N3)=C2)C=C1 Chemical compound C1=CC2=C(C=C1)N(C1=CC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N1)C1=C2C=CC=C1.C1=CC2=C(C=C1)N(C1=CC=C(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)C=N1)C1=C2C=CC=C1.C1=CC=C(C2=NC(C3=CC=CC=C3)=NC(C3=CC=CC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=N3)=C2)C=C1 FNDCSPNEXBAHMF-UHFFFAOYSA-N 0.000 description 1
- DVNOWTJCOPZGQA-UHFFFAOYSA-N C1=CC2=C(C=C1)N(C1=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C1)C1=C2C=CC=C1 Chemical compound C1=CC2=C(C=C1)N(C1=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C1)C1=C2C=CC=C1 DVNOWTJCOPZGQA-UHFFFAOYSA-N 0.000 description 1
- YSEQQQGNZFBZSN-UHFFFAOYSA-N C1=CC2=C(C=C1)N(C1=CC=C(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)C=C1)C1=C2C=CC=C1.C1=CC=C(C2=CC=C3C(=C2)C2=C(C=CC(C4=CC=CC=C4)=C2)N3C2=NC=C(C3=CC=CC=C3)C=N2)C=C1.C1=CC=C(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC=C2C2=CC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=C2)C=C1.N#CC1=CC(C#N)=CC(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC=C2C2=CC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=C2)=C1 Chemical compound C1=CC2=C(C=C1)N(C1=CC=C(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)C=C1)C1=C2C=CC=C1.C1=CC=C(C2=CC=C3C(=C2)C2=C(C=CC(C4=CC=CC=C4)=C2)N3C2=NC=C(C3=CC=CC=C3)C=N2)C=C1.C1=CC=C(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC=C2C2=CC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=C2)C=C1.N#CC1=CC(C#N)=CC(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC=C2C2=CC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=C2)=C1 YSEQQQGNZFBZSN-UHFFFAOYSA-N 0.000 description 1
- GPAQVBHAZKKWKB-UHFFFAOYSA-N C1=CC2=C(C=C1)N(C1=CC=C(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=C3)C=N1)C1=C2C=CC=C1.C1=CC=C(C2=CC(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=C3)=CC(C3=CC=CC=C3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=CC=C3)=CC(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=C3)=C2)C=C1 Chemical compound C1=CC2=C(C=C1)N(C1=CC=C(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=C3)C=N1)C1=C2C=CC=C1.C1=CC=C(C2=CC(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=C3)=CC(C3=CC=CC=C3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=CC=C3)=CC(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=C3)=C2)C=C1 GPAQVBHAZKKWKB-UHFFFAOYSA-N 0.000 description 1
- BANPIHBUPWAHMJ-UHFFFAOYSA-N C1=CC2=C(C=C1)N(C1=CC=C(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)C=C1)C1=C2C=CC=C1.FC1=CC2=C(C=C1)N(C1=CC(C3=CC=CC=N3)=NC(C3=CC=CC=C3)=N1)C1=C2C=C(F)C=C1.FC1=CC2=C(C=C1)N(C1=CN3C=CC=CC3=C1C1=CC=CC=C1)C1=C2C=C(F)C=C1.FC1=CC2=C(C=C1)N(C1=CN3C=CC=CC3=N1)C1=C2C=C(F)C=C1.FC1=CC2=C(C=C1)N(C1=NC(C3=CC=CC=N3)=NC(C3=CC=CC=C3)=N1)C1=C2C=C(F)C=C1 Chemical compound C1=CC2=C(C=C1)N(C1=CC=C(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)C=C1)C1=C2C=CC=C1.FC1=CC2=C(C=C1)N(C1=CC(C3=CC=CC=N3)=NC(C3=CC=CC=C3)=N1)C1=C2C=C(F)C=C1.FC1=CC2=C(C=C1)N(C1=CN3C=CC=CC3=C1C1=CC=CC=C1)C1=C2C=C(F)C=C1.FC1=CC2=C(C=C1)N(C1=CN3C=CC=CC3=N1)C1=C2C=C(F)C=C1.FC1=CC2=C(C=C1)N(C1=NC(C3=CC=CC=N3)=NC(C3=CC=CC=C3)=N1)C1=C2C=C(F)C=C1 BANPIHBUPWAHMJ-UHFFFAOYSA-N 0.000 description 1
- CMYBTZYTRLLDDZ-UHFFFAOYSA-N C1=CC2=C(C=C1)N(C1=CN=C(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)C=C1)C1=C2C=CC=C1.C1=CC2=C(C=C1)N(C1=NC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N1)C1=C2C=CC=C1.C1=CC=C(C2=CC(C3=CC=CC=C3)=CC(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=C3)=C2)C=C1 Chemical compound C1=CC2=C(C=C1)N(C1=CN=C(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)C=C1)C1=C2C=CC=C1.C1=CC2=C(C=C1)N(C1=NC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N1)C1=C2C=CC=C1.C1=CC=C(C2=CC(C3=CC=CC=C3)=CC(C3=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=NC(N4C5=C(C=CC=C5)C5=C4C=CC=C5)=C3)=C2)C=C1 CMYBTZYTRLLDDZ-UHFFFAOYSA-N 0.000 description 1
- UKRRMNZMYJFZOU-UHFFFAOYSA-N C1=CC2=C(C=C1)N(C1=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=C1)C1=C2C=CC=C1.ClC1=CC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=NC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=N1.OB(O)C1=CC=C(N2C3=C(C=CC=C3)C3=C2/C=C\C=C/3)C=C1 Chemical compound C1=CC2=C(C=C1)N(C1=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(C3=CC=C(N4C5=C(C=CC=C5)C5=C4/C=C\C=C/5)C=C3)=C1)C1=C2C=CC=C1.ClC1=CC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=NC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=N1.OB(O)C1=CC=C(N2C3=C(C=CC=C3)C3=C2/C=C\C=C/3)C=C1 UKRRMNZMYJFZOU-UHFFFAOYSA-N 0.000 description 1
- QHWBHABMYXAOCT-UHFFFAOYSA-N C1=CC2=NC(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)=CN2C=C1.C1=CC=C(C2=C3C=CC=CN3C=C2C2=CN=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)N=C2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=NC=C(C4=CC(C5=CC=CC=N5)=NC(C5=CC=CC=C5)=N4)C=N2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C(C2=NC(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)=NC(C3=CC=CC=N3)=N2)C=C1 Chemical compound C1=CC2=NC(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)=CN2C=C1.C1=CC=C(C2=C3C=CC=CN3C=C2C2=CN=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)N=C2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=NC=C(C4=CC(C5=CC=CC=N5)=NC(C5=CC=CC=C5)=N4)C=N2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C(C2=NC(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)=NC(C3=CC=CC=N3)=N2)C=C1 QHWBHABMYXAOCT-UHFFFAOYSA-N 0.000 description 1
- SYYPYKNXOQZNHY-UHFFFAOYSA-N C1=CC2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CN2C=C1.C1=CC=C(C2=C3C=CC=CN3C=C2N2C3=C(C=CC=C3)C3=C2C=CC=C3)C=C1.C1=CC=C(C2=CC(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)=CC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=CC=C3)=CC(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)=C2)N=C1 Chemical compound C1=CC2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CN2C=C1.C1=CC=C(C2=C3C=CC=CN3C=C2N2C3=C(C=CC=C3)C3=C2C=CC=C3)C=C1.C1=CC=C(C2=CC(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)=CC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=CC=C3)=CC(C3=CN=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)N=C3)=C2)N=C1 SYYPYKNXOQZNHY-UHFFFAOYSA-N 0.000 description 1
- OXNVYHGLYCUVCQ-RNQSRMPYSA-K C1=CC=C(/C=C/C2=CC=C(N(C3=CC=CC=C3)C3=CC=C(/C=C/C4=CC=C(N(C5=CC=CC=C5)C5=CC=C(/C=C/C6=CC=CC=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CC1=CC=C2C=CC=C3O[AlH]4(OC5=CC=C(C6=CC=CC=C6)C=C5)(OC5=CC=CC6=CC=C(C)N4=C65)N1=C23 Chemical compound C1=CC=C(/C=C/C2=CC=C(N(C3=CC=CC=C3)C3=CC=C(/C=C/C4=CC=C(N(C5=CC=CC=C5)C5=CC=C(/C=C/C6=CC=CC=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CC1=CC=C2C=CC=C3O[AlH]4(OC5=CC=C(C6=CC=CC=C6)C=C5)(OC5=CC=CC6=CC=C(C)N4=C65)N1=C23 OXNVYHGLYCUVCQ-RNQSRMPYSA-K 0.000 description 1
- WIBIHLCBRRDOQX-UHFFFAOYSA-N C1=CC=C(C2=C3C=CC=CN3C=C2C2=NC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=N2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=CN=C(C4=CN5C=CC=CC5=N4)N=C2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.FC1=CC2=C(C=C1)N(C1=CC(C3=CC=CC=N3)=NC(C3=CC=CC=C3)=C1)C1=C2C=C(F)C=C1.FC1=CC2=C(C=C1)N(C1=CC(C3=CC=CC=N3)=NC(C3=NC=CC=C3)=C1)C1=C2C=C(F)C=C1 Chemical compound C1=CC=C(C2=C3C=CC=CN3C=C2C2=NC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=N2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=CN=C(C4=CN5C=CC=CC5=N4)N=C2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.FC1=CC2=C(C=C1)N(C1=CC(C3=CC=CC=N3)=NC(C3=CC=CC=C3)=C1)C1=C2C=C(F)C=C1.FC1=CC2=C(C=C1)N(C1=CC(C3=CC=CC=N3)=NC(C3=NC=CC=C3)=C1)C1=C2C=C(F)C=C1 WIBIHLCBRRDOQX-UHFFFAOYSA-N 0.000 description 1
- BPEAFMYALUMWTK-UHFFFAOYSA-N C1=CC=C(C2=CC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=CC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=CC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=NC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=CC=C3)=CC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=C2)N=C1 Chemical compound C1=CC=C(C2=CC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=CC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=CC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=NC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=NC(C3=NC=CC=C3)=CC(C3=NC=C(N4C5=C(C=CC=C5)C5=C4C=CC=C5)C=N3)=C2)N=C1 BPEAFMYALUMWTK-UHFFFAOYSA-N 0.000 description 1
- QEMJDUHUTPEGGC-UHFFFAOYSA-N C1=CC=C(C2=CC(N3C4=C(C=C(C5=CN6C=CC=CC6=N5)C=C4)C4=C3C=CC(C3=CN5C=CC=CC5=N3)=C4)=CC(C3=CC=CC=C3)=N2)C=C1.C1=CC=C(C2=NC(C3=CC=CC=N3)=CC(C3=CC4=C(C=C3)N(C3=CN=C(C5=CC=CC=C5)N=C3)C3=C4C=C(C4=CC(C5=CC=CC=N5)=NC(C5=CC=CC=C5)=N4)C=C3)=C2)C=C1.CC1=NC(N2C3=C(C=C(C4=NC(C5=CC=CC=C5)=NC(C5=CC=CC=N5)=N4)C=C3)C3=C2C=CC(C2=NC(C4=CC=CC=N4)=NC(C4=CC=CC=C4)=N2)=C3)=CC=C1 Chemical compound C1=CC=C(C2=CC(N3C4=C(C=C(C5=CN6C=CC=CC6=N5)C=C4)C4=C3C=CC(C3=CN5C=CC=CC5=N3)=C4)=CC(C3=CC=CC=C3)=N2)C=C1.C1=CC=C(C2=NC(C3=CC=CC=N3)=CC(C3=CC4=C(C=C3)N(C3=CN=C(C5=CC=CC=C5)N=C3)C3=C4C=C(C4=CC(C5=CC=CC=N5)=NC(C5=CC=CC=C5)=N4)C=C3)=C2)C=C1.CC1=NC(N2C3=C(C=C(C4=NC(C5=CC=CC=C5)=NC(C5=CC=CC=N5)=N4)C=C3)C3=C2C=CC(C2=NC(C4=CC=CC=N4)=NC(C4=CC=CC=C4)=N2)=C3)=CC=C1 QEMJDUHUTPEGGC-UHFFFAOYSA-N 0.000 description 1
- DRSDLRSCTCPBEN-UHFFFAOYSA-N C1=CC=C(C2=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=CC(C4=CC=CC=N4)=NC(C4=NC=CC=C4)=C2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=NC(C4=CC=CC=N4)=NC(C4=CC=CC=C4)=N2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC(C3=CC=CC=N3)=N2)C=C1 Chemical compound C1=CC=C(C2=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC(C3=CC=CC=N3)=N2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=CC(C4=CC=CC=N4)=NC(C4=NC=CC=C4)=C2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=NC(C4=CC=CC=N4)=NC(C4=CC=CC=C4)=N2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=CC(C3=CC=CC=N3)=N2)C=C1 DRSDLRSCTCPBEN-UHFFFAOYSA-N 0.000 description 1
- KWKBMGYUQBXBMW-UHFFFAOYSA-N C1=CC=C(C2=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(C3=CC=C(N4C5=CC=CC=C5C5=C4C=CC=C5)C=C3)=C2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=CN=C(C4=CC=CC=C4)N=C2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=CC=C(C2=CC=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N2)C=C1 Chemical compound C1=CC=C(C2=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(C3=CC=C(N4C5=CC=CC=C5C5=C4C=CC=C5)C=C3)=C2)C=C1.C1=CC=C(C2=CC3=C(C=C2)N(C2=CN=C(C4=CC=CC=C4)N=C2)C2=C3C=C(C3=CC=CC=C3)C=C2)C=C1.C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=CC=C(C2=CC=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=N2)C=C1 KWKBMGYUQBXBMW-UHFFFAOYSA-N 0.000 description 1
- ITEVTKTWCARZRQ-UHFFFAOYSA-N C1=CC=C(C2=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(N3C4=CC=CC=C4C4=C3C=CC=C4)=C2)C=C1.C1=CC=C(C2=CC=C3C(=C2)C2=C(/C=C\C(C4=CC=CC=C4)=C/2)N3C2=CC=CC(N3C4=C(C=C(C5=CC=CC=C5)C=C4)C4=C3C=CC(C3=CC=CC=C3)=C4)=N2)C=C1.C1=CC=C(C2=NC(C3=CC4=C(C=C3)N(C3=CC=CC=N3)C3=C4C=C(C4=NC(C5=CC=CC=C5)=NC(C5=CC=CC=N5)=C4)C=C3)=CC(C3=CC=CC=N3)=N2)C=C1 Chemical compound C1=CC=C(C2=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(N3C4=CC=CC=C4C4=C3C=CC=C4)=C2)C=C1.C1=CC=C(C2=CC=C3C(=C2)C2=C(/C=C\C(C4=CC=CC=C4)=C/2)N3C2=CC=CC(N3C4=C(C=C(C5=CC=CC=C5)C=C4)C4=C3C=CC(C3=CC=CC=C3)=C4)=N2)C=C1.C1=CC=C(C2=NC(C3=CC4=C(C=C3)N(C3=CC=CC=N3)C3=C4C=C(C4=NC(C5=CC=CC=C5)=NC(C5=CC=CC=N5)=C4)C=C3)=CC(C3=CC=CC=N3)=N2)C=C1 ITEVTKTWCARZRQ-UHFFFAOYSA-N 0.000 description 1
- RHEKWKDUSZCJBA-UHFFFAOYSA-N C1=CC=C(C2=NC(C3=CC=CC=C3)=C3C(=C2)C2=C(C=CC=C2)N3C2=CN=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)N=C2)C=C1.C1=CC=C(C2=NC(C3=CC=CC=C3)=C3C(=C2)C2=C(C=CC=C2)N3C2=NC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=N2)C=C1.C1=CC=C(C2=NC=C3C(=C2)C2=C(C=CC=C2)N3C2=NC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)N=C2)C=C1 Chemical compound C1=CC=C(C2=NC(C3=CC=CC=C3)=C3C(=C2)C2=C(C=CC=C2)N3C2=CN=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)N=C2)C=C1.C1=CC=C(C2=NC(C3=CC=CC=C3)=C3C(=C2)C2=C(C=CC=C2)N3C2=NC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=N2)C=C1.C1=CC=C(C2=NC=C3C(=C2)C2=C(C=CC=C2)N3C2=NC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)N=C2)C=C1 RHEKWKDUSZCJBA-UHFFFAOYSA-N 0.000 description 1
- HZSQPWORDSIXLN-UHFFFAOYSA-N C1=CC=C(C2=NC=C3C(=C2)C2=C(C=CC=C2)N3C2=CN=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=N2)C=C1.C1=CC=C(C2=NC=C3C(=C2)C2=C(C=CC=C2)N3C2=CN=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)N=C2)C=C1.C1=CC=C(C2=NC=C3C(=C2)C2=C(C=CC=C2)N3C2=NC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=N2)C=C1 Chemical compound C1=CC=C(C2=NC=C3C(=C2)C2=C(C=CC=C2)N3C2=CN=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=N2)C=C1.C1=CC=C(C2=NC=C3C(=C2)C2=C(C=CC=C2)N3C2=CN=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)N=C2)C=C1.C1=CC=C(C2=NC=C3C(=C2)C2=C(C=CC=C2)N3C2=NC=C(N3C4=C(C=CC=C4)C4=C3C=CC=C4)C=N2)C=C1 HZSQPWORDSIXLN-UHFFFAOYSA-N 0.000 description 1
- QYIXOGHJNRHTNC-UHFFFAOYSA-N C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=CC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=CC(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C2)=C1.C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=NC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=CC(C2=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C2)=C1.C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=NC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=NC(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C2)=C1 Chemical compound C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=CC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=CC(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C2)=C1.C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=NC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=CC(C2=CC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C2)=C1.C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=NC(N2C3=C(C=CC=C3)C3=C2C=CC=C3)=NC(C2=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=NC(N3C4=C(C=CC=C4)C4=C3C=CC=C4)=C2)=C1 QYIXOGHJNRHTNC-UHFFFAOYSA-N 0.000 description 1
- VFUDMQLBKNMONU-UHFFFAOYSA-N C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=CC=C(C2=CC=C(N3C4=CC=CC=C4C4=C3C=CC=C4)C=C2)C=C1 Chemical compound C1=CC=C2C(=C1)C1=C(C=CC=C1)N2C1=CC=C(C2=CC=C(N3C4=CC=CC=C4C4=C3C=CC=C4)C=C2)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 1
- PUBNQEVJKYQQCU-MGCZUKKZSA-M C1=CC=N2[Ir]C3=C(/C=C\C=C/3)C2=C1.CC1=CC(C)=O[Ir]2(O1)C1=C(/C=C\C(F)=C/1)C1=CC(N(C)C)=CC=N12.CC1=CC=N2[Ir]C3=C(C2=C1)/C(F)=C\C(F)=C/3.FC1=C/C2=C(\C=C/1)C1=CC(N(C3=CC=CC=C3)C3=CC=CC=C3)=CC=N1[Ir]2.OCC1=CC=N2[Ir]C3=C(C2=C1)/C(F)=C\C(F)=C/3 Chemical compound C1=CC=N2[Ir]C3=C(/C=C\C=C/3)C2=C1.CC1=CC(C)=O[Ir]2(O1)C1=C(/C=C\C(F)=C/1)C1=CC(N(C)C)=CC=N12.CC1=CC=N2[Ir]C3=C(C2=C1)/C(F)=C\C(F)=C/3.FC1=C/C2=C(\C=C/1)C1=CC(N(C3=CC=CC=C3)C3=CC=CC=C3)=CC=N1[Ir]2.OCC1=CC=N2[Ir]C3=C(C2=C1)/C(F)=C\C(F)=C/3 PUBNQEVJKYQQCU-MGCZUKKZSA-M 0.000 description 1
- QTSNCMNUCXTNAC-XCXAHRAVSA-K C1=CC=N2[Pt]C3=C(/C=C\C=C/3)C2=C1.CC1=CC(C)=O[Ir]2(O1)C1=C(C=CC=C1)C1=N2C2=C(C=CC=C2)O1.CC1=CC(C)=O[Ir]2(O1)C1=C(C=CC=C1)C1=N2C2=C(C=CC=C2)S1.CC1=CC(C)=O[Ir]2(O1)C1=C(S/C=C\1)C1=N2C=CC=C1.FC(F)(F)C1=C/C2=C(\C=C/1)C1=CC=CC=N1[Ir]2 Chemical compound C1=CC=N2[Pt]C3=C(/C=C\C=C/3)C2=C1.CC1=CC(C)=O[Ir]2(O1)C1=C(C=CC=C1)C1=N2C2=C(C=CC=C2)O1.CC1=CC(C)=O[Ir]2(O1)C1=C(C=CC=C1)C1=N2C2=C(C=CC=C2)S1.CC1=CC(C)=O[Ir]2(O1)C1=C(S/C=C\1)C1=N2C=CC=C1.FC(F)(F)C1=C/C2=C(\C=C/1)C1=CC=CC=N1[Ir]2 QTSNCMNUCXTNAC-XCXAHRAVSA-K 0.000 description 1
- GCKZPLOVJLWZQA-UHFFFAOYSA-N CC.CC(C)(C)C.CC(C)C.CC(C)C.CC(C)C.CC(C)C(C)C.CCC.CCC.CCC.CCC(C)(C)C.CCC(C)C.CCC(C)C.CCC(C)C.CCC(C)C.CCC(C)C.CCC(C)CC.CCCC.CCCC.CCCC.CCCC.CCCC(C)C.CCCCC.CCCCCCC Chemical compound CC.CC(C)(C)C.CC(C)C.CC(C)C.CC(C)C.CC(C)C(C)C.CCC.CCC.CCC.CCC(C)(C)C.CCC(C)C.CCC(C)C.CCC(C)C.CCC(C)C.CCC(C)C.CCC(C)CC.CCCC.CCCC.CCCC.CCCC.CCCC(C)C.CCCCC.CCCCCCC GCKZPLOVJLWZQA-UHFFFAOYSA-N 0.000 description 1
- ZYEVKGCRGDZIFO-OWMBGFEASA-M CC1=CC(C)=O[Ir@@]2(O1)C1=C(/C=C\C(F)=C/1)C1=CC=CC=N12.FC1=C/C2=C(C3=CC=CC=N3[Ir]2)/C(F)=C\1.FC1=C/C2=C(\C=C/1)C1=CC=CC=N1[Ir]2.FC1=CC2=C(C(F)=C1)C1=CC=CC=N1[Ir@]21C2=C(/C=C\C(F)=C/2)C2=CC=CC=N21.OCC1=CC=N2[Ir]C3=C(/C=C\C(F)=C/3)C2=C1 Chemical compound CC1=CC(C)=O[Ir@@]2(O1)C1=C(/C=C\C(F)=C/1)C1=CC=CC=N12.FC1=C/C2=C(C3=CC=CC=N3[Ir]2)/C(F)=C\1.FC1=C/C2=C(\C=C/1)C1=CC=CC=N1[Ir]2.FC1=CC2=C(C(F)=C1)C1=CC=CC=N1[Ir@]21C2=C(/C=C\C(F)=C/2)C2=CC=CC=N21.OCC1=CC=N2[Ir]C3=C(/C=C\C(F)=C/3)C2=C1 ZYEVKGCRGDZIFO-OWMBGFEASA-M 0.000 description 1
- AKHKMORSMHYLBE-IWOQRIGNSA-J CC1=CC(C)=O[Ir@]2(O1)C1=C(C(=O)OC3=C1C=CC(N(C)C)=C3)C1=N2C2=CC=CC=C2S1.CC1=CC(C)=O[Ir@]2(O1)C1=C(C3=CC4=C(C=CC=C4)C=N32)C2=C(C=CC=C2)C=C1.CC1=CC(C)=O[Ir@]2(O1)C1=C(C=C3C=CC=CC3=C1)C1=C3C=CC=CC3=CC=N12.CC1=CC(C)=O[Ir]2(O1)C1=C(C3=C(C=CC=C3)C=C1)C1=N2C2=C(C=CC=C2)S1 Chemical compound CC1=CC(C)=O[Ir@]2(O1)C1=C(C(=O)OC3=C1C=CC(N(C)C)=C3)C1=N2C2=CC=CC=C2S1.CC1=CC(C)=O[Ir@]2(O1)C1=C(C3=CC4=C(C=CC=C4)C=N32)C2=C(C=CC=C2)C=C1.CC1=CC(C)=O[Ir@]2(O1)C1=C(C=C3C=CC=CC3=C1)C1=C3C=CC=CC3=CC=N12.CC1=CC(C)=O[Ir]2(O1)C1=C(C3=C(C=CC=C3)C=C1)C1=N2C2=C(C=CC=C2)S1 AKHKMORSMHYLBE-IWOQRIGNSA-J 0.000 description 1
- LUUPPELBQFGEGZ-UHFFFAOYSA-M CC1=CC=C(N(C2=CC=C(C)C=C2)C2=CC=C(C3(C4=CC=C(N(C5=CC=C(C)C=C5)C5=CC=C(C)C=C5)C=C4)CCCCC3)C=C2)C=C1.O=C1O[Ir]2(C3=CC(F)=CC(F)=C3C3=N2/C=C/C=C\3)N2=C1C=CC=C2 Chemical compound CC1=CC=C(N(C2=CC=C(C)C=C2)C2=CC=C(C3(C4=CC=C(N(C5=CC=C(C)C=C5)C5=CC=C(C)C=C5)C=C4)CCCCC3)C=C2)C=C1.O=C1O[Ir]2(C3=CC(F)=CC(F)=C3C3=N2/C=C/C=C\3)N2=C1C=CC=C2 LUUPPELBQFGEGZ-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WZELXJBMMZFDDU-UHFFFAOYSA-N Imidazol-2-one Chemical class O=C1N=CC=N1 WZELXJBMMZFDDU-UHFFFAOYSA-N 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical class C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- GZNSOIOKGMJBIV-UHFFFAOYSA-N N#Cc1cc(-c(nc(cc2)-[n]3c4ccccc4c4ccccc34)c2-c(cc2)ccc2-[n]2c3ccccc3c3c2cccc3)cc(C#N)c1 Chemical compound N#Cc1cc(-c(nc(cc2)-[n]3c4ccccc4c4ccccc34)c2-c(cc2)ccc2-[n]2c3ccccc3c3c2cccc3)cc(C#N)c1 GZNSOIOKGMJBIV-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- YXLXNENXOJSQEI-UHFFFAOYSA-L Oxine-copper Chemical compound [Cu+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 YXLXNENXOJSQEI-UHFFFAOYSA-L 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910004156 TaNx Inorganic materials 0.000 description 1
- 229910003071 TaON Inorganic materials 0.000 description 1
- 229910003070 TaOx Inorganic materials 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- 229910010282 TiON Inorganic materials 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- LBGCRGLFTKVXDZ-UHFFFAOYSA-M ac1mc2aw Chemical compound [Al+3].[Cl-].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 LBGCRGLFTKVXDZ-UHFFFAOYSA-M 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000005010 aminoquinolines Chemical class 0.000 description 1
- 229940051880 analgesics and antipyretics pyrazolones Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- NDMVXIYCFFFPLE-UHFFFAOYSA-N anthracene-9,10-diamine Chemical compound C1=CC=C2C(N)=C(C=CC=C3)C3=C(N)C2=C1 NDMVXIYCFFFPLE-UHFFFAOYSA-N 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- GQVWHWAWLPCBHB-UHFFFAOYSA-L beryllium;benzo[h]quinolin-10-olate Chemical compound [Be+2].C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21.C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21 GQVWHWAWLPCBHB-UHFFFAOYSA-L 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- BQLJEUUVHBQUIW-UHFFFAOYSA-N c(cc1)cc(c2c3cccc2)c1[n]3-c(cc1)ccc1-c1cnc(-[n]2c3ccccc3c3ccccc23)nc1 Chemical compound c(cc1)cc(c2c3cccc2)c1[n]3-c(cc1)ccc1-c1cnc(-[n]2c3ccccc3c3ccccc23)nc1 BQLJEUUVHBQUIW-UHFFFAOYSA-N 0.000 description 1
- PTEUUYBVLKGFBV-UHFFFAOYSA-N c(cc1)cc(c2c3cccc2)c1[n]3-c(cc1)ccc1-c1ncc(-[n]2c3ccccc3c3c2cccc3)nc1 Chemical compound c(cc1)cc(c2c3cccc2)c1[n]3-c(cc1)ccc1-c1ncc(-[n]2c3ccccc3c3c2cccc3)nc1 PTEUUYBVLKGFBV-UHFFFAOYSA-N 0.000 description 1
- LRDODUXPBGQQLC-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)cc(c2cc(-c3ccccc3)ccc22)c1[n]2-c(nc1)ncc1-c1ccccc1 Chemical compound c(cc1)ccc1-c(cc1)cc(c2cc(-c3ccccc3)ccc22)c1[n]2-c(nc1)ncc1-c1ccccc1 LRDODUXPBGQQLC-UHFFFAOYSA-N 0.000 description 1
- QDHKZMRWYFIILE-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)cc(c2cc(-c3ccccc3)ccc22)c1[n]2-c1cnc(-c2ccccc2)nc1 Chemical compound c(cc1)ccc1-c(cc1)cc(c2cc(-c3ccccc3)ccc22)c1[n]2-c1cnc(-c2ccccc2)nc1 QDHKZMRWYFIILE-UHFFFAOYSA-N 0.000 description 1
- ZJWUVCXIXUDLGQ-UHFFFAOYSA-N c(cc1)ccc1-c(nc(cc1)-[n]2c3ccccc3c3c2cccc3)c1-c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2 Chemical compound c(cc1)ccc1-c(nc(cc1)-[n]2c3ccccc3c3c2cccc3)c1-c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2 ZJWUVCXIXUDLGQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- NBGMRMDAEWWFIR-UHFFFAOYSA-N imidazole-2-thione Chemical class S=C1N=CC=N1 NBGMRMDAEWWFIR-UHFFFAOYSA-N 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- XNUVVHVFAAQPQY-UHFFFAOYSA-L manganese(2+) quinolin-8-olate Chemical compound N1=CC=CC2=CC=CC(=C12)[O-].[Mn+2].N1=CC=CC2=CC=CC(=C12)[O-] XNUVVHVFAAQPQY-UHFFFAOYSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- YERRTOUSFSZICJ-UHFFFAOYSA-N methyl 2-amino-2-(4-bromophenyl)acetate Chemical compound COC(=O)C(N)C1=CC=C(Br)C=C1 YERRTOUSFSZICJ-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical group 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- YRZZLAGRKZIJJI-UHFFFAOYSA-N oxyvanadium phthalocyanine Chemical compound [V+2]=O.C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 YRZZLAGRKZIJJI-UHFFFAOYSA-N 0.000 description 1
- FVDOBFPYBSDRKH-UHFFFAOYSA-N perylene-3,4,9,10-tetracarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O FVDOBFPYBSDRKH-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical group C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- VVOPUZNLRVJDJQ-UHFFFAOYSA-N phthalocyanine copper Chemical compound [Cu].C12=CC=CC=C2C(N=C2NC(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2N1 VVOPUZNLRVJDJQ-UHFFFAOYSA-N 0.000 description 1
- SIOXPEMLGUPBBT-UHFFFAOYSA-M picolinate Chemical compound [O-]C(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-M 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000005412 pyrazyl group Chemical group 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 238000001275 scanning Auger electron spectroscopy Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- JACPFCQFVIAGDN-UHFFFAOYSA-M sipc iv Chemical compound [OH-].[Si+4].CN(C)CCC[Si](C)(C)[O-].C=1C=CC=C(C(N=C2[N-]C(C3=CC=CC=C32)=N2)=N3)C=1C3=CC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 JACPFCQFVIAGDN-UHFFFAOYSA-M 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- NZFNXWQNBYZDAQ-UHFFFAOYSA-N thioridazine hydrochloride Chemical compound Cl.C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C NZFNXWQNBYZDAQ-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- KWQNQSDKCINQQP-UHFFFAOYSA-K tri(quinolin-8-yloxy)gallane Chemical compound C1=CN=C2C(O[Ga](OC=3C4=NC=CC=C4C=CC=3)OC=3C4=NC=CC=C4C=CC=3)=CC=CC2=C1 KWQNQSDKCINQQP-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- HTPBWAPZAJWXKY-UHFFFAOYSA-L zinc;quinolin-8-olate Chemical compound [Zn+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 HTPBWAPZAJWXKY-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- H01L51/0067—
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0033—Iridium compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H01L51/0072—
-
- H01L51/0085—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- H01L2251/308—
-
- H01L51/0059—
-
- H01L51/0081—
-
- H01L51/5012—
-
- H01L51/5016—
-
- H01L51/5048—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/917—Electroluminescent
Definitions
- the present invention relates to a material for organic electroluminescent devices (organic EL devices) and organic EL devices made by using the material and, more particularly, to organic EL devices emitting bluish light with a high purity of color.
- Organic EL devices which utilize organic substances are expected to be useful for application as an inexpensive full color display device of the solid light emission type having a great size, and various developments on the organic EL devices are being conducted.
- an organic EL device has a construction comprising a pair of facing electrodes and a light emitting layer sandwiched between the electrodes.
- the light emission of the organic EL device is a phenomenon in which, when an electric field is applied across the two electrodes, electrons are injected from the cathode side and holes are injected from the anode side, the electrons recombine with the holes in the light emitting layer to induce an excited state, and then, when the excited state returns to the original state, it emits energy as light.
- chelate complexes such as tris(8-quinolinolato)aluminum, coumarin derivatives, tetraphenyl-butadiene derivatives, bisstyrylarylene derivatives and oxadiazole derivatives are known. It has been reported that these light emitting materials emit light in the visible region of blue to red, and it is expected that color display elements can be obtained by using these light emitting materials (see, for example, Japanese Patent Application Laid-Open Nos. Heisei 8(1996)-239655, Heisei 7(1995)-138561 and Heisei 3(1991)-200289).
- a device in which a phenylanthracene derivative is used as the material emitting blue light is disclosed in Japanese Patent Application Laid-Open No. Heisei 8(1996)-12600.
- the phenylanthracene derivative is used as the material emitting blue light and, in general, used as a laminate of a layer of the material emitting blue light with a layer of a complex of tris(8-quinolinolato) aluminum (Alq).
- Alq tris(8-quinolinolato) aluminum
- Japanese Patent Application Laid-Open No. 2001-160489 discloses a device in which an azafluoranthene compound is added to the light emitting layer. However, this device emits yellow to green light and cannot emit blue light having a sufficiently high purity of color.
- the present invention has been made to overcome the above problems and has an object of providing a material for organic EL devices which emits bluish light with a high purity of light and an organic EL device utilizing the material.
- the present invention provides a material for organic EL devices which comprises a compound represented by following general formula (1): (Cz-) n M m (1) wherein Cz represents a substituted or unsubstituted carbazolyl group, M represents a substituted or unsubstituted heteroaromatic cyclic group having 2 to 40 carbon atoms and nitrogen atom, n and m each represent an integer of 1 to 3, a plurality of Cz may represent different groups when n represents 2 or 3, a plurality of M may represent different groups when m represents 2 or 3, and M does not represent triazine group when n represents 3 and m represents 1.
- the present invention also provides an organic EL device which comprises a cathode, an anode and an organic thin film layer comprising at least one layer and sandwiched between the cathode and the anode, wherein at least one layer in the organic thin film layer contains a material for organic EL devices described above.
- a light emitting layer, an electron transporting layer or a hole transporting layer may contain the above material for organic EL devices.
- the material for organic EL devices of the present invention comprises a compound represented by the following general formula (1): (Cz-) n M m (1)
- Cz represents a substituted or unsubstituted carbazolyl group
- M represents a substituted or unsubstituted heteroaromatic cyclic group having 2 to 40 carbon atoms and nitrogen atom
- n and m each represent an integer of 1 to 3
- a plurality of Cz may represent different groups when n represents 2 or 3
- a plurality of M may represent different groups when m represents 2 or 3
- M does not represent triazine group when n represents 3 and m represents 1.
- heteroaromatic cyclic group having nitrogen represented by M examples include groups derived from pyridine, pyrimidine, pyrazine, triazine, aziridine, azaindolidine, indolidine, imidazole, indole, isoindole, indazole, purine, pteridine, ⁇ -carboline, naphthylidine, quinoxaline, quinazoline, phenothiazine, acridine, phenanthroline and phenazine.
- Examples of the substituent to the groups represented by Cz or M in general formula (1) include halogen atoms such as chlorine atom, bromine atom and fluorine atom; carbazole group, hydroxyl group, substituted or unsubstituted amine groups, nitro group, cyano group, silyl group, trifluoromethyl group, carbonyl group, carboxyl group, substituted or unsubstituted alkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted arylalkyl groups, substituted or unsubstituted aromatic groups, substituted or unsubstituted heteroaromatic heterocyclic groups, substituted or unsubstituted aralkyl groups, substituted or unsubstituted aryloxy groups and substituted or unsubstituted alkyloxyl groups.
- halogen atoms such as chlorine atom, bromine atom and fluorine atom
- carbazole group hydroxyl group,
- fluorine atom fluorine atom
- phenyl group naphthyl group
- pyridyl group pyrazyl group
- pyrimidyl group cyano group
- substituted or unsubstituted alkyl groups and substituted or unsubstituted aralkyl groups are preferable.
- the compound represented by general formula (1) used in the present invention is a compound represented by any one of the following general formulae (2) to (10).
- the singlet energy gap of the compound represented by general formula (1) of the present invention is 2.8 to 3.8 eV and more preferably 2.9 to 3.6 eV.
- the organic EL device of the present invention comprises an anode, a cathode and an organic thin film layer comprising at least one layer sandwiched between the anode and the cathode, wherein at least one layer in the organic thin film layer contains the material for organic EL devices comprising the compound represented by the above general formula (1). It is preferable that the light emitting layer in the organic EL device of the present invention contains the material for organic EL devices comprising the compound represented by the above general formula (1).
- the organic EL device of the present invention emits bluish light, and the purity of color of the emitted light is as excellent as (0.12, 0.11) to (0.16, 0.19). This property is exhibited since the material for organic EL devices comprising the compound represented by general formula (1) of the present invention has a great energy gap.
- the organic EL device of the present invention emits light by a multiplet excitation which is the excitation to the triplet state or higher.
- the material for organic EL devices is a host material of the organic EL device.
- the host material is a material into which holes and electrons can be injected and which has the function of transporting holes and electrons and emitting fluorescent light by recombination of holes and electrons.
- the compound represented by general formula (1) in the present invention is useful also as the organic host material for phosphorescence devices since the singlet energy gap is as high as 2.8 to 3.8 eV and the triplet energy gap is as high as 2.5 to 3.3 eV.
- the phosphorescence device is an organic device which comprises a substance emitting light based on the transition from the energy level in the triplet state to the energy level in the ground singlet state with a stronger intensity than those emitted from other substances, examples of which include phosphorescent substances such as organometallic complexes containing at least one metal selected from Groups 7 to 11 of the Periodic Table, and emits light under an electric field utilizing the so-called phosphorescence.
- the singlet exciton and the triplet exciton are contained in the formed excited molecules as a mixture, and it is reported that the triplet exciton is formed in a greater amount such that the ratio of the amount of the singlet exciton to the amount of the triplet exciton is 1:3.
- the exciton contributing to the light emission is the singlet exciton, and the triplet exciton does not emit light. Therefore, the triplet exciton is ultimately consumed as heat, and the light is emitted by the singlet exciton which is formed in a smaller amount. Therefore, in these organic EL devices, the energy transferred to the triplet exciton causes a great loss in the energy generated by the recombination of holes and electrons.
- the efficiency of light emission three times as great as that of a device using fluorescence can be obtained since the triplet exciton can be used for the emission of light. It is also considered that, when the compound of the present invention is used for the light emitting layer of the phosphorescence device, an excited triplet level in an energy state higher than the excited triplet level of a phosphorescent organometallic complex comprising a metal selected from the Group 7 to 11 of the Periodic Table contained in the layer, is achieved;
- the film having a more stable form is provided; the glass transition temperature is higher (Tg: 80 to 160° C.); holes and/or electrons are efficiently transported; the compound is electrochemically and chemically stable; and the formation of impurities which may work as a trap or cause loss in the light emission is suppressed during the preparation and the use.
- the hole transporting layer, the electron injecting layer or the hole barrier layer may contain the material of the present invention.
- a phosphorescent light emitting compound and the material of the present invention may be mixed and used in combination.
- the organic EL device of the present invention comprises a cathode, an anode and an organic thin film layer comprising at least one layer and sandwiched between the cathode and the anode.
- a light emitting layer is formed between the anode and the cathode.
- the light emitting layer contains a light emitting material and may further contain a hole injecting material for transporting holes injected from the anode to the light emitting material or an electron injecting material for transporting electrons injected from the cathode to the light emitting material. It is preferable that the light emitting material exhibits a very excellent quantum efficiency of fluorescence, has a great ability of transporting both holes and electrons and forms a uniform thin layer.
- Examples of the organic EL device of the multi-layer type include organic EL devices comprising a laminate having a multi-layer construction such as (the anode/the hole injecting layer/the light emitting layer/the cathode), (the anode/the light emitting layer/the electron injecting layer/the cathode) and (the anode/the hole injecting layer/the light emitting layer/the electron injecting layer/the cathode).
- the material of the present invention comprising the compound represented by general formula (1) of the present invention
- conventional host materials, light emitting materials, doping materials, hole injecting materials and electron injecting materials and combinations of these materials may be used in combination, where necessary.
- the luminance of emitted light and the efficiency of light emission can be improved with other doping materials.
- the luminance of emitted light and the efficiency of light emission can be improved in comparison with those of conventional devices.
- the hole injecting layer, the light emitting layer and the electron injecting layer may each have a multi-layer structure.
- the layer into which holes are injected from the electrode is called as a hole injecting layer
- the layer which receives holes from the hole injecting layer and transports holes to the light emitting layer is called as a hole transporting layer.
- the layer into which electron are injected from the electrode is called as an electron injecting layer
- the layer which receives electrons from the electron injecting layer and transports electrons to the light emitting layer is called as an electron transporting layer.
- the layers are selected in accordance with the energy levels of the material, heat resistance and adhesion with the organic thin film layers or the metal electrodes.
- the electron transporting layer and the hole transporting layer may contain the material for organic EL devices of the present invention which comprises the compound represented by general formula (1).
- Examples of the light emitting material and the host material which can be used for the organic thin film layer in combination with the compound represented by general formula (1) include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluoresceine, perylene, phthaloperylene, naphthaloperylene, perynone, phthaloperynone, naphthaloperynone, diphenylbutadiene, tetraphenyl-butadiene, coumarine, oxadiazole, aldazine, bis-benzoxazoline, bisstyryl, pyrazine, cyclopentadiene, metal complexes of quinoline, metal complexes of aminoquinoline, metal complexes of benzoquinoline, imines, diphenyl- ethylene, vinylanthracene, diaminoanthracene, diaminocarbazole,
- phosphorescent organometallic complexes are preferable since the external quantum efficiency of the device can be improved.
- the metal in the phosphorescent organometallic complex include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. It is preferable that the organometallic complex is an organometallic compound represented by the following general formula (A):
- a 1 represents a substituted or unsubstituted aromatic hydrocarbon cyclic group or aromatic heterocyclic group, which is preferably phenyl group, biphenyl group, naphthyl group, anthryl group, thienyl group, pyridyl group, quinolyl group or isoquinolyl group.
- substituents examples include halogen atoms such as fluorine atom; alkyl groups having 1 to 30 carbon atoms such as methyl group and ethyl group; alkenyl groups such as vinyl group; alkoxycarbonyl groups having 1 to 30 carbon atoms such as methoxycarbonyl group and ethoxycarbonyl group; alkoxyl groups having 1 to 30 carbon atoms such as methoxyl group and ethoxyl group; aryloxyl groups such as phenoxyl group and benzyloxyl group; dialkylamino groups such as dimethylamino group and diethylamino group; acyl groups such as acetyl group; haloalkyl groups such as trifluoromethyl group; and cyano group.
- halogen atoms such as fluorine atom
- alkyl groups having 1 to 30 carbon atoms such as methyl group and ethyl group
- alkenyl groups such as vinyl group
- a 2 represents a substituted or unsubstituted aromatic heterocyclic group having nitrogen atom as the atom forming the heterocyclic ring, which is preferably pyridyl group, pyrimidyl group, pyrazine group, triazine group, benzothiazole group, benzoxazole group, benzimidazole group, quinolyl group, isoquinolyl group, quinoxaline group or phenanthridine group.
- substituents described as the examples of the substituent for the group represented by A 1 are examples of the substituent for the group represented by A 1 .
- the ring having the group represented by A 1 and the ring having the group represented by A 2 may form one condensed ring.
- Examples of the condensed ring include 7,8-benzoquinoline group.
- Q represents a metal selected from metals of Groups 7 to 11 of the Periodic Table, which is preferably ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold.
- L represents a bidentate ligand, which is preferably selected from ligands of the ⁇ -diketone type such as acetylacetonates and pyromellitic acid.
- organometallic complex represented by the above general formula (A) are shown in the following. However, the organometallic complex is not limited to these compounds.
- the hole injecting material compounds which have the ability to transport holes, exhibit the excellent effect of receiving holes injected from the anode and the excellent effect of injecting holes to the light emitting layer or the light emitting material, prevent transfer of excitons formed in the light emitting layer to the electron injecting layer or the electron injecting material and have the excellent ability of forming a thin film, are preferable.
- the hole injecting compound examples include phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazoles, oxadiazoles, triazoles, imidazoles, imidazolones, imidazolethiones, pyrazolines, pyrazolones, tetrahydroimidazoles, oxazoles, oxadiazoles, hydrazones, acylhydrazones, polyarylalkanes, stilbene, butadiene, triphenylamine of the benzidine type, triphenylamine of the styrylamine type, triphenylamine of the diamine type, derivatives of the above compounds and macromolecular materials such as polyvinylcarbazoles, polysilanes and electrically conductive macromolecules.
- the hole injecting material is not limited to these materials.
- the more effective hole injecting materials are aromatic tertiary amine derivatives and phthalocyanine derivatives.
- aromatic tertiary amine derivatives include triphenylamine, tritolylamine, tolyldiphenylamine, N,N′-diphenyl-N,N′-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine, N,N,N′,N′-(4-methylphenyl)-1,1′-phenyl-4,4′-diamine, N,N,N′,N′-(4-methyl-phenyl)-1,1′-biphenyl-4,4′-diamine, N,N′-diphenyl-N,N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N,N′-(methylphenyl)-N,N′-(4-n-butylphenyl)-
- the aromatic tertiary amine is not limited to these compounds.
- the phthalocyanine (Pc) derivative include phthalocyanine derivatives and naphthalocyanine derivatives such as H 2 Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl 2 SiPc, (HO)AlPc, (HO) GaPc, VOPc, TiOPc, MoOPc and GaPc-O-GaPc.
- the phthalocyanine derivative is not limited to these compounds.
- the electron injecting material compounds which have the ability to transport electrons, exhibit the excellent effect of receiving electrons injected from the anode and the excellent effect of injecting electrons to the light emitting layer or the light emitting material, prevent transfer of excitons formed in the light emitting layer to the hole injecting layer and have the excellent ability of forming a thin film, are preferable.
- the electron injecting compound examples include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrane dioxide, oxazoles, oxadiazoles, triazoles, imidazoles, perylenetetracarboxylic acid, quinoxaline, fluorenylidenemethane, anthraquinodimethane, anthrone and derivatives of these compounds.
- the electron injecting material is not limited to these compounds.
- the more effective electron injecting materials are metal complex compounds and five-membered derivatives having nitrogen.
- the metal complex compound include 8-hydroxyquinolinatolithium, bis(8-hydroxy- quinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxy-quinolinato)manganese, tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)-gallium, bis(10-hydroxybenzo[h]quinolinato)beryllium, bis(10-hydroxy-benzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)(o-cresolato)gallium, bis(2-methyl-8-quinolinato)-(1-naphtholato)aluminum and bis(2-methyl-8-quinolinato)(2-napht
- Oxazoles, thiazoles, oxadiazoles, thiadiazoles, triazoles and derivatives of these compounds are preferable as the five-membered derivative having nitrogen,.
- Specific examples of the five-membered derivative having nitrogen include 2,5-bis(1-phenyl)-1,3,4-oxazole, dimethylPOPOP, 2,5-bis(1-phenyl)-1,3,4-thiazole, 2,5-bis(1-phenyl)-1,3,4-oxadiazole, 2-(4′-tert-butylphenyl)-5-(4′′-biphenyl)-1,3,5-oxadiazole, 2,5-bis(1-naphthyl)-1,3,4-oxadiazole, 1,4-bis[2-(5-phenyloxadiazolyl)]benzene, 1,4-bis[2-(5-phenyloxadiazolyl)-4-tert-butylbenzene], 2-(4′-tert
- the property of charge injection can be improved by adding an electron-accepting compound to the hole injecting material and by adding an electron-donating compound to the electron injecting material.
- the electrically conductive material used for the anode of the organic EL device of the present invention a material having a work function greater than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, alloys of these metals, metal oxides such as tin oxides and indium oxide used for ITO substrates and NESA substrates and organic electrically conductive resins such as polythiophene and polypyrrol are used.
- the electrically conductive material used for the cathode a material having a work function smaller than 4 eV is suitable, and magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum and alloys of these metals are used.
- the electrically conductive material used for the cathode is not limited to these materials.
- Typical examples of the alloy include magnesium/silver, magnesium/indium and lithium/aluminum.
- the alloy is not limited to these alloys.
- the composition of the alloy is controlled by the temperature of the source of vaporization, the atmosphere and the degree of vacuum and a suitable composition is selected.
- the anode and the cathode may be formed with a structure having two or more layers, where necessary.
- the organic EL device of the present invention may comprise an inorganic compound layer between at least one of the electrodes and the above organic thin film layer.
- the inorganic compound used for the inorganic compound layer include various types of oxides, nitrides and oxide nitrides such as alkali metal oxides, alkaline earth metal oxides, rare earth oxides, alkali metal halides, alkaline earth metal halides, rare earth halides, SiO x , AlO x , SiN x , SiON, AlON, GeO x , LiO x , LiON, TiO x , TiON, TaO x , TaON, TaN x and C.
- SiO x , AlO x , SiN x , SiON, AlON, GeO x and C are preferable since a stable interface layer of injection is formed.
- LiF, MgF 2 , CaF 2 , MgF 2 and NaF are preferable.
- the organic EL device of the present invention it is preferable that at least one surface is sufficiently transparent in the region of the wavelength of the light emitted by the device so that the light emission is achieved efficiently. It is preferable that the substrate is also transparent.
- the conditions in the vapor deposition or the sputtering are set so that the prescribed transparency is surely obtained using the above electrically conductive material. It is preferable that the electrode of the light emitting surface has a transmittance of light of 10% or greater.
- the substrate is not particularly limited as long as the substrate has the mechanical and thermal strength and is transparent. Examples of the substrate include glass substrates and transparent films of resins.
- Examples of the transparent film of a resin include films of polyethylene, ethylenevinyl acetate copolymers, ethylene-vinyl alcohol copolymers, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketones, polysulfones, polyether sulfones, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymers, tetrafluoroethylene-hexafluoropropylene copolymers, polychlorotrifluoroethylene, polyvinylidene fluoride, polyesters, polycarbonates, polyurethanes, polyimides, polyether imides, polyimides and polypropylene.
- a protective layer is formed on the surface of the device or the entire device is covered with a silicone oil or a resin so that stability to the temperature, the humidity and the atmosphere is improved.
- each layer of the organic EL device of the present invention any of the dry processes of film formation such as the vacuum vapor deposition, the sputtering, the plasma plating and the ion plating and the wet processes of film formation such as the spin coating, the dipping and the flow coating, can be applied.
- the thickness of each film is not particularly limited, it is necessary that the thickness of the film be set at a suitable value. When the thickness is excessively great, application of a greater voltage is necessary to obtain the same output of the light, and the efficiency of light emission decreases. When the thickness is excessively small, pin holes are formed, and sufficient light emission cannot be obtained even when an electric field is applied. In general, a thickness in the range of 5 nm to 10 ⁇ m is suitable and a thickness in the range of 10 nm to 0.2 ⁇ m is preferable.
- the material forming each layer is dissolved or suspended in a suitable solvent such as ethanol, chloroform, tetrahydrofuran and dioxane, and a thin film is formed from the obtained solution or suspension. Any of the above solvents can be used.
- suitable resins and additives may be used to improve the property for film formation and to prevent formation of pin holes in the film.
- the resin which can be used examples include insulating resins such as polystyrene, polycarbonates, polyarylates, polyesters, polyamides, polyurethanes, polysulfones, polymethyl methacrylate, polymethyl acrylate, cellulose and copolymer resins derived from these resins; photoconductive resins such as poly-N-vinylcarbazole and polysilanes; and electrically conductive resins such as polythiophene and polypyrrol.
- the additive include antioxidants, ultraviolet light absorbents and plasticizers.
- the organic EL device emitting blue light with a high purity of color can be obtained.
- This organic EL device can be advantageously used for a photosensitive member for electronic photograph, a planar light emitting member such as a flat panel display of wall televisions, a back light of copiers, printers and liquid crystal displays, a light source for instruments, a display panel, a marker lamp and an accessory.
- the triplet energy gap and the singlet energy gap of a compound were measured in accordance with the following methods.
- the lowest excited triplet energy level T1 was measured.
- a tangent line was drawn to the increasing line at the short wavelength side of the phosphorescence spectrum, and the wavelength (the end of light emission) at the intersection of the tangent line and the abscissa was obtained. The obtained wavelength was converted into the energy.
- the excited singlet energy gap was measured.
- a toluene solution (10 ⁇ 5 moles/liter) of a sample the absorption spectrum was obtained by a spectrometer for absorption of ultraviolet and visible light manufactured by HITACHI Co. Ltd.
- a tangent line was drawn to the increasing line at the long wavelength side of the spectrum, and the wavelength (the end of absorption) at the intersection of the tangent line and the abscissa was obtained. The obtained wavelength was converted into the energy.
- 2-(2,6-dipyridylpyridin-4-yl)-5-bromopyrimidine (12 g, 30 mmole), carbazole (5 g, 30 mmole), copper iodide (0.06 g, 0.32 mmole, 1% Cu), trans-1,2-cyclohexanediamine (0.4 ml, 3.3 mmole, 10 eq to Cu) and potassium phosphate (14 g, 66 mmole, 2.2 eq) were suspended in anhydrous dioxane (30 ml), and the resultant suspension was heated under the refluxing condition for 10 hours. The reaction mixture was filtered and washed with toluene.
- 2-(2,4-Diphenylpyrimidin-6-yl)-6-bromopyridine (3.2 g, 8 mmole), carbazole (1.4 g, 9 mmole), copper iodide (0.08 g, 0.4 mmole) and potassium phosphate (3.7 g, 17 mmole) were suspended in 1,4-dioxane (16 ml), and trans-1,2-cyclohexanediamine (0.5 ml, 4 mmole) was added to the resultant suspension.
- the obtained suspension was heated under the refluxing condition for 15 hours under the atmosphere of argon.
- the reaction solution was cooled to the room temperature, and water was added.
- 2,4-Dicarbazolyl-6-chloropyrimidine (2.5 g, 6 mmole), 4-carbazolyl-phenylboric acid (1.6 g, 6 mmole), copper iodide (0.08 g, 0.4 mmole) and tetrakis(triphenylphosphine) palladium (0.13 g, 0.1 mmole) were suspended in 1,2-dimethoxyethane (25 ml), and a solution prepared by dissolving sodium carbonate (1.8 ml, 17 mmole) in water (8 ml) was added to the resultant suspension. The obtained suspension was heated under the refluxing condition for 9 hours and 20 minutes.
- 2-Carbazolyl-5-bromopyridine (1.9 g, 6 mmole), 4-carbazolylphenyl-boric acid (1.7 g, 6 mmole) and tetrakis(triphenylphosphine)palladium (0.14 g, 0.1 mmole) were suspended in 1,2-dimethoxyethane (18 ml), and a solution prepared by dissolving sodium carbonate (1.9 ml, 18 mmole) in water (9 ml) was added to the resultant suspension. The obtained suspension was heated under the refluxing condition for 9 hours and 15 minutes.
- a glass substrate (manufactured by GEOMATEC Company) of 25 mm ⁇ 75 mm ⁇ 1.1 mm (thickness) having an ITO transparent electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then further cleaned by exposure to ozone generated by ultraviolet light for 30 minutes.
- the glass substrate having the transparent electrode lines which had been cleaned was attached to a substrate holder of a vacuum vapor deposition apparatus.
- a film of N,N′-bis-(N,N′-diphenyl-4-aminophenyl)-N,N′-diphenyl-4,4′-diamino-1,1′-biphenyl (TPD232) having a thickness of 60 nm was formed in a manner such that the formed film covered the transparent electrode.
- the formed film of TPD232 worked as the hole injecting layer.
- a film of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPD) having a thickness of 20 nm was formed.
- the formed film of NPD worked as the hole transporting layer.
- a film of the above Compound (A2) having a thickness of 40 nm was formed by vapor deposition.
- Compound (D1) shown in the following was vapor deposited in an amount such that the ratio of the amounts by weight of Compound (A2) to Compound (D1) was 40:3.
- Compound (D1) is a light emitting compound having a singlet energy as low as 2.79 eV so that blue light is emitted.
- the formed mixed film of Compound (A5) and Compound (D1) worked as the light emitting layer.
- a film of BAlq shown in the following (Me means methyl group) having a thickness of 20 nm was formed.
- the film of BAlq worked as the electron injecting layer.
- Li the source of lithium: manufactured by SAES GETTERS Company
- Alq binary vapor deposited
- an Alq/Li film having a thickness of 10 nm was formed as the second electron injecting layer (the cathode).
- metallic aluminum was vapor deposited to form a metal cathode, and an organic EL device was prepared.
- Example 1 except that a conventional compound BCz shown in the following was used in place of Compound (A2), an organic EL device was prepared, and the voltage of the direct current, the luminance of the emitted light, the efficiency of the light emission, the color of the emitted light and the purity of color were measured. The results are shown in Table 2.
- the organic EL devices using the compounds of the present invention could be driven at lower voltages and emitted blue light in greater efficiencies. Since the energy gap of the compounds of the present invention is great, the light emitting molecule having a great energy gap could be mixed into the light emitting layer and used for the light emission.
- a glass substrate of 25 mm ⁇ 75 mm ⁇ 1.1 mm (thickness) having an ITO transparent electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then further cleaned by exposure to ozone generated by ultraviolet light for 30 minutes.
- the glass substrate having the transparent electrode lines which had been cleaned was attached to a substrate holder of a vacuum vapor deposition apparatus.
- a film of copper phthalocyanine (CuPc shown in the following) having a thickness of 10 nm was formed in a manner such that the formed film covered the transparent electrode.
- the formed film of CuPc worked as the hole injecting layer.
- a film of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD shown in the following) having a thickness of 30 nm was formed.
- the formed film of ⁇ -NPD worked as the hole transporting layer.
- a film of the above Compound (A46) as the host material having a thickness of 30 nm was formed by vapor deposition, and the light emitting layer was formed.
- tris(2-phenylpyridine)iridium (Ir(ppy) 3 shown in the following) as the phosphorescent Ir metal complex dopant was added.
- the concentration of Ir(ppy) 3 in the light emitting layer was set at 5% by weight. This layer worked as the light emitting layer.
- a film of (1,1′-bisphenyl)-4-olato)bis-(2-methyl-8-quinolinolato)aluminum (BAlq) having a thickness of 10 nm was formed.
- the BAlq film worked as the hole barrier layer.
- a film of an aluminum complex of 8-hydroxyquinoline (Alq shown in the following) having a thickness of 40 nm was formed.
- the Alq film worked as the electron injecting layer.
- LiF as the alkali metal halide was vapor deposited in an amount such that the formed film had a thickness of 0.2 nm, and then aluminum was vapor deposited in an amount such that the formed film had a thickness of 150 nm.
- the formed Alq/Li film worked as the cathode.
- an organic EL device was prepared.
- Example 3 In accordance with the same procedures as those conducted in Example 4 except that a conventional compound BCz shown above was used as the host material in the light emitting layer in place of Compound (A46), an organic EL device was prepared, and the voltage, the current density, the luminance of the emitted light, the efficiency of the light emission and the chromaticity were measured. The results are shown in Table 3.
- the organic EL devices using the compounds of the present invention emitted green light in greater efficiencies. Since the energy gap of the compounds of the present invention was great, the light emitting molecules having great energy gaps could be mixed into the light emitting layer and used for the light emission.
- a glass substrate of 25 mm x 75 mm x 1.1 mm (thickness) having an ITO transparent electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then further cleaned by exposure to ozone generated by ultraviolet light for 30 minutes.
- the glass substrate having the transparent electrode lines which had been cleaned was attached to a substrate holder of a vacuum vapor deposition apparatus.
- a film of phthalocyanine copper (CuPc) having a thickness of 10 nm was formed in a manner such that the formed film covered the transparent electrode.
- the formed film of CuPc worked as the hole injecting layer.
- TPAC 1,1′-bis[4-N,N-di(paratolyl)amino-phenyl]cyclohexane
- the formed film of TPAC worked as the hole transporting layer.
- a film of the above Compound (A46) having a thickness of 30 nm was formed by vapor deposition, and the light emitting layer was formed.
- Ir bis[(4,6-difluorophenyl)pyridinato-N,C 2′ ]picolinate (Flrpic shown in the following) as the phosphorescent Ir metal complex was added.
- the concentration of Flrpic in the light emitting layer was set at 7% by weight.
- the formed film worked as the light emitting layer.
- a film of the aluminum complex of 8-hydroxyquinoline (Alq) having a thickness of 30 nm was formed.
- the film of Alq worked as the electron injecting layer.
- Li as the alkali metal halide was vapor deposited, and a film having a thickness of 0.2 nm was formed.
- aluminum was vapor deposited, and a film having a thickness of 150 nm was formed.
- the formed Alq/Li film worked as the cathode.
- An organic EL device was prepared as described above.
- the organic EL devices using the compounds of the present invention could be driven at lower voltages and emitted blue light in greater efficiencies. Since the energy gap of the compound of the present invention was great, the light emitting molecules having great energy gaps could be mixed into the light emitting layer and used for the light emission.
- the organic electroluminescence device As described above in detail, by utilizing the material for organic electroluminescence devices comprising the compound represented by general formula (1) of the present invention, the organic electroluminescence device emitting blue light having an excellent purity of color at a high efficiency of light emission can be obtained. Therefore, the organic electroluminescence device of the present invention is very useful as the light source for various electronic instruments.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
A material for electroluminescent devices which comprises a compound in which a heterocyclic group having nitrogen is bonded to carbazolyl group and an organic electroluminescent device having at least one organic thin film layer which is sandwiched between the cathode and the anode and contains the above material in at least one layer, are provided. The material can provide organic electroluminescent devices emitting bluish light with a high purity of color. The organic electroluminescence device uses the material.
Description
This is a reissue application of U.S. Pat. No. 8,685,543, which is a continuation application of U.S. application Ser. No. 13/067,927, filed Jul. 7, 2011, now U.S. Pat. No. 8,580,398, which is a continuation application of U.S. application Ser. No. 10/504,477, filed Aug. 12, 2004, now U.S. Pat. No. 7,990,046, which is a 371 of PCT/JP03/02995 filed on Mar. 13, 2003.
The present invention relates to a material for organic electroluminescent devices (organic EL devices) and organic EL devices made by using the material and, more particularly, to organic EL devices emitting bluish light with a high purity of color.
Organic EL devices which utilize organic substances are expected to be useful for application as an inexpensive full color display device of the solid light emission type having a great size, and various developments on the organic EL devices are being conducted. In general, an organic EL device has a construction comprising a pair of facing electrodes and a light emitting layer sandwiched between the electrodes.
The light emission of the organic EL device is a phenomenon in which, when an electric field is applied across the two electrodes, electrons are injected from the cathode side and holes are injected from the anode side, the electrons recombine with the holes in the light emitting layer to induce an excited state, and then, when the excited state returns to the original state, it emits energy as light.
As the light emitting material, chelate complexes such as tris(8-quinolinolato)aluminum, coumarin derivatives, tetraphenyl-butadiene derivatives, bisstyrylarylene derivatives and oxadiazole derivatives are known. It has been reported that these light emitting materials emit light in the visible region of blue to red, and it is expected that color display elements can be obtained by using these light emitting materials (see, for example, Japanese Patent Application Laid-Open Nos. Heisei 8(1996)-239655, Heisei 7(1995)-138561 and Heisei 3(1991)-200289).
Although the practical use of displays using organic EL devices recently started, the full color display device is still under development. In particular, an organic EL device which emits bluish light with excellent purity of color and great efficiency of light emission has been desired.
To overcome the above problems, for example, a device in which a phenylanthracene derivative is used as the material emitting blue light is disclosed in Japanese Patent Application Laid-Open No. Heisei 8(1996)-12600. The phenylanthracene derivative is used as the material emitting blue light and, in general, used as a laminate of a layer of the material emitting blue light with a layer of a complex of tris(8-quinolinolato) aluminum (Alq). However, the efficiency of light emission, the life and the purity of blue light are insufficient for the practical application. Japanese Patent Application Laid-Open No. 2001-160489 discloses a device in which an azafluoranthene compound is added to the light emitting layer. However, this device emits yellow to green light and cannot emit blue light having a sufficiently high purity of color.
The present invention has been made to overcome the above problems and has an object of providing a material for organic EL devices which emits bluish light with a high purity of light and an organic EL device utilizing the material.
As the result of intensive studies by the present inventors to achieve the above object, it was found that an organic EL device emitting bluish light with a high purity of light could be obtained by using a compound in which a heterocyclic group having nitrogen was bonded to carbazolyl group as the host material. The present invention has been completed based on this knowledge.
The present invention provides a material for organic EL devices which comprises a compound represented by following general formula (1):
(Cz-)nMm (1)
wherein Cz represents a substituted or unsubstituted carbazolyl group, M represents a substituted or unsubstituted heteroaromatic cyclic group having 2 to 40 carbon atoms and nitrogen atom, n and m each represent an integer of 1 to 3, a plurality of Cz may represent different groups when n represents 2 or 3, a plurality of M may represent different groups when m represents 2 or 3, and M does not represent triazine group when n represents 3 and m represents 1.
(Cz-)nMm (1)
wherein Cz represents a substituted or unsubstituted carbazolyl group, M represents a substituted or unsubstituted heteroaromatic cyclic group having 2 to 40 carbon atoms and nitrogen atom, n and m each represent an integer of 1 to 3, a plurality of Cz may represent different groups when n represents 2 or 3, a plurality of M may represent different groups when m represents 2 or 3, and M does not represent triazine group when n represents 3 and m represents 1.
The present invention also provides an organic EL device which comprises a cathode, an anode and an organic thin film layer comprising at least one layer and sandwiched between the cathode and the anode, wherein at least one layer in the organic thin film layer contains a material for organic EL devices described above. In the organic thin film layer, a light emitting layer, an electron transporting layer or a hole transporting layer may contain the above material for organic EL devices.
The material for organic EL devices of the present invention comprises a compound represented by the following general formula (1):
(Cz-)nMm (1)
(Cz-)nMm (1)
Cz represents a substituted or unsubstituted carbazolyl group, M represents a substituted or unsubstituted heteroaromatic cyclic group having 2 to 40 carbon atoms and nitrogen atom, n and m each represent an integer of 1 to 3, a plurality of Cz may represent different groups when n represents 2 or 3, a plurality of M may represent different groups when m represents 2 or 3, and M does not represent triazine group when n represents 3 and m represents 1.
Examples of the heteroaromatic cyclic group having nitrogen represented by M include groups derived from pyridine, pyrimidine, pyrazine, triazine, aziridine, azaindolidine, indolidine, imidazole, indole, isoindole, indazole, purine, pteridine, β-carboline, naphthylidine, quinoxaline, quinazoline, phenothiazine, acridine, phenanthroline and phenazine.
Examples of the substituent to the groups represented by Cz or M in general formula (1) include halogen atoms such as chlorine atom, bromine atom and fluorine atom; carbazole group, hydroxyl group, substituted or unsubstituted amine groups, nitro group, cyano group, silyl group, trifluoromethyl group, carbonyl group, carboxyl group, substituted or unsubstituted alkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted arylalkyl groups, substituted or unsubstituted aromatic groups, substituted or unsubstituted heteroaromatic heterocyclic groups, substituted or unsubstituted aralkyl groups, substituted or unsubstituted aryloxy groups and substituted or unsubstituted alkyloxyl groups. Among these groups, fluorine atom, phenyl group, naphthyl group, pyridyl group, pyrazyl group, pyrimidyl group, cyano group, substituted or unsubstituted alkyl groups and substituted or unsubstituted aralkyl groups are preferable.
It is preferable that the compound represented by general formula (1) used in the present invention is a compound represented by any one of the following general formulae (2) to (10).
Specific examples of the compound represented by general formula (1) used in the present invention are shown in the following. However, the compound is not limited to the compounds shown in the following.
It is preferable that the singlet energy gap of the compound represented by general formula (1) of the present invention is 2.8 to 3.8 eV and more preferably 2.9 to 3.6 eV.
The organic EL device of the present invention comprises an anode, a cathode and an organic thin film layer comprising at least one layer sandwiched between the anode and the cathode, wherein at least one layer in the organic thin film layer contains the material for organic EL devices comprising the compound represented by the above general formula (1). It is preferable that the light emitting layer in the organic EL device of the present invention contains the material for organic EL devices comprising the compound represented by the above general formula (1).
The organic EL device of the present invention emits bluish light, and the purity of color of the emitted light is as excellent as (0.12, 0.11) to (0.16, 0.19). This property is exhibited since the material for organic EL devices comprising the compound represented by general formula (1) of the present invention has a great energy gap.
It is preferable that the organic EL device of the present invention emits light by a multiplet excitation which is the excitation to the triplet state or higher.
It is preferable that the material for organic EL devices is a host material of the organic EL device. The host material is a material into which holes and electrons can be injected and which has the function of transporting holes and electrons and emitting fluorescent light by recombination of holes and electrons.
The compound represented by general formula (1) in the present invention is useful also as the organic host material for phosphorescence devices since the singlet energy gap is as high as 2.8 to 3.8 eV and the triplet energy gap is as high as 2.5 to 3.3 eV.
The phosphorescence device is an organic device which comprises a substance emitting light based on the transition from the energy level in the triplet state to the energy level in the ground singlet state with a stronger intensity than those emitted from other substances, examples of which include phosphorescent substances such as organometallic complexes containing at least one metal selected from Groups 7 to 11 of the Periodic Table, and emits light under an electric field utilizing the so-called phosphorescence.
In the light emitting layer of the organic EL device, in general, the singlet exciton and the triplet exciton are contained in the formed excited molecules as a mixture, and it is reported that the triplet exciton is formed in a greater amount such that the ratio of the amount of the singlet exciton to the amount of the triplet exciton is 1:3. In conventional organic EL devices using the phosphorescence, the exciton contributing to the light emission is the singlet exciton, and the triplet exciton does not emit light. Therefore, the triplet exciton is ultimately consumed as heat, and the light is emitted by the singlet exciton which is formed in a smaller amount. Therefore, in these organic EL devices, the energy transferred to the triplet exciton causes a great loss in the energy generated by the recombination of holes and electrons.
In contrast, it is considered that, by using the material of the present invention for the phosphorescence device, the efficiency of light emission three times as great as that of a device using fluorescence can be obtained since the triplet exciton can be used for the emission of light. It is also considered that, when the compound of the present invention is used for the light emitting layer of the phosphorescence device, an excited triplet level in an energy state higher than the excited triplet level of a phosphorescent organometallic complex comprising a metal selected from the Group 7 to 11 of the Periodic Table contained in the layer, is achieved;
the film having a more stable form is provided; the glass transition temperature is higher (Tg: 80 to 160° C.); holes and/or electrons are efficiently transported; the compound is electrochemically and chemically stable; and the formation of impurities which may work as a trap or cause loss in the light emission is suppressed during the preparation and the use.
The hole transporting layer, the electron injecting layer or the hole barrier layer may contain the material of the present invention. A phosphorescent light emitting compound and the material of the present invention may be mixed and used in combination.
The organic EL device of the present invention comprises a cathode, an anode and an organic thin film layer comprising at least one layer and sandwiched between the cathode and the anode. When the organic thin film layer comprises a single layer, a light emitting layer is formed between the anode and the cathode. The light emitting layer contains a light emitting material and may further contain a hole injecting material for transporting holes injected from the anode to the light emitting material or an electron injecting material for transporting electrons injected from the cathode to the light emitting material. It is preferable that the light emitting material exhibits a very excellent quantum efficiency of fluorescence, has a great ability of transporting both holes and electrons and forms a uniform thin layer. Examples of the organic EL device of the multi-layer type include organic EL devices comprising a laminate having a multi-layer construction such as (the anode/the hole injecting layer/the light emitting layer/the cathode), (the anode/the light emitting layer/the electron injecting layer/the cathode) and (the anode/the hole injecting layer/the light emitting layer/the electron injecting layer/the cathode).
For the light emitting layer, in addition to the material of the present invention comprising the compound represented by general formula (1) of the present invention, conventional host materials, light emitting materials, doping materials, hole injecting materials and electron injecting materials and combinations of these materials may be used in combination, where necessary. By using a multi-layer structure for the organic EL device, decreases in the luminance and the life due to quenching can be prevented, and the luminance of emitted light and the efficiency of light emission can be improved with other doping materials. By using other doping materials contributing to the light emission of the phosphorescence in combination, the luminance of emitted light and the efficiency of light emission can be improved in comparison with those of conventional devices.
In the organic EL device of the present invention, the hole injecting layer, the light emitting layer and the electron injecting layer may each have a multi-layer structure. When the hole injecting layer has a multi-layer structure, the layer into which holes are injected from the electrode is called as a hole injecting layer, and the layer which receives holes from the hole injecting layer and transports holes to the light emitting layer is called as a hole transporting layer. Similarly, when the electron injecting layer has a multi-layer structure, the layer into which electron are injected from the electrode is called as an electron injecting layer, and the layer which receives electrons from the electron injecting layer and transports electrons to the light emitting layer is called as an electron transporting layer. The layers are selected in accordance with the energy levels of the material, heat resistance and adhesion with the organic thin film layers or the metal electrodes.
In the organic EL device of the present invention, the electron transporting layer and the hole transporting layer may contain the material for organic EL devices of the present invention which comprises the compound represented by general formula (1).
Examples of the light emitting material and the host material which can be used for the organic thin film layer in combination with the compound represented by general formula (1) include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluoresceine, perylene, phthaloperylene, naphthaloperylene, perynone, phthaloperynone, naphthaloperynone, diphenylbutadiene, tetraphenyl-butadiene, coumarine, oxadiazole, aldazine, bis-benzoxazoline, bisstyryl, pyrazine, cyclopentadiene, metal complexes of quinoline, metal complexes of aminoquinoline, metal complexes of benzoquinoline, imines, diphenyl- ethylene, vinylanthracene, diaminoanthracene, diaminocarbazole, pyrane, thiopyrane, polymethine, melocyanine, oxinoid compounds chelated with imidazole, quinacridone, rubrene, stilbene-based derivatives and fluorescent pigments. However, the light emitting material and the host material are not limited to the compounds described above.
As the light emitting material, phosphorescent organometallic complexes are preferable since the external quantum efficiency of the device can be improved. Examples of the metal in the phosphorescent organometallic complex include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. It is preferable that the organometallic complex is an organometallic compound represented by the following general formula (A):
In the above general formula, A1 represents a substituted or unsubstituted aromatic hydrocarbon cyclic group or aromatic heterocyclic group, which is preferably phenyl group, biphenyl group, naphthyl group, anthryl group, thienyl group, pyridyl group, quinolyl group or isoquinolyl group. Examples of the substituent include halogen atoms such as fluorine atom; alkyl groups having 1 to 30 carbon atoms such as methyl group and ethyl group; alkenyl groups such as vinyl group; alkoxycarbonyl groups having 1 to 30 carbon atoms such as methoxycarbonyl group and ethoxycarbonyl group; alkoxyl groups having 1 to 30 carbon atoms such as methoxyl group and ethoxyl group; aryloxyl groups such as phenoxyl group and benzyloxyl group; dialkylamino groups such as dimethylamino group and diethylamino group; acyl groups such as acetyl group; haloalkyl groups such as trifluoromethyl group; and cyano group.
A2 represents a substituted or unsubstituted aromatic heterocyclic group having nitrogen atom as the atom forming the heterocyclic ring, which is preferably pyridyl group, pyrimidyl group, pyrazine group, triazine group, benzothiazole group, benzoxazole group, benzimidazole group, quinolyl group, isoquinolyl group, quinoxaline group or phenanthridine group. Examples of the substituent include the substituents described as the examples of the substituent for the group represented by A1.
The ring having the group represented by A1 and the ring having the group represented by A2 may form one condensed ring. Examples of the condensed ring include 7,8-benzoquinoline group.
Q represents a metal selected from metals of Groups 7 to 11 of the Periodic Table, which is preferably ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold.
L represents a bidentate ligand, which is preferably selected from ligands of the β-diketone type such as acetylacetonates and pyromellitic acid.
m and n each represent an integer. When Q represents a divalent metal, n=2 and m=0. When Q represents a trivalent metal, n=3 and m=0 or n=2 and m=1.
Specific examples of the organometallic complex represented by the above general formula (A) are shown in the following. However, the organometallic complex is not limited to these compounds.
As the hole injecting material, compounds which have the ability to transport holes, exhibit the excellent effect of receiving holes injected from the anode and the excellent effect of injecting holes to the light emitting layer or the light emitting material, prevent transfer of excitons formed in the light emitting layer to the electron injecting layer or the electron injecting material and have the excellent ability of forming a thin film, are preferable. Examples of the hole injecting compound include phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazoles, oxadiazoles, triazoles, imidazoles, imidazolones, imidazolethiones, pyrazolines, pyrazolones, tetrahydroimidazoles, oxazoles, oxadiazoles, hydrazones, acylhydrazones, polyarylalkanes, stilbene, butadiene, triphenylamine of the benzidine type, triphenylamine of the styrylamine type, triphenylamine of the diamine type, derivatives of the above compounds and macromolecular materials such as polyvinylcarbazoles, polysilanes and electrically conductive macromolecules. However, the hole injecting material is not limited to these materials.
Among these hole injecting materials, the more effective hole injecting materials are aromatic tertiary amine derivatives and phthalocyanine derivatives. Examples of the aromatic tertiary amine derivative include triphenylamine, tritolylamine, tolyldiphenylamine, N,N′-diphenyl-N,N′-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine, N,N,N′,N′-(4-methylphenyl)-1,1′-phenyl-4,4′-diamine, N,N,N′,N′-(4-methyl-phenyl)-1,1′-biphenyl-4,4′-diamine, N,N′-diphenyl-N,N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N,N′-(methylphenyl)-N,N′-(4-n-butylphenyl)-phenanthrene-9,10-diamine, N,N-bis(4-di-4-tolylaminophenyl)-4-phenylcyclohexane and oligomers and polymers having the skeleton structure of these aromatic tertiary amines. However, the aromatic tertiary amine is not limited to these compounds. Examples of the phthalocyanine (Pc) derivative include phthalocyanine derivatives and naphthalocyanine derivatives such as H2Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl2SiPc, (HO)AlPc, (HO) GaPc, VOPc, TiOPc, MoOPc and GaPc-O-GaPc. However the phthalocyanine derivative is not limited to these compounds.
As the electron injecting material, compounds which have the ability to transport electrons, exhibit the excellent effect of receiving electrons injected from the anode and the excellent effect of injecting electrons to the light emitting layer or the light emitting material, prevent transfer of excitons formed in the light emitting layer to the hole injecting layer and have the excellent ability of forming a thin film, are preferable. Examples of the electron injecting compound include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrane dioxide, oxazoles, oxadiazoles, triazoles, imidazoles, perylenetetracarboxylic acid, quinoxaline, fluorenylidenemethane, anthraquinodimethane, anthrone and derivatives of these compounds. However, the electron injecting material is not limited to these compounds.
Among these electron injecting materials, the more effective electron injecting materials are metal complex compounds and five-membered derivatives having nitrogen. Examples of the metal complex compound include 8-hydroxyquinolinatolithium, bis(8-hydroxy- quinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxy-quinolinato)manganese, tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)-gallium, bis(10-hydroxybenzo[h]quinolinato)beryllium, bis(10-hydroxy-benzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)(o-cresolato)gallium, bis(2-methyl-8-quinolinato)-(1-naphtholato)aluminum and bis(2-methyl-8-quinolinato)(2-naphtholato)- gallium. However the electron injecting material is not limited to these compounds.
Oxazoles, thiazoles, oxadiazoles, thiadiazoles, triazoles and derivatives of these compounds are preferable as the five-membered derivative having nitrogen,. Specific examples of the five-membered derivative having nitrogen include 2,5-bis(1-phenyl)-1,3,4-oxazole, dimethylPOPOP, 2,5-bis(1-phenyl)-1,3,4-thiazole, 2,5-bis(1-phenyl)-1,3,4-oxadiazole, 2-(4′-tert-butylphenyl)-5-(4″-biphenyl)-1,3,5-oxadiazole, 2,5-bis(1-naphthyl)-1,3,4-oxadiazole, 1,4-bis[2-(5-phenyloxadiazolyl)]benzene, 1,4-bis[2-(5-phenyloxadiazolyl)-4-tert-butylbenzene], 2-(4′-tert-butylphenyl)-5-(4″-biphenyl)-1,3,4-thiadiazole, 2,5-bis(1-naphthyl)-1,3,4-thiadiazole, 1,4-bis[2-(5-phenylthiadiazolyl)]benzene, 2-(4′-tert-butylphenyl)-5-(4″-biphenyl)-1,3,4-triazole, 2,5-bis(1-naphthyl)-1,3,4-triazole and 1,4-bis[2-(5-phenyltriazolyl)]benzene. However, the five-membered derivative having nitrogen is not limited to these compounds.
The property of charge injection can be improved by adding an electron-accepting compound to the hole injecting material and by adding an electron-donating compound to the electron injecting material.
As the electrically conductive material used for the anode of the organic EL device of the present invention, a material having a work function greater than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, alloys of these metals, metal oxides such as tin oxides and indium oxide used for ITO substrates and NESA substrates and organic electrically conductive resins such as polythiophene and polypyrrol are used. As the electrically conductive material used for the cathode, a material having a work function smaller than 4 eV is suitable, and magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum and alloys of these metals are used. However, the electrically conductive material used for the cathode is not limited to these materials. Typical examples of the alloy include magnesium/silver, magnesium/indium and lithium/aluminum. However, the alloy is not limited to these alloys. The composition of the alloy is controlled by the temperature of the source of vaporization, the atmosphere and the degree of vacuum and a suitable composition is selected. The anode and the cathode may be formed with a structure having two or more layers, where necessary.
The organic EL device of the present invention may comprise an inorganic compound layer between at least one of the electrodes and the above organic thin film layer. Examples of the inorganic compound used for the inorganic compound layer include various types of oxides, nitrides and oxide nitrides such as alkali metal oxides, alkaline earth metal oxides, rare earth oxides, alkali metal halides, alkaline earth metal halides, rare earth halides, SiOx, AlOx, SiNx, SiON, AlON, GeOx, LiOx, LiON, TiOx, TiON, TaOx, TaON, TaNx and C. In particular, as the component contacting the anode, SiOx, AlOx, SiNx, SiON, AlON, GeOx and C are preferable since a stable interface layer of injection is formed. As the component contacting the cathode, LiF, MgF2, CaF2, MgF2 and NaF are preferable.
In the organic EL device of the present invention, it is preferable that at least one surface is sufficiently transparent in the region of the wavelength of the light emitted by the device so that the light emission is achieved efficiently. It is preferable that the substrate is also transparent.
For the transparent electrode, the conditions in the vapor deposition or the sputtering are set so that the prescribed transparency is surely obtained using the above electrically conductive material. It is preferable that the electrode of the light emitting surface has a transmittance of light of 10% or greater. The substrate is not particularly limited as long as the substrate has the mechanical and thermal strength and is transparent. Examples of the substrate include glass substrates and transparent films of resins. Examples of the transparent film of a resin include films of polyethylene, ethylenevinyl acetate copolymers, ethylene-vinyl alcohol copolymers, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketones, polysulfones, polyether sulfones, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymers, tetrafluoroethylene-hexafluoropropylene copolymers, polychlorotrifluoroethylene, polyvinylidene fluoride, polyesters, polycarbonates, polyurethanes, polyimides, polyether imides, polyimides and polypropylene.
In the organic EL device of the present invention, it is possible that a protective layer is formed on the surface of the device or the entire device is covered with a silicone oil or a resin so that stability to the temperature, the humidity and the atmosphere is improved.
For the formation of each layer of the organic EL device of the present invention, any of the dry processes of film formation such as the vacuum vapor deposition, the sputtering, the plasma plating and the ion plating and the wet processes of film formation such as the spin coating, the dipping and the flow coating, can be applied. Although the thickness of each film is not particularly limited, it is necessary that the thickness of the film be set at a suitable value. When the thickness is excessively great, application of a greater voltage is necessary to obtain the same output of the light, and the efficiency of light emission decreases. When the thickness is excessively small, pin holes are formed, and sufficient light emission cannot be obtained even when an electric field is applied. In general, a thickness in the range of 5 nm to 10 μm is suitable and a thickness in the range of 10 nm to 0.2 μm is preferable.
When the wet process of film formation is used, the material forming each layer is dissolved or suspended in a suitable solvent such as ethanol, chloroform, tetrahydrofuran and dioxane, and a thin film is formed from the obtained solution or suspension. Any of the above solvents can be used. For any of the layers, suitable resins and additives may be used to improve the property for film formation and to prevent formation of pin holes in the film. Examples of the resin which can be used include insulating resins such as polystyrene, polycarbonates, polyarylates, polyesters, polyamides, polyurethanes, polysulfones, polymethyl methacrylate, polymethyl acrylate, cellulose and copolymer resins derived from these resins; photoconductive resins such as poly-N-vinylcarbazole and polysilanes; and electrically conductive resins such as polythiophene and polypyrrol. Examples of the additive include antioxidants, ultraviolet light absorbents and plasticizers.
As described above, by using the compound represented by general formula (1) for the organic thin film layer of the organic EL device of the present invention, the organic EL device emitting blue light with a high purity of color can be obtained. This organic EL device can be advantageously used for a photosensitive member for electronic photograph, a planar light emitting member such as a flat panel display of wall televisions, a back light of copiers, printers and liquid crystal displays, a light source for instruments, a display panel, a marker lamp and an accessory.
The present invention will be described more specifically with reference to examples in the following. However, the present invention is not limited to the examples.
The triplet energy gap and the singlet energy gap of a compound were measured in accordance with the following methods.
(1) Measurement of the Triplet Energy Gap
The lowest excited triplet energy level T1 was measured. The phosphorescence spectrum of a sample was measured (a 10 μmoles/liter EPA (diethyl ether:isopentane:ethanol=5:5:2 by volume) solution; 77K; a quartz cell; FLUOROLOG 11 manufactured by SPEX Company). A tangent line was drawn to the increasing line at the short wavelength side of the phosphorescence spectrum, and the wavelength (the end of light emission) at the intersection of the tangent line and the abscissa was obtained. The obtained wavelength was converted into the energy.
(2) Measurement of the Singlet Energy Gap
The excited singlet energy gap was measured. Using a toluene solution (10−5 moles/liter) of a sample, the absorption spectrum was obtained by a spectrometer for absorption of ultraviolet and visible light manufactured by HITACHI Co. Ltd. A tangent line was drawn to the increasing line at the long wavelength side of the spectrum, and the wavelength (the end of absorption) at the intersection of the tangent line and the abscissa was obtained. The obtained wavelength was converted into the energy.
The route of synthesis of Compound (A2) is shown in the following.
Under the atmosphere of argon, 2,6-dipyridyl-4-bromopyridine (9.4 g, 30 mmole), 3,6-diphenylcarbazole (9.6 g, 30 mmole), copper iodide (0.06 g, 0.32 mmole, 1% Cu), trans-1,2-cyclohexanediamine (0.4 ml, 3.3 mmole, 10 eq to Cu) and potassium phosphate (14 g, 66 mmole, 2.2 eq) were suspended in anhydrous dioxane (30 ml), and the resultant suspension was heated under the refluxing condition for 10 hours. The reaction mixture was filtered and washed with toluene. The filtrate was concentrated and, after purification in accordance with the column chromatography, a white solid substance (13.2 g, the yield: 80%) was obtained. It was confirmed in accordance with 1H-NMR and FD-MS (the field desorption mass analysis) that the product was Compound (A2) of the object compound. The result of the measurement by FD-MS is shown in the following.
FD-MS calcd. for C39H26N4=550; found: m/z=550 (M+, 100)
The singlet energy gap and the triplet energy gap of the obtained compound are shown in Table 1.
The route of synthesis of Compound (A14) is shown in the following.
Under the atmosphere of argon, 2-(2,6-dipyridylpyridin-4-yl)-5-bromopyrimidine (12 g, 30 mmole), carbazole (5 g, 30 mmole), copper iodide (0.06 g, 0.32 mmole, 1% Cu), trans-1,2-cyclohexanediamine (0.4 ml, 3.3 mmole, 10 eq to Cu) and potassium phosphate (14 g, 66 mmole, 2.2 eq) were suspended in anhydrous dioxane (30 ml), and the resultant suspension was heated under the refluxing condition for 10 hours. The reaction mixture was filtered and washed with toluene. The filtrate was concentrated and, after purification in accordance with the column chromatography, a white solid substance (10.9 g, the yield: 76%) was obtained. It was confirmed in accordance with 1H-NMR and FD-MS that the product was Compound (A14) of the object compound. The result of the measurement by FD-MS is shown in the following.
FD-MS calcd. for C31H20N6=476; found: m/z=476 (M+, 100)
The singlet energy gap and the triplet energy gap of the obtained compound are shown in Table 1.
The route of synthesis of Compound (A33) is shown in the following.
Under the atmosphere of argon, 2,6-dibromopyridine (2.4 g, 10 mmole), 3,6-diphenylcarbazole (9.6 g, 30 mmole), copper iodide (0.06 g, 0.32 mmole, 1% Cu), trans-1,2-cyclohexanediamine (0.4 ml, 3.3 mmole, 10 eq to Cu) and potassium phosphate (14 g, 66 mmole, 2.2 eq) were suspended in anhydrous dioxane (30 ml), and the resultant suspension was heated under the refluxing condition for 10 hours. The reaction mixture was filtered and washed with toluene. The filtrate was concentrated and, after purification in accordance with the column chromatography, a white solid substance (4.8 g, the yield: 67%) was obtained. It was confirmed in accordance with 1H-NMR and FD-MS that the product was Compound (A33) of the object compound. The result of the measurement by FD-MS is shown in the following.
FD-MS calcd. for C53H35N3=713; found: m/z=713 (M+, 100)
The singlet energy gap and the triplet energy gap of the obtained compound are shown in Table 1.
The route of synthesis of Compound (A45) is shown in the following.
2-(2,4-Diphenylpyrimidin-6-yl)-6-bromopyridine (3.2 g, 8 mmole), carbazole (1.4 g, 9 mmole), copper iodide (0.08 g, 0.4 mmole) and potassium phosphate (3.7 g, 17 mmole) were suspended in 1,4-dioxane (16 ml), and trans-1,2-cyclohexanediamine (0.5 ml, 4 mmole) was added to the resultant suspension. The obtained suspension was heated under the refluxing condition for 15 hours under the atmosphere of argon. The reaction solution was cooled to the room temperature, and water was added. After extraction with methylene chloride, the obtained organic layer was washed with water and dried with anhydrous sodium sulfate. After the organic solvent was removed by distillation under a reduced pressure, 25 ml of ethyl acetate was added. The formed crystals were separated by filtration and washed with ethyl acetate, and crystals (2.3 g, the yield: 59%) were obtained. It was confirmed in accordance with 90 MHz 1H-NMR and FD-MS that the obtained crystals were Compound (A45) of the object compound. The result of the measurement by FD-MS is shown in the following.
FD-MS calcd. for C33H22N4=474; found: m/z=474 (M+, 100)
The singlet energy gap and the triplet energy gap of the obtained compound are shown in Table 1.
The route of synthesis of Compound (A46) is shown in the following.
2,4-Dicarbazolyl-6-chloropyrimidine (2.5 g, 6 mmole), 4-carbazolyl-phenylboric acid (1.6 g, 6 mmole), copper iodide (0.08 g, 0.4 mmole) and tetrakis(triphenylphosphine) palladium (0.13 g, 0.1 mmole) were suspended in 1,2-dimethoxyethane (25 ml), and a solution prepared by dissolving sodium carbonate (1.8 ml, 17 mmole) in water (8 ml) was added to the resultant suspension. The obtained suspension was heated under the refluxing condition for 9 hours and 20 minutes. After the reaction solution was cooled to the room temperature, formed crystals were separated by filtration and washed with water, methanol and ethyl acetate, successively, and crude crystals (3.7 g) were obtained. The obtained crude crystals were purified by sublimation under a reduced pressure, and purified crystals (3.1 g, the yield: 85%) were obtained. It was confirmed in accordance with 90 MHz 1H-NMR and FD-MS that the obtained crystals were Compound (A46) of the object compound. The result of the measurement by FD-MS is shown in the following.
FD-MS calcd. for C46H29N5=651; found: m/z=651 (M+, 100)
The singlet energy gap and the triplet energy gap of the obtained compound are shown in Table 1.
The route of synthesis of Compound (A47) is shown in the following.
2-Carbazolyl-5-bromopyridine (1.9 g, 6 mmole), 4-carbazolylphenyl-boric acid (1.7 g, 6 mmole) and tetrakis(triphenylphosphine)palladium (0.14 g, 0.1 mmole) were suspended in 1,2-dimethoxyethane (18 ml), and a solution prepared by dissolving sodium carbonate (1.9 ml, 18 mmole) in water (9 ml) was added to the resultant suspension. The obtained suspension was heated under the refluxing condition for 9 hours and 15 minutes. After the reaction solution was cooled to the room temperature, formed crystals were separated by filtration and washed with water, methanol and ethyl acetate, successively, and crude crystals (2.9 g) were obtained. The formed crystals were purified by sublimation under a reduced pressure, and purified crystals (2.4 g, the yield: 84%) were obtained. It was confirmed in accordance with 90 MHz 1H-NMR and FD-MS that the obtained crystals were Compound (A47) of the object compound. The result of the measurement by FD-MS is shown in the following.
FD-MS calcd. for C35H23N3=485; found: m/z=485 (M+, 100)
The singlet energy gap and the triplet energy gap of the obtained compound are shown in Table 1.
TABLE 1 | |||||
Singlet | Triplet | ||||
energy gap | energy gap | ||||
Compound | (eV) | (eV) | |||
Synthesis Example 1 | A2 | 3.2 | 2.7 | ||
Synthesis Example 2 | A14 | 3.2 | 2.8 | ||
Synthesis Example 3 | A33 | 3.3 | 2.7 | ||
Synthesis Example 4 | A45 | 3.2 | 2.8 | ||
Synthesis Example 5 | A46 | 3.3 | 2.8 | ||
Synthesis Example 6 | A47 | 3.4 | 2.8 | ||
A glass substrate (manufactured by GEOMATEC Company) of 25 mm×75 mm×1.1 mm (thickness) having an ITO transparent electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then further cleaned by exposure to ozone generated by ultraviolet light for 30 minutes. The glass substrate having the transparent electrode lines which had been cleaned was attached to a substrate holder of a vacuum vapor deposition apparatus. On the surface of the cleaned substrate at the side having the transparent electrode, a film of N,N′-bis-(N,N′-diphenyl-4-aminophenyl)-N,N′-diphenyl-4,4′-diamino-1,1′-biphenyl (TPD232) having a thickness of 60 nm was formed in a manner such that the formed film covered the transparent electrode. The formed film of TPD232 worked as the hole injecting layer. On the formed film of TPD232, a film of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPD) having a thickness of 20 nm was formed. The formed film of NPD worked as the hole transporting layer. On the formed film of NPD, a film of the above Compound (A2) having a thickness of 40 nm was formed by vapor deposition. At the same time, Compound (D1) shown in the following was vapor deposited in an amount such that the ratio of the amounts by weight of Compound (A2) to Compound (D1) was 40:3. Compound (D1) is a light emitting compound having a singlet energy as low as 2.79 eV so that blue light is emitted. The formed mixed film of Compound (A5) and Compound (D1) worked as the light emitting layer. On the film formed above, a film of BAlq shown in the following (Me means methyl group) having a thickness of 20 nm was formed. The film of BAlq worked as the electron injecting layer. Thereafter, Li (the source of lithium: manufactured by SAES GETTERS Company) as the reducing dopant and Alq were binary vapor deposited, and an Alq/Li film having a thickness of 10 nm was formed as the second electron injecting layer (the cathode). On the formed Alq/Li film, metallic aluminum was vapor deposited to form a metal cathode, and an organic EL device was prepared.
When a direct current voltage of 5.0 V was applied to the organic EL device prepared above, blue light was efficiently emitted at a luminance of 150 cd/m2 and an efficiency of the light emission of 6.7 cd/A. The chromaticity coordinates were (0.15, 0.16), and the purity of color was excellent.
In accordance with the same procedures as those conducted in Example 1 except that compounds shown in Table 2 were used in place of Compound (A2), organic EL devices were prepared, and the voltage of the direct current, the luminance of the emitted light, the efficiency of the light emission, the color of the emitted light and the purity of color were measured. The results are shown in Table 2.
In accordance with the same procedures as those conducted in
Example 1 except that a conventional compound BCz shown in the following was used in place of Compound (A2), an organic EL device was prepared, and the voltage of the direct current, the luminance of the emitted light, the efficiency of the light emission, the color of the emitted light and the purity of color were measured. The results are shown in Table 2.
TABLE 2 |
BCz |
|
Organic | Luminance | Efficiency | ||||
host material | Volt- | of emitted | of light | Color of | ||
of light | age | light | emission | emitted | Chromaticity | |
emitting layer | (V) | (cd/m2) | (cd/A) | light | coordinates | |
Example 1 | A2 | 5.0 | 150 | 6.7 | blue | (0.15, 0.16) |
Example 2 | A14 | 6.0 | 130 | 5.5 | blue | (0.14, 0.16) |
Example 3 | A33 | 7.0 | 161 | 6.9 | blue | (0.15, 0.16) |
Comparative | BCz | 8.5 | 120 | 3.4 | blue | (0.14, 0.16) |
Example 1 | ||||||
As shown in Table 2, in comparison with the organic EL device of Comparative Example 1 using the conventional compound BCz, the organic EL devices using the compounds of the present invention could be driven at lower voltages and emitted blue light in greater efficiencies. Since the energy gap of the compounds of the present invention is great, the light emitting molecule having a great energy gap could be mixed into the light emitting layer and used for the light emission.
A glass substrate of 25 mm×75 mm×1.1 mm (thickness) having an ITO transparent electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then further cleaned by exposure to ozone generated by ultraviolet light for 30 minutes. The glass substrate having the transparent electrode lines which had been cleaned was attached to a substrate holder of a vacuum vapor deposition apparatus. On the surface of the cleaned substrate at the side having the transparent electrode, a film of copper phthalocyanine (CuPc shown in the following) having a thickness of 10 nm was formed in a manner such that the formed film covered the transparent electrode. The formed film of CuPc worked as the hole injecting layer. On the formed film of CuPc, a film of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD shown in the following) having a thickness of 30 nm was formed. The formed film of α-NPD worked as the hole transporting layer. On the formed film of α-NPD, a film of the above Compound (A46) as the host material having a thickness of 30 nm was formed by vapor deposition, and the light emitting layer was formed. At the same time, tris(2-phenylpyridine)iridium (Ir(ppy)3 shown in the following) as the phosphorescent Ir metal complex dopant was added. The concentration of Ir(ppy)3 in the light emitting layer was set at 5% by weight. This layer worked as the light emitting layer. On the film formed above, a film of (1,1′-bisphenyl)-4-olato)bis-(2-methyl-8-quinolinolato)aluminum (BAlq) having a thickness of 10 nm was formed. The BAlq film worked as the hole barrier layer. On the film formed above, a film of an aluminum complex of 8-hydroxyquinoline (Alq shown in the following) having a thickness of 40 nm was formed. The Alq film worked as the electron injecting layer. Thereafter, LiF as the alkali metal halide was vapor deposited in an amount such that the formed film had a thickness of 0.2 nm, and then aluminum was vapor deposited in an amount such that the formed film had a thickness of 150 nm. The formed Alq/Li film worked as the cathode. Thus, an organic EL device was prepared.
When the obtained device was tested by passing an electric current, green light having a luminance of 100 cd/m2 was emitted with the efficiency of the light emission of 44.5 cd/A at a voltage of 5.5 V and a current density of 0.22 mA/cm2. The chromaticity coordinates were (0.32, 0.61).
In accordance with the same procedures as those conducted in Example 4 except that Compound (A45) was used as the host material in the light emitting layer in place of Compound (A46), an organic EL device were prepared, and the voltage, the current density, the luminance of the emitted light, the efficiency of the light emission and the chromaticity were measured. The results are shown in Table 3.
In accordance with the same procedures as those conducted in Example 4 except that a conventional compound BCz shown above was used as the host material in the light emitting layer in place of Compound (A46), an organic EL device was prepared, and the voltage, the current density, the luminance of the emitted light, the efficiency of the light emission and the chromaticity were measured. The results are shown in Table 3.
In accordance with the same procedures as those conducted in Example 4 except that Compound (A-10) shown in the following which is described in United States Patent Application Laid-Open No. 2002-0028329A1 was used as the host material in the light emitting layer in place of Compound (A46), an organic EL device was prepared and the voltage, the current density, the luminance of the emitted light, the efficiency of the light emission and the chromaticity were measured. The results are shown in Table 3.
TABLE 3 |
A-10 |
|
Organic host | Triplet | Singlet | |
material in light | energy gap | energy gap | |
emitting layer | (eV) | (eV) | |
Example 4 | A46 | 2.8 | 3.3 |
Example 5 | A45 | 2.8 | 3.2 |
Comparative | BCz | 2.8 | 3.6 |
Example 2 | |||
Comparative | A-10 | 3.1 | 3.7 |
Example 3 | |||
Lumi- | Effi- | ||||
nance of | ciency | Chroma- | |||
Volt- | Current | emitted | of light | ticity | |
age | density | light | emission | coordinates | |
(V) | (mA/cm2) | (cd/m2) | (cd/A) | (x,y) | |
Example 4 | 5.5 | 0.22 | 100 | 44.5 | (0.32, 0.61) |
Example 5 | 5.7 | 0.23 | 97 | 41.8 | (0.32, 0.61) |
Comparative | 5.4 | 0.31 | 101 | 32.6 | (0.32, 0.61) |
Example 2 | |||||
Comparative | 5.9 | 0.32 | 100 | 31.8 | (0.32, 0,61) |
Example 3 | |||||
As shown in Table 3, in comparison with the organic EL devices of Comparative Examples 2 and 3 using conventional compounds (BCz and A-10), the organic EL devices using the compounds of the present invention emitted green light in greater efficiencies. Since the energy gap of the compounds of the present invention was great, the light emitting molecules having great energy gaps could be mixed into the light emitting layer and used for the light emission.
A glass substrate of 25 mm x 75 mm x 1.1 mm (thickness) having an ITO transparent electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then further cleaned by exposure to ozone generated by ultraviolet light for 30 minutes. The glass substrate having the transparent electrode lines which had been cleaned was attached to a substrate holder of a vacuum vapor deposition apparatus. On the surface of the cleaned substrate at the side having the transparent electrode, a film of phthalocyanine copper (CuPc) having a thickness of 10 nm was formed in a manner such that the formed film covered the transparent electrode. The formed film of CuPc worked as the hole injecting layer. On the formed film of CuPc, a film of 1,1′-bis[4-N,N-di(paratolyl)amino-phenyl]cyclohexane (TPAC shown in the following) having a thickness of 30 nm was formed. The formed film of TPAC worked as the hole transporting layer. On the formed film of TPAC, a film of the above Compound (A46) having a thickness of 30 nm was formed by vapor deposition, and the light emitting layer was formed. At the same time, Ir bis[(4,6-difluorophenyl)pyridinato-N,C2′]picolinate (Flrpic shown in the following) as the phosphorescent Ir metal complex was added. The concentration of Flrpic in the light emitting layer was set at 7% by weight. The formed film worked as the light emitting layer. On the film formed above, a film of the aluminum complex of 8-hydroxyquinoline (Alq) having a thickness of 30 nm was formed. The film of Alq worked as the electron injecting layer. Thereafter, Li as the alkali metal halide was vapor deposited, and a film having a thickness of 0.2 nm was formed. Then, aluminum was vapor deposited, and a film having a thickness of 150 nm was formed. The formed Alq/Li film worked as the cathode. An organic EL device was prepared as described above.
When the obtained device was tested by passing an electric current, blue light having a luminance of 99 cd/m2 was emitted with the efficiency of the light emission of 22.4 cd/A at a voltage of 6.4 V and a current density of 0.44 mA/cm2. The chromaticity coordinates were (0.17, 0.39).
In accordance with the same procedures as those conducted in Example 6 except that Compound (A45) was used as the host material in the light emitting layer in place of Compound (A46), an organic EL devices was prepared, and the voltage, the current density, the luminance of the emitted light, the efficiency of the light emission, the chromaticity were measured. The results are shown in Table 4.
In accordance with the same procedures as those conducted in Example 6 except that the above conventional compound BCz was used as the host material in the light emitting layer in place of Compound (A46), an organic EL devices was prepared, and the voltage, the current density, the luminance of the emitted light, the efficiency of the light emission, the chromaticity were measured. The results are shown in Table 4.
In accordance with the same procedures as those conducted in Comparative Example 4 except that α-NPD was used for the hole transporting layer in place of the compound (TPAC) and BAlq was used for the electron injecting layer in place of the compound Alq, an organic EL devices was prepared, and the voltage, the current density, the luminance of the emitted light, the efficiency of the light emission, the chromaticity were measured. The results are shown in Table 4.
TABLE 4 | |||
Organic host material | Triplet energy gap | Singlet energy gap | |
in light emitting layer | (eV) | (eV) | |
Example 6 | A46 | 2.8 | 3.3 |
Example 7 | A45 | 2.8 | 3.2 |
Comparative | BCz | 2.8 | 3.6 |
Example 4 | |||
Comparative | BCz | 2.8 | 3.6 |
Example 5 | |||
Current | Luminance of | Efficiency of | Chromaticity | ||
Voltage | density | emitted light | light emission | coordinates | |
(V) | (mA/cm2) | (cd/m2) | (cd/A) | (x, y) | |
Example 6 | 6.4 | 0.44 | 99 | 22.4 | (0.17, 0.39) |
Example 7 | 6.8 | 0.55 | 99 | 18.2 | (0.17, 0.39) |
Comparative | 7.8 | 1.70 | 98 | 5.80 | (0.16, 0.37) |
Example 4 | |||||
Comparative | 7.6 | 1.09 | 99 | 9.15 | (0.17, 0.37) |
Example 5 | |||||
As shown in Table 4, in comparison with the organic EL devices of Comparative Examples using the conventional compound BCz, the organic EL devices using the compounds of the present invention could be driven at lower voltages and emitted blue light in greater efficiencies. Since the energy gap of the compound of the present invention was great, the light emitting molecules having great energy gaps could be mixed into the light emitting layer and used for the light emission.
Industrial Applicability
As described above in detail, by utilizing the material for organic electroluminescence devices comprising the compound represented by general formula (1) of the present invention, the organic electroluminescence device emitting blue light having an excellent purity of color at a high efficiency of light emission can be obtained. Therefore, the organic electroluminescence device of the present invention is very useful as the light source for various electronic instruments.
Claims (33)
1. A compound according to formula (1):
(Cz-)nMm (1)
(Cz-)nMm (1)
wherein:
each Cz is independently a substituted carbazolyl group or an unsubstituted carbazolyl group;
each substituted carbazolyl group Cz independently comprises at least one substituent selected from a substituted aromatic group, an unsubstituted aromatic group, a substituted aromatic heterocyclic group, and an unsubstituted aromatic heterocyclic group;
each M is independently a substituted pyrimidine, a substituted pyrazine, an unsubstituted pyrazine, a substituted aziridine, an unsubstituted aziridine, a substituted azaindolizine, an unsubstituted azaindolizine, a substituted isoindole, an unsubstituted isoindole, a substituted indazole, an unsubstituted indazole, a substituted purine, an unsubstituted purine, a substituted pteridine, an unsubstituted pteridine, a substituted β-carboline, an unsubstituted β-carboline, a substituted quinoxaline, an unsubstituted quinoxaline, a substituted quinazoline, an unsubstituted quinazoline, a substituted phenanthroline, an unsubstituted phenanthroline, a substituted phenazine, or an unsubstituted phenazine;
each substituted group M independently comprises at least one substituent selected from a substituted aromatic group, an unsubstituted aromatic group, a substituted aromatic heterocyclic group, and an unsubstituted aromatic heterocyclic group;
m is an integer of 1 to 3;
n is an integer of 1 to 3; and
at least one group M is bonded to at least one carbazolyl group Cz at a 9-position of the at least one carbazolyl group Cz; and
a triplet energy gap of the compound is 2.5 to 3.3 eV.
3. An organic electroluminescence device, comprising:
an anode;
a cathode; and
an organic thin film layer;
wherein:
the organic thin film layer is disposed between the anode and the cathode; and
the organic thin film layer comprises the compound according to claim 1 .
4. The organic electroluminescence device according to claim 3 , wherein:
the organic thin film layer comprises a light emitting layer; and
the light emitting layer comprises the compound according to formula (1).
5. The organic electroluminescence device according to claim 3 , wherein:
the organic thin film layer comprises a light emitting layer;
the light emitting layer comprises a host material; and
the host material comprises the compound according to formula (1).
6. The organic electroluminescence device according to claim 3 , wherein:
the organic thin film layer comprises an electron transporting layer; and
the electron transporting layer comprises the compound according to formula (1).
7. The compound according to claim 1 , wherein a singlet energy gap of the compound is 2.8 to 3.8 eV.
8. The compound according to claim 1 , wherein a singlet energy gap of the compound is 2.9 to 3.6 eV.
9. The compound according to claim 1 , wherein a triplet energy gap of the compound is 2.5 to 3.3 eV.
10. The organic electroluminescent device according to claim 3 , wherein the organic electroluminescent device emits bluish light.
11. The organic electroluminescent device according to claim 3 , wherein the organic electroluminescent device emits light by multiplet excitation to a triplet state or higher.
12. An organic electroluminescence device, comprising:
an anode;
a cathode; and
an organic thin film layer;
wherein:
the organic thin film layer is disposed between the anode and the cathode; and
the organic thin film layer comprises a light emitting layer;
the light emitting layer comprises a host material; and
the host material comprises a compound according to formula (1):
(Cz-)nMm (1)
(Cz-)nMm (1)
wherein:
each Cz is independently a substituted carbazolyl group or an unsubstituted carbazolyl group;
each substituted carbazolyl group Cz independently comprises at least one substituent selected from a substituted aromatic group, an unsubstituted aromatic group, a substituted aromatic heterocyclic group, and an unsubstituted aromatic heterocyclic group;
each M is independently a substituted pyridine, an unsubstituted pyridine, a substituted pyrimidine, an unsubstituted pyrimidine, a substituted pyrazine, an unsubstituted pyrazine, a substituted aziridine, an unsubstituted aziridine, a substituted azaindolizine, an unsubstituted azaindolizine, a substituted isoindole, an unsubstituted isoindole, a substituted indazole, an unsubstituted indazole, a substituted purine, an unsubstituted purine, a substituted pteridine, an unsubstituted pteridine, a substituted β-carboline, an unsubstituted β-carboline, a substituted quinoxaline, an unsubstituted quinoxaline, a substituted quinazoline, an unsubstituted quinazoline, a substituted phenanthroline, an unsubstituted phenanthroline, a substituted phenazine, or an unsubstituted phenazine;
each substituted group M independently comprises at least one substituent selected from a substituted aromatic group, an unsubstituted aromatic group, a substituted aromatic heterocyclic group, and an unsubstituted aromatic heterocyclic group;
m is an integer of 1 to 3;
n is an integer of 1 to 3; and
at least one group M is bonded to at least one carbazolyl group Cz at a 9-position of the at least one carbazolyl group Cz.
14. The organic electroluminescence device according to claim 12 , wherein:
the organic thin film layer comprises a light emitting layer; and
the light emitting layer comprises the compound according to formula (1).
15. The organic electroluminescence device according to claim 12 , wherein:
the organic thin film layer comprises a light emitting layer;
the light emitting layer comprises a host material; and
the host material comprises the compound according to formula (1).
16. The organic electroluminescence device according to claim 12 , wherein:
the organic thin film layer comprises an electron transporting layer; and
the electron transporting layer comprises the compound according to formula (1).
17. The organic electroluminescence device according to claim 12 , wherein at least one group M is a substituted pyrimidine, an unsubstituted pyrimidine, a substituted pyrazine, an unsubstituted pyrazine, a substituted aziridine, an unsubstituted aziridine, a substituted azaindolizine, an unsubstituted azaindolizine, a substituted isoindole, an unsubstituted isoindole, a substituted indazole, an unsubstituted indazole, a substituted purine, an unsubstituted purine, a substituted pteridine, an unsubstituted pteridine, a substituted β-carboline, an unsubstituted β-carboline, a substituted quinoxaline, an unsubstituted quinoxaline, a substituted quinazoline, an unsubstituted quinazoline, a substituted phenanthroline, an unsubstituted phenanthroline, a substituted phenazine, or an unsubstituted phenazine.
18. The organic electroluminescence device according to claim 12 , wherein a singlet energy gap of the compound is 2.8 to 3.8 eV.
19. The organic electroluminescence device according to claim 12 , wherein a singlet energy gap of the compound is 2.9 to 3.6 eV.
20. The organic electroluminescence device according to claim 12 , wherein a triplet energy gap of the compound is 2.5 to 3.3 eV.
21. The organic electroluminescent device according to claim 12 , wherein the organic electroluminescent device emits bluish light.
22. The organic electroluminescent device according to claim 12 , wherein the organic electroluminescent device emits light by multiplet excitation to a triplet state or higher.
23. The compound according to claim 1, wherein each M is independently a substituted pyrimidine, a substituted pyrazine, an unsubstituted pyrazine, a substituted aziridine, an unsubstituted aziridine, a substituted azaindolizine, an unsubstituted azaindolizine, a substituted isoindole, an unsubstituted isoindole, a substituted indazole, an unsubstituted indazole, a substituted purine, an unsubstituted purine, a substituted pteridine, an unsubstituted pteridine, a substituted β-carboline, an unsubstituted β-carboline, a substituted quinazoline, an unsubstituted quinazoline, a substituted phenanthroline, an unsubstituted phenanthroline, a substituted phenazine, or an unsubstituted phenazine.
24. The compound according to claim 1, wherein each M is independently a substituted pyrimidine, a substituted pyrazine, or an unsubstituted pyrazine.
25. The organic electroluminescence device according to claim 3, wherein each M is independently a substituted pyrimidine, a substituted pyrazine, an unsubstituted pyrazine, a substituted aziridine, an unsubstituted aziridine, a substituted azaindolizine, an unsubstituted azaindolizine, a substituted isoindole, an unsubstituted isoindole, a substituted indazole, an unsubstituted indazole, a substituted purine, an unsubstituted purine, a substituted pteridine, an unsubstituted pteridine, a substituted β-carboline, an unsubstituted β-carboline, a substituted quinazoline, an unsubstituted quinazoline, a substituted phenanthroline, an unsubstituted phenanthroline, a substituted phenazine, or an unsubstituted phenazine.
26. The organic electroluminescence device according to claim 3, wherein each M is independently a substituted pyrimidine, a substituted pyrazine, or an unsubstituted pyrazine.
27. The organic electroluminescent device according to claim 12, wherein each M is independently a substituted pyridine, an unsubstituted pyridine, a substituted pyrimidine, an unsubstituted pyrimidine, a substituted pyrazine, an unsubstituted pyrazine, a substituted aziridine, an unsubstituted aziridine, a substituted azaindolizine, an unsubstituted azaindolizine, a substituted isoindole, an unsubstituted isoindole, a substituted indazole, an unsubstituted indazole, a substituted purine, an unsubstituted purine, a substituted pteridine, an unsubstituted pteridine, a substituted β-carboline, an unsubstituted β-carboline, a substituted quinazoline, an unsubstituted quinazoline, a substituted phenanthroline, an unsubstituted phenanthroline, a substituted phenazine, or an unsubstituted phenazine.
28. The organic electroluminescent device according to claim 12, wherein each M is independently a substituted pyridine, an unsubstituted pyridine, a substituted pyrimidine, an unsubstituted pyrimidine, a substituted pyrazine, or an unsubstituted pyrazine.
29. A compound according to formula (1):
(Cz-)nMm (1)
(Cz-)nMm (1)
wherein:
each Cz is independently a substituted carbazolyl group or an unsubstituted carbazolyl group;
each substituted carbazolyl group Cz independently comprises at least one substituent selected from a substituted aromatic group, an unsubstituted aromatic group, a substituted aromatic heterocyclic group, and an unsubstituted aromatic heterocyclic group;
each M is independently a substituted pyrimidine, a substituted pyrazine, an unsubstituted pyrazine, a substituted aziridine, an unsubstituted aziridine, a substituted azaindolizine, an unsubstituted azaindolizine, a substituted isoindole, an unsubstituted isoindole, a substituted indazole, an unsubstituted indazole, a substituted purine, an unsubstituted purine, a substituted pteridine, an unsubstituted pteridine, a substituted β-carboline, an unsubstituted β-carboline, a substituted quinoxaline, an unsubstituted quinoxaline, a substituted quinazoline, an unsubstituted quinazoline, a substituted phenanthroline, an unsubstituted phenanthroline, a substituted phenazine, or an unsubstituted phenazine;
each substituted group M independently comprises at least one substituent selected from a substituted aromatic group, an unsubstituted aromatic group, a substituted aromatic heterocyclic group, and an unsubstituted aromatic heterocyclic group;
m is an integer of 1 to 3;
n is an integer of 1 to 3;
at least one group M is bonded to at least one carbazolyl group Cz at a 9-position of the at least one carbazolyl group Cz; and
a singlet energy gap of the compound is 2.8 to 3.8 eV.
31. The compound according to claim 29, wherein each M is independently a substituted pyrimidine, a substituted pyrazine, an unsubstituted pyrazine, a substituted aziridine, an unsubstituted aziridine, a substituted azaindolizine, an unsubstituted azaindolizine, a substituted isoindole, an unsubstituted isoindole, a substituted indazole, an unsubstituted indazole, a substituted purine, an unsubstituted purine, a substituted pteridine, an unsubstituted pteridine, a substituted β-carboline, an unsubstituted β -carboline, a substituted quinazoline, an unsubstituted quinazoline, a substituted phenanthroline, an unsubstituted phenanthroline, a substituted phenazine, or an unsubstituted phenazine.
32. The compound according to claim 29, wherein each M is independently a substituted pyrimidine, a substituted pyrazine, or an unsubstituted pyrazine.
33. The compound according to claim 1, wherein each M is independently a substituted pyrimidine, a substituted pyrazine, an unsubstituted pyrazine, a substituted quinazoline, or an unsubstituted quinazoline.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/849,199 USRE46368E1 (en) | 2002-03-15 | 2015-09-09 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002071398 | 2002-03-15 | ||
JP2002-071398 | 2002-03-15 | ||
PCT/JP2003/002995 WO2003078541A1 (en) | 2002-03-15 | 2003-03-13 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US10/504,477 US7990046B2 (en) | 2002-03-15 | 2003-03-13 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US13/067,927 US8580398B2 (en) | 2002-03-15 | 2011-07-07 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US13/484,854 US8685543B2 (en) | 2002-03-15 | 2012-05-31 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US14/849,199 USRE46368E1 (en) | 2002-03-15 | 2015-09-09 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/484,854 Reissue US8685543B2 (en) | 2002-03-15 | 2012-05-31 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE46368E1 true USRE46368E1 (en) | 2017-04-18 |
Family
ID=28035109
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/504,477 Expired - Fee Related US7990046B2 (en) | 2002-03-15 | 2003-03-13 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US13/067,927 Expired - Lifetime US8580398B2 (en) | 2002-03-15 | 2011-07-07 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US13/484,854 Ceased US8685543B2 (en) | 2002-03-15 | 2012-05-31 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US14/014,469 Expired - Lifetime US8911886B2 (en) | 2002-03-15 | 2013-08-30 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US14/849,199 Expired - Lifetime USRE46368E1 (en) | 2002-03-15 | 2015-09-09 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/504,477 Expired - Fee Related US7990046B2 (en) | 2002-03-15 | 2003-03-13 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US13/067,927 Expired - Lifetime US8580398B2 (en) | 2002-03-15 | 2011-07-07 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US13/484,854 Ceased US8685543B2 (en) | 2002-03-15 | 2012-05-31 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US14/014,469 Expired - Lifetime US8911886B2 (en) | 2002-03-15 | 2013-08-30 | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
Country Status (7)
Country | Link |
---|---|
US (5) | US7990046B2 (en) |
EP (3) | EP3290490A1 (en) |
JP (1) | JP4060802B2 (en) |
KR (1) | KR100957288B1 (en) |
CN (1) | CN1643105A (en) |
TW (1) | TWI272873B (en) |
WO (1) | WO2003078541A1 (en) |
Families Citing this family (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3290490A1 (en) * | 2002-03-15 | 2018-03-07 | Idemitsu Kosan Co., Ltd | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
EP1489155A4 (en) * | 2002-03-22 | 2006-02-01 | Idemitsu Kosan Co | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
JP4646494B2 (en) * | 2002-04-11 | 2011-03-09 | 出光興産株式会社 | Novel nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same |
JP4427947B2 (en) * | 2002-11-18 | 2010-03-10 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element and display device |
JP4707082B2 (en) * | 2002-11-26 | 2011-06-22 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element and display device |
EP1582516B1 (en) * | 2003-01-10 | 2013-07-17 | Idemitsu Kosan Co., Ltd. | Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same |
US7740955B2 (en) * | 2003-04-23 | 2010-06-22 | Konica Minolta Holdings, Inc. | Organic electroluminescent device and display |
JP4762514B2 (en) * | 2003-09-05 | 2011-08-31 | 株式会社リコー | 3,6-diphenylcarbazole derivative |
US7745988B2 (en) * | 2003-09-05 | 2010-06-29 | Ricoh Company, Limited | 3, 6-diphenylcarbazole compound and organic electroluminescent device |
JPWO2005076668A1 (en) * | 2004-02-06 | 2007-10-18 | 出光興産株式会社 | Organic electroluminescence device |
TW200541401A (en) * | 2004-02-13 | 2005-12-16 | Idemitsu Kosan Co | Organic electroluminescent device |
US7011871B2 (en) | 2004-02-20 | 2006-03-14 | E. I. Du Pont De Nemours And Company | Charge transport compounds and electronic devices made with such compounds |
JP5222455B2 (en) * | 2004-04-28 | 2013-06-26 | 株式会社半導体エネルギー研究所 | Display device |
US9523031B2 (en) * | 2004-05-14 | 2016-12-20 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
JP2006069964A (en) * | 2004-09-02 | 2006-03-16 | Koei Chem Co Ltd | Bis(carbazol-9-yl)aryl compound |
JP4541809B2 (en) * | 2004-09-08 | 2010-09-08 | キヤノン株式会社 | Organic compound and organic light emitting device |
KR101389735B1 (en) | 2004-12-10 | 2014-04-29 | 미쓰비시 가가꾸 가부시키가이샤 | Organic compound, charge-transporting material, and organic electroluminescent element |
KR101420608B1 (en) * | 2004-12-24 | 2014-07-18 | 미쓰비시 가가꾸 가부시키가이샤 | Organic compound, charge-transporting material, and organic electroluminescent element |
US8168307B2 (en) | 2005-01-25 | 2012-05-01 | Pioneer Corporation | Organic compound, charge transport material and organic electroluminescent device |
MX2007008900A (en) * | 2005-01-28 | 2007-08-16 | Basf Ag | Copolymer comprising monoethylenically unsaturated dicarboxylic acid derivatives. |
JP5092248B2 (en) * | 2005-02-21 | 2012-12-05 | 三菱化学株式会社 | Composition for organic electroluminescent element, thin film for organic electroluminescent element, thin film transfer member for organic electroluminescent element, organic electroluminescent element and method for producing organic electroluminescent element |
JP4701818B2 (en) * | 2005-04-28 | 2011-06-15 | Jsr株式会社 | Triazine compound, composition for organic electroluminescence device, and organic electroluminescence device |
JP5261887B2 (en) | 2005-05-17 | 2013-08-14 | 三菱化学株式会社 | Monoamine compound, charge transport material, and organic electroluminescence device |
CN101185176B (en) * | 2005-05-24 | 2010-04-07 | 日本先锋公司 | Organic electroluminescent device |
US9012035B2 (en) * | 2005-12-16 | 2015-04-21 | Pioneer Corporation | Organic electroluminescence device |
JP5017858B2 (en) * | 2005-12-27 | 2012-09-05 | コニカミノルタホールディングス株式会社 | Organic electroluminescence device |
US8062769B2 (en) * | 2006-11-09 | 2011-11-22 | Nippon Steel Chemical Co., Ltd. | Indolocarbazole compound for use in organic electroluminescent device and organic electroluminescent device |
KR100708754B1 (en) * | 2006-12-27 | 2007-04-18 | 삼성에스디아이 주식회사 | Carbazole ring containing compound and organic electroluminescence display device |
JP5504563B2 (en) * | 2006-12-27 | 2014-05-28 | 住友化学株式会社 | Composition and light-emitting device using the composition |
JP4939207B2 (en) * | 2006-12-27 | 2012-05-23 | キヤノン株式会社 | Carbazole compound and organic light emitting device using the same |
EP2138486B2 (en) * | 2007-03-26 | 2022-10-19 | NIPPON STEEL Chemical & Material Co., Ltd. | Organic electroluminescent device |
EP2141152B1 (en) | 2007-03-27 | 2021-05-05 | NIPPON STEEL Chemical & Material Co., Ltd. | Compound for organic electroluminescent device and organic electroluminescent device |
CN104370834B (en) | 2007-05-17 | 2017-04-19 | 株式会社半导体能源研究所 | Triazole derivative |
US8815416B2 (en) | 2007-12-27 | 2014-08-26 | Nippon Steel & Sumikin Chemical Co., Ltd. | Organic electroluminescent device using a bipyrimidine compound |
JP4830127B2 (en) * | 2008-03-22 | 2011-12-07 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element and display device |
JP4830126B2 (en) * | 2008-03-22 | 2011-12-07 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element and display device |
US8049411B2 (en) | 2008-06-05 | 2011-11-01 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescence device and organic electroluminescence device using the same |
JP2010031248A (en) * | 2008-06-23 | 2010-02-12 | Sumitomo Chemical Co Ltd | Composition and light-emitting element using the composition |
ES2583277T3 (en) * | 2008-07-04 | 2016-09-20 | Universite De Liege Interface Entreprises Universite | Binding peptides to inorganic materials |
JP5577579B2 (en) * | 2008-10-20 | 2014-08-27 | コニカミノルタ株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE |
KR20110081274A (en) * | 2008-11-07 | 2011-07-13 | 호도가야 가가쿠 고교 가부시키가이샤 | Compound having triphenylsilyl group and triarylamine structure and organic electroluminescent element |
KR101288557B1 (en) | 2008-12-24 | 2013-07-22 | 제일모직주식회사 | Novel compound for organic photoelectric device and organic photoelectric device including the same |
JP5367095B2 (en) | 2009-02-03 | 2013-12-11 | 日東電工株式会社 | Bipolar host in organic light-emitting diodes |
EP2461390B1 (en) | 2009-07-31 | 2018-05-23 | UDC Ireland Limited | Organic electroluminescent element |
JP4523992B1 (en) * | 2009-07-31 | 2010-08-11 | 富士フイルム株式会社 | Organic electroluminescence device |
JP4474493B1 (en) * | 2009-07-31 | 2010-06-02 | 富士フイルム株式会社 | Organic electroluminescence device |
JP4590020B1 (en) * | 2009-07-31 | 2010-12-01 | 富士フイルム株式会社 | Charge transport material and organic electroluminescent device |
CN102471320A (en) | 2009-10-16 | 2012-05-23 | 出光兴产株式会社 | Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same |
KR101506999B1 (en) | 2009-11-03 | 2015-03-31 | 제일모직 주식회사 | Compound for organic photoelectric device and organic photoelectric device including the same |
US8828561B2 (en) | 2009-11-03 | 2014-09-09 | Cheil Industries, Inc. | Compound for organic photoelectric device and organic photoelectric device including the same |
KR20110066494A (en) * | 2009-12-11 | 2011-06-17 | 다우어드밴스드디스플레이머티리얼 유한회사 | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
US8617720B2 (en) | 2009-12-21 | 2013-12-31 | E I Du Pont De Nemours And Company | Electroactive composition and electronic device made with the composition |
JP4691611B1 (en) | 2010-01-15 | 2011-06-01 | 富士フイルム株式会社 | Organic electroluminescence device |
JP4637271B1 (en) | 2010-01-15 | 2011-02-23 | 富士フイルム株式会社 | Organic electroluminescence device |
JP5620125B2 (en) | 2010-01-28 | 2014-11-05 | ユー・ディー・シー アイルランド リミテッド | Organic electroluminescence device |
JP5650932B2 (en) | 2010-01-28 | 2015-01-07 | ユー・ディー・シー アイルランド リミテッド | Organic electroluminescent device and charge transport material |
EP2423209B1 (en) | 2010-04-20 | 2015-08-05 | Idemitsu Kosan Co., Ltd. | Bis-carbazole derivative, material for organic electroluminescent element and organic electroluminescent element using same |
KR20110122051A (en) * | 2010-05-03 | 2011-11-09 | 제일모직주식회사 | Compound for organic photoelectric device and organic photoelectric device including the same |
WO2011152466A1 (en) * | 2010-06-02 | 2011-12-08 | Jnc株式会社 | Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element |
WO2011156414A2 (en) * | 2010-06-11 | 2011-12-15 | Nitto Denko Corporation | Light-emitting devices for phototherapy |
JP4751955B1 (en) * | 2010-07-09 | 2011-08-17 | 富士フイルム株式会社 | Organic electroluminescence device |
DE102010027320A1 (en) * | 2010-07-16 | 2012-01-19 | Merck Patent Gmbh | Polymeric materials for organic electroluminescent devices |
TW201300501A (en) * | 2010-07-30 | 2013-01-01 | 羅門哈斯電子材料韓國公司 | Electroluminescent device using electroluminescent compound as luminescent material |
US9382206B2 (en) | 2010-08-31 | 2016-07-05 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using the same |
KR20130143034A (en) | 2010-09-16 | 2013-12-30 | 닛토덴코 가부시키가이샤 | Substituted bipyridines for use in organic light-emitting devices |
KR101477614B1 (en) | 2010-09-17 | 2014-12-31 | 롬엔드하스전자재료코리아유한회사 | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
EP2655339A1 (en) * | 2010-12-21 | 2013-10-30 | E.I. Du Pont De Nemours And Company | Electronic device including a pyrimidine compound |
US20130306962A1 (en) * | 2011-02-11 | 2013-11-21 | Universal Display Corporation | Organic light emitting device and materials for use in same |
KR101427611B1 (en) * | 2011-03-08 | 2014-08-11 | 롬엔드하스전자재료코리아유한회사 | Novel compounds for organic electronic material and organic electroluminescence device using the same |
US9287512B2 (en) | 2011-03-08 | 2016-03-15 | Rohm And Haas Electronic Materials Korea Ltd. | Organic electroluminescent compounds, layers and organic electroluminescent device using the same |
US9328094B2 (en) | 2011-09-19 | 2016-05-03 | Nitto Denko Corporation | Substituted biaryl compounds for light-emitting devices |
KR101451586B1 (en) * | 2011-09-20 | 2014-10-16 | 엘지디스플레이 주식회사 | White Organic Light Emitting Device |
CN102382105B (en) * | 2011-09-21 | 2013-06-12 | 东莞彩显有机发光科技有限公司 | Bipolar host material used for blue emitting phosphor |
US20130088144A1 (en) * | 2011-10-06 | 2013-04-11 | Semiconductor Energy Laboratory Co., Ltd. | Phosphorescent Iridium Metal Complex, Light-Emitting Element, Light-Emitting Device, Electronic Appliance, and Lighting Device |
JPWO2013108589A1 (en) * | 2012-01-16 | 2015-05-11 | 出光興産株式会社 | NOVEL COMPOUND, MATERIAL FOR ORGANIC ELECTROLUMINESCENT DEVICE AND ORGANIC ELECTROLUMINESCENT DEVICE |
WO2013175789A1 (en) * | 2012-05-24 | 2013-11-28 | 出光興産株式会社 | Material for organic electroluminescent elements, and organic electroluminescent element using same |
CN104507927A (en) | 2012-06-18 | 2015-04-08 | 东曹株式会社 | Cyclic azine compound, method for producing same, and organic electroluminescent element containing same |
JP5819534B2 (en) | 2012-09-11 | 2015-11-24 | Jnc株式会社 | Organic electroluminescent element material, organic electroluminescent element, display device, and illumination device |
JP2014096417A (en) * | 2012-11-07 | 2014-05-22 | Idemitsu Kosan Co Ltd | Organic electroluminescent element and electronic device |
KR101820865B1 (en) | 2013-01-17 | 2018-01-22 | 삼성전자주식회사 | MATERIAL FOR ORGANIC OPTOELECTRONIC DEVICE, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE |
US20140326970A1 (en) * | 2013-05-03 | 2014-11-06 | Zachary M. Hudson | Host Materials for Single-Layer Phosphorescent OLEDs |
KR102184893B1 (en) | 2013-12-04 | 2020-12-01 | 롬엔드하스전자재료코리아유한회사 | Novel organic electroluminescent compounds and organic electroluminescent device comprising the same |
WO2015097841A1 (en) * | 2013-12-27 | 2015-07-02 | 株式会社日立製作所 | Organic light emitting material, organic light emitting element, and light source using same |
JP5761388B2 (en) * | 2014-01-14 | 2015-08-12 | コニカミノルタ株式会社 | Organic electroluminescence device |
JP6284370B2 (en) | 2014-01-17 | 2018-02-28 | 株式会社Kyulux | Luminescent materials, organic light emitting devices and compounds |
KR102280686B1 (en) | 2014-02-11 | 2021-07-22 | 삼성전자주식회사 | Carbazole-based compound and organic light emitting device including the same |
KR102427918B1 (en) | 2014-04-29 | 2022-08-03 | 롬엔드하스전자재료코리아유한회사 | Electron transport material and an organic electroluminescence device comprising the same |
EP3143100A1 (en) * | 2014-05-14 | 2017-03-22 | President and Fellows of Harvard College | Organic light-emitting diode materials |
US20160013423A1 (en) * | 2014-07-09 | 2016-01-14 | Samsung Electronics Co., Ltd. | Condensed cyclic compound and organic light-emitting device including the same |
KR102495161B1 (en) * | 2015-01-20 | 2023-02-01 | 호도가야 가가쿠 고교 가부시키가이샤 | Pyrimidine derivative and organic electroluminescence element |
KR102543777B1 (en) | 2015-06-10 | 2023-06-14 | 메르크 파텐트 게엠베하 | Materials for organic electroluminescent devices |
KR101919438B1 (en) * | 2015-06-26 | 2018-11-16 | 삼성에스디아이 주식회사 | Composition for organic optoelectric device, organic optoelectric device and display device |
US10651392B2 (en) | 2015-09-30 | 2020-05-12 | Samsung Electronics Co., Ltd. | Organic light-emitting device |
KR102577041B1 (en) * | 2015-12-30 | 2023-09-08 | 엘지디스플레이 주식회사 | Organic compound, and Organic light emitting diode and Organic light emitting diode display device including the same |
TWI589673B (en) * | 2016-11-03 | 2017-07-01 | 元智大學 | Bipolar materials and organic light emitting diodes |
CN106883215A (en) * | 2017-01-24 | 2017-06-23 | 瑞声科技(南京)有限公司 | Triaizine compounds and luminescent device |
KR102270125B1 (en) | 2017-04-13 | 2021-06-25 | 시노라 게엠베하 | organic molecules, especially organic molecules for use in optoelectronic devices |
CN109485637A (en) * | 2017-09-13 | 2019-03-19 | 北京鼎材科技有限公司 | The manufacture and its application of 4,4 '-bipyridyliums derivatives |
US11706977B2 (en) | 2018-01-11 | 2023-07-18 | Samsung Electronics Co., Ltd. | Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound |
US11706980B2 (en) * | 2018-11-28 | 2023-07-18 | Universal Display Corporation | Host materials for electroluminescent devices |
US11889708B2 (en) | 2019-11-14 | 2024-01-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102686341B1 (en) * | 2018-12-18 | 2024-07-19 | 솔루스첨단소재 주식회사 | Organic light-emitting compound and organic electroluminescent device using the same |
KR20200140968A (en) | 2019-06-07 | 2020-12-17 | 삼성디스플레이 주식회사 | Heterocyclic compound and organic light emitting device comprising the same |
KR102430048B1 (en) | 2019-06-13 | 2022-08-04 | 삼성에스디아이 주식회사 | Compound for optoelectronic device and organic optoelectronic device and display device |
KR20210028409A (en) * | 2019-09-04 | 2021-03-12 | 엘지디스플레이 주식회사 | Organic compounds having improved luminsecent properties, organic light emitting diode and organic light emitting device including the compounds |
TW202122381A (en) * | 2019-09-30 | 2021-06-16 | 日商日鐵化學材料股份有限公司 | Organic electroluminescent element |
TW202114987A (en) * | 2019-09-30 | 2021-04-16 | 日商日鐵化學材料股份有限公司 | Organic electroluminescent element |
CN110563705B (en) * | 2019-10-08 | 2021-01-01 | 浙江虹舞科技有限公司 | Nitrogen-containing heterocyclic compound surrounded by four donor groups, luminescent material and organic luminescent element |
KR20210130301A (en) | 2020-04-21 | 2021-11-01 | 엘티소재주식회사 | Heterocyclic compound, organic light emitting device comprising same, manufacturing method of same and composition for organic layer of organic light emitting device |
KR102676706B1 (en) * | 2020-12-22 | 2024-06-18 | 삼성에스디아이 주식회사 | Hardmask composition and method of forming patterns |
Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2944058A (en) | 1956-06-27 | 1960-07-05 | Promonta Chem Fab | Process for preparing substituted carbazole derivatives |
US3518250A (en) | 1965-12-17 | 1970-06-30 | Ibm | Substitution of imino-heterocyclic compounds |
US4480096A (en) | 1980-01-31 | 1984-10-30 | Ciba-Geigy Corporation | Chromogenic quinazolines |
KR850000449A (en) | 1983-06-10 | 1985-02-27 | 테렌스 제이·갤라거 | Process for preparing substituted 2-phenem-3-carboxylic acid compound |
US4719174A (en) | 1983-06-17 | 1988-01-12 | Fuji Photo Film Co., Ltd. | Direct positive silver halide photographic light-sensitive material depress formation of re-reversed negative image |
US4769292A (en) | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US4819057A (en) | 1985-09-30 | 1989-04-04 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting element |
JPH03200889A (en) | 1989-06-30 | 1991-09-02 | Ricoh Co Ltd | Electroluminescent element |
US5059863A (en) | 1989-07-04 | 1991-10-22 | Mitsubishi Kasei Corporation | Organic electroluminescent device |
US5104749A (en) | 1989-05-25 | 1992-04-14 | Mitsubishi Kasei Corporation | Organic electroluminescent device |
US5391681A (en) * | 1992-06-05 | 1995-02-21 | Ciba-Geigy Corporation | Curable compositions based on epoxy resins or mixtures of epoxy resins and polyisocyanates containing trisimidazolyl triazines |
JPH07138561A (en) | 1993-11-17 | 1995-05-30 | Idemitsu Kosan Co Ltd | Organic electroluminescent element |
JPH0812600A (en) | 1994-04-26 | 1996-01-16 | Tdk Corp | Phenylanthracene derivative and organic el element |
JPH0812430A (en) | 1994-06-30 | 1996-01-16 | Murata Mfg Co Ltd | Piezoelectric ceramic and its production |
JPH08239655A (en) | 1995-03-06 | 1996-09-17 | Idemitsu Kosan Co Ltd | Organic electroluminescence element |
JPH09118708A (en) | 1995-10-26 | 1997-05-06 | Asahi Denka Kogyo Kk | Photopolymerizable composition |
JPH10226785A (en) | 1997-02-14 | 1998-08-25 | Idemitsu Kosan Co Ltd | Organic electroluminescent element |
JPH11144876A (en) | 1997-11-12 | 1999-05-28 | Toray Ind Inc | Luminescent element |
JP2000053956A (en) | 1998-08-10 | 2000-02-22 | Toyo Ink Mfg Co Ltd | Luminescent material for organic electroluminescence element and organic electroluminescence element using the same |
JP2000075519A (en) | 1998-09-02 | 2000-03-14 | Mitsubishi Paper Mills Ltd | Organic photoconductive compound and electrophotographic photoreceptor using the same |
JP2000169448A (en) | 1998-12-07 | 2000-06-20 | Minolta Co Ltd | New amino compound and its production, and use |
JP2000260565A (en) | 1999-03-04 | 2000-09-22 | Futaba Corp | Organic el element |
JP2000264880A (en) | 1999-03-16 | 2000-09-26 | Sharp Corp | Oxadiazole derivative, its production and organic electroluminescence element made of the same |
JP2000268961A (en) | 1999-03-17 | 2000-09-29 | Futaba Corp | Organic electroluminescent element |
JP2000290644A (en) | 1999-04-09 | 2000-10-17 | Fuji Photo Film Co Ltd | Material for light-emitting device, and light-emitting device using the same |
JP2000344780A (en) | 1998-09-24 | 2000-12-12 | Fuji Photo Film Co Ltd | New benzopyran compound, light emission element material and light emission element using the same |
WO2001019939A1 (en) | 1999-09-16 | 2001-03-22 | Ciba Specialty Chemicals Holding Inc. | Fluorescent maleimides and uses thereof |
JP2001160489A (en) | 1999-12-01 | 2001-06-12 | Toyota Central Res & Dev Lab Inc | Organic electroluminescent element |
US20010015614A1 (en) * | 1999-12-16 | 2001-08-23 | Toshiki Taguchi | Novel indolizine compound, production process for novel indolizine compound, organic light-emitting device material having indolizine skeleton, and organic light-emitting device using these |
JP2001247858A (en) | 2000-03-07 | 2001-09-14 | Fuji Photo Film Co Ltd | Benzimidazole derivative, luminescent element material and luminescent element |
WO2001072927A1 (en) | 2000-03-27 | 2001-10-04 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
JP2001284051A (en) | 2000-03-31 | 2001-10-12 | Fuji Photo Film Co Ltd | New indolizine compound and manufacturing method, material for orgahic luminous element with indolizine skeletion and manufacturing method |
US20010046612A1 (en) * | 2000-02-08 | 2001-11-29 | Samsung Sdi Co., Ltd. | Hole transporting compounds having good thermal stability for organic electroluminescent device and method for production thereof |
JP2002050483A (en) | 2000-05-22 | 2002-02-15 | Showa Denko Kk | Organic electro luminescence element and luminescent material |
US20020028329A1 (en) | 2000-07-17 | 2002-03-07 | Fuji Photo Film Co., Ltd. | Light emitting element and azole compound |
US20020055014A1 (en) | 2000-08-24 | 2002-05-09 | Fuji Photo Film Co., Ltd. | Light-emitting device and material therefor |
US20020146589A1 (en) | 2000-05-22 | 2002-10-10 | Kimio Akiyama | Organic electroluminescent device and light-emitting material |
US20030129448A1 (en) * | 2001-10-19 | 2003-07-10 | Lightronik Technology Inc. | Organic EL device |
US20030205696A1 (en) | 2002-04-25 | 2003-11-06 | Canon Kabushiki Kaisha | Carbazole-based materials for guest-host electroluminescent systems |
US20040001967A1 (en) * | 2002-05-14 | 2004-01-01 | Lightronik Technology Inc. | Organic el device |
US20040110031A1 (en) | 2002-11-26 | 2004-06-10 | Mitsuhiro Fukuda | Organic electroluminescent element and display |
US20120153267A1 (en) | 2004-02-13 | 2012-06-21 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US8580391B2 (en) * | 2002-03-22 | 2013-11-12 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescence devices and organic electroluminescence device using the material |
US8911886B2 (en) * | 2002-03-15 | 2014-12-16 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03205479A (en) * | 1989-07-21 | 1991-09-06 | Ricoh Co Ltd | Electroluminescent element |
JP2658463B2 (en) | 1989-12-28 | 1997-09-30 | カシオ計算機株式会社 | Automatic performance device |
DE69204359T2 (en) * | 1991-06-05 | 1996-04-18 | Sumitomo Chemical Co | Organic electroluminescent devices. |
KR100702763B1 (en) * | 1999-02-15 | 2007-04-03 | 이데미쓰 고산 가부시키가이샤 | Organic electroluminescent device and method of manufacture thereof |
-
2003
- 2003-03-13 EP EP17196770.6A patent/EP3290490A1/en not_active Withdrawn
- 2003-03-13 JP JP2003576537A patent/JP4060802B2/en not_active Expired - Lifetime
- 2003-03-13 EP EP14165928.4A patent/EP2770036B1/en not_active Expired - Lifetime
- 2003-03-13 KR KR1020047014425A patent/KR100957288B1/en active IP Right Grant
- 2003-03-13 WO PCT/JP2003/002995 patent/WO2003078541A1/en active Application Filing
- 2003-03-13 US US10/504,477 patent/US7990046B2/en not_active Expired - Fee Related
- 2003-03-13 EP EP03708594.1A patent/EP1486550B1/en not_active Expired - Lifetime
- 2003-03-13 CN CNA038059983A patent/CN1643105A/en active Pending
- 2003-03-14 TW TW092105670A patent/TWI272873B/en not_active IP Right Cessation
-
2011
- 2011-07-07 US US13/067,927 patent/US8580398B2/en not_active Expired - Lifetime
-
2012
- 2012-05-31 US US13/484,854 patent/US8685543B2/en not_active Ceased
-
2013
- 2013-08-30 US US14/014,469 patent/US8911886B2/en not_active Expired - Lifetime
-
2015
- 2015-09-09 US US14/849,199 patent/USRE46368E1/en not_active Expired - Lifetime
Patent Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2944058A (en) | 1956-06-27 | 1960-07-05 | Promonta Chem Fab | Process for preparing substituted carbazole derivatives |
US3518250A (en) | 1965-12-17 | 1970-06-30 | Ibm | Substitution of imino-heterocyclic compounds |
US4480096A (en) | 1980-01-31 | 1984-10-30 | Ciba-Geigy Corporation | Chromogenic quinazolines |
KR850000449A (en) | 1983-06-10 | 1985-02-27 | 테렌스 제이·갤라거 | Process for preparing substituted 2-phenem-3-carboxylic acid compound |
US4719174A (en) | 1983-06-17 | 1988-01-12 | Fuji Photo Film Co., Ltd. | Direct positive silver halide photographic light-sensitive material depress formation of re-reversed negative image |
US4819057A (en) | 1985-09-30 | 1989-04-04 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting element |
US4769292A (en) | 1987-03-02 | 1988-09-06 | Eastman Kodak Company | Electroluminescent device with modified thin film luminescent zone |
US5104749A (en) | 1989-05-25 | 1992-04-14 | Mitsubishi Kasei Corporation | Organic electroluminescent device |
JPH03200889A (en) | 1989-06-30 | 1991-09-02 | Ricoh Co Ltd | Electroluminescent element |
US5059863A (en) | 1989-07-04 | 1991-10-22 | Mitsubishi Kasei Corporation | Organic electroluminescent device |
US5391681A (en) * | 1992-06-05 | 1995-02-21 | Ciba-Geigy Corporation | Curable compositions based on epoxy resins or mixtures of epoxy resins and polyisocyanates containing trisimidazolyl triazines |
JPH07138561A (en) | 1993-11-17 | 1995-05-30 | Idemitsu Kosan Co Ltd | Organic electroluminescent element |
JPH0812600A (en) | 1994-04-26 | 1996-01-16 | Tdk Corp | Phenylanthracene derivative and organic el element |
JPH0812430A (en) | 1994-06-30 | 1996-01-16 | Murata Mfg Co Ltd | Piezoelectric ceramic and its production |
JPH08239655A (en) | 1995-03-06 | 1996-09-17 | Idemitsu Kosan Co Ltd | Organic electroluminescence element |
JPH09118708A (en) | 1995-10-26 | 1997-05-06 | Asahi Denka Kogyo Kk | Photopolymerizable composition |
JPH10226785A (en) | 1997-02-14 | 1998-08-25 | Idemitsu Kosan Co Ltd | Organic electroluminescent element |
JP4140986B2 (en) | 1997-02-14 | 2008-08-27 | 出光興産株式会社 | Organic electroluminescence device |
JPH11144876A (en) | 1997-11-12 | 1999-05-28 | Toray Ind Inc | Luminescent element |
JP2000053956A (en) | 1998-08-10 | 2000-02-22 | Toyo Ink Mfg Co Ltd | Luminescent material for organic electroluminescence element and organic electroluminescence element using the same |
JP2000075519A (en) | 1998-09-02 | 2000-03-14 | Mitsubishi Paper Mills Ltd | Organic photoconductive compound and electrophotographic photoreceptor using the same |
JP2000344780A (en) | 1998-09-24 | 2000-12-12 | Fuji Photo Film Co Ltd | New benzopyran compound, light emission element material and light emission element using the same |
JP2000169448A (en) | 1998-12-07 | 2000-06-20 | Minolta Co Ltd | New amino compound and its production, and use |
JP2000260565A (en) | 1999-03-04 | 2000-09-22 | Futaba Corp | Organic el element |
JP2000264880A (en) | 1999-03-16 | 2000-09-26 | Sharp Corp | Oxadiazole derivative, its production and organic electroluminescence element made of the same |
JP2000268961A (en) | 1999-03-17 | 2000-09-29 | Futaba Corp | Organic electroluminescent element |
JP2000290644A (en) | 1999-04-09 | 2000-10-17 | Fuji Photo Film Co Ltd | Material for light-emitting device, and light-emitting device using the same |
WO2001019939A1 (en) | 1999-09-16 | 2001-03-22 | Ciba Specialty Chemicals Holding Inc. | Fluorescent maleimides and uses thereof |
JP2001160489A (en) | 1999-12-01 | 2001-06-12 | Toyota Central Res & Dev Lab Inc | Organic electroluminescent element |
US20010015614A1 (en) * | 1999-12-16 | 2001-08-23 | Toshiki Taguchi | Novel indolizine compound, production process for novel indolizine compound, organic light-emitting device material having indolizine skeleton, and organic light-emitting device using these |
US20010046612A1 (en) * | 2000-02-08 | 2001-11-29 | Samsung Sdi Co., Ltd. | Hole transporting compounds having good thermal stability for organic electroluminescent device and method for production thereof |
JP2001247858A (en) | 2000-03-07 | 2001-09-14 | Fuji Photo Film Co Ltd | Benzimidazole derivative, luminescent element material and luminescent element |
US6660410B2 (en) | 2000-03-27 | 2003-12-09 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence element |
WO2001072927A1 (en) | 2000-03-27 | 2001-10-04 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
EP1205527A1 (en) | 2000-03-27 | 2002-05-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
JP2001284051A (en) | 2000-03-31 | 2001-10-12 | Fuji Photo Film Co Ltd | New indolizine compound and manufacturing method, material for orgahic luminous element with indolizine skeletion and manufacturing method |
US20020146589A1 (en) | 2000-05-22 | 2002-10-10 | Kimio Akiyama | Organic electroluminescent device and light-emitting material |
JP2002050483A (en) | 2000-05-22 | 2002-02-15 | Showa Denko Kk | Organic electro luminescence element and luminescent material |
US20020028329A1 (en) | 2000-07-17 | 2002-03-07 | Fuji Photo Film Co., Ltd. | Light emitting element and azole compound |
US20020055014A1 (en) | 2000-08-24 | 2002-05-09 | Fuji Photo Film Co., Ltd. | Light-emitting device and material therefor |
US20030129448A1 (en) * | 2001-10-19 | 2003-07-10 | Lightronik Technology Inc. | Organic EL device |
US8911886B2 (en) * | 2002-03-15 | 2014-12-16 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same |
US8580391B2 (en) * | 2002-03-22 | 2013-11-12 | Idemitsu Kosan Co., Ltd. | Material for organic electroluminescence devices and organic electroluminescence device using the material |
US20030205696A1 (en) | 2002-04-25 | 2003-11-06 | Canon Kabushiki Kaisha | Carbazole-based materials for guest-host electroluminescent systems |
US20040001967A1 (en) * | 2002-05-14 | 2004-01-01 | Lightronik Technology Inc. | Organic el device |
US20040110031A1 (en) | 2002-11-26 | 2004-06-10 | Mitsuhiro Fukuda | Organic electroluminescent element and display |
US20120153267A1 (en) | 2004-02-13 | 2012-06-21 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
Non-Patent Citations (35)
Title |
---|
Andrzej Kapturkiewicz, et al., Intramolecular Radiative and Radiationless Charge Recombination Processes in Donor-Acceptor Carbazole Derivatives, J. Phys. Chem. A., 1997, 101, 2332-2344. |
Avendano, C., et. al., "The Problem of the Existence of C(Ar)-H•••N Intramolecular Hydrogen Bonds in a Family of 9-Azaphenyl-9H-carbazoles", Journal of the Chemical Society, Perkin Transactions 2, pp. 1547-1555 (1993). |
Bai, F., et. al., "Study of phtophysical [sic] processes in N-(2-pyridine)carbazole", Journal of Photochemistry and Photobiology, Part A: (Chemistry), vol. 63, pp. 187-194 (1992). |
Boyer, G., et. al., "Synthesis and Structure of New Hosts Related to 9,9′-Bianthryl", Journal of Chemical Society, Perkin Transactions 2, vol. 4, pp. 757-766, XP-002358146 (1993). |
Case IPR2015-00796: Exhibit 1001-U.S. Pat. No. 8,685,543 to Iwakuma et al. |
Case IPR2015-00796: Exhibit 1002-543 File History Excerpts. |
Case IPR2015-00796: Exhibit 1003-Schwartz 543 Declaration. |
Case IPR2015-00796: Exhibit 1004-Schwartz CV. |
Case IPR2015-00796: Exhibit 1007-Herbich Article. |
Case IPR2015-00796: Exhibit 1008-Korean Tribunal Translation. |
Case IPR2015-00796: Exhibit 1009-Bonesi Article. |
Case IPR2015-00796: Exhibit 1010-Thomas Article. |
Case IPR2015-00796: Exhibit 1011-Baldo Article. |
Case IPR2015-00796: Order Dismissing the Petition 37 C.F.R. §§ 42.5(a), 42.71(a). |
Case IPR2015-00796: Petition for Inter Partes Review of U.S. Pat. No. 8,685,543 filed by Rohm and Haas Electronic Materials Korea, Ltd. |
Catalan, et al., On the TICT Mechanism of 9,9′-Biaryl Compounds, Eur. J. Org. Chem., pp. 1697-1704, 1998. * |
Eri Matsuda, et. al., "Photochemical Conversion of Anti-9-Methylcarbazole-3-Carbaldehyde Diphenylhydrazone to its Syn-Isomer and an Indazole", Chemistry Letters, pp. 1129-1132 (1992). |
Etori, H., et. al., "Design of Multilayer Structure for UV Organic Light-Emitting Diodes Based on 2-(2-Naphthyl)-9,9′-spirobifluorene", Japanese Journal of Applied Physics, vol. 46, No. 8A, pp. 5071-5075 (2007). |
G. BOYER ET AL.: "synthesis a. structure of new hosts related to 9,9'-bianthryl", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 2., CHEMICAL SOCIETY. LETCHWORTH., GB, vol. 4, 1 January 1993 (1993-01-01), GB, pages 757 - 766, XP002358146, ISSN: 1472-779X |
Gilman, H., et. al., "Some Aromatic and Heterocyclic Derivatives of Carbazole", Journal of Organic Chemistry, vol. 22, pp. 226-227 (1957). |
GRIGALEVICIUS S, ET AL.: "Hole-transporting molecular glasses based on carbazole and diphenylamine moieties", MATERIALS CHEMISTRY AND PHYSICS, LAUSANNE, CH, vol. 72, no. 3, 1 January 2001 (2001-01-01), CH, pages 395 - 400, XP002980841, DOI: 10.1016/S0254-0584(01)00335-2 |
Grigalevicius, S., et. al., "Hole-transporting molecular glasses based on carbazole and diphenylamine moieties", Materials Chemistry and Physics, vol. 72, No. 3, pp. 395-400, XP-002980841 (2001). |
Herbich, J., et. al., "Phosphorescent intramolecular charge transfer triplet states", Chemical Physics Letters, vol. 262, pp. 633-642 (1996). |
Huc, I., et. al., "Role of Geometrical Factors in Template Effects", Journal of the American Chemical Society, vol. 116, pp. 10296-10297 (1994). |
Jenekhe, S., et. al., "New Conjugated Polymers with Donor-Acceptor Architectures: Synthesis and Photophysics of Carbozole-Quinoline and Phenothiazine-Quinoline Copolymers and Oligomers Exhibiting Large Intramolecular Charge Transfer", Macromolecules, vol. 24, No. 21, pp. 7315-7324 (2001). |
Kusterer, J.M., "What Wavelength Goes With a Color?", Atmospheric Science Data Center, [online], retrieved from the internet, URL: http://eosweb.larc.nasa.gove/EDDOCS/Wavelengths for Colors.html, Sep. 28, 2007, [retrieved on Aug. 21, 2008]. |
M.A. Baldo, et. al., "Transient Analysis of Organic Electrophosphorescence. II. Transient Analysis of Triplet-Triplet Annihilation", Physical Review B, vol. 62, No. 16, pp. 10967-10977 (Oct. 15, 2000). |
Mo, Y., et. al., "Photophysical processes of some carbazole derivatives", Journal of Photochemistry and Photobiology A: Chemistry, vol. 92, pp. 25-27, XP-002358149 (1995). |
Pieters, R., et. al., "Passive Template Effects and Active Acid-Base Involvement in Catalysis of Organic Reactions", Chem. Eur. J., vol. 1, No. 3, pp. 183-192, XP-002358150 (1995). |
R. PIETERS ET AL.: "passive template effects a. active acid-base involment in catalysis of organic reactions.", CHEMISTRY - A EUROPEAN JOURNAL, vol. 1, no. 3, 1 January 1995 (1995-01-01), pages 183 - 192, XP002358150, ISSN: 0947-6539, DOI: 10.1002/chem.19950010307 |
Rebek et. al., Passive Template Effects and Active Acid-Base Involvement in Catalysis of Organic Reactions, 1995, Chem. Eur. J., vol. 1, No. 3, pp. 183-192. |
Request for Trial and Argument in corresponding Korean Patent No. 0957288 (Jun. 25, 2013). |
Samson A. Jenekhe, et al. "New Conjugated Polymers with Donor-Acceptor Architectures: Synthesis and Photophysics of Carbazole-Quinoline and Phenothiazine-Quinoline Copolymers and Oligomers Exhibiting Large Intramolecular Charge Transfer" Macromolecules 2001, 34, pp. 7315-7324, Received Jan. 9, 2001; Revised Manuscript Received Jul. 20, 2001. |
Stephen T. Wellinghoff, et al., Synthesis and Characterization of Carbazole Polymers Exhibiting Large Nonlinear Absorption and Refractive Index, Synthetic Metals, 41-43 (1991) 3203-3207. |
YIMING MO: "photophysical processes of some carbazole derivatives.", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY, A: CHEMISTRY., ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 92, 1 January 1995 (1995-01-01), CH, pages 25 - 27, XP002358149, ISSN: 1010-6030, DOI: 10.1016/1010-6030(95)04162-1 |
Also Published As
Publication number | Publication date |
---|---|
EP1486550B1 (en) | 2014-05-21 |
KR20040094797A (en) | 2004-11-10 |
US20050127823A1 (en) | 2005-06-16 |
US8685543B2 (en) | 2014-04-01 |
JPWO2003078541A1 (en) | 2005-07-14 |
US20120235129A1 (en) | 2012-09-20 |
EP2770036B1 (en) | 2017-12-20 |
TWI272873B (en) | 2007-02-01 |
US20140001460A1 (en) | 2014-01-02 |
JP4060802B2 (en) | 2008-03-12 |
EP3290490A1 (en) | 2018-03-07 |
US8580398B2 (en) | 2013-11-12 |
US20110309338A1 (en) | 2011-12-22 |
EP1486550A1 (en) | 2004-12-15 |
CN1643105A (en) | 2005-07-20 |
EP2770036A1 (en) | 2014-08-27 |
TW200305353A (en) | 2003-10-16 |
WO2003078541A1 (en) | 2003-09-25 |
US7990046B2 (en) | 2011-08-02 |
US8911886B2 (en) | 2014-12-16 |
KR100957288B1 (en) | 2010-05-12 |
EP1486550A4 (en) | 2006-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE46368E1 (en) | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same | |
US20050158578A1 (en) | Material for organic electroluminescent element and organic electroluminescent element employing the same | |
JP3998903B2 (en) | Novel arylamine compound and organic electroluminescence device | |
EP1138745B1 (en) | Organic electroluminescent element | |
KR100948700B1 (en) | Material for organic electroluminescent devices and organic electroluminescent devices made by using the same | |
JP5021299B2 (en) | Organic electroluminescence device | |
JP4002040B2 (en) | Organic electroluminescence device | |
US20070190356A1 (en) | Material for organic electroluminescent element and organic electroluminescent element employing the same | |
US7235312B2 (en) | Aromatic compounds and organic electroluminescent devices made by using the same | |
JP2008147424A (en) | Organic electroluminescence element | |
JP2008147400A (en) | Organic electroluminescence element | |
JP2003313547A (en) | Material for organic electroluminescent element, and organic electroluminescent element | |
JP4028996B2 (en) | Material for organic electroluminescence device and organic electroluminescence device using the same | |
JP4521105B2 (en) | Novel hydrocarbon compounds and organic electroluminescence devices | |
JP2007266620A (en) | Organic electroluminescence device and material therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |