JP4646494B2 - Novel nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same - Google Patents

Novel nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same Download PDF

Info

Publication number
JP4646494B2
JP4646494B2 JP2003004139A JP2003004139A JP4646494B2 JP 4646494 B2 JP4646494 B2 JP 4646494B2 JP 2003004139 A JP2003004139 A JP 2003004139A JP 2003004139 A JP2003004139 A JP 2003004139A JP 4646494 B2 JP4646494 B2 JP 4646494B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituent
compound
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003004139A
Other languages
Japanese (ja)
Other versions
JP2004002297A (en
Inventor
弘志 山本
正英 松浦
秀嗣 池田
峰行 窪田
昌宏 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003004139A priority Critical patent/JP4646494B2/en
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to CNA2007101942185A priority patent/CN101219987A/en
Priority to CNA2008101761610A priority patent/CN101407492A/en
Priority to KR1020057012822A priority patent/KR101064077B1/en
Priority to CN 03826096 priority patent/CN1751024A/en
Priority to EP03748602.4A priority patent/EP1582516B1/en
Priority to PCT/JP2003/012322 priority patent/WO2004063159A1/en
Priority to US10/541,745 priority patent/US7867629B2/en
Priority to TW092127038A priority patent/TWI284488B/en
Publication of JP2004002297A publication Critical patent/JP2004002297A/en
Application granted granted Critical
Publication of JP4646494B2 publication Critical patent/JP4646494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、新規な含窒素複素環誘導体、それを含有する有機エレクトロルミネッセンス素子(以下、有機EL素子ということがある)に関する。さらに詳しくは、有機EL素子の構成成分として有用な含窒素複素環誘導体、この含窒素複素環誘導体を有機化合物層の少なくとも1層に用いることにより、高輝度化、高発光効率化及び電極の付着改善による長期安定化が達成された有機EL素子に関する。
【0002】
【従来の技術】
従来、有機EL素子に電子注入/輸送層を設けて発光効率を高める試みがなされてきた。この場合、エキサイプレックスの形成が見られたり、高輝度の発光は得られるものの、発光寿命が短いという欠点があった。また、長時間の通電により金属電極と有機化合物層との剥離が発生したり、有機化合物層と電極が結晶化し、白濁化して発光輝度が低下するため、このような現象を防ぐ必要があった。
ピラジン化合物、キノリン化合物、キノキサリン化合物等の含窒素複素環化合物を有機EL素子の構成成分として用いた例として、特許文献1に記載された2,3,5,6−テトラフェニルピラジン、2,3,4−トリフェニルキノリン、2,3−ジフェニルキノキサリンがある。しかしながら、これらの化合物は融点が低いために、有機EL素子のアモルファス薄膜層として使用しても、直ぐに結晶化が起こり、殆ど発光しなくなるなど、好ましくない事態を招来するという欠点があった。また、通電により、前記した剥離が発生し、寿命が短くなるという欠点があった。
【特許文献1】
米国特許第5,077,142号明細書
【0003】
【発明が解決しようとする課題】
本発明は、有機EL素子の構成成分として有用な新規な含窒素複素環誘導体を提供し、この含窒素複素環誘導体を有機化合物層の少なくとも1層に用いることにより、高輝度化、高発光効率化及び電極の付着改善による長寿命化が達成できる有機EL素子を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明らは、前記目的を達成するために鋭意研究を重ねた結果、特定の構造を有する含窒素複素環誘導体が新規な化合物であって、この化合物を有機EL素子の有機化合物層の少なくとも1層(特に、電子注入層)に用いることにより、高輝度化、高発光効率化及び電極の付着改善による長寿命化が達成できることを見出した。本発明は、かかる知見に基づいて完成したものである。
【0005】
すなわち、本発明は、一般式(1)
HAr−L−Ar1−Ar2 (1)
(式中、HArは、置換基を有していてもよい炭素数3〜40の含窒素複素環であり、
Lは、単結合、置換基を有していてもよい炭素数6〜60のアリーレン基、置換基を有していてもよい炭素数3〜60のヘテロアリーレン基又は置換基を有していてもよいフルオレニレン基であり、
Ar1は、置換基を有していてもよい炭素数6〜60の2価の芳香族炭化水素基であり、
Ar2は、置換基を有していてもよい炭素数6〜60のアリール基又は置換基を有していてもよい炭素数3〜60のヘテロアリール基である)で表される含窒素複素環誘導体を提供する。
【0006】
また、本発明は、上記本発明の含窒素複素環誘導体からなる有機EL素子用材料を提供する。
さらに、本発明は、一対の電極間に挟持された、発光層を含む少なくとも1層の有機化合物層を有する有機EL素子であって、上記本発明の含窒素複素環誘導体を、該有機化合物層の少なくとも1層に含有する有機EL素子を提供する。
【0007】
【発明の実施の形態】
本発明の含窒素複素環誘導体(以下、本発明化合物ということがある)は、前記一般式(1)で表される。
一般式(1)において、HArは、置換基を有していてもよい炭素数3〜40の含窒素複素環基である。炭素数3〜40の含窒素複素環基としては、特に制限はなく、少なくとも1個の窒素原子を環の構成元素として含有する環式基であればよく、単環式基であってもよいし、複数の環が縮合した多環式基であってもよい。例えば、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアジン、キノリン、キノキサリン、アクリジン、イミダゾ[1,2−a]ピリジン、イミダゾ[1,2−a]ピリミジン等が挙げられる。含窒素複素環基の置換基としては、後述するAr1におけるR1〜R102 に相当する基が挙げられる。
【0008】
HArは、一般式(2)〜(36)
【化8】

Figure 0004646494
【0009】
からなる群から選択されることが好ましい。一般式(2)〜(36)において、それぞれの複素環中の炭素原子は、置換基を有していてもよい炭素数6〜60のアリール基、置換基を有していてもよい炭素数3〜60のヘテロアリール基、置換基を有していてもよい炭素数1〜20のアルキル基又は置換基を有していてもよい炭素数1〜20のアルコキシ基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。
上記一般式(8)〜(36)において、HArとLとの結合位置を示す実線が、それぞれの多員環を構成する全ての環を貫いて描かれているが、これは、HArとLとの結合位置が、HArの多員環のいずれの位置であってもよいことを意味する。
【0010】
炭素数6〜60のアリール基としては、炭素数6〜40のアリール基が好ましく、炭素数6〜20のアリール基がさらに好ましく、具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、クリセニル基、ピレニル基、ビフェニル基、ターフェニル基、トリル基、t−ブチルフェニル基、(2−フェニルプロピル)フェニル基、フルオランテニル基、フルオレニル基、スピロビフルオレンからなる1価の基、パーフルオロフェニル基、パーフルオロナフチル基、パーフルオロアントリル基、パーフルオロビフェニル基、9−フェニルアントラセンからなる1価の基、9−(1’−ナフチル)アントラセンからなる1価の基、9−(2 ’−ナフチル)アントラセンからなる1価の基、6−フェニルクリセンからなる1価の基、9−[4−(ジフェニルアミノ)フェニル]アントラセンからなる1価の基等が挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、9−(10−フェニル)アントリル基、9−[10−(1’−ナフチル)]アントリル基、9−[10−(2’−ナフチル)]アントリル基等が好ましい。
炭素数3〜60のヘテロアリール基としては、炭素数3〜40のヘテロアリール基が好ましく、炭素数3〜20のヘテロアリール基がさらに好ましく、具体的には、ピローリル基、フリル基、チエニル基、シローリル基、ピリジル基、キノリル基、イソキノリル基、ベンゾフリル基、イミダゾリル基、ピリミジル基、カルバゾリル基、セレノフェニル基、オキサジアゾリル基、トリアゾーリル基等が挙げられ、ピリジル基、キノリル基、イソキノリル基が好ましい。
炭素数1〜20のアルキル基としては、炭素数1〜6のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。
炭素数1〜20のアルコキシ基としては、炭素数1〜6のアルコキシ基が好ましく、具体的には、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。
【0011】
また、HArは、
【化9】
Figure 0004646494
からなる群から選択されることがより好ましい。
【0012】
一般式(1)において、Lは、単結合、置換基を有していてもよい炭素数6〜60のアリーレン基、置換基を有していてもよい炭素数3〜60のヘテロアリーレン基又は置換基を有していてもよいフルオレニレン基である。
炭素数6〜60のアリーレン基としては、炭素数6〜40のアリーレン基が好ましく、炭素数6〜20のアリーレン基がさらに好ましく、具体的には、前記結合基について説明したアリール基から水素原子1個を除去して形成される2価の基が挙げられる。
炭素数3〜60のヘテロアリーレン基は、炭素数3〜40のヘテロアリーレン基が好ましく、炭素数3〜20のヘテロアリーレン基がさらに好ましく、具体的には、前記結合基について説明したヘテロアリール基から水素原子1個を除去して形成される2価の基が挙げられる。
上記炭素数6〜60のアリーレン基又は炭素数6〜60のヘテロアリーレン基の置換基としては、ハロゲン原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜40のアリールオキシ基、置換基を有していてもよい炭素数6〜40のアリール基又は置換基を有していてもよい炭素数3〜40のヘテロアリール基等が挙げられる。
【0013】
また、Lは、
【化10】
Figure 0004646494
からなる群から選択されると好ましい。
【0014】
一般式(1)において、Ar1は、置換基を有していてもよい炭素数6〜60の2価の芳香族炭化水素基である。炭素数6〜60の2価の芳香族炭化水素基としては、炭素数6〜40のものが好ましく、炭素数6〜20のものがさらに好ましく、具体的には、前記HArのアリール基の具体例からさらに水素原子を除き2価の基としたものが挙げられる。
特に好ましいAr1としては、下記一般式(43)〜(54)のいずれかで表されるものである。
【化11】
Figure 0004646494
式中、R1 〜R102は、それぞれ独立に、ハロゲン原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜40のアリールオキシ基、置換基を有していてもよい炭素数12〜80のジアリールアミノ基、置換基を有していてもよい炭素数6〜40のアリール基、置換基を有していてもよい炭素数3〜40のヘテロアリール基又は置換基を有していてもよい炭素数18〜120のジアリールアミノアリール基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。
【0015】
' は、単結合、又は
【化12】
Figure 0004646494
からなる群から選択される基である。
【0016】
一般式(1)において、Ar2は、置換基を有していてもよい炭素数6〜60のアリール基又は置換基を有していてもよい炭素数3〜60のヘテロアリール基である。
炭素数6〜60のアリール基及び炭素数3〜60のヘテロアリール基としては、上記結合基について説明したものと同様であり、これらの基の置換基としては、ハロゲン原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜40のアリールオキシ基、置換基を有していてもよい炭素数6〜40のアリール基又は置換基を有していてもよい炭素数3〜40のヘテロアリール基等が挙げられ、好ましい置換基は、炭素数1〜6のアルキル基である。上記炭素数6〜60のアリーレン基又は炭素数3〜60のヘテロアリーレン基は、無置換であることが好ましい。
【0017】
また、Ar2は、
【化13】
Figure 0004646494
からなる群から選択される基であると好ましく、
【0018】
【化14】
Figure 0004646494
からなる群から選択される基であるとさらに好ましい。
【0019】
前記一般式(1)において、▲1▼Lが、置換基を有していてもよい炭素数6〜60のアリーレン基、置換基を有していてもよい炭素数3〜60のヘテロアリーレン基又は置換基を有していてもよいフルオレニレン基であり、Ar1が、置換基を有していてもよい炭素数10〜60の2価の縮合芳香族炭化水素基である含窒素複素環誘導体、又は▲2▼Lが、単結合であり、Ar1が、置換基を有していてもよい炭素数11〜60の2価の縮合芳香族炭化水素基である含窒素複素環誘導体が好ましい。
【0020】
前記▲1▼の場合、Ar1が、下記一般式(37)〜(42)で表される縮合環基から選択されるいずれかの基であることが好ましい。
【化15】
Figure 0004646494
【0021】
式中、それぞれの縮合環は、ハロゲン原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜40のアリールオキシ基、置換基を有していてもよい炭素数6〜40のアリール基又は置換基を有していてもよい炭素数3〜40のヘテロアリール基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。
【0022】
' は、単結合、又は
【化16】
Figure 0004646494
からなる群から選択される基である。
【0023】
ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
炭素数1〜20のアルキル基としては、炭素数1〜6のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。
炭素数1〜20のアルコキシ基としては、炭素数1〜6のアルコキシ基が好ましく、具体的には、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数が3以上のものは直鎖状、環状又は分岐を有するものでもよい。
炭素数6〜40のアリールオキシ基としては、炭素数6〜20のアリールオキシ基が好ましく、具体的には、フェノキシ基、ビフェニルオキシ基等が挙げられる。
炭素数6〜40のアリール基及び炭素数3〜40のヘテロアリール基としては、上記結合基について説明したものと同様である。
また、これらの基の置換基としては、ハロゲン原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜40のアリールオキシ基、置換基を有していてもよい炭素数6〜40のアリール基又は置換基を有していてもよい炭素数3〜40のヘテロアリール基等が挙げられる。
【0024】
前記▲2▼の場合、Ar1が、下記一般式(37)〜(41)で表される縮合環基から選択されるいずれかの基であることが好ましい。
【化17】
Figure 0004646494
【0025】
式中、それぞれの縮合環は、ハロゲン原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜40のアリールオキシ基、置換基を有していてもよい炭素数6〜40のアリール基又は置換基を有していてもよい炭素数3〜40のヘテロアリール基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。L' は、前記と同じである。
これらの基の好ましい炭素数、具体例、及び置換基は、▲1▼の場合と同様である。
【0026】
本発明の一般式(1)で表される含窒素複素環誘導体は、公知の方法によって製造することができる。
例えば、HAr−L−Ar1−X又はHAr−L−Xと、(HO)2B−Ar2又は(HO)2B−Ar1−Ar2とを鈴木反応により製造すればよい。
本発明の一般式(1)で示される新規な含窒素複素環誘導体の具体例を下記に示すが、本発明はこれらの例示化合物に限定されるものではない。
【0027】
【表1】
Figure 0004646494
【0028】
【表2】
Figure 0004646494
【0029】
【表3】
Figure 0004646494
【0030】
【表4】
Figure 0004646494
【0031】
【表5】
Figure 0004646494
【0032】
【表6】
Figure 0004646494
【0033】
【表7】
Figure 0004646494
【0034】
【表8】
Figure 0004646494
【0035】
【表9】
Figure 0004646494
【0036】
【表10】
Figure 0004646494
【0037】
【表11】
Figure 0004646494
【0038】
【表12】
Figure 0004646494
【0039】
【表13】
Figure 0004646494
【0040】
【表14】
Figure 0004646494
【0041】
【表15】
Figure 0004646494
【0042】
【表16】
Figure 0004646494
【0043】
【表17】
Figure 0004646494
【0044】
【表18】
Figure 0004646494
【0045】
【表19】
Figure 0004646494
【0046】
【表20】
Figure 0004646494
【0047】
【表21】
Figure 0004646494
【0048】
【表22】
Figure 0004646494
【0049】
【表23】
Figure 0004646494
【0050】
【表24】
Figure 0004646494
【0051】
【表25】
Figure 0004646494
【0052】
【表26】
Figure 0004646494
【0053】
【表27】
Figure 0004646494
【0054】
【表28】
Figure 0004646494
【0055】
【表29】
Figure 0004646494
【0056】
【表30】
Figure 0004646494
【0057】
【表31】
Figure 0004646494
【0058】
【表32】
Figure 0004646494
【0059】
【表33】
Figure 0004646494
【0060】
【表34】
Figure 0004646494
【0061】
【表35】
Figure 0004646494
【0062】
【表36】
Figure 0004646494
【0063】
【表37】
Figure 0004646494
【0064】
【表38】
Figure 0004646494
【0065】
【表39】
Figure 0004646494
【0066】
【表40】
Figure 0004646494
【0067】
【表41】
Figure 0004646494
【0068】
以上の具体例のうち、特に、(1−1)、(1−3)、(1−4)、(1−10)、(1−11)、(2−3)、(2−4)、(3−3)、(3−4)、(3−10)、(3−11)、(4−3)、(4−4)、(5−11)、(5−4)、(5−18)、(8−4)、(9−11)、(10−18)、(13−11)、(13−14)、(13−15)、(13−16)、(14−1)、(14−2)、(14−6)、(14−7)、(14−9)、(15−1)、(15−3)、(15−4)、(15−5)、(16−3)、(19−1)、(19−5)、(26−8)が好ましい。
【0069】
本発明の上記一般式(1)で示される新規含窒素複素環誘導体は、有機EL素子用材料として使用することが好ましい。
本発明化合物を、有機EL素子の有機化合物層の少なくとも1層に使用することにより、従来より高輝度、高効率の発光が得られ、且つ有機化合物層と電極との付着性が改善され長期安定化が図れるため、有機EL素子を長寿命化することができる。
本発明化合物は、有機EL素子の発光帯域、発光層及び/又は電子輸送層に用いることが好ましい。特に、本発明化合物は、電子注入材料及び/又は電子輸送材料として用いられることが好ましい。また、電子注入材料及び/又は電子輸送材料を含有する層が、還元性ドーパントを含有すると好ましい。
ここで、発光帯域とは、有機EL素子に電界を印加したときに発光を生じる発光材料を含有する部分全体を表す。現在、有機EL素子は一般に、異なる機能や役割を有する材料からなる各薄膜を積層した構造を有しており、発光材料は発光層と呼ばれる有機薄膜層のみに含有される場合が多い。この場合には、発光層が発光帯域に相当する。また、発光層、電子輸送層、電子注入材料については後述する。
【0070】
次に、本発明の有機EL素子について説明する。
本発明の有機EL素子は、一対の電極間に挟持された、発光層を含む少なくとも1層の有機化合物層を有する有機EL素子であって、上記本発明の一般式(1)で表される含窒素複素環誘導体を、該有機化合物層の少なくとも1層に含有することを特徴とする。
本発明の有機EL素子は、有機化合物層の少なくとも1層が、上記本発明化合物を含有するものであって、その素子構成としては、
陽極/正孔注入層/発光層/電子注入層/陰極型
陽極/発光層/電子注入層/陰極型
陽極/正孔注入層/発光層/陰極型
陽極/発光層/陰極型
などが挙げられるが、これらに限定されるものではない。
【0071】
本発明の有機EL素子においては、本発明化合物を発光層及び/又は電子注入層を構成する材料として用いることが好ましい。素子構成においては、正孔注入層や電子注入層は、必ずしも必要ではないが、これらの層を有する素子は発光性能が向上する利点を有している。また、一対の電極間に、上記正孔注入層、発光層、電子注入層を混合させた形で挟持させてもよい。さらに、各構成成分を安定に存在させるため、高分子化合物などのバインダーを用いて混合層を作製してもよい。
ここでは、陽極/正孔注入層/発光層/電子注入層/陰極型を例として、本発明の有機EL素子について説明する。本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
【0072】
この有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Auなどの金属、CuI、ITO、SnO2、ZnOなどの導電性透明材料が挙げられる。陽極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより作製することができる。陽極側より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また、電極としてのシート抵抗は、数百Ω/□以下であることが好ましい。さらに、陽極の膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選ばれる。
【0073】
陰極としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、マグネシウム−銀合金、リチウム、マグネシウム/銅混合物、マグネシウム−インジウム合金、Al/Al23、インジウム、アルミニウム−リチウム合金などが挙げられる。該陰極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより、作製することができる。また、電極としてのシート抵抗は、数百Ω/□以下が好ましく、膜厚は、通常10〜500nm、好ましくは50〜200nmの範囲で選ばれる。なお、発光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば、発光効率が向上し好都合である。
【0074】
本発明の有機EL素子における発光層を構成する発光材料としては、上記本発明化合物を用いることが好ましい。本発明化合物を発光材料として用いる場合、本発明化合物単独でもよいし、公知の発光材料と共に用いてもよい。本発明化合物が発光層以外に用いられている場合は、発光層の発光材料について、特に制限されることはなく、従来公知の発光材料の中から任意のものを選択して用いることができる。このような発光材料としては、例えば、多環縮合芳香族化合物、ベンゾオキサゾール系、ベンゾチアゾール系、ベンゾイミダゾール系などの蛍光増白剤、金属キレート化オキサノイド化合物、ジスチリルベンゼン系化合物などの薄膜形成性の良い化合物を用いることができる。ここで、上記多環縮合芳香族化合物としては、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、クリセン、ペリレン骨格を含む縮合環発光物質や、約8個の縮合環を含む他の縮合環発光物質などを挙げることができる。具体的には、1,1,4,4−テトラフェニル−1,3−ブタジエン、4,4’−(2,2−ジフェニルビニル)ビフェニルなどを用いることができる。この発光層は、これらの発光材料の1種又は2種以上からなる1層で構成されてもよいし、あるいは該発光層とは別種の化合物からなる発光層を積層したものであってもよい。
【0075】
本発明の有機EL素子における正孔注入層は、正孔伝達化合物からなるものであって、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層を陽極と発光層との間に介在させることにより、より低い電界印加で多くの正孔が発光層に注入される。そのうえ、発光層に陰極又は電子注入層より注入された電子は、発光層と正孔注入層の界面に存在する電子の障壁により、発光層内の界面に累積され、発光効率が向上するなど発光性能の優れた素子が得られる。このような正孔注入層に用いられる正孔伝達化合物は、電界が印加された2個の電極間に配置されて、陽極から正孔が注入されたときに、正孔を適切に発光層へ伝達しうるものであり、例えば、104〜106V/cmの電界印加時に少なくとも10-6cm2/V・秒の正孔移動度を有するものが好適である。この正孔伝達化合物については、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において、正孔の電荷注入・輸送材料として慣用されているものや、有機EL素子の正孔注入層に使用される公知のものの中から任意のものを選択して用いることができる。
【0076】
前記正孔伝達化合物としては、例えば、銅フタロシアニンや、N,N,N’,N’−テトラフェニル−4,4’−ジアミノフェニル、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジアミノビフェニル(TPDA)、2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N,N’,N’−テトラ−p−トリル−4,4’−ジアミノビフェニルなどが挙げられる。また、Si、SiC、CdSなどの無機物半導体の結晶、非晶材料も用いることができる。この正孔注入層は、これらの正孔注入材料1種又は2種以上からなる1層で構成されてもよいし、あるいは、前記正孔注入層とは別種の化合物からなる正孔注入層を積層したものであってもよい。
【0077】
本発明の有機EL素子における電子注入層は、電子注入材料からなるものであって、陰極より注入された電子を発光層に伝達する機能を有している。本発明の有機EL素子においては、上記本発明化合物を電子注入材料として用いることが好ましい。本発明化合物が、電子注入層以外で用いられている場合は、電子注入材料について特に制限されることはなく、従来公知の電子注入材料化合物の中から任意のものを選択して用いることができる。
本発明の有機EL素子の好ましい実施形態として、電子を輸送する領域又は陰極と有機化合物層の界面領域に、還元性ドーパントを含有する素子がある。本発明では、本発明化合物に還元性ドーパントを含有する有機EL素子が好ましい。ここで、還元性ドーパントとは、電子輸送性化合物を還元できる物質と定義される。従って、一定の還元性を有するものであれば様々なものを用いることができ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される少なくとも一種類の物質であることが好ましい。
【0078】
また、好ましい還元性ドーパントとしては仕事関数が2.9eV以下のものが好ましく、より具体的には、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)及びCs(仕事関数:1.95eV)からなる群から選択される1種又は2種以上のアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0〜2.5eV)及びBa(仕事関数:2.52eV)からなる群から選択される1種又は2種以上のアルカリ土類金属が挙げられる。これらのうち、より好ましい還元性ドーパントは、K、Rb及びCsからなる群から選択される1種又は2種以上のアルカリ金属であり、さらに好ましくはRb又はCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化を達成することができる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮させることができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が達成される。また、アルカリ金属の他にアルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される1種又は2種以上の金属化合物を使用しても同様の効果が得られるし、アルカリ金属有機錯体、アルカリ土類金属有機錯体を用いても同様の効果が得られる。
【0079】
本発明の有機EL素子においては、陰極と有機層の間に絶縁体や半導体、無機化合物で構成される電子注入層をさらに設けてもよい。電子注入層を設けることにより、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される1種又は2種以上の金属化合物を使用することが好ましい。電子注入層がこれらの金属化合物で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。好ましいアルカリ金属カルコゲナイドとしては、具体的には、例えば、Li2O、LiO、Na2S、Na2Se及びNaOが挙げられる。好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2及びBeF2などのフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
【0080】
また、電子注入層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnからなる群から選択される1種又は2種以上の元素を含む酸化物、窒化物又は酸化窒化物等の1種単独又は2種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物は、微結晶性又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの無機化合物で構成されていれば、より均質な薄膜が形成できるため、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
【0081】
本発明の有機EL素子における電子注入層は、本発明化合物又は他の電子注入材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜化法により製膜して形成することができる。電子注入層としての膜厚は、特に制限はないが、通常は5nm〜5μmである。この電子注入層は、これらの電子注入材料1種又は2種以上からなる1層で構成されてもよいし、あるいは別種の化合物からなる2層以上の電子注入層を積層したもであってもよい。さらに無機物であるp型−Si、p型−SiCによる正孔注入材料、n型α−Si、n型α−SiCによる電子注入材料を、電子注入層を構成するための電子注入材料として用いることができる。具体的には、例えば、国際特許公開第WO90/05998号公報に開示されている無機半導体などが挙げられる。
【0082】
次に、本発明の有機EL素子の作製方法について説明する。好適な例として、前記の陽極/正孔注入層/発光層/電子注入層/陰極型の有機EL素子の作製法について説明する。まず、適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を、1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成し、陽極とする。次に、この上にEL素子構成要素である正孔注入層、発光層、電子注入層を、順次、各構成材料からなる薄膜を形成することにより積層して作製する。ここで用いる薄膜形成方法としては、前記のようなスピンコート法、キャスト法、蒸着法などがあるが、均質な膜が得られやすく、かつピンホールが生成しにくいなどの点から真空蒸着法が好ましい。この薄膜化に、真空蒸着法を採用する場合、その蒸着条件は使用する化合物の種類、分子堆積膜の目的とする結晶構造、会合構造などにより異なるが、一般に、ポート加熱温度50〜400℃、真空度10-6〜10-3Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚5nm〜5μmの範囲で適宜選択することが望ましい。これらの層の形成後、その上に、例えば、蒸着やスパッタリングなどの方法により、陰極用物質からなる、膜厚1μm以下、好ましくは50〜200nmの範囲の薄膜を形成し、陰極とすることにより、所望の有機EL素子が得られる。なお、この有機EL素子の作製においては、作製順序を逆にして、陰極、電子注入層、発光層、正孔注入(輸送)層、陽極の順に作製することもできる。
【0083】
また、一対の電極間に正孔注入層、発光層、電子注入層を混在させた形で挟持させた、陽極/発光層/陰極型の有機EL素子の作製方法としては、例えば、適当な基板上に、陽極用物質からなる薄膜を形成し、正孔注入材料、発光材料、電子注入材料と、ポリビニルカルバゾール、ポリカーボネート、ポリアクリレート、ポリエステル及びポリエーテルなどの結着剤などからなる溶液を塗布するか、又はこの溶液から浸漬塗工法により薄膜を形成して発光層(又は発光帯域)とし、その上に陰極用物質からなる薄膜を形成するものがある。ここで、作製した発光層上に、さらに発光層や電子注入層の材料となる素子材料を真空蒸着した後、その上に陰極用物質からなる薄膜を形成してもよい。
このようにして得られた有機EL素子に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として3〜50V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れず、発光は全く生じない。さらに、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流電流の波形は任意でよい。
【0084】
本発明の有機EL素子は、本発明の含窒素複素環誘導体を有機化合物層、特に電子注入層に用いることにより、本発明化合物を含む有機化合物層と電極(特に、陰極)との間の付着性が改善される。
上記のように作製された本発明の有機EL素子によれば、高輝度且つ高発光効率が達成できる。
【0085】
【実施例】
以下、合成例、実施例を記載して本発明をより具体的に説明するが、本発明はこれらの例によってなんら限定されるものではない。
合成例1:化合物(1−1)の合成
(1)3−アントラセン−9−イル−1−フェニル−プロペノンの合成
アントラセン−9−アルデヒド25g(0.12mol)をエタノール800mLに溶解し、アセトフェノン15g(0.12mol)、28%ナトリウムメトキシド メタノール溶液23g(0.12mol)を加え、室温で4時間撹拌した。反応終了後、析出した固体をろ別し、メタノールで洗浄し、3−アントラセン−9−イル−1−フェニル−プロペノン34.0g(収率91%)を得た。
(2)4−アントラセン−9−イル−2,6−ジフェニル−ピリミジンの合成
(1)で得た3−アントラセン−9−イル−1−フェニル−プロペノン20g(65mmol)をエタノール200mLに溶解し、ベンズアミジン塩酸塩10g(65mmol)、水酸化ナトリウム5.4g(0.13mol)を加え、25時間加熱還流した。反応終了後、室温まで冷却し、析出した結晶をろ別し、水、メタノールで洗浄し、4−アントラセン−9−イル−2,6−ジフェニル−ピリミジン19.1g(収率72%)を得た。
(3)4−(10−ブロモ−アントラセン−9−イル)−2,6−ジフェニル−ピリミジンの合成
(2)で得た4−アントラセン−9−イル−2,6−ジフェニル−ピリミジン19g(47mmol)をN,N−ジメチルホルムアミド200mLに溶解し、N−ブロモスクシンイミド9.2g(52mmol)を加え、室温で8時間撹拌した。反応終了後、析出した固体をろ別し、水、メタノールで洗浄し、4−(10−ブロモ−アントラセン−9−イル)−2,6−ジフェニル−ピリミジン14.9g(収率66%)を得た。
【0086】
(4)2,4−ジフェニル−6−(10−フェニル−アントラセン−9−イル)−ピリミジン(化合物1−1)の合成
(3)で得た4−(10−ブロモ−アントラセン−9−イル)−2,6−ジフェニル−ピリミジン2.0g(4.1mmol)、フェニルボロン酸0.60g(4.9mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.10gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液8mLを加え、7時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、1.8g(収率91%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物1−1)であり、分子量484.19に対し、m/e=484であった。
【0087】
合成例2:4−(10−ナフタレン−1−イル−アントラセン−9−イル)−2,6−ジフェニル−ピリミジン(化合物1−3)の合成
フェニルボロン酸の代わりに対応するボロン酸を用いた以外は、上記合成例1と同様の操作を行うことにより、目的物(化合物1−3)を得た。
化合物(1−3)(収率86%)。マススペクトル(MS)分析は、分子量534.21に対し、m/e=534であった。
【0088】
合成例3:4−(10−ナフタレン−2−イル−アントラセン−9−イル)−2,6−ジフェニル−ピリミジン(化合物1−4)の合成
フェニルボロン酸の代わりに対応するボロン酸を用いた以外は、上記合成例1と同様の操作を行うことにより、目的物(化合物1−4)を得た。
化合物(1−4)(収率99%)。マススペクトル(MS)分析は、分子量534.21に対し、m/e=534であった。
【0089】
合成例4:化合物(1−10)の合成
(1)3−アントラセン−9−イル−1−ナフタレン−1−イル−プロペノンの合成
アントラセン−9−アルデヒド10g(48mmol)をエタノール300mLに溶解し、1−アセチルナフタレン8.3g(49mmol)、28%ナトリウムメトキシド メタノール溶液9.4g(49mmol)を加え、室温で4時間撹拌した。反応終了後、析出した固体をろ別し、メタノールで洗浄し、3−アントラセン−9−イル−1−ナフタレン−1−イル−プロペノン16.6g(収率95%)を得た。
(2)4−アントラセン−9−イル−6−ナフタレン−1−イル−2−フェニル−ピリミジンの合成
(1)で得た3−アントラセン−9−イル−1−ナフタレン−1−イル−プロペノン10g(28mmol)をエタノール100mLに溶解し、ベンズアミジン塩酸塩4.4g(28mmol)、水酸化ナトリウム2.3g(57mmol)を加え、25時間加熱還流した。反応終了後、室温まで冷却し、析出した結晶をろ別し、水、メタノールで洗浄し、4−アントラセン−9−イル−6−ナフタレン−1−イル−2−フェニル−ピリミジン8.5g(収率67%)を得た。
【0090】
(3)4−(10−ブロモ−アントラセン−9−イル)−6−ナフタレン−1−イル−2−フェニル−ピリミジンの合成
(2)で得た4−アントラセン−9−イル−6−ナフタレン−1−イル−2−フェニル−ピリミジン8.5g(19mmol)をN,N−ジメチルホルムアミド100mLに溶解し、N−ブロモスクシンイミド3.6g(20mmol)を加え、室温で8時間撹拌した。反応終了後、析出した固体をろ別し、水、メタノールで洗浄し、4−(10−ブロモ−アントラセン−9−イル)−6−ナフタレン−1−イル−2−フェニル−ピリミジン7.2g(収率73%)を得た。
(4)4−ナフタレン−1−イル−6−(10−ナフタレン−1−イル−アントラセン−9−イル)−2−フェニル−ピリミジン(化合物1−10)の合成
(3)で得た4−(10−ブロモ−アントラセン−9−イル)−6−ナフタレン−1−イル−2−フェニル−ピリミジン2.2g(4.1mmol)、1−ナフタレンボロン酸0.85g(5.1mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.11gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液8mLを加え、8時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、2.33g(収率97%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物1−10)であり、分子量584.23に対し、m/e=584であった。
【0091】
合成例5:4−ナフタレン−1−イル−6−(10−ナフタレン−2−イル−アントラセン−9−イル)−2−フェニル−ピリミジン(化合物1−11)の合成
1−ナフタレンボロン酸の代わりに対応するボロン酸を用いた以外は、上記合成例4と同様の操作を行うことにより、目的物(化合物1−11)を得た。
化合物(1−11)(収率97%)。マススペクトル(MS)分析は、分子量584.23に対し、m/e=584であった。
【0092】
合成例6:化合物(2−4)の合成
(1)3−(4−ブロモ−フェニル)−1−フェニル−プロペノンの合成
4−ブロモベンズアルデヒド15g(81mmol)をエタノール300mLに溶解し、アセトフェノン10g(83mmol)、28%ナトリウムメトキシド メタノール溶液15g(81mmol)を加え、室温で7時間撹拌した。反応終了後、析出した固体をろ別し、メタノールで洗浄し、3−(4−ブロモ−フェニル)−1−フェニル−プロペノン19.4g(収率83%)を得た。
(2)4−(4−ブロモ−フェニル)−2,6−ジフェニル−ピリミジンの合成
(1)で得た3−(4−ブロモ−フェニル)−1−フェニル−プロペノン19g(67mmol)をエタノール150mLに溶解し、ベンズアミジン塩酸塩10.6g(69mmol)、水酸化ナトリウム5.5g(138mmol)を加え、12時間加熱還流した。反応終了後、室温まで冷却し、析出した結晶をろ別し、水、メタノールで洗浄し、4−(4−ブロモ−フェニル)−2,6−ジフェニル−ピリミジン15.9g(収率61%)を得た。
【0093】
(3)4−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−2,6−ジフェニル−ピリミジン(化合物2−4)の合成
(2)で得た4−(4−ブロモ−フェニル)−2,6−ジフェニル−ピリミジン1.8g(4.6mmol)、10−ナフタレン−2−イル−アントラセン−9−ボロン酸1.6g(4.6mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.11gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液7mLを加え、6時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、2.1g(収率74%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物2−4)であり、分子量610.24に対し、m/e=610であった。
【0094】
合成例7:化合物(3−3)の合成
(1)3−アントラセン−9−イル−1−ピリジン−2−イル−プロペノンの合成
アントラセン−9−アルデヒド10g(48mmol)をエタノール300mLに溶解し、2−アセチルピリジン5.9g(49mmol)、28%ナトリウムメトキシド メタノール溶液9.4g(49mmol)を加え、室温で4時間撹拌した。反応終了後、析出した固体をろ別し、メタノールで洗浄し、3−アントラセン−9−イル−1−ピリジン−2−イル−プロペノン14.2g(収率95%)を得た。
(2)4−アントラセン−9−イル−2−フェニル−6−ピリジン−2−イル−ピリミジンの合成
(1)で得た3−アントラセン−9−イル−1−ピリジン−2−イル−プロペノン10g(32mmol)をエタノール100mLに溶解し、ベンズアミジン塩酸塩5.1g(33mmol)、水酸化ナトリウム2.6g(65mmol)を加え、25時間加熱還流した。反応終了後、室温まで冷却し、析出した結晶をろ別し、水、メタノールで洗浄し、4−アントラセン−9−イル−2−フェニル−6−ピリジン−2−イル−ピリミジン12.4g(収率94%)を得た。
(3)4−(10−ブロモ−アントラセン−9−イル)−2−フェニル−6−ピリジン−2−イル−ピリミジンの合成
(2)で得た4−アントラセン−9−イル−2−フェニル−6−ピリジン−2−イル−ピリミジン12g(30mmol)をN,N−ジメチルホルムアミド100mLに溶解し、N−ブロモスクシンイミド5.9g(33mmol)を加え、室温で8時間撹拌した。反応終了後、析出した固体をろ別し、水、メタノールで洗浄し、4−(10−ブロモ−アントラセン−9−イル)−2−フェニル−6−ピリジン−2−イル−ピリミジン10.8g(収率73%)を得た。
【0095】
(4)4−(10−ナフタレン−1−イル−アントラセン−9−イル)−2−フェニル−6−ピリジン−2−イル−ピリミジン(化合物3−3)の合成
(2)で得た4−(10−ブロモ−アントラセン−9−イル)−2−フェニル−6−ピリジン−2−イル−ピリミジン2.2g(4.5mmol)、1−ナフタレンボロン酸0.88g(5.1mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.11gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液8mLを加え、8時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、2.5g(収率99%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物3−3)であり、分子量535.20に対し、m/e=535であった。
【0096】
合成例8:4−(10−ナフタレン−2−イル−アントラセン−9−イル)−2−フェニル−6−ピリジン−2−イル−ピリミジン(化合物3−4)の合成
1−ナフタレンボロン酸の代わりに対応するボロン酸を用いた以外は、上記合成例7と同様の操作を行うことにより、目的物(化合物3−4)を得た。
化合物(3−4)(収率92%)。マススペクトル(MS)分析は、分子量535.20に対し、m/e=535であった。
【0097】
合成例9:4’−(10−ナフタレン−2−イル−アントラセン−9−イル)−[2,2';6',2”]ターピリジン(化合物5−4)の合成
4’−クロロ−[2,2';6',2”]ターピリジン1.8g(6.7mmol)、10−ナフタレン−2−イル−アントラセン−9−ボロン酸2.0g(5.7mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.14gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液9mLを加え、7時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、2.33g(収率84%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物5−4)であり、分子量535.20に対し、m/e=535であった。
【0098】
合成例10:化合物(6−18)の合成
(1)6−(4−ブロモ−フェニル)−3−フェニル−[1,2,4]トリアジンの合成
2,4’−ジブロモアセトフェノン5.0g(18mmol)、ベンゾイルヒドラジン4.9g(36mmol)を酢酸20mLに溶解し、酢酸ナトリウム1.5gを加え、10時間加熱還流した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層を炭酸水素ナトリウム水溶液、食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、1.6g(収率29%)の6−(4−ブロモ−フェニル)−3−フェニル−[1,2,4]トリアジンを得た。
(2)6−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−3−フェニル−[1,2,4]トリアジン(化合物6−18)の合成
(1)で得た6−(4−ブロモ−フェニル)−3−フェニル−[1,2,4]トリアジン1.6g(5.1mmol)、10−ナフタレン−2−イル−アントラセン−9−ボロン酸1.8g(5.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.10gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液10mLを加え、6時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、1.17g(収率43%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物6−18)であり、分子量535.20に対し、m/e=535であった。
【0099】
合成例11:化合物(8−4)の合成
(1)2−(4−ブロモ−フェニル)−キノキサリンの合成
2,4’−ジブロモアセトフェノン10g(36mmol)、1,2−フェニレンジアミン4.0g(37mmol)をエタノール20mL中で、3.5時間加熱還流した。反応終了後、生成した結晶をろ別し、エタノールで洗浄し、2−(4−ブロモ−フェニル)−キノキサリンを4.2g(収率41%)を得た。
(2)2−(4−アントラセン−9−イル−フェニル)−キノキサリンの合成
(1)で得た2−(4−ブロモ−フェニル)−キノキサリン2.0g(7.0mmol)、9−アントラセンボロン酸1.7g(7.7mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.16gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液12mLを加え、6時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、2−(4−アントラセン−9−イル−フェニル)−キノキサリン2.37g(収率88%)を得た。
【0100】
(3)2−[4−(10−ブロモ−アントラセン−9−イル)−フェニル]−キノキサリンの合成
(2)で得た2−(4−アントラセン−9−イル−フェニル)−キノキサリン2.37g(6.2mmol)をN,N−ジメチルホルムアミド20mLに溶解し、N−ブロモスクシンイミド1.2g(6.7mmol)を加え、室温で8時間撹拌した。反応終了後、析出した固体をろ別し、水、メタノールで洗浄し、2−[4−(10−ブロモ−アントラセン−9−イル)−フェニル]−キノキサリン2.24g(収率78%)を得た。
(4)2−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−キノキサリン(化合物8−4)の合成
(3)で得た2−[4−(10−ブロモ−アントラセン−9−イル)−フェニル]−キノキサリン2.2g(4.8mmol)、2−ナフタレンボロン酸0.98g(5.7mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.11gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液8mLを加え、6時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、2.4g(収率99%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物8−4)であり、分子量508.19に対し、m/e=508であった。
【0101】
合成例12:化合物(10−18)の合成
(1)2−(4−ブロモ−フェニル)−4−フェニル−キノリンの合成
4−ブロモアセトフェノン5.0g(25mmol)、2−アミノベンゾフェノン5.0g(25mmol)をエタノール50mLに溶解し、水酸化ナトリウム3.1gを加え、7時間加熱還流した。反応終了後、ろ別し、得られた結晶を水、エタノールで洗浄し、2−(4−ブロモ−フェニル)−4−フェニル−キノリン5.56g(収率61%)を得た。
(2)2−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−4−フェニル−キノリン(化合物10−18)の合成
(1)で得た2−(4−ブロモ−フェニル)−4−フェニル−キノリン2.0g(5.6mmol)、10−ナフタレン−2−イル−アントラセン−9−ボロン酸2.0g(5.7mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.10gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液8mLを加え、6時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、2.07g(収率64%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物10−18)であり、分子量583.23に対し、m/e=583あった。
【0102】
合成例13:化合物(14−7)の合成
(1)2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの合成
2,4’−ジブロモアセトフェノン15g(54mmol)、2−アミノピリジン5.2g(55mmol)をエタノール100mLに溶解し、炭酸水素ナトリウム7.0gを加え、6時間加熱還流した。反応終了後、生成した結晶をろ別し、水、エタノールで洗浄し、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジン12.5g(収率85%)を得た。
(2)2−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン(化合物14−7)の合成
(1)で得た2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジン1.5g(5.5mmol)、10−ナフタレン−2−イル−アントラセン−9−ボロン酸2.0g(5.78mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.13gを1,2−ジメトキシエタン30mLに溶解し、2.0M炭酸ナトリウム水溶液8.6mLを加え、6時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、1.2g(収率45%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物14−7)であり、分子量496.19に対し、m/e=496であった。
【0103】
合成例14:9−(10−ナフタレン−2−イル−アントラセン−9−イル)−アクリジン(化合物13−4)の合成
9−クロロ−アクリジン1.3g(6.1mmol)、10−ナフタレン−2−イル−アントラセン−9−ボロン酸2.0g(5.7mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.10gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液8mLを加え、6時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、2.16g(収率74%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物13−4)であり、分子量481.18に対し、m/e=481であった。
【0104】
合成例15:9−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−アクリジン(化合物13−11)の合成
9−(4−ブロモ−フェニル)−アクリジン1.6g(4.8mmol)、10−ナフタレン−2−イル−アントラセン−9−ボロン酸1.6g(4.6mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.11gを1,2−ジメトキシエタン20mLに溶解し、2.0M炭酸ナトリウム水溶液7mLを加え、6時間加熱還流した。反応終了後、析出した固体をジクロロメタンに溶解し、水洗し、無水硫酸ナトリウムで乾燥した。溶媒を留去し得られた生成物をメタノールで洗浄することにより、1.98g(収率74%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物13−11)であり、分子量557.21に対し、m/e=557であった。
【0105】
合成例16:2−[4−(10−フェニルアントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン(化合物14−1) の合成
合成例13の(2)において、10−ナフタレン−2−イル−アントラセン−9−ボロン酸の代わりに、10−フェニルアントラセン−9−ボロン酸を用いた以外は同様の操作により、3.4g(収率78%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物14−1)であり、分子量446.18に対し、m/e=446であった。
【0106】
合成例17:2−[4−(10−ビフェニル−2−イル−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン(化合物14−2) の合成
合成例13の(2)において、10−ナフタレン−2−イル−アントラセン−9−ボロン酸の代わりに、10−ビフェニル−2−イル−アントラセン−9−ボロン酸を用いた以外は同様の操作により、3.4g(収率81%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物14−2)であり、分子量522.21に対し、m/e=522であった。
【0107】
合成例18:2−[4−(10−ナフタレン−1−イル−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン(化合物14−6) の合成
合成例13の(2)において、10−ナフタレン−2−イル−アントラセン−9−ボロン酸の代わりに、10−ナフタレン−1−イル−アントラセン−9−ボロン酸を用いた以外は同様の操作により、2.6g(収率72%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物14−6)であり、分子量496.19に対し、m/e=496であった。
【0108】
合成例19:(化合物14−5) の合成
(1)2−[4−(10−ブロモ−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジンの合成
4’−ヨードアセトフェノン20g (81mmol) を酢酸200mLに溶かし、氷冷下で、臭素12.8g (81mmol) を加え、15℃で3時間撹拌した。臭素の色が消失した後、水を加え、析出した固体をろ過し、粗2−ブロモ−4’−ヨードアセトフェノン27gを得た。
得られた粗2−ブロモ−4’−ヨードアセトフェノン27g (83mmol)、2−アミノピリジン8.0g (85mmol) をエタノール200mLに溶かし、炭酸水素ナトリウム10gを加え、6 時間加熱還流した。反応終了後、ろ過し、得られた結晶を水、エタノールで洗浄し、2−(4−ヨードフェニル)−イミダゾ[1,2−a]ピリジン21g (収率82%) を得た。
2−(4−ヨードフェニル)−イミダゾ[1,2−a]ピリジン10.6g(33mmol) 、10−ブロモアントラセン−9−ボロン酸10g(33mol) 、テトラキス(トリフェニルホスフィン) パラジウム0.77gを1,2−ジメトキシエタン100mLに溶かし、2.0M炭酸ナトリウム水溶液50mLを加え、7時間加熱環流した。反応終了後、ろ過し、得られた結晶を水、メタノールで洗浄し、2−[4−(10−ブロモ−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン11.7g (収率78%) を得た。
(2)2−[4−(10−[1,1';3',1'']ターフェニル−5’−イル−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン(化合物14−5) の合成
2−[4−(10−ブロモ−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン2.5g(5.5mmol)、[1,1';3',1''] ターフェニル−5’−ボロン酸1.6g(5.8mmol)、テトラキス(トリフェニルホスフィン) パラジウム0.13gを1,2−ジメトキシエタン20mLに溶かし、2.0M炭酸ナトリウム水溶液9mLを加え、8 時間加熱環流した。反応終了後、ろ過し、得られた結晶を水、メタノールで洗浄し、2.4g (収率71%) の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物であり、分子量598.24に対し、m/e=598であった。
【0109】
合成例20:2−[4−(10−フェナントレン−9−イル−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン(化合物14−8) の合成
合成例19において、[1,1';3',1''] ターフェニル−5’−ボロン酸の代わりに、9−フェナントレンボロン酸を用いた以外は同様の操作により、2.4g(収率78%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物14−8)であり、分子量446.18に対し、m/e=446であった。
【0110】
合成例21:2−[4−(10−フルオランテン−3−イル−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン(化合物14−9) の合成
合成例19において、[1,1';3',1''] ターフェニル−5’−ボロン酸の代わりに、3−フルオランテンボロン酸を用いた以外は同様の操作により、2.5g(収率93%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物14−9)であり、分子量570.21に対し、m/e=570であった。
【0111】
合成例22:(化合物15−1) の合成
(1)2−(4−ブロモ−フェニル)−3−メチル−イミダゾ[1,2−a]ピリジンの合成
4’−ブロモプロピオフェノン5.0g(23mmol) を 酢酸50mLに溶かし、氷冷下で、臭素3.7g (23mmol) を加え、10℃で3時間撹拌した。臭素の色が消失した後、水を加え、ジクロロメタンで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥した。溶媒を留去し、得られた結晶をヘキサンで洗浄し、2,4’−ジブロモプロピオフェノン4.3g (収率63%) を得た。
得られた2,4’−ジブロモプロピオフェノン4.3g (15mmol) 、2−アミノピリジン1.4g (15mmol) をエタノール50mLに溶かし、炭酸水素ナトリウム1.9gを加え、6時間加熱還流した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層を水洗し、硫酸ナトリウムで乾燥した。溶媒を留去し、得られたシロップをシリカゲルカラムクロマトグラフィーにより精製し、2−(4−ブロモ−フェニル)−3−メチル−イミダゾ[1,2−a]ピリジン1.6g (収率37%) を得た。
(2)2−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−3−メチル−イミダゾ[1,2−a]ピリジン(化合物15−1) の合成
合成例13の(2)において、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの代わりに、2−(4−ブロモ−フェニル)−3−メチル−イミダゾ[1,2−a]ピリジンを用いた以外は同様の操作により、1.9g(収率70%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物15−1)であり、分子量510.23に対し、m/e=510であった。
【0112】
合成例23:(化合物15−3) の合成
(1)2−(4−ブロモ−フェニル)−6−メチル−イミダゾ[1,2−a]ピリジンの合成
2,4’−ジブロモアセトフェノン5g (18 mmol)、2−アミノ−5−ピコリン2.0g (19mmol) をエタノール30mLに溶かし、炭酸水素ナトリウム2.9gを加え、6時間加熱還流した。反応終了後、ろ過し、得られた結晶を水、エタノールで洗浄し、2−(4−ブロモ−フェニル)−6−メチル−イミダゾ[1,2−a]ピリジン4.2g (収率81%) を得た。
(2)2−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−6−メチル−イミダゾ[1,2−a]ピリジン(化合物15−3) の合成
合成例13の(2)において、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの代わりに、2−(4−ブロモ−フェニル)−6−メチル−イミダゾ[1,2−a]ピリジンを用いた以外は同様の操作により、1.6g(収率55%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物15−3)であり、分子量510.23に対し、m/e=510であった。
【0113】
合成例24:(化合物15−4) の合成
(1)2−(4−ブロモ−フェニル)−7−メチル−イミダゾ[1,2−a]ピリジンの合成
合成例23の(1)において、2−アミノ−5−ピコリンの代わりに2−アミノ−4−ピコリンを用いた以外は同様の操作により、2−(4−ブロモ−フェニル)−7−メチル−イミダゾ[1,2−a]ピリジン2.8g (収率54%) を得た。
(2)2−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−7−メチル−イミダゾ[1,2−a]ピリジン(化合物15−4) の合成
合成例13の(2)において、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの代わりに、2−(4−ブロモ−フェニル)−7−メチル−イミダゾ[1,2−a]ピリジンを用いた以外は同様の操作により、1.6g(収率57%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物15−4)であり、分子量510.21に対し、m/e=510であった。
【0114】
合成例25:(化合物15−5) の合成
(1)2−(4−ブロモ−フェニル)−8−メチル−イミダゾ[1,2−a]ピリジンの合成
合成例23の(1)において、2−アミノ−5−ピコリンの代わりに2−アミノ−3−ピコリンを用いた以外は同様の操作により、2−(4−ブロモ−フェニル)−8−メチル−イミダゾ[1,2−a]ピリジン3.5g (収率68%) を得た。
(2)2−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−8−メチル−イミダゾ[1,2−a]ピリジン(化合物15−5) の合成
合成例13の(2)において、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの代わりに、2−(4−ブロモ−フェニル)−8−メチル−イミダゾ[1,2−a]ピリジンを用いた以外は同様の操作により、1.8g(収率64%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物15−5)であり、分子量510.21に対し、m/e=510であった。
【0115】
合成例26:(化合物16−3) の合成
(1)2−(4−ブロモ−フェニル)−イミダゾ[2,1−a]イソキノリンの合成
合成例23の(1)において、2−アミノ−5−ピコリンの代わりに1−アミノイソキノリンを用いた以外は同様の操作により、2−(4−ブロモ−フェニル)−イミダゾ[2,1−a]イソキノリン5.1g (収率88%) を得た。
(2)2−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−イミダゾ[2,1−a]イソキノリン(化合物16−3) の合成
合成例13の(2)において、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの代わりに、2−(4−ブロモ−フェニル)−イミダゾ[2,1−a]イソキノリンを用いた以外は同様の操作により、2.2g(収率72%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物16−3)であり、分子量546.21に対し、m/e=546であった。
【0116】
合成例27:(化合物16−7) の合成
(1)2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリミジンの合成
合成例23の(1)において、2−アミノ−5−ピコリンの代わりに2−アミノピリミジンを用いた以外は同様の操作により、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリミジン4.1g (収率83%) を得た。
(2)2−[4−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリミジン(化合物16−7) の合成
合成例13の(2)において、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの代わりに、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリミジンを用いた以外は同様の操作により、1.7g(収率62%)の黄色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物16−7)であり、分子量497.19に対し、m/e=497であった。
【0117】
合成例28:(化合物19−1) の合成
(1)2−(3−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの合成
3’−ブロモアセトフェノン10g(50mmol) を酢酸20mLに溶かし、約5〜10℃で臭素7.0g(44mmol) を加え、臭素の色が消失するまで、4時間、約5〜10℃で撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。さらに、水洗し、硫酸ナトリウムで乾燥した。溶媒を留去し得られた粗2,3’−ジブロモアセトフェノンをエタノール30mLに溶かし、2−アミノピリジン5.0g (53mmol) 、炭酸水素ナトリウム7.0gを加え、8時間加熱還流した。反応終了後、ろ過し、得られた結晶を水、メタノールで洗浄し、2−(3−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジン3.5g (収率26%) を得た。
(2)2−[3−(10−ナフタレン−2−イル−アントラセン−9−イル)−フェニル]−イミダゾ[1,2−a]ピリジン(化合物19−1) の合成
合成例13の(2)において、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの代わりに、2−(3−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンを用いた以外は同様の操作により、3.3g(収率91%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物19−1)であり、分子量496.19に対し、m/e=496であった。
【0118】
合成例29:(化合物19−5) の合成
(1)2−(4’−ブロモ−ビフェニル−4−イル)−イミダゾ[1,2−a]ピリジンの合成
塩化アルミニウム4.3g(32mmol) を1,2−ジクロロエタン30mLに入れ、氷冷下で、塩化アセチル2.0g(25mmol) 、ついで4−ブロモビフェニル5.0g(21mmol) を1,2−ジクロロエタン20mLに溶かした溶液を添加した。そのまま、氷冷下で、4時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。さらに、水洗し、硫酸ナトリウムで乾燥した。溶媒を留去し、粗1−(4’−ブロモ−ビフェニル−4−イル)−エタノン5.9gを得た。
得られた1−(4’−ブロモ−ビフェニル−4−イル)−エタノンを酢酸20mLと四塩化炭素10mLに溶かし、約5℃で臭素3.0g(19mmol) を加え、3 時間、約5〜10℃で撹拌した。そして1晩放置した。反応終了後、水を加え、ジクロロメタンで抽出した。さらに、水洗し、硫酸ナトリウムで乾燥した。溶媒を留去し、2−ブロモ−1−(4’−ブロモ−ビフェニル−4−イル)−エタノン6.7g(収率89%) の白色結晶として得た。
2−ブロモ−1−(4’−ブロモ−ビフェニル−4−イル)−エタノン6.7g(19mmol)エタノール50mLに溶かし、2−アミノピリジン2.1g (22mmol) 、炭酸水素ナトリウム5.0gを加え、7時間加熱還流した。反応終了後、ろ過し、得られた結晶を水、メタノールで洗浄し、2−(4’−ブロモ−ビフェニル−4−イル)−イミダゾ[1,2−a]ピリジン5.5g (収率84%) を黄色結晶として得た。
(2)2−[4’−(10−ナフタレン−2−イル−アントラセン−9−イル)−ビフェニル−4−イル]−イミダゾ[1,2−a]ピリジン(化合物19−5) の合成
合成例13の(2)において、2−(4−ブロモ−フェニル)−イミダゾ[1,2−a]ピリジンの代わりに、2−(4’−ブロモ−ビフェニル−4−イル)−イミダゾ[1,2−a]ピリジンを用いた以外は同様の操作により、2.6g(収率63%)の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物(化合物19−5)であり、分子量572.23に対し、m/e=572であった。
【0119】
合成例30:(化合物26−8) の合成
(1)6ブロモ−2−フェニル−イミダゾ[1,2−a]ピリジンの合成
臭化フェナシル5.8g (29mmol) 、2−アミノ−5−ブロモピリジン5.0g (29mmol) をエタノール50mLに溶かし、炭酸水素ナトリウム3.6gを加え、6時間加熱還流した。反応終了後、ろ過し、得られた結晶を水、エタノールで洗浄し、6−ブロモ−2−フェニル−イミダゾ[1,2−a]ピリジン6.4g (収率81%) を得た。
(2)6−(10−ナフタレン−2−イル−アントラセン−9−イル)−2−フェニル−イミダゾ[1,2−a]ピリジン(化合物26−8)
6−ブロモ−2−フェニル−イミダゾ[1,2−a]ピリジン2.0g (7.3mmol) 、10−ナフタレン−2−イル−アントラセン−9−ボロン酸2.5g(11mmol) 、テトラキス(トリフェニルホスフィン) パラジウム0.17gを1,2−ジメトキシエタン20mLに溶かし、2.0M炭酸ナトリウム水溶液11mLを加え、7時間加熱環流した。反応終了後、ろ過し、得られた結晶を水、メタノールで洗浄し、2.7g (収率75%) の黄白色固体を得た。このものは、マススペクトル(MS)分析の結果、目的物であり、分子量496.19に対し、m/e=496であった。
【0120】
参考例1(本発明化合物を電子注入層に用いた有機EL素子の作製)
25mm×75mm×1.1mm厚のITO透明電極付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄した後、30分間UVオゾン洗浄した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に、前記透明電極を覆うようにして膜厚60nmのN,N’−ビス(N,N’−ジフェニル−4−アミノフェニル)−N,N−ジフェニル−4,4’−ジアミノ−1,1’−ビフェニル膜(以下「TPD232膜」と略記する。)を抵抗加熱蒸着により成膜した。このTPD232膜は、第1の正孔注入層(正孔輸送層)として機能する。TPD232膜の成膜に続けてこのTPD232膜上に膜厚20nmの4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル膜(以下「NPD膜」と略記する。)を抵抗加熱蒸着により成膜した。このNPD膜は第2の正孔注入層(正孔輸送層)として機能する。さらに、NPD膜の成膜に続けてこのNPD膜上に膜厚40nmで4’,4”−ビス(2,2−ジフェニルビニル)−9,10−ジフェニルアントラセン(以下「DPVDPAN」と略記する。)を抵抗加熱蒸着により成膜した。このDPVDPAN膜は、発光層として機能する。そしてDPVDPAN膜の成膜に続けて、このDPVDPAN膜上に膜厚10nmの本発明化合物(1−3)を抵抗加熱蒸着により成膜した。この化合物(1−3)膜は、電子注入層として機能する。この後、Li(Li源:サエスゲッター社製)を二元蒸着させ、化合物(1−3):Li膜を成膜速度1.6Å/秒:1Å/分で膜厚10nmの電子注入層(又は陰極)を形成した。この化合物(1−3):Li膜上に金属Alを蒸着し、膜厚130nmの金属陰極を形成し有機EL素子を得た。
【0121】
実施例1〜12及び参考例2〜3
参考例1における化合物(1−3)の代わりに、表1に記載の化合物を用いた以外は同様にして有機EL素子を作製した。
比較例1
参考例1における化合物(1−3)の代わりに、Alq(8−ヒドロキシキノリンのアルミニウム錯体)を用いた以外は同様にして有機EL素子を作製した。
(有機EL素子の評価)
上記実施例1〜12、参考例1〜3及び比較例1で得られた有機EL素子について、下記表1に記載された直流電圧を印加した条件で、発光輝度、発光効率を測定した。それらの評価結果を表1に示す。
【0122】
【表42】
Figure 0004646494
上記表1の結果から、上記の化合物を電子注入材料として用いることで、極めて高発光効率の素子を製造できることがわかる。
【0123】
実施例13(本発明化合物を発光層に用いた有機EL素子の作製)
25mm×75mm×1.1mm厚のITO透明電極付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄した後、30分間UVオゾン洗浄した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に、前記透明電極を覆うようにして膜厚60nmのTPD232膜を抵抗加熱蒸着により成膜した。このTPD232膜は、第1の正孔注入層(正孔輸送層)として機能する。TPD232膜の成膜に続けてこのTPD232膜上に膜厚20nmのNPD膜を抵抗加熱蒸着により成膜した。このNPD膜は第2の正孔注入層(正孔輸送層)として機能する。さらに、NPD膜の成膜に続けてこのNPD膜上に膜厚40nmで本発明化合物(14−7)を抵抗加熱蒸着により成膜した。この化合物(14−7)膜は、発光層として機能する。そしてこの後、Li(Li源:サエスゲッター社製)を二元蒸着させ、化合物(14−7):Li膜を成膜速度1.6Å/秒:1Å/分で膜厚20nmの電子注入層(陰極)を形成した。この化合物(14−7):Li膜上に金属Alを蒸着させ膜厚130nmの金属陰極を形成し有機EL発光素子を得た。この素子は直流電圧4.6Vで発光輝度1030cd/m2、3.05cd/Aの青色発光が得られた。
【0124】
参考例4
実施例13において化合物(14−7)の代わりに、合成例で得られた化合物(1−3)を用いて有機EL素子を作製した。
(有機EL素子の評価)
上記実施例13及び参考例4で得られた有機EL素子について、下記表2に記載された直流電圧を印加した条件で、発光輝度、発光効率、色度を測定した。それらの評価結果を表2に示す。
【0125】
【表43】
Figure 0004646494
上記表2の結果から、上記化合物は、発光層として使用しても十分な効果を発揮することがわかる。
【0126】
【発明の効果】
本発明によれば、本発明の一般式(1)で表される含窒素複素環誘導体を、有機EL素子の有機化合物層の少なくとも1層に用いることにより、素子の高輝度化、高発光効率化及び電極との付着性改善による長期安定化が達成され、長寿命化された有機EL素子が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel nitrogen-containing heterocyclic derivative and an organic electroluminescence device containing the same (hereinafter sometimes referred to as an organic EL device). More specifically, a nitrogen-containing heterocyclic derivative useful as a constituent component of an organic EL device, and the use of this nitrogen-containing heterocyclic derivative in at least one layer of the organic compound layer increases brightness, increases luminous efficiency, and attaches an electrode. The present invention relates to an organic EL element that has achieved long-term stabilization by improvement.
[0002]
[Prior art]
Conventionally, attempts have been made to increase luminous efficiency by providing an electron injection / transport layer in an organic EL element. In this case, although exciplex formation is observed and light emission with high luminance is obtained, there is a drawback that the light emission life is short. In addition, peeling between the metal electrode and the organic compound layer may occur due to prolonged energization, or the organic compound layer and the electrode may crystallize and become white turbid, resulting in a decrease in luminance. .
Examples of using nitrogen-containing heterocyclic compounds such as pyrazine compounds, quinoline compounds, and quinoxaline compounds as components of organic EL elements include 2,3,5,6-tetraphenylpyrazine described in Patent Document 1, 2,3 , 4-triphenylquinoline, 2,3-diphenylquinoxaline. However, since these compounds have a low melting point, there is a disadvantage that even when used as an amorphous thin film layer of an organic EL device, crystallization occurs immediately and almost no light is emitted. In addition, there is a drawback that the above-described peeling occurs due to energization and the life is shortened.
[Patent Document 1]
US Pat. No. 5,077,142
[0003]
[Problems to be solved by the invention]
The present invention provides a novel nitrogen-containing heterocyclic derivative useful as a constituent component of an organic EL device, and the use of this nitrogen-containing heterocyclic derivative in at least one layer of an organic compound layer makes it possible to achieve high brightness and high luminous efficiency. An object of the present invention is to provide an organic EL element that can achieve a long lifetime by improving the adhesion and electrode adhesion.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that a nitrogen-containing heterocyclic derivative having a specific structure is a novel compound, and this compound is at least one of the organic compound layers of the organic EL device. It has been found that by using it for a layer (particularly, an electron injection layer), it is possible to achieve high brightness, high luminous efficiency, and long life by improving electrode adhesion. The present invention has been completed based on such findings.
[0005]
That is, the present invention relates to the general formula (1)
HAr-L-Ar1-Ar2    (1)
(Wherein HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent,
L has a single bond, an arylene group having 6 to 60 carbon atoms which may have a substituent, a heteroarylene group having 3 to 60 carbon atoms which may have a substituent, or a substituent. Is a good fluorenylene group,
Ar1Is a divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent,
Ar2Is a C6-C60 aryl group which may have a substituent or a C3-C60 heteroaryl group which may have a substituent)) I will provide a.
[0006]
The present invention also provides an organic EL device material comprising the nitrogen-containing heterocyclic derivative of the present invention.
Furthermore, the present invention provides an organic EL device having at least one organic compound layer including a light emitting layer sandwiched between a pair of electrodes, wherein the nitrogen-containing heterocyclic derivative of the present invention is added to the organic compound layer. An organic EL element contained in at least one layer of the above is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The nitrogen-containing heterocyclic derivative of the present invention (hereinafter sometimes referred to as the present compound) is represented by the general formula (1).
In General Formula (1), HAr is a nitrogen-containing heterocyclic group having 3 to 40 carbon atoms which may have a substituent. The nitrogen-containing heterocyclic group having 3 to 40 carbon atoms is not particularly limited as long as it is a cyclic group containing at least one nitrogen atom as a ring constituent element, and may be a monocyclic group. In addition, it may be a polycyclic group in which a plurality of rings are condensed. Examples include pyridine, pyrimidine, pyrazine, pyridazine, triazine, quinoline, quinoxaline, acridine, imidazo [1,2-a] pyridine, imidazo [1,2-a] pyrimidine and the like. Examples of the substituent for the nitrogen-containing heterocyclic group include Ar described later.1R in1~ R102The group corresponding to is mentioned.
[0008]
HAr is represented by the general formulas (2) to (36).
[Chemical 8]
Figure 0004646494
[0009]
Preferably it is selected from the group consisting of In the general formulas (2) to (36), the carbon atom in each heterocyclic ring may have a substituent, an aryl group having 6 to 60 carbon atoms, or a carbon number that may have a substituent. A linking group consisting of a 3 to 60 heteroaryl group, an optionally substituted alkyl group having 1 to 20 carbon atoms or an optionally substituted alkoxy group having 1 to 20 carbon atoms is bonded. When there are a plurality of the linking groups, the linking groups may be the same or different from each other.
In the general formulas (8) to (36), the solid line indicating the bonding position of HAr and L is drawn through all the rings constituting each multi-membered ring. This means that the bonding position to may be any position of the HAr multi-membered ring.
[0010]
The aryl group having 6 to 60 carbon atoms is preferably an aryl group having 6 to 40 carbon atoms, more preferably an aryl group having 6 to 20 carbon atoms, specifically, a phenyl group, a naphthyl group, an anthryl group, or a phenanthryl group. , A monovalent group consisting of naphthacenyl group, chrycenyl group, pyrenyl group, biphenyl group, terphenyl group, tolyl group, t-butylphenyl group, (2-phenylpropyl) phenyl group, fluoranthenyl group, fluorenyl group, spirobifluorene , Perfluorophenyl group, perfluoronaphthyl group, perfluoroanthryl group, perfluorobiphenyl group, monovalent group consisting of 9-phenylanthracene, monovalent group consisting of 9- (1′-naphthyl) anthracene , 9- (2′-naphthyl) anthracene monovalent group, 6-phenylchrysene A monovalent group consisting of 9- [4- (diphenylamino) phenyl] anthracene, and the like, such as phenyl group, naphthyl group, biphenyl group, terphenyl group, 9- (10-phenyl) anthryl. Group, 9- [10- (1′-naphthyl)] anthryl group, 9- [10- (2′-naphthyl)] anthryl group and the like are preferable.
The heteroaryl group having 3 to 60 carbon atoms is preferably a heteroaryl group having 3 to 40 carbon atoms, more preferably a heteroaryl group having 3 to 20 carbon atoms, specifically, a pyrrolyl group, a furyl group, or a thienyl group. , Silylyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuryl group, imidazolyl group, pyrimidyl group, carbazolyl group, selenophenyl group, oxadiazolyl group, triazolyl group and the like, and pyridyl group, quinolyl group and isoquinolyl group are preferable.
As the alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 6 carbon atoms is preferable. Specific examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Those having a number of 3 or more may be linear, cyclic or branched.
As a C1-C20 alkoxy group, a C1-C6 alkoxy group is preferable, and a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group etc. are mentioned specifically ,. Those having 3 or more carbon atoms may be linear, cyclic or branched.
[0011]
HAr is
[Chemical 9]
Figure 0004646494
More preferably, it is selected from the group consisting of
[0012]
In General Formula (1), L is a single bond, an arylene group having 6 to 60 carbon atoms which may have a substituent, a heteroarylene group having 3 to 60 carbon atoms which may have a substituent, or It is a fluorenylene group which may have a substituent.
The arylene group having 6 to 60 carbon atoms is preferably an arylene group having 6 to 40 carbon atoms, more preferably an arylene group having 6 to 20 carbon atoms, specifically, a hydrogen atom from the aryl group described for the linking group. A divalent group formed by removing one is mentioned.
The heteroarylene group having 3 to 60 carbon atoms is preferably a heteroarylene group having 3 to 40 carbon atoms, more preferably a heteroarylene group having 3 to 20 carbon atoms, specifically, the heteroaryl group described for the linking group And a divalent group formed by removing one hydrogen atom from each other.
As a substituent of the said C6-C60 arylene group or a C6-C60 heteroarylene group, it has a halogen atom, the C1-C20 alkyl group which may have a substituent, and a substituent. An optionally substituted alkoxy group having 1 to 20 carbon atoms, an optionally substituted aryloxy group having 6 to 40 carbon atoms, and an optionally substituted aryl group having 6 to 40 carbon atoms Or the C3-C40 heteroaryl group etc. which may have a substituent are mentioned.
[0013]
L is
Embedded image
Figure 0004646494
Preferably, it is selected from the group consisting of
[0014]
In the general formula (1), Ar1Is a C6-C60 bivalent aromatic hydrocarbon group which may have a substituent. The divalent aromatic hydrocarbon group having 6 to 60 carbon atoms is preferably one having 6 to 40 carbon atoms, more preferably one having 6 to 20 carbon atoms, specifically, specific examples of the aryl group of HAr. Examples in which a hydrogen atom is further removed to form a divalent group are mentioned.
Particularly preferred Ar1Is represented by any one of the following general formulas (43) to (54).
Embedded image
Figure 0004646494
Where R1~ R102Each independently has a halogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent. An optionally substituted aryloxy group having 6 to 40 carbon atoms, an optionally substituted diarylamino group having 12 to 80 carbon atoms, and an optionally substituted aryl group having 6 to 40 carbon atoms , A linking group consisting of an optionally substituted heteroaryl group having 3 to 40 carbon atoms or an optionally substituted diarylaminoaryl group having 18 to 120 carbon atoms may be bonded. When there are a plurality of the linking groups, the linking groups may be the same as or different from each other.
[0015]
L'Is a single bond, or
Embedded image
Figure 0004646494
A group selected from the group consisting of
[0016]
In the general formula (1), Ar2Is a C6-C60 aryl group which may have a substituent, or a C3-C60 heteroaryl group which may have a substituent.
The aryl group having 6 to 60 carbon atoms and the heteroaryl group having 3 to 60 carbon atoms are the same as those described for the above linking group, and the substituents of these groups have a halogen atom and a substituent. An optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, an optionally substituted aryloxy group having 6 to 40 carbon atoms, An aryl group having 6 to 40 carbon atoms which may have a substituent or a heteroaryl group having 3 to 40 carbon atoms which may have a substituent may be mentioned, and a preferable substituent is 1 to 1 carbon atoms. 6 alkyl groups. The arylene group having 6 to 60 carbon atoms or the heteroarylene group having 3 to 60 carbon atoms is preferably unsubstituted.
[0017]
Ar2Is
Embedded image
Figure 0004646494
Preferably a group selected from the group consisting of
[0018]
Embedded image
Figure 0004646494
More preferably, the group is selected from the group consisting of:
[0019]
In the general formula (1), (1) L is an optionally substituted arylene group having 6 to 60 carbon atoms and an optionally substituted heteroarylene group having 3 to 60 carbon atoms. Or a fluorenylene group optionally having a substituent, Ar1Is a nitrogen-containing heterocyclic derivative which is a C10-60 divalent condensed aromatic hydrocarbon group which may have a substituent, or (2) L is a single bond, Ar1However, the nitrogen-containing heterocyclic derivative which is a C1-C60 bivalent condensed aromatic hydrocarbon group which may have a substituent is preferable.
[0020]
In the case of (1) above, Ar1Is preferably any group selected from the condensed ring groups represented by the following general formulas (37) to (42).
Embedded image
Figure 0004646494
[0021]
In the formula, each condensed ring has a halogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent. An aryloxy group having 6 to 40 carbon atoms which may have an aryl group, an aryl group having 6 to 40 carbon atoms which may have a substituent, or an aryloxy group having 3 to 40 carbon atoms which may have a substituent. A linking group composed of a heteroaryl group may be bonded, and when there are a plurality of the linking groups, the linking groups may be the same as or different from each other.
[0022]
L'Is a single bond, or
Embedded image
Figure 0004646494
A group selected from the group consisting of
[0023]
Examples of the halogen atom include fluorine, chlorine, bromine and iodine.
As the alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 6 carbon atoms is preferable. Specific examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Those having a number of 3 or more may be linear, cyclic or branched.
As a C1-C20 alkoxy group, a C1-C6 alkoxy group is preferable, and a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group etc. are mentioned specifically ,. Those having 3 or more carbon atoms may be linear, cyclic or branched.
The aryloxy group having 6 to 40 carbon atoms is preferably an aryloxy group having 6 to 20 carbon atoms, and specific examples include a phenoxy group and a biphenyloxy group.
The aryl group having 6 to 40 carbon atoms and the heteroaryl group having 3 to 40 carbon atoms are the same as those described for the above linking group.
Moreover, as a substituent of these groups, a halogen atom, a C1-C20 alkyl group which may have a substituent, a C1-C20 alkoxy group which may have a substituent, A C6-C40 aryloxy group which may have a substituent, a C6-C40 aryl group which may have a substituent, or a C3-C3 which may have a substituent 40 heteroaryl groups and the like can be mentioned.
[0024]
In the case of (2) above, Ar1Is preferably any group selected from the condensed ring groups represented by the following general formulas (37) to (41).
Embedded image
Figure 0004646494
[0025]
In the formula, each condensed ring has a halogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent. An aryloxy group having 6 to 40 carbon atoms which may have an aryl group, an aryl group having 6 to 40 carbon atoms which may have a substituent, or an aryloxy group having 3 to 40 carbon atoms which may have a substituent. A linking group composed of a heteroaryl group may be bonded, and when there are a plurality of the linking groups, the linking groups may be the same as or different from each other. L ′ is the same as described above.
The preferred carbon number, specific examples, and substituents of these groups are the same as in the case of (1).
[0026]
The nitrogen-containing heterocyclic derivative represented by the general formula (1) of the present invention can be produced by a known method.
For example, HAr-L-Ar1-X or HAr-L-X and (HO)2B-Ar2Or (HO)2B-Ar1-Ar2Can be produced by the Suzuki reaction.
Specific examples of the novel nitrogen-containing heterocyclic derivative represented by the general formula (1) of the present invention are shown below, but the present invention is not limited to these exemplified compounds.
[0027]
[Table 1]
Figure 0004646494
[0028]
[Table 2]
Figure 0004646494
[0029]
[Table 3]
Figure 0004646494
[0030]
[Table 4]
Figure 0004646494
[0031]
[Table 5]
Figure 0004646494
[0032]
[Table 6]
Figure 0004646494
[0033]
[Table 7]
Figure 0004646494
[0034]
[Table 8]
Figure 0004646494
[0035]
[Table 9]
Figure 0004646494
[0036]
[Table 10]
Figure 0004646494
[0037]
[Table 11]
Figure 0004646494
[0038]
[Table 12]
Figure 0004646494
[0039]
[Table 13]
Figure 0004646494
[0040]
[Table 14]
Figure 0004646494
[0041]
[Table 15]
Figure 0004646494
[0042]
[Table 16]
Figure 0004646494
[0043]
[Table 17]
Figure 0004646494
[0044]
[Table 18]
Figure 0004646494
[0045]
[Table 19]
Figure 0004646494
[0046]
[Table 20]
Figure 0004646494
[0047]
[Table 21]
Figure 0004646494
[0048]
[Table 22]
Figure 0004646494
[0049]
[Table 23]
Figure 0004646494
[0050]
[Table 24]
Figure 0004646494
[0051]
[Table 25]
Figure 0004646494
[0052]
[Table 26]
Figure 0004646494
[0053]
[Table 27]
Figure 0004646494
[0054]
[Table 28]
Figure 0004646494
[0055]
[Table 29]
Figure 0004646494
[0056]
[Table 30]
Figure 0004646494
[0057]
[Table 31]
Figure 0004646494
[0058]
[Table 32]
Figure 0004646494
[0059]
[Table 33]
Figure 0004646494
[0060]
[Table 34]
Figure 0004646494
[0061]
[Table 35]
Figure 0004646494
[0062]
[Table 36]
Figure 0004646494
[0063]
[Table 37]
Figure 0004646494
[0064]
[Table 38]
Figure 0004646494
[0065]
[Table 39]
Figure 0004646494
[0066]
[Table 40]
Figure 0004646494
[0067]
[Table 41]
Figure 0004646494
[0068]
Among the above specific examples, in particular, (1-1), (1-3), (1-4), (1-10), (1-11), (2-3), (2-4) , (3-3), (3-4), (3-10), (3-11), (4-3), (4-4), (5-11), (5-4), ( 5-18), (8-4), (9-11), (10-18), (13-11), (13-14), (13-15), (13-16), (14- 1), (14-2), (14-6), (14-7), (14-9), (15-1), (15-3), (15-4), (15-5) , (16-3), (19-1), (19-5), and (26-8) are preferable.
[0069]
The novel nitrogen-containing heterocyclic derivative represented by the general formula (1) of the present invention is preferably used as a material for an organic EL device.
By using the compound of the present invention in at least one of the organic compound layers of the organic EL device, light emission with higher luminance and efficiency can be obtained than before, and the adhesion between the organic compound layer and the electrode is improved and long-term stable. Therefore, the lifetime of the organic EL element can be extended.
It is preferable to use this invention compound for the light emission zone | band of an organic EL element, a light emitting layer, and / or an electron carrying layer. In particular, the compound of the present invention is preferably used as an electron injection material and / or an electron transport material. Moreover, it is preferable that the layer containing an electron injection material and / or an electron transport material contains a reducing dopant.
Here, the light emission band represents the entire portion containing a light emitting material that emits light when an electric field is applied to the organic EL element. Currently, an organic EL element generally has a structure in which thin films made of materials having different functions and roles are stacked, and a light emitting material is often contained only in an organic thin film layer called a light emitting layer. In this case, the light emitting layer corresponds to the light emission band. The light emitting layer, the electron transport layer, and the electron injection material will be described later.
[0070]
Next, the organic EL element of the present invention will be described.
The organic EL device of the present invention is an organic EL device having at least one organic compound layer including a light emitting layer sandwiched between a pair of electrodes, and is represented by the general formula (1) of the present invention. A nitrogen-containing heterocyclic derivative is contained in at least one layer of the organic compound layer.
As for the organic EL element of this invention, at least 1 layer of an organic compound layer contains the said this invention compound, As the element structure,
Anode / hole injection layer / light emitting layer / electron injection layer / cathode type
Anode / light emitting layer / electron injection layer / cathode type
Anode / hole injection layer / light emitting layer / cathode type
Anode / light emitting layer / cathode type
However, it is not limited to these.
[0071]
In the organic EL device of the present invention, the compound of the present invention is preferably used as a material constituting the light emitting layer and / or the electron injection layer. In the element configuration, the hole injection layer and the electron injection layer are not necessarily required, but an element having these layers has an advantage of improving the light emission performance. Further, the hole injection layer, the light emitting layer, and the electron injection layer may be sandwiched between a pair of electrodes. Furthermore, in order to make each component exist stably, you may produce a mixed layer using binders, such as a high molecular compound.
Here, the organic EL element of the present invention will be described by taking an anode / hole injection layer / light emitting layer / electron injection layer / cathode type as an example. The organic EL element of the present invention is preferably supported on a substrate. The substrate is not particularly limited as long as it is conventionally used for an organic EL element. For example, a substrate made of glass, transparent plastic, quartz, or the like can be used.
[0072]
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, CuI, ITO, SnO.2And conductive transparent materials such as ZnO. The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. In the case of taking out light emission from the anode side, it is desirable that the transmittance is larger than 10%, and the sheet resistance as an electrode is preferably several hundred Ω / □ or less. Further, although the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.
[0073]
As the cathode, a material having a work function (4 eV or less) metal, alloy, electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, magnesium-silver alloy, lithium, magnesium / copper mixture, magnesium-indium alloy, Al / Al2OThree, Indium, aluminum-lithium alloy, and the like. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as an electrode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 to 500 nm, preferably 50 to 200 nm. In order to transmit light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission efficiency is improved, which is convenient.
[0074]
As the light emitting material constituting the light emitting layer in the organic EL device of the present invention, it is preferable to use the compound of the present invention. When the compound of the present invention is used as a light emitting material, the compound of the present invention may be used alone or together with a known light emitting material. When the compound of the present invention is used other than the light emitting layer, the light emitting material of the light emitting layer is not particularly limited, and any one of conventionally known light emitting materials can be selected and used. Examples of such luminescent materials include polycyclic condensed aromatic compounds, fluorescent brighteners such as benzoxazole-based, benzothiazole-based, and benzimidazole-based materials, metal chelated oxanoid compounds, and distyrylbenzene-based compounds. A compound having good properties can be used. Here, examples of the polycyclic fused aromatic compound include condensed ring luminescent materials containing anthracene, naphthalene, phenanthrene, pyrene, chrysene, perylene skeleton, and other condensed ring luminescent materials containing about 8 condensed rings. Can be mentioned. Specifically, 1,1,4,4-tetraphenyl-1,3-butadiene, 4,4 '-(2,2-diphenylvinyl) biphenyl, and the like can be used. This light emitting layer may be composed of one layer composed of one or more of these light emitting materials, or may be a laminate of a light emitting layer composed of a compound different from the light emitting layer. .
[0075]
The hole injection layer in the organic EL device of the present invention is made of a hole transfer compound and has a function of transmitting holes injected from the anode to the light emitting layer. By interposing it with the light emitting layer, many holes are injected into the light emitting layer by applying a lower electric field. In addition, electrons injected from the cathode or the electron injection layer into the light emitting layer are accumulated at the interface in the light emitting layer due to an electron barrier existing at the interface between the light emitting layer and the hole injecting layer, and light emission efficiency is improved. An element with excellent performance can be obtained. The hole transfer compound used for such a hole injection layer is disposed between two electrodes to which an electric field is applied, and when holes are injected from the anode, the holes are appropriately transferred to the light emitting layer. For example, 10Four-106At least 10 when an electric field of V / cm is applied-6cm2Those having a hole mobility of / V · sec are preferred. The hole transport compound is not particularly limited as long as it has the above-mentioned preferable properties, and conventionally used as a charge injection / transport material for holes in optical transmission materials, Any of known materials used for the hole injection layer can be selected and used.
[0076]
Examples of the hole transfer compound include copper phthalocyanine, N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-di (3 -Methylphenyl) -4,4'-diaminobiphenyl (TPDA), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) And cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, and the like. In addition, an inorganic semiconductor crystal or amorphous material such as Si, SiC, or CdS can be used. The hole injection layer may be composed of one layer made of one or more of these hole injection materials, or a hole injection layer made of a compound different from the hole injection layer. It may be laminated.
[0077]
The electron injection layer in the organic EL device of the present invention is made of an electron injection material, and has a function of transmitting electrons injected from the cathode to the light emitting layer. In the organic EL device of the present invention, the compound of the present invention is preferably used as an electron injection material. When the compound of the present invention is used in other than the electron injection layer, the electron injection material is not particularly limited, and any one of conventionally known electron injection material compounds can be selected and used. .
As a preferred embodiment of the organic EL device of the present invention, there is a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic compound layer. In this invention, the organic EL element which contains a reducing dopant in this invention compound is preferable. Here, the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals. Selected from the group consisting of metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes. It is preferable that the substance is at least one kind.
[0078]
Preferred reducing dopants are those having a work function of 2.9 eV or less, and more specifically, Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function). : 2.16 eV) and Cs (work function: 1.95 eV), one or more alkali metals selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2. 0-2.5 eV) and Ba (work function: 2.52 eV), one or more alkaline earth metals selected from the group consisting of. Among these, more preferable reducing dopants are one or more alkali metals selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. is there. These alkali metals have particularly high reducing ability, and can improve the light emission luminance and extend the life of the organic EL element by adding a relatively small amount to the electron injection region. Further, as a reducing dopant having a work function of 2.9 eV or less, a combination of two or more alkali metals is also preferable. Particularly, a combination containing Cs, such as Cs and Na, Cs and K, Cs and Rb, or Cs. And a combination of Na and K. By including Cs in combination, the reducing ability can be efficiently exhibited, and by adding to the electron injection region, improvement in emission luminance and long life in the organic EL element are achieved. In addition to alkali metal, using one or more metal compounds selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides The same effect can be obtained by using an alkali metal organic complex or an alkaline earth metal organic complex.
[0079]
In the organic EL device of the present invention, an electron injection layer composed of an insulator, a semiconductor, or an inorganic compound may be further provided between the cathode and the organic layer. By providing the electron injection layer, current leakage can be effectively prevented and the electron injection property can be improved. As such an insulator, one or more metal compounds selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides are used. It is preferable. If the electron injection layer is composed of these metal compounds, it is preferable in that the electron injection property can be further improved. As a preferable alkali metal chalcogenide, specifically, for example, Li2O, LiO, Na2S, Na2Se and NaO are mentioned. Preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS and CaSe. Further, preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl. Preferred alkaline earth metal halides include, for example, CaF.2, BaF2, SrF2, MgF2And BeF2And fluorides other than fluorides.
[0080]
Further, the semiconductor constituting the electron injection layer is one selected from the group consisting of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. Alternatively, one kind or a combination of two or more of oxides, nitrides, oxynitrides, and the like containing two or more elements can be given. The inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these inorganic compounds, a more uniform thin film can be formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
[0081]
The electron injection layer in the organic EL device of the present invention is formed by forming the compound of the present invention or another electron injection material by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Can be formed. Although the film thickness as an electron injection layer does not have a restriction | limiting in particular, Usually, they are 5 nm-5 micrometers. The electron injection layer may be composed of one or more of these electron injection materials, or may be a laminate of two or more electron injection layers made of different types of compounds. Good. Furthermore, a hole injection material made of p-type-Si or p-type-SiC, which is an inorganic material, or an electron injection material made of n-type α-Si or n-type α-SiC is used as an electron injection material for constituting the electron injection layer. Can do. Specific examples include inorganic semiconductors disclosed in International Patent Publication No. WO90 / 05998.
[0082]
Next, the manufacturing method of the organic EL element of this invention is demonstrated. As a preferred example, a method for producing the above-mentioned anode / hole injection layer / light emitting layer / electron injection layer / cathode type organic EL device will be described. First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 10 to 200 nm, The anode. Next, a hole injection layer, a light-emitting layer, and an electron injection layer, which are EL element constituent elements, are stacked on each other by sequentially forming a thin film made of each constituent material. The thin film formation method used here includes the spin coating method, the casting method, and the vapor deposition method as described above, but the vacuum vapor deposition method is preferable because a homogeneous film is easily obtained and pinholes are not easily generated. preferable. When a vacuum deposition method is employed for this thinning, the deposition conditions vary depending on the type of compound used, the target crystal structure of the molecular deposition film, the association structure, etc., but in general, the port heating temperature is 50 to 400 ° C., Degree of vacuum 10-6-10-3It is desirable to select appropriately within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of −50 to 300 ° C., and film thickness of 5 nm to 5 μm. After forming these layers, a thin film having a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, made of a cathode material is formed thereon by, for example, a method such as vapor deposition or sputtering. A desired organic EL element can be obtained. In the production of the organic EL element, the production order can be reversed, and the cathode, the electron injection layer, the light emitting layer, the hole injection (transport) layer, and the anode can be produced in this order.
[0083]
In addition, as a method for manufacturing an anode / light emitting layer / cathode type organic EL device in which a hole injection layer, a light emitting layer, and an electron injection layer are mixed between a pair of electrodes, for example, a suitable substrate is used. A thin film made of an anode material is formed thereon, and a solution made of a hole injection material, a light emitting material, an electron injection material, and a binder such as polyvinyl carbazole, polycarbonate, polyacrylate, polyester and polyether is applied. Alternatively, a thin film is formed from this solution by a dip coating method to form a light emitting layer (or light emitting band), and a thin film made of a cathode material is formed thereon. Here, a device material that becomes a material of the light emitting layer or the electron injection layer may be further vacuum-deposited on the produced light emitting layer, and then a thin film made of a cathode material may be formed thereon.
When a direct current voltage is applied to the organic EL element thus obtained, light emission can be observed by applying about 3 to 50 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. In addition, the waveform of the alternating current to apply may be arbitrary.
[0084]
The organic EL device of the present invention uses the nitrogen-containing heterocyclic derivative of the present invention for an organic compound layer, particularly an electron injection layer, thereby allowing adhesion between the organic compound layer containing the compound of the present invention and an electrode (particularly a cathode). Improved.
According to the organic EL element of the present invention produced as described above, high luminance and high luminous efficiency can be achieved.
[0085]
【Example】
EXAMPLES Hereinafter, although a synthesis example and an Example are described and this invention is demonstrated more concretely, this invention is not limited at all by these examples.
Synthesis example 1: Synthesis of compound (1-1)
(1) Synthesis of 3-anthracen-9-yl-1-phenyl-propenone
25 g (0.12 mol) of anthracene-9-aldehyde was dissolved in 800 mL of ethanol, 15 g (0.12 mol) of acetophenone and 23 g (0.12 mol) of 28% sodium methoxide methanol solution were added, and the mixture was stirred at room temperature for 4 hours. After completion of the reaction, the precipitated solid was collected by filtration and washed with methanol to obtain 34.0 g (yield 91%) of 3-anthracen-9-yl-1-phenyl-propenone.
(2) Synthesis of 4-anthracen-9-yl-2,6-diphenyl-pyrimidine
20 g (65 mmol) of 3-anthracen-9-yl-1-phenyl-propenone obtained in (1) was dissolved in 200 mL of ethanol, and 10 g (65 mmol) of benzamidine hydrochloride and 5.4 g (0.13 mol) of sodium hydroxide were added. In addition, the mixture was heated to reflux for 25 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and the precipitated crystals were collected by filtration and washed with water and methanol to obtain 19.1 g of 4-anthracen-9-yl-2,6-diphenyl-pyrimidine (yield 72%). It was.
(3) Synthesis of 4- (10-bromo-anthracen-9-yl) -2,6-diphenyl-pyrimidine
19 g (47 mmol) of 4-anthracen-9-yl-2,6-diphenyl-pyrimidine obtained in (2) was dissolved in 200 mL of N, N-dimethylformamide, and 9.2 g (52 mmol) of N-bromosuccinimide was added. Stir at room temperature for 8 hours. After completion of the reaction, the precipitated solid was filtered off and washed with water and methanol to give 14.9 g (yield 66%) of 4- (10-bromo-anthracen-9-yl) -2,6-diphenyl-pyrimidine. Obtained.
[0086]
(4) Synthesis of 2,4-diphenyl-6- (10-phenyl-anthracen-9-yl) -pyrimidine (Compound 1-1)
4- (10-Bromo-anthracen-9-yl) -2,6-diphenyl-pyrimidine 2.0 g (4.1 mmol) obtained in (3), phenylboronic acid 0.60 g (4.9 mmol), tetrakis ( 0.10 g of triphenylphosphine) palladium was dissolved in 20 mL of 1,2-dimethoxyethane, 8 mL of 2.0 M sodium carbonate aqueous solution was added, and the mixture was heated to reflux for 7 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 1.8 g (yield 91%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the target product (Compound 1-1), and the molecular weight was 484.19, and m / e = 484.
[0087]
Synthesis example 2: Synthesis of 4- (10-naphthalen-1-yl-anthracen-9-yl) -2,6-diphenyl-pyrimidine (compound 1-3)
The target product (Compound 1-3) was obtained by carrying out the same operations as in Synthesis Example 1 except that the corresponding boronic acid was used instead of phenylboronic acid.
Compound (1-3) (86% yield). Mass spectrum (MS) analysis showed m / e = 534 for a molecular weight of 534.21.
[0088]
Synthesis example 3: Synthesis of 4- (10-naphthalen-2-yl-anthracen-9-yl) -2,6-diphenyl-pyrimidine (compound 1-4)
The target product (Compound 1-4) was obtained by carrying out the same operations as in Synthesis Example 1 except that the corresponding boronic acid was used instead of phenylboronic acid.
Compound (1-4) (99% yield). Mass spectrum (MS) analysis showed m / e = 534 for a molecular weight of 534.21.
[0089]
Synthesis example 4: Synthesis of compound (1-10)
(1) Synthesis of 3-anthracen-9-yl-1-naphthalen-1-yl-propenone
10 g (48 mmol) of anthracene-9-aldehyde was dissolved in 300 mL of ethanol, 8.3 g (49 mmol) of 1-acetylnaphthalene and 9.4 g (49 mmol) of 28% sodium methoxide methanol solution were added, and the mixture was stirred at room temperature for 4 hours. After completion of the reaction, the precipitated solid was collected by filtration and washed with methanol to obtain 16.6 g of 3-anthracen-9-yl-1-naphthalen-1-yl-propenone (yield 95%).
(2) Synthesis of 4-anthracen-9-yl-6-naphthalen-1-yl-2-phenyl-pyrimidine
10 g (28 mmol) of 3-anthracen-9-yl-1-naphthalen-1-yl-propenone obtained in (1) was dissolved in 100 mL of ethanol, 4.4 g (28 mmol) of benzamidine hydrochloride, 2.3 g of sodium hydroxide (57 mmol) was added and heated to reflux for 25 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and the precipitated crystals were filtered off, washed with water and methanol, and 8.5 g of 4-anthracen-9-yl-6-naphthalen-1-yl-2-phenyl-pyrimidine (yield). Rate 67%).
[0090]
(3) Synthesis of 4- (10-bromo-anthracen-9-yl) -6-naphthalen-1-yl-2-phenyl-pyrimidine
8.5 g (19 mmol) of 4-anthracen-9-yl-6-naphthalen-1-yl-2-phenyl-pyrimidine obtained in (2) was dissolved in 100 mL of N, N-dimethylformamide, and N-bromosuccinimide 3 0.6 g (20 mmol) was added, and the mixture was stirred at room temperature for 8 hours. After completion of the reaction, the precipitated solid was collected by filtration, washed with water and methanol, and 7.2 g of 4- (10-bromo-anthracen-9-yl) -6-naphthalen-1-yl-2-phenyl-pyrimidine ( Yield 73%).
(4) Synthesis of 4-naphthalen-1-yl-6- (10-naphthalen-1-yl-anthracen-9-yl) -2-phenyl-pyrimidine (Compound 1-10)
4- (10-Bromo-anthracen-9-yl) -6-naphthalen-1-yl-2-phenyl-pyrimidine 2.2 g (4.1 mmol) obtained in (3), 0.85 g of 1-naphthaleneboronic acid (5.1 mmol), 0.11 g of tetrakis (triphenylphosphine) palladium was dissolved in 20 mL of 1,2-dimethoxyethane, 8 mL of a 2.0 M sodium carbonate aqueous solution was added, and the mixture was heated to reflux for 8 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 2.33 g (yield 97%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 1-10), and the molecular weight was 584.23, and m / e = 584.
[0091]
Synthesis example 5Synthesis of 4-naphthalen-1-yl-6- (10-naphthalen-2-yl-anthracen-9-yl) -2-phenyl-pyrimidine (Compound 1-11)
The target product (Compound 1-11) was obtained by performing the same operation as in Synthesis Example 4 except that the corresponding boronic acid was used instead of 1-naphthaleneboronic acid.
Compound (1-11) (yield 97%). Mass spectrum (MS) analysis showed m / e = 584 for a molecular weight of 584.23.
[0092]
Synthesis Example 6: Synthesis of compound (2-4)
(1) Synthesis of 3- (4-bromo-phenyl) -1-phenyl-propenone
4-Bromobenzaldehyde (15 g, 81 mmol) was dissolved in ethanol (300 mL), acetophenone (10 g, 83 mmol) and 28% sodium methoxide in methanol (15 g, 81 mmol) were added, and the mixture was stirred at room temperature for 7 hours. After completion of the reaction, the precipitated solid was filtered off and washed with methanol to obtain 19.4 g (yield 83%) of 3- (4-bromo-phenyl) -1-phenyl-propenone.
(2) Synthesis of 4- (4-bromo-phenyl) -2,6-diphenyl-pyrimidine
19 g (67 mmol) of 3- (4-bromo-phenyl) -1-phenyl-propenone obtained in (1) was dissolved in 150 mL of ethanol, 10.6 g (69 mmol) of benzamidine hydrochloride, and 5.5 g (138 mmol) of sodium hydroxide. ) And heated to reflux for 12 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and the precipitated crystals were separated by filtration, washed with water and methanol, and 15.9 g of 4- (4-bromo-phenyl) -2,6-diphenyl-pyrimidine (yield 61%). Got.
[0093]
(3) Synthesis of 4- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -2,6-diphenyl-pyrimidine (Compound 2-4)
1.8 g (4.6 mmol) of 4- (4-bromo-phenyl) -2,6-diphenyl-pyrimidine obtained in (2), 1.6 g of 10-naphthalen-2-yl-anthracene-9-boronic acid ( 4.6 mmol), 0.11 g of tetrakis (triphenylphosphine) palladium was dissolved in 20 mL of 1,2-dimethoxyethane, 7 mL of a 2.0 M aqueous sodium carbonate solution was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 2.1 g (yield 74%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the desired product (compound 2-4), and the molecular weight was 610.24, which was m / e = 610.
[0094]
Synthesis example 7: Synthesis of compound (3-3)
(1) Synthesis of 3-anthracen-9-yl-1-pyridin-2-yl-propenone
Anthracene-9-aldehyde (10 g, 48 mmol) was dissolved in ethanol (300 mL), 2-acetylpyridine (5.9 g, 49 mmol) and 28% sodium methoxide in methanol (9.4 g, 49 mmol) were added, and the mixture was stirred at room temperature for 4 hours. After completion of the reaction, the precipitated solid was collected by filtration and washed with methanol to obtain 14.2 g (yield 95%) of 3-anthracen-9-yl-1-pyridin-2-yl-propenone.
(2) Synthesis of 4-anthracen-9-yl-2-phenyl-6-pyridin-2-yl-pyrimidine
10 g (32 mmol) of 3-anthracen-9-yl-1-pyridin-2-yl-propenone obtained in (1) was dissolved in 100 mL of ethanol, 5.1 g (33 mmol) of benzamidine hydrochloride, 2.6 g of sodium hydroxide (65 mmol) was added and heated to reflux for 25 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and the precipitated crystals were filtered off, washed with water and methanol, and 12.4 g of 4-anthracen-9-yl-2-phenyl-6-pyridin-2-yl-pyrimidine (yield). 94%).
(3) Synthesis of 4- (10-bromo-anthracen-9-yl) -2-phenyl-6-pyridin-2-yl-pyrimidine
4-Anthracen-9-yl-2-phenyl-6-pyridin-2-yl-pyrimidine (12 g, 30 mmol) obtained in (2) was dissolved in 100 mL of N, N-dimethylformamide, and 5.9 g of N-bromosuccinimide was obtained. (33 mmol) was added and stirred at room temperature for 8 hours. After completion of the reaction, the precipitated solid was filtered off, washed with water and methanol, and 10.8 g of 4- (10-bromo-anthracen-9-yl) -2-phenyl-6-pyridin-2-yl-pyrimidine ( Yield 73%).
[0095]
(4) Synthesis of 4- (10-naphthalen-1-yl-anthracen-9-yl) -2-phenyl-6-pyridin-2-yl-pyrimidine (Compound 3-3)
4- (10-Bromo-anthracen-9-yl) -2-phenyl-6-pyridin-2-yl-pyrimidine 2.2 g (4.5 mmol) obtained in (2), 0.88 g of 1-naphthaleneboronic acid (5.1 mmol), 0.11 g of tetrakis (triphenylphosphine) palladium was dissolved in 20 mL of 1,2-dimethoxyethane, 8 mL of a 2.0 M sodium carbonate aqueous solution was added, and the mixture was heated to reflux for 8 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 2.5 g (yield 99%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 3-3), and the molecular weight was 535.20, and m / e = 535.
[0096]
Synthesis Example 8Synthesis of 4- (10-naphthalen-2-yl-anthracen-9-yl) -2-phenyl-6-pyridin-2-yl-pyrimidine (Compound 3-4)
The target product (Compound 3-4) was obtained by performing the same operation as in Synthesis Example 7 except that the corresponding boronic acid was used instead of 1-naphthaleneboronic acid.
Compound (3-4) (yield 92%). Mass spectrum (MS) analysis showed m / e = 535 for a molecular weight of 535.20.
[0097]
Synthesis Example 9Synthesis of 4 '-(10-naphthalen-2-yl-anthracen-9-yl)-[2,2'; 6 ', 2 "] terpyridine (Compound 5-4)
1.8 g (6.7 mmol) of 4′-chloro- [2,2 ′; 6 ′, 2 ″] terpyridine, 2.0 g (5.7 mmol) of 10-naphthalen-2-yl-anthracene-9-boronic acid, Tetrakis (triphenylphosphine) palladium (0.14 g) was dissolved in 1,2-dimethoxyethane (20 mL), 2.0 M sodium carbonate aqueous solution (9 mL) was added, and the mixture was heated to reflux for 7 hours. The product obtained by distilling off the solvent was washed with methanol to obtain 2.33 g (yield 84%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, it was the target product (Compound 5-4), and the molecular weight was 535.20, and m / e = 535.
[0098]
Synthesis Example 10: Synthesis of compound (6-18)
(1) Synthesis of 6- (4-bromo-phenyl) -3-phenyl- [1,2,4] triazine
2,4'-dibromoacetophenone 5.0 g (18 mmol) and benzoylhydrazine 4.9 g (36 mmol) were dissolved in 20 mL of acetic acid, 1.5 g of sodium acetate was added, and the mixture was heated to reflux for 10 hours. After completion of the reaction, water was added and extracted with dichloromethane. The organic layer was washed with an aqueous sodium hydrogen carbonate solution and brine and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 1.6 g (yield 29%) of 6- (4-bromo-phenyl) -3-phenyl- [1,2,4] triazine. Got.
(2) Synthesis of 6- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -3-phenyl- [1,2,4] triazine (Compound 6-18)
1.6 g (5.1 mmol) of 6- (4-bromo-phenyl) -3-phenyl- [1,2,4] triazine obtained in (1), 10-naphthalen-2-yl-anthracene-9-boron 1.8 g (5.2 mmol) of acid and 0.10 g of tetrakis (triphenylphosphine) palladium were dissolved in 20 mL of 1,2-dimethoxyethane, 10 mL of 2.0 M aqueous sodium carbonate solution was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 1.17 g (yield 43%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 6-18), and the molecular weight was 535.20, and m / e = 535.
[0099]
Synthesis Example 11: Synthesis of compound (8-4)
(1) Synthesis of 2- (4-bromo-phenyl) -quinoxaline
2,4'-Dibromoacetophenone (10 g, 36 mmol) and 1,2-phenylenediamine (4.0 g, 37 mmol) were heated to reflux in ethanol (20 mL) for 3.5 hours. After completion of the reaction, the produced crystals were filtered off and washed with ethanol to obtain 4.2 g (yield 41%) of 2- (4-bromo-phenyl) -quinoxaline.
(2) Synthesis of 2- (4-anthracen-9-yl-phenyl) -quinoxaline
2- (4-Bromo-phenyl) -quinoxaline 2.0 g (7.0 mmol) obtained in (1), 9-anthraceneboronic acid 1.7 g (7.7 mmol), tetrakis (triphenylphosphine) palladium 0.16 g Was dissolved in 1,2-dimethoxyethane (20 mL), 2.0 M aqueous sodium carbonate solution (12 mL) was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 2.37 g (yield 88%) of 2- (4-anthracen-9-yl-phenyl) -quinoxaline.
[0100]
(3) Synthesis of 2- [4- (10-bromo-anthracen-9-yl) -phenyl] -quinoxaline
2.37 g (6.2 mmol) of 2- (4-anthracen-9-yl-phenyl) -quinoxaline obtained in (2) was dissolved in 20 mL of N, N-dimethylformamide, and 1.2 g of N-bromosuccinimide (6 0.7 mmol) was added and stirred at room temperature for 8 hours. After completion of the reaction, the precipitated solid was filtered off and washed with water and methanol to give 2.24 g of 2- [4- (10-bromo-anthracen-9-yl) -phenyl] -quinoxaline (yield 78%). Obtained.
(4) Synthesis of 2- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -quinoxaline (Compound 8-4)
2- [4- (10-Bromo-anthracen-9-yl) -phenyl] -quinoxaline 2.2 g (4.8 mmol) obtained in (3), 0.98 g (5.7 mmol) of 2-naphthaleneboronic acid, Tetrakis (triphenylphosphine) palladium (0.11 g) was dissolved in 1,2-dimethoxyethane (20 mL), 2.0 M aqueous sodium carbonate solution (8 mL) was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 2.4 g (yield 99%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the desired product (compound 8-4), and the molecular weight was 508.19, and m / e = 508.
[0101]
Synthesis Example 12: Synthesis of compound (10-18)
(1) Synthesis of 2- (4-bromo-phenyl) -4-phenyl-quinoline
4-Bromoacetophenone 5.0 g (25 mmol) and 2-aminobenzophenone 5.0 g (25 mmol) were dissolved in 50 mL of ethanol, 3.1 g of sodium hydroxide was added, and the mixture was heated to reflux for 7 hours. After completion of the reaction, the mixture was filtered and the obtained crystals were washed with water and ethanol to obtain 5.56 g (yield 61%) of 2- (4-bromo-phenyl) -4-phenyl-quinoline.
(2) Synthesis of 2- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -4-phenyl-quinoline (Compound 10-18)
2.0 g (5.6 mmol) of 2- (4-bromo-phenyl) -4-phenyl-quinoline obtained in (1), 2.0 g of 10-naphthalen-2-yl-anthracene-9-boronic acid (5. 7 mmol) and 0.10 g of tetrakis (triphenylphosphine) palladium were dissolved in 20 mL of 1,2-dimethoxyethane, 8 mL of a 2.0 M aqueous sodium carbonate solution was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 2.07 g (yield 64%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the target product (Compound 10-18), and had a molecular weight of 583.23, m / e = 583.
[0102]
Synthesis Example 13: Synthesis of compound (14-7)
(1) Synthesis of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine
2,4'-dibromoacetophenone 15 g (54 mmol) and 2-aminopyridine 5.2 g (55 mmol) were dissolved in 100 mL of ethanol, 7.0 g of sodium bicarbonate was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the produced crystals were filtered off and washed with water and ethanol to obtain 12.5 g (yield 85%) of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine. .
(2) Synthesis of 2- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine (Compound 14-7)
1.5 g (5.5 mmol) of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine obtained in (1), 10-naphthalen-2-yl-anthracene-9-boronic acid 0 g (5.78 mmol) and 0.13 g of tetrakis (triphenylphosphine) palladium were dissolved in 30 mL of 1,2-dimethoxyethane, 8.6 mL of a 2.0 M aqueous sodium carbonate solution was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 1.2 g (yield 45%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 14-7), and the molecular weight was 496.19, and m / e = 496.
[0103]
Synthesis Example 14: Synthesis of 9- (10-naphthalen-2-yl-anthracen-9-yl) -acridine (compound 13-4)
1. 1 g of 9-chloro-acridine 1.3 g (6.1 mmol), 10-naphthalen-2-yl-anthracene-9-boronic acid 2.0 g (5.7 mmol), tetrakis (triphenylphosphine) palladium 0.10 g It melt | dissolved in 2-dimethoxyethane 20mL, 2.0M sodium carbonate aqueous solution 8mL was added, and it heated and refluxed for 6 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 2.16 g (yield 74%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 13-4), and the molecular weight was 481.18, which was m / e = 481.
[0104]
Synthesis Example 15: Synthesis of 9- [4- (10-Naphthalen-2-yl-anthracen-9-yl) -phenyl] -acridine (Compound 13-11)
1.6 g (4.8 mmol) of 9- (4-bromo-phenyl) -acridine, 1.6 g (4.6 mmol) of 10-naphthalen-2-yl-anthracene-9-boronic acid, tetrakis (triphenylphosphine) palladium 0.11 g was dissolved in 20 mL of 1,2-dimethoxyethane, 7 mL of a 2.0 M aqueous sodium carbonate solution was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the precipitated solid was dissolved in dichloromethane, washed with water, and dried over anhydrous sodium sulfate. The product obtained by distilling off the solvent was washed with methanol to obtain 1.98 g (yield 74%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the target product (Compound 13-11), and the molecular weight was 557.21, and m / e = 557.
[0105]
Synthesis Example 16Synthesis of 2- [4- (10-phenylanthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine (Compound 14-1)
In Synthesis Example 13 (2), 3.4 g (3.4 g) was obtained in the same manner except that 10-phenylanthracene-9-boronic acid was used instead of 10-naphthalen-2-yl-anthracene-9-boronic acid. A yellowish white solid with a yield of 78% was obtained. As a result of mass spectrum (MS) analysis, this was the target product (Compound 14-1), and the molecular weight was 446.18, and m / e = 446.
[0106]
Synthesis Example 17Synthesis of 2- [4- (10-biphenyl-2-yl-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine (Compound 14-2)
The same operation as in Synthesis Example 13 (2) except that 10-biphenyl-2-yl-anthracene-9-boronic acid was used instead of 10-naphthalen-2-yl-anthracene-9-boronic acid. 3.4 g (81% yield) of yellowish white solid was obtained. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 14-2), and the molecular weight was 522.21, and m / e = 522.
[0107]
Synthesis Example 18Synthesis of 2- [4- (10-naphthalen-1-yl-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine (Compound 14-6)
The same operation as in Synthesis Example 13 (2) except that 10-naphthalen-1-yl-anthracene-9-boronic acid was used instead of 10-naphthalen-2-yl-anthracene-9-boronic acid. 2.6 g (yield 72%) of a pale yellow solid was obtained. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 14-6), and the molecular weight was 496.19, and m / e = 496.
[0108]
Synthesis Example 19: Synthesis of (Compound 14-5)
(1) Synthesis of 2- [4- (10-bromo-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine
4'-iodoacetophenone 20 g (81 mmol) was dissolved in 200 mL of acetic acid, 12.8 g (81 mmol) of bromine was added under ice cooling, and the mixture was stirred at 15 ° C for 3 hours. After the color of bromine disappeared, water was added, and the precipitated solid was filtered to obtain 27 g of crude 2-bromo-4'-iodoacetophenone.
The obtained crude 2-bromo-4'-iodoacetophenone 27 g (83 mmol) and 2-aminopyridine 8.0 g (85 mmol) were dissolved in 200 mL of ethanol, 10 g of sodium bicarbonate was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the mixture was filtered, and the resulting crystals were washed with water and ethanol to obtain 21 g (82% yield) of 2- (4-iodophenyl) -imidazo [1,2-a] pyridine.
10.6 g (33 mmol) of 2- (4-iodophenyl) -imidazo [1,2-a] pyridine, 10 g (33 mol) of 10-bromoanthracene-9-boronic acid, 0.77 g of tetrakis (triphenylphosphine) palladium It melt | dissolved in 1, 2- dimethoxyethane 100mL, 2.0M sodium carbonate aqueous solution 50mL was added, and it heated and refluxed for 7 hours. After completion of the reaction, the mixture was filtered, and the obtained crystals were washed with water and methanol, and 2- [4- (10-bromo-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine11. 7 g (yield 78%) was obtained.
(2) 2- [4- (10- [1,1 ′; 3 ′, 1 ″] terphenyl-5′-yl-anthracen-9-yl) -phenyl] -imidazo [1,2-a] Synthesis of pyridine (compound 14-5)
2- [4- (10-Bromo-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine 2.5 g (5.5 mmol), [1,1 ′; 3 ′, 1 ″ ] 1.6 g (5.8 mmol) of terphenyl-5′-boronic acid and 0.13 g of tetrakis (triphenylphosphine) palladium were dissolved in 20 mL of 1,2-dimethoxyethane, and 9 mL of 2.0 M aqueous sodium carbonate solution was added. Heated at reflux for hours. After completion of the reaction, the mixture was filtered, and the resulting crystals were washed with water and methanol to obtain 2.4 g (yield 71%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the target product, and the molecular weight was 598.24, and m / e = 598.
[0109]
Synthesis Example 20Synthesis of 2- [4- (10-phenanthrene-9-yl-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine (Compound 14-8)
In Synthesis Example 19, 2.4 g (yield) was obtained in the same manner except that 9-phenanthreneboronic acid was used instead of [1,1 ′; 3 ′, 1 ″] terphenyl-5′-boronic acid. A yellowish white solid was obtained. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 14-8), and the molecular weight was 446.18, and m / e = 446.
[0110]
Synthesis Example 21Synthesis of 2- [4- (10-fluoranthen-3-yl-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine (compound 14-9)
In Synthesis Example 19, 2.5 g was obtained by the same procedure except that 3-fluorantheneboronic acid was used instead of [1,1 ′; 3 ′, 1 ″] terphenyl-5′-boronic acid. A yellowish white solid (yield 93%) was obtained. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 14-9), and the molecular weight was 570.21, which was m / e = 570.
[0111]
Synthesis Example 22: Synthesis of (Compound 15-1)
(1) Synthesis of 2- (4-bromo-phenyl) -3-methyl-imidazo [1,2-a] pyridine
4'-bromopropiophenone 5.0 g (23 mmol) was dissolved in 50 mL of acetic acid, 3.7 g (23 mmol) of bromine was added under ice cooling, and the mixture was stirred at 10 ° C for 3 hours. After the bromine color disappeared, water was added and extracted with dichloromethane. The organic layer was washed with water and dried over sodium sulfate. The solvent was distilled off, and the resulting crystals were washed with hexane to obtain 4.3 g (yield 63%) of 2,4′-dibromopropiophenone.
The obtained 2,4′-dibromopropiophenone 4.3 g (15 mmol) and 2-aminopyridine 1.4 g (15 mmol) were dissolved in 50 mL of ethanol, 1.9 g of sodium bicarbonate was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, water was added and extracted with dichloromethane. The organic layer was washed with water and dried over sodium sulfate. The solvent was distilled off, and the resulting syrup was purified by silica gel column chromatography to obtain 1.6 g of 2- (4-bromo-phenyl) -3-methyl-imidazo [1,2-a] pyridine (yield 37%). )
(2) Synthesis of 2- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -3-methyl-imidazo [1,2-a] pyridine (Compound 15-1)
In Synthesis Example 13 (2), instead of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine, 2- (4-bromo-phenyl) -3-methyl-imidazo [1, 2-a] Except that pyridine was used, 1.9 g (yield 70%) of a yellowish white solid was obtained by the same operation. As a result of mass spectrum (MS) analysis, this was the target product (Compound 15-1), and the molecular weight was 510.23, which was m / e = 510.
[0112]
Synthesis Example 23: Synthesis of (Compound 15-3)
(1) Synthesis of 2- (4-bromo-phenyl) -6-methyl-imidazo [1,2-a] pyridine
2,4'-Dibromoacetophenone 5 g (18 mmol) and 2-amino-5-picoline 2.0 g (19 mmol) were dissolved in 30 mL of ethanol, 2.9 g of sodium bicarbonate was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the mixture was filtered, and the resulting crystal was washed with water and ethanol to give 4.2 g of 2- (4-bromo-phenyl) -6-methyl-imidazo [1,2-a] pyridine (yield 81%). )
(2) Synthesis of 2- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -6-methyl-imidazo [1,2-a] pyridine (Compound 15-3)
In Synthesis Example 13 (2), instead of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine, 2- (4-bromo-phenyl) -6-methyl-imidazo [1, 2-a] 1.6 g (yield 55%) of a yellowish white solid was obtained by the same operation except that pyridine was used. As a result of mass spectrum (MS) analysis, this was the target product (compound 15-3), and the molecular weight was 510.23, which was m / e = 510.
[0113]
Synthesis Example 24: Synthesis of (Compound 15-4)
(1) Synthesis of 2- (4-bromo-phenyl) -7-methyl-imidazo [1,2-a] pyridine
In the same manner as in Synthesis Example 23 (1) except that 2-amino-4-picoline was used instead of 2-amino-5-picoline, 2- (4-bromo-phenyl) -7-methyl- 2.8 g (yield 54%) of imidazo [1,2-a] pyridine was obtained.
(2) Synthesis of 2- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -7-methyl-imidazo [1,2-a] pyridine (Compound 15-4)
In Synthesis Example 13 (2), instead of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine, 2- (4-bromo-phenyl) -7-methyl-imidazo [1, 2-a] 1.6 g (yield 57%) of a yellowish white solid was obtained by the same operation except that pyridine was used. As a result of mass spectrum (MS) analysis, this was the desired product (compound 15-4), and the molecular weight was 510.21, which was m / e = 510.
[0114]
Synthesis Example 25: Synthesis of (compound 15-5)
(1) Synthesis of 2- (4-bromo-phenyl) -8-methyl-imidazo [1,2-a] pyridine
In the same manner as in Synthesis Example 23 (1) except that 2-amino-3-picoline was used instead of 2-amino-5-picoline, 2- (4-bromo-phenyl) -8-methyl- 3.5 g (yield 68%) of imidazo [1,2-a] pyridine was obtained.
(2) Synthesis of 2- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -8-methyl-imidazo [1,2-a] pyridine (Compound 15-5)
In Synthesis Example 13 (2), instead of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine, 2- (4-bromo-phenyl) -8-methyl-imidazo [1, 2-a] 1.8 g (yield 64%) of a yellowish white solid was obtained by the same operation except that pyridine was used. As a result of mass spectrum (MS) analysis, this was the target product (compound 15-5), and the molecular weight was 510.21, and m / e = 510.
[0115]
Synthesis Example 26: Synthesis of (Compound 16-3)
(1) Synthesis of 2- (4-bromo-phenyl) -imidazo [2,1-a] isoquinoline
In the same manner as in Synthesis Example 23 (1) except that 1-aminoisoquinoline was used instead of 2-amino-5-picoline, 2- (4-bromo-phenyl) -imidazo [2,1-a ] 5.1 g (88% yield) of isoquinoline was obtained.
(2) Synthesis of 2- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -imidazo [2,1-a] isoquinoline (Compound 16-3)
In Synthesis Example 13 (2), 2- (4-bromo-phenyl) -imidazo [2,1-a] was used instead of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine. By the same operation except that isoquinoline was used, 2.2 g (yield 72%) of a yellowish white solid was obtained. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 16-3), and the molecular weight was 546.21, and m / e = 546.
[0116]
Synthesis Example 27: Synthesis of (Compound 16-7)
(1) Synthesis of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyrimidine
In the same manner as in Synthesis Example 23 (1) except that 2-aminopyrimidine was used instead of 2-amino-5-picoline, 2- (4-bromo-phenyl) -imidazo [1,2-a Pyrimidine (4.1 g, yield 83%) was obtained.
(2) Synthesis of 2- [4- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyrimidine (Compound 16-7)
In Synthesis Example 13 (2), 2- (4-bromo-phenyl) -imidazo [1,2-a] was used instead of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine. By the same operation except that pyrimidine was used, 1.7 g (yield 62%) of a yellow solid was obtained. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 16-7), and the molecular weight was 497.19, which was m / e = 497.
[0117]
Synthesis Example 28: Synthesis of (Compound 19-1)
(1) Synthesis of 2- (3-bromo-phenyl) -imidazo [1,2-a] pyridine
Dissolve 10 g (50 mmol) of 3′-bromoacetophenone in 20 mL of acetic acid, add 7.0 g (44 mmol) of bromine at about 5-10 ° C., and stir at about 5-10 ° C. for 4 hours until the bromine color disappears. . After completion of the reaction, water was added and extracted with dichloromethane. Further, it was washed with water and dried over sodium sulfate. The crude 2,3'-dibromoacetophenone obtained by distilling off the solvent was dissolved in 30 mL of ethanol, 5.0 g (53 mmol) of 2-aminopyridine and 7.0 g of sodium bicarbonate were added, and the mixture was heated to reflux for 8 hours. After completion of the reaction, the mixture was filtered, and the obtained crystals were washed with water and methanol to obtain 3.5 g of 2- (3-bromo-phenyl) -imidazo [1,2-a] pyridine (yield 26%). .
(2) Synthesis of 2- [3- (10-naphthalen-2-yl-anthracen-9-yl) -phenyl] -imidazo [1,2-a] pyridine (Compound 19-1)
In Synthesis Example 13 (2), 2- (3-bromo-phenyl) -imidazo [1,2-a] was used instead of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine. By the same operation except that pyridine was used, 3.3 g (yield 91%) of a yellowish white solid was obtained. As a result of mass spectrum (MS) analysis, this was the target product (compound 19-1), and the molecular weight was 496.19, and m / e = 496.
[0118]
Synthesis Example 29: Synthesis of (compound 19-5)
(1) Synthesis of 2- (4'-bromo-biphenyl-4-yl) -imidazo [1,2-a] pyridine
4.3 g (32 mmol) of aluminum chloride was placed in 30 mL of 1,2-dichloroethane, and 2.0 g (25 mmol) of acetyl chloride and 5.0 g (21 mmol) of 4-bromobiphenyl were then added to 20 mL of 1,2-dichloroethane under ice cooling. A solution dissolved in was added. The mixture was stirred for 4 hours under ice cooling. After completion of the reaction, water was added and extracted with dichloromethane. Further, it was washed with water and dried over sodium sulfate. The solvent was distilled off to obtain 5.9 g of crude 1- (4'-bromo-biphenyl-4-yl) -ethanone.
The obtained 1- (4′-bromo-biphenyl-4-yl) -ethanone is dissolved in 20 mL of acetic acid and 10 mL of carbon tetrachloride, and 3.0 g (19 mmol) of bromine is added at about 5 ° C., and about 5 hours. Stir at 10 ° C. And left overnight. After completion of the reaction, water was added and extracted with dichloromethane. Further, it was washed with water and dried over sodium sulfate. The solvent was distilled off to obtain 6.7 g (yield 89%) of white crystals of 2-bromo-1- (4'-bromo-biphenyl-4-yl) -ethanone.
2-Bromo-1- (4′-bromo-biphenyl-4-yl) -ethanone 6.7 g (19 mmol) dissolved in ethanol 50 mL, 2-aminopyridine 2.1 g (22 mmol) and sodium bicarbonate 5.0 g were added. And heated to reflux for 7 hours. After completion of the reaction, the mixture was filtered, and the resulting crystals were washed with water and methanol to give 5.5 g of 2- (4′-bromo-biphenyl-4-yl) -imidazo [1,2-a] pyridine (yield 84). %) As yellow crystals.
(2) Synthesis of 2- [4 '-(10-naphthalen-2-yl-anthracen-9-yl) -biphenyl-4-yl] -imidazo [1,2-a] pyridine (Compound 19-5)
In Synthesis Example 13 (2), instead of 2- (4-bromo-phenyl) -imidazo [1,2-a] pyridine, 2- (4′-bromo-biphenyl-4-yl) -imidazo [1 , 2-a] Except that pyridine was used, 2.6 g (yield 63%) of a yellowish white solid was obtained by the same operation. As a result of mass spectrum (MS) analysis, this was the desired product (Compound 19-5), and the molecular weight was 572.23, which was m / e = 572.
[0119]
Synthesis Example 30: Synthesis of (Compound 26-8)
(1) Synthesis of 6-bromo-2-phenyl-imidazo [1,2-a] pyridine
Phenacyl bromide (5.8 g, 29 mmol) and 2-amino-5-bromopyridine (5.0 g, 29 mmol) were dissolved in ethanol (50 mL), sodium hydrogen carbonate (3.6 g) was added, and the mixture was heated to reflux for 6 hours. After completion of the reaction, the mixture was filtered, and the resulting crystals were washed with water and ethanol to obtain 6.4 g of 6-bromo-2-phenyl-imidazo [1,2-a] pyridine (yield 81%).
(2) 6- (10-Naphthalen-2-yl-anthracen-9-yl) -2-phenyl-imidazo [1,2-a] pyridine (Compound 26-8)
6-bromo-2-phenyl-imidazo [1,2-a] pyridine 2.0 g (7.3 mmol), 10-naphthalen-2-yl-anthracene-9-boronic acid 2.5 g (11 mmol), tetrakis (tri Phenylphosphine) 0.17 g of palladium was dissolved in 20 mL of 1,2-dimethoxyethane, and 11 mL of 2.0 M aqueous sodium carbonate solution was added, and the mixture was heated to reflux for 7 hours. After completion of the reaction, the mixture was filtered, and the resulting crystals were washed with water and methanol to obtain 2.7 g (yield 75%) of a yellowish white solid. As a result of mass spectrum (MS) analysis, this was the target product, and the molecular weight was 496.19, and m / e = 496.
[0120]
Reference example1 (Preparation of an organic EL device using the compound of the present invention for an electron injection layer)
  A 25 mm × 75 mm × 1.1 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then UV ozone cleaned for 30 minutes. A glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and N, N with a film thickness of 60 nm is first formed on the surface where the transparent electrode line is formed so as to cover the transparent electrode. A '-bis (N, N'-diphenyl-4-aminophenyl) -N, N-diphenyl-4,4'-diamino-1,1'-biphenyl film (hereinafter abbreviated as “TPD232 film”) is a resistance. A film was formed by heat evaporation. This TPD232 film functions as a first hole injection layer (hole transport layer). Following the formation of the TPD232 film, a 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl film (hereinafter abbreviated as “NPD film”) having a thickness of 20 nm is formed on the TPD232 film. Was formed by resistance heating vapor deposition. This NPD film functions as a second hole injection layer (hole transport layer). Further, following the formation of the NPD film, 4 ′, 4 ″ -bis (2,2-diphenylvinyl) -9,10-diphenylanthracene (hereinafter abbreviated as “DPVDPAN”) having a thickness of 40 nm is formed on the NPD film. ) Was formed by resistance heating vapor deposition. This DVPDPAN film functions as a light emitting layer. Then, following the formation of the DPVDPAN film, the compound (1-3) of the present invention having a thickness of 10 nm was formed on the DPVDPAN film by resistance heating vapor deposition. This compound (1-3) film functions as an electron injection layer. Thereafter, Li (Li source: manufactured by SAES Getter Co., Ltd.) was vapor-deposited, and the compound (1-3): Li film was deposited at a rate of 1.6 Å / sec: 1 Å / min. Or cathode). Metal Al was vapor-deposited on this compound (1-3): Li film to form a metal cathode having a film thickness of 130 nm to obtain an organic EL device.
[0121]
Example1-12 and Reference Examples 2-3
  Reference exampleAn organic EL device was produced in the same manner except that the compounds shown in Table 1 were used instead of the compound (1-3) in 1.
Comparative Example 1
  Reference exampleAn organic EL device was produced in the same manner except that Alq (8-hydroxyquinoline aluminum complex) was used instead of the compound (1-3) in 1.
(Evaluation of organic EL elements)
  Example 1 to above12, Reference Examples 1-3For the organic EL device obtained in Comparative Example 1, the light emission luminance and the light emission efficiency were measured under the condition in which the DC voltage described in Table 1 below was applied. The evaluation results are shown in Table 1.
[0122]
[Table 42]
Figure 0004646494
  From the results shown in Table 1, it can be seen that a device with extremely high luminous efficiency can be produced by using the above compound as an electron injection material.
[0123]
Example13(Preparation of an organic EL device using the compound of the present invention for the light emitting layer)
  A 25 mm × 75 mm × 1.1 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and then UV ozone cleaned for 30 minutes. A glass substrate with a transparent electrode line after cleaning is mounted on a substrate holder of a vacuum deposition apparatus, and a TPD232 film having a thickness of 60 nm is first formed on the surface where the transparent electrode line is formed so as to cover the transparent electrode. The film was formed by resistance heating vapor deposition. This TPD232 film functions as a first hole injection layer (hole transport layer). Following the formation of the TPD232 film, an NPD film having a thickness of 20 nm was formed on the TPD232 film by resistance heating vapor deposition. This NPD film functions as a second hole injection layer (hole transport layer). Further, following the formation of the NPD film, the compound (14-7) of the present invention was formed on the NPD film at a thickness of 40 nm by resistance heating vapor deposition. This compound (14-7) film functions as a light emitting layer. Thereafter, Li (Li source: manufactured by SAES Getter Co., Ltd.) is binary-deposited, and the compound (14-7): Li film is deposited at a rate of 1.6 Å / sec: 1 Å / min, and an electron injection layer having a thickness of 20 nm. (Cathode) was formed. On this compound (14-7): Li film, metal Al was deposited to form a metal cathode having a film thickness of 130 nm to obtain an organic EL light emitting device. This device has a direct-current voltage of 4.6 V and an emission luminance of 1030 cd / m.2, 3.05 cd / A blue light emission was obtained.
[0124]
Reference example 4
  Example13In Example 1, an organic EL device was produced using the compound (1-3) obtained in Synthesis Example instead of the compound (14-7).
(Evaluation of organic EL elements)
  Example above13 and Reference Example 4With respect to the organic EL device obtained in the above, the light emission luminance, the light emission efficiency, and the chromaticity were measured under the conditions in which the DC voltage described in Table 2 below was applied. The evaluation results are shown in Table 2.
[0125]
[Table 43]
Figure 0004646494
  From the results shown in Table 2, it can be seen that the compound exhibits a sufficient effect even when used as a light emitting layer.
[0126]
【The invention's effect】
According to the present invention, by using the nitrogen-containing heterocyclic derivative represented by the general formula (1) of the present invention in at least one of the organic compound layers of the organic EL device, the brightness of the device is increased and the luminous efficiency is increased. Long-term stabilization is achieved by improving the adhesion and adhesion to the electrode, and an organic EL element having a long lifetime is provided.

Claims (12)

一般式(1)
HAr−L−Ar1−Ar2 (1)
[式中、HArは、下記一般式(13)〜(36)
Figure 0004646494
(式中、式(13)、(14)、(17)及び(20)において、それぞれの複素環中の炭素原子は、置換基を有していてもよい炭素数1〜20のアルキル基又は置換基を有していてもよい炭素数1〜20のアルコキシ基からなる結合基が結合していてもよく、
式(15)、(16)、(18)、(19)及び(21)〜(36)において、それぞれの複素環中の炭素原子は、置換基を有していてもよい炭素数6〜60のアリール基、置換基を有していてもよい炭素数3〜60のヘテロアリール基、置換基を有していてもよい炭素数1〜20のアルキル基又は置換基を有していてもよい炭素数1〜20のアルコキシ基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。)
及び
Figure 0004646494
のいずれかで表される基であり、
Lは、置換基を有していてもよい炭素数6〜60のアリーレン基、置換基を有していてもよい炭素数3〜60のヘテロアリーレン基又は置換基を有していてもよいフルオレニレン基であり、
Ar1は、下記一般式(37)〜(42)で表される縮合環基から選択されるいずれかの基であり、
Figure 0004646494
(式中、それぞれの縮合環は、ハロゲン原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜40のアリールオキシ基、置換基を有していてもよい炭素数12〜80のジアリールアミノ基、置換基を有していてもよい炭素数6〜40のアリール基、置換基を有していてもよい炭素数3〜40のヘテロアリール基又は置換基を有していてもよい炭素数18〜120のジアリールアミノアリール基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。
L’は、単結合、又は
Figure 0004646494
からなる群から選択される基である。)
Ar2は、置換基を有していてもよい炭素数6〜60のアリール基又は置換基を有していてもよい炭素数3〜60のヘテロアリール基である。]で表される含窒素複素環誘導体。
General formula (1)
HAr-L-Ar 1 -Ar 2 (1)
[Wherein, HAr represents the following general formulas (13) to (36)
Figure 0004646494
(In the formulas, in the formulas (13), (14), (17) and (20), the carbon atom in each heterocycle is an alkyl group having 1 to 20 carbon atoms which may have a substituent, or A linking group composed of an alkoxy group having 1 to 20 carbon atoms which may have a substituent may be bonded,
In the formulas (15), (16), (18), (19) and (21) to (36), the carbon atom in each heterocyclic ring may have a substituent having 6 to 60 carbon atoms. An aryl group, an optionally substituted heteroaryl group having 3 to 60 carbon atoms, an optionally substituted alkyl group having 1 to 20 carbon atoms, or a substituent. A linking group composed of an alkoxy group having 1 to 20 carbon atoms may be bonded, and when there are a plurality of the linking groups, the linking groups may be the same as or different from each other. )
as well as
Figure 0004646494
A group represented by any one of
L represents an arylene group which may having 6 to 60 carbon atoms which may have a location substituent may have a heteroarylene group or a substituent of carbon atoms which may 3 to 60 substituted A fluorenylene group,
Ar 1 is any group selected from the condensed ring groups represented by the following general formulas (37) to (42) ,
Figure 0004646494
(In the formula, each condensed ring has a halogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent. An aryloxy group having 6 to 40 carbon atoms which may have a group, a diarylamino group having 12 to 80 carbon atoms which may have a substituent, and 6 to 6 carbon atoms which may have a substituent. A linking group consisting of a 40 aryl group, an optionally substituted heteroaryl group having 3 to 40 carbon atoms, or an optionally substituted diarylaminoaryl group having 18 to 120 carbon atoms is bonded. In the case where there are a plurality of the linking groups, the linking groups may be the same as or different from each other.
L ′ is a single bond, or
Figure 0004646494
A group selected from the group consisting of )
Ar 2 is an aryl group having 6 to 60 carbon atoms which may have a substituent or a heteroaryl group having 3 to 60 carbon atoms which may have a substituent. ] The nitrogen-containing heterocyclic derivative represented by this.
一般式(1)
HAr−L−Ar1−Ar2 (1)
[式中、HArは、下記一般式(13)〜(36)
Figure 0004646494
(式中、式(13)、(14)、(17)及び(20)において、それぞれの複素環中の炭素原子は、置換基を有していてもよい炭素数1〜20のアルキル基又は置換基を有していてもよい炭素数1〜20のアルコキシ基からなる結合基が結合していてもよく、
式(15)、(16)、(18)、(19)及び(21)〜(36)において、それぞれの複素環中の炭素原子は、置換基を有していてもよい炭素数6〜60のアリール基、置換基を有していてもよい炭素数3〜60のヘテロアリール基、置換基を有していてもよい炭素数1〜20のアルキル基又は置換基を有していてもよい炭素数1〜20のアルコキシ基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。)
及び
Figure 0004646494
のいずれかで表される基であり、
Lは、単結合であり、
Ar1は、下記一般式(37)〜(41)で表される縮合環基から選択されるいずれかの基であり、
Figure 0004646494
(式中、それぞれの縮合環は、ハロゲン原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜40のアリールオキシ基、置換基を有していてもよい炭素数6〜40のアリール基又は置換基を有していてもよい炭素数3〜40のヘテロアリール基からなる結合基が結合していてもよく、該結合基が複数ある場合は、該結合基は互いに同一でも異なっていてもよい。
L’は、単結合、又は
Figure 0004646494
からなる群から選択される基である。)
Ar2は、置換基を有していてもよい炭素数6〜60のアリール基である。]で表される含窒素複素環誘導体。
General formula (1)
HAr-L-Ar 1 -Ar 2 (1)
[Wherein HAr represents the following general formulas (13) to (36)
Figure 0004646494
(In the formulas, in the formulas (13), (14), (17) and (20), the carbon atom in each heterocycle is an alkyl group having 1 to 20 carbon atoms which may have a substituent, or A linking group consisting of an alkoxy group having 1 to 20 carbon atoms which may have a substituent may be bonded,
Equation (15), (16), (18), (19) and (21) to (36), their respective carbon atom in the heterocyclic ring carbon atoms, which may have a substituent An aryl group having 6 to 60 carbon atoms, an optionally substituted heteroaryl group having 3 to 60 carbon atoms, an optionally substituted alkyl group having 1 to 20 carbon atoms, or a substituent; Bonding groups composed of an alkoxy group having 1 to 20 carbon atoms may be bonded, and when there are a plurality of the bonding groups, the bonding groups may be the same as or different from each other. )
as well as
Figure 0004646494
A group represented by any one of
L is a single bond,
Ar 1 is any group selected from the condensed ring groups represented by the following general formulas (37) to (41),
Figure 0004646494
(In the formula, each condensed ring has a halogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkoxy group having 1 to 20 carbon atoms, and a substituent. An aryloxy group having 6 to 40 carbon atoms which may have a group, an aryl group having 6 to 40 carbon atoms which may have a substituent, or an optionally substituted group having 3 to 40 carbon atoms A linking group comprising a heteroaryl group may be bonded, and when there are a plurality of the linking groups, the linking groups may be the same as or different from each other.
L ′ is a single bond, or
Figure 0004646494
A group selected from the group consisting of )
Ar 2 is an aryl group having 6 to 60 carbon atoms which may have a substituent. ] The nitrogen-containing heterocyclic derivative represented by this.
HArが、
Figure 0004646494
からなる基である請求項1又は2のいずれかに記載の含窒素複素環誘導体。
HAr is
Figure 0004646494
Nitrogen-containing heterocyclic derivative according to claim 1 or 2 Ru a group Tona.
Lが、
Figure 0004646494
からなる群から選択される基である請求項1に記載の含窒素複素環誘導体。
L is
Figure 0004646494
The nitrogen-containing heterocyclic derivative according to claim 1, which is a group selected from the group consisting of:
Ar2が、
Figure 0004646494
からなる群から選択される基である請求項1〜のいずれかに記載の含窒素複素環誘導体。
Ar 2 is
Figure 0004646494
The nitrogen-containing heterocyclic derivative according to any one of claims 1 to 4 , which is a group selected from the group consisting of:
請求項1〜のいずれか1項に記載の一般式(1)で表される含窒素複素環誘導体からなる有機エレクトロルミネッセンス素子用材料。The organic electroluminescent element material which consists of a nitrogen-containing heterocyclic derivative represented by General formula (1) of any one of Claims 1-5 . 一対の電極間に挟持された、発光層を含む少なくとも1層の有機化合物層を有する有機EL素子であって、請求項1〜のいずれかに記載の含窒素複素環誘導体を、該有機化合物層の少なくとも1層に含有する有機エレクトロルミネッセンス素子。Sandwiched between a pair of electrodes, an organic EL element having at least one organic compound layer including a light-emitting layer, a nitrogen-containing heterocyclic derivative according to any one of claims 1 to 5 organic compound An organic electroluminescence element contained in at least one of the layers. 含窒素複素環誘導体が、主として発光帯域に含有される請求項に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 7 , wherein the nitrogen-containing heterocyclic derivative is mainly contained in the emission band. 含窒素複素環誘導体が、発光層に含有される請求項又はに記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 7 or 8 , wherein the nitrogen-containing heterocyclic derivative is contained in the light emitting layer. 含窒素複素環誘導体が、電子注入材料及び/又は電子輸送材料として用いられる請求項に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 7 , wherein the nitrogen-containing heterocyclic derivative is used as an electron injection material and / or an electron transport material. 前記電子注入材料及び/又は電子輸送材料を含有する層が、還元性ドーパントを含有する請求項10に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 10 , wherein the layer containing the electron injection material and / or the electron transport material contains a reducing dopant. 還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される少なくとも一種類の物質である請求項11に記載の有機エレクトロルミネッセンス素子。The reducing dopant is alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal oxide, 12. The organic electroluminescence device according to claim 11 , wherein the organic electroluminescence device is at least one substance selected from the group consisting of rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes.
JP2003004139A 2002-04-11 2003-01-10 Novel nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same Expired - Fee Related JP4646494B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2003004139A JP4646494B2 (en) 2002-04-11 2003-01-10 Novel nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
CNA2008101761610A CN101407492A (en) 2003-01-10 2003-09-26 Nitrogen-containing heterocyclic derivative and organic electroluminescent element using same
KR1020057012822A KR101064077B1 (en) 2003-01-10 2003-09-26 Nitrogen-containing heterocyclic derivatives and organic electroluminescent devices using the same
CN 03826096 CN1751024A (en) 2003-01-10 2003-09-26 Nitrogen-containing heterocyclic derivative and organic electroluminescent element using same
CNA2007101942185A CN101219987A (en) 2003-01-10 2003-09-26 Nitrogen-containing heterocyclic derivative and organic electroluminescent element using same
EP03748602.4A EP1582516B1 (en) 2003-01-10 2003-09-26 Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
PCT/JP2003/012322 WO2004063159A1 (en) 2003-01-10 2003-09-26 Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
US10/541,745 US7867629B2 (en) 2003-01-10 2003-09-26 Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
TW092127038A TWI284488B (en) 2003-01-10 2003-09-30 Nitrogenous heterocyclic derivative and organic electroluminescent element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002108805 2002-04-11
JP2003004139A JP4646494B2 (en) 2002-04-11 2003-01-10 Novel nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same

Publications (2)

Publication Number Publication Date
JP2004002297A JP2004002297A (en) 2004-01-08
JP4646494B2 true JP4646494B2 (en) 2011-03-09

Family

ID=30446885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004139A Expired - Fee Related JP4646494B2 (en) 2002-04-11 2003-01-10 Novel nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same

Country Status (1)

Country Link
JP (1) JP4646494B2 (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE452954T1 (en) * 2002-08-23 2010-01-15 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENCE DEVICE AND ANTHRACENE DERIVATIVE
BR0315894A (en) * 2002-10-30 2005-10-04 Ciba Sc Holding Ag Electroluminescent device
JP4693336B2 (en) * 2003-01-14 2011-06-01 出光興産株式会社 Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
JP2007527361A (en) * 2003-02-28 2007-09-27 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Electroluminescence element
JP2004362914A (en) 2003-06-04 2004-12-24 Idemitsu Kosan Co Ltd Organic electroluminescent element and display device using the same
TWI428053B (en) * 2004-02-09 2014-02-21 Idemitsu Kosan Co Organic electroluminescent element
WO2005115950A1 (en) 2004-05-27 2005-12-08 Idemitsu Kosan Co., Ltd. Asymmetric pyrene derivative and organic electroluminescent device using same
JP4790260B2 (en) * 2004-12-22 2011-10-12 出光興産株式会社 Organic electroluminescence device using anthracene derivative
JP4687121B2 (en) * 2005-01-28 2011-05-25 Dic株式会社 Benzimidazolone compound and method for producing the same
CN101151231A (en) * 2005-03-28 2008-03-26 出光兴产株式会社 Anthracene-based arylene derivative, material for organic electroluminescent element, and organic electroluminescent element using same
JP5317386B2 (en) * 2005-08-05 2013-10-16 出光興産株式会社 Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
EP1942107B1 (en) * 2005-08-31 2014-03-05 Hodogaya Chemical Co., Ltd. Compound having triazole ring structure substituted with pyridyl group and organic electroluminescent device
US8053762B2 (en) 2005-12-13 2011-11-08 Lg Chem, Ltd. Imidazoquinazoline derivative, process for preparing the same, and organic electronic device using the same
KR101288304B1 (en) * 2006-01-27 2013-07-18 삼성디스플레이 주식회사 Organic light emitting compound and organic light emitting device comprising the same
JP5176366B2 (en) * 2006-03-30 2013-04-03 Jnc株式会社 Novel bipyridine derivative and organic electroluminescent device containing the same
JP2007308477A (en) * 2006-04-20 2007-11-29 Canon Inc Compound and organic light-emitting device
CN101490866B (en) * 2006-07-19 2011-04-06 皇家飞利浦电子股份有限公司 Electro-optically active organic diode with short protection
JP5361719B2 (en) * 2006-07-19 2013-12-04 コーニンクレッカ フィリップス エヌ ヴェ Highly doped electro-optic active organic diode with short-circuit protective layer
JPWO2008015949A1 (en) 2006-08-04 2009-12-24 出光興産株式会社 Organic electroluminescence device
JP5006606B2 (en) * 2006-09-13 2012-08-22 双葉電子工業株式会社 COMPOUND FOR ORGANIC EL ELEMENT AND ORGANIC EL ELEMENT
JP4979333B2 (en) * 2006-10-13 2012-07-18 三井化学株式会社 Anthracene compound and organic electroluminescence device containing the compound
US7622584B2 (en) * 2006-11-24 2009-11-24 Samsung Mobile Display Co., Ltd. Imidazopyridine-based compound and organic light emitting diode including organic layer comprising the imidazopyridine-based compound
JPWO2008105294A1 (en) * 2007-02-28 2010-06-03 出光興産株式会社 Organic EL device
JP5176343B2 (en) * 2007-03-07 2013-04-03 Jnc株式会社 Electron transport material and organic electroluminescent device using the same
KR100852118B1 (en) * 2007-03-13 2008-08-13 삼성에스디아이 주식회사 An imidazopyrimidine-based compound and an organic light emitting diode employing an organic layer comprising the same
KR101441144B1 (en) 2007-04-06 2014-09-17 이데미쓰 고산 가부시키가이샤 Organic electroluminescence device
US8221907B2 (en) 2007-07-07 2012-07-17 Idemitsu Kosan Co., Ltd. Chrysene derivative and organic electroluminescent device using the same
JP2009051764A (en) * 2007-08-27 2009-03-12 Hodogaya Chem Co Ltd Substituted phenanthrene ring structure-having compound and organic electroluminescence element
KR101564762B1 (en) * 2007-11-30 2015-10-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Quinoxaline derivative and light-emitting element light-emitting device and electronic device using quinoxaline derivative
US8119259B2 (en) * 2007-11-30 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element and electronic device using the same
US8815412B2 (en) * 2007-12-21 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the quinoxaline derivative
KR101058103B1 (en) 2008-04-15 2011-08-24 삼성모바일디스플레이주식회사 An organic light emitting device comprising a bipyridine compound and an organic film including the same
EP2296204B1 (en) 2008-07-01 2018-01-31 Toray Industries, Inc. Light-emitting element
JP2010138121A (en) * 2008-12-12 2010-06-24 Canon Inc Triazine compound, and organic light emitting element employing the same
DE102008064200A1 (en) 2008-12-22 2010-07-01 Merck Patent Gmbh Organic electroluminescent device
JP5012998B2 (en) 2009-03-30 2012-08-29 東レ株式会社 Light emitting device material and light emitting device
KR101120892B1 (en) * 2009-06-19 2012-02-27 주식회사 두산 Acridine derivative and organic electroluminescence device comprising the same
JP4994426B2 (en) * 2009-07-14 2012-08-08 出光興産株式会社 Organic electroluminescence element and display device using the same
JP5812583B2 (en) * 2009-08-21 2015-11-17 東ソー株式会社 Triazine derivative, method for producing the same, and organic electroluminescent device comprising the same
EP2818462B1 (en) 2009-08-21 2017-11-08 Tosoh Corporation Cyclic azine derivatives, processes for producing these, and organic electrolumiscent element containing these as component
WO2011046182A1 (en) 2009-10-16 2011-04-21 出光興産株式会社 Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
JP5829388B2 (en) * 2009-11-12 2015-12-09 東ソー株式会社 Triazine derivative, method for producing the same, and organic electroluminescent device comprising the same
WO2011074493A1 (en) * 2009-12-14 2011-06-23 凸版印刷株式会社 Anthracene derivative and light-emitting element
WO2011111438A1 (en) * 2010-03-09 2011-09-15 コニカミノルタホールディングス株式会社 Organic electroluminescent member and method for producing organic electroluminescent element
DE102010013806B4 (en) 2010-04-03 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20120119981A (en) 2010-07-09 2012-11-01 이데미쓰 고산 가부시키가이샤 Imidazopyridine derivative and organic electroluminescent element comprising the same
WO2012008281A1 (en) 2010-07-13 2012-01-19 東レ株式会社 Light emitting element
KR20120020818A (en) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 Novel compounds for organic electronic material and organic electroluminescent device using the same
JP5734613B2 (en) * 2010-10-06 2015-06-17 東ソー株式会社 TRIAZINE DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND ORGANIC SEMICONDUCTOR DEVICE CONTAINING THE SAME
WO2012060374A1 (en) * 2010-11-04 2012-05-10 Jnc株式会社 Electron transport material and organic electroluminescence element using same
JP5799560B2 (en) * 2011-04-12 2015-10-28 セイコーエプソン株式会社 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE
CN102731533B (en) 2011-04-12 2016-08-10 精工爱普生株式会社 Thiadiazoles based compound, light-emitting component compound, light-emitting component, light-emitting device, certification device and electronic equipment
JP5793925B2 (en) * 2011-04-12 2015-10-14 セイコーエプソン株式会社 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE
JP5765034B2 (en) 2011-04-18 2015-08-19 セイコーエプソン株式会社 Thiadiazole compounds, compounds for light emitting devices, light emitting devices, light emitting devices, authentication devices, and electronic devices
KR101910996B1 (en) * 2011-05-13 2018-10-24 삼성디스플레이 주식회사 Condensed-cyclic compound, organic light-emitting diode comprising the same and flat display device
WO2012176675A1 (en) * 2011-06-23 2012-12-27 東レ株式会社 Light-emitting element
JP5790279B2 (en) 2011-08-09 2015-10-07 セイコーエプソン株式会社 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
KR20130018547A (en) 2011-08-09 2013-02-25 세이코 엡슨 가부시키가이샤 Thiadiazole, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device
KR102082373B1 (en) * 2011-08-31 2020-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Heterocyclic compound, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
KR102003090B1 (en) 2011-11-11 2019-10-01 토소가부시키가이샤 Cyclic azine compound having nitrogen-containing fused aromatic group, method for producing same, and organic electroluminescent element using same as constituent component
JP5970811B2 (en) 2011-12-28 2016-08-17 セイコーエプソン株式会社 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
US9105852B2 (en) 2012-02-17 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Bipyridine compound, light-emitting element material, organic semiconductor material, light-emitting element, display module, lighting module, light-emitting device, lighting device, display device and electronic device
US9324952B2 (en) 2012-02-28 2016-04-26 Seiko Epson Corporation Thiadiazole, compound for light-emitting elements, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device
US9312500B2 (en) 2012-08-31 2016-04-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
CN107011365A (en) 2012-10-18 2017-08-04 精工爱普生株式会社 Thiadiazoles system compound, light-emitting component compound, light-emitting component, light-emitting device, authentication device and electronic equipment
KR102248083B1 (en) * 2013-01-09 2021-05-04 에스에프씨주식회사 Asymmetric antracene derivatives having two phenyl groups and organic light-emitting diode including the same
KR20150119431A (en) 2013-02-22 2015-10-23 이데미쓰 고산 가부시키가이샤 Anthracene derivative, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
KR20140135532A (en) * 2013-05-16 2014-11-26 제일모직주식회사 Organic compound and organic optoelectric device and display device
JP6331779B2 (en) 2014-07-02 2018-05-30 セイコーエプソン株式会社 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AUTHENTICATION DEVICE, AND ELECTRONIC DEVICE
KR101745799B1 (en) * 2014-12-24 2017-06-09 주식회사 두산 Organic compound and organic electro luminescence device comprising the same
JP6693053B2 (en) 2015-06-03 2020-05-13 セイコーエプソン株式会社 Light emitting element, light emitting device, authentication device, and electronic device
KR101806464B1 (en) 2015-11-19 2017-12-07 (주)랩토 Pyrimidine derivative substitued with pyridyl group, and organic electroluminescent device including the same
KR101959514B1 (en) 2017-02-21 2019-03-18 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006877A (en) * 1999-06-21 2001-01-12 Toray Ind Inc Light-emitting device
JP2001035664A (en) * 1999-07-21 2001-02-09 Mitsui Chemicals Inc Organic electroluminescence element
WO2001021729A1 (en) * 1999-09-21 2001-03-29 Idemitsu Kosan Co., Ltd. Organic electroluminescence and organic luminous medium
JP2001223082A (en) * 2000-02-08 2001-08-17 Toray Ind Inc Light emitting element
WO2001072673A1 (en) * 2000-03-29 2001-10-04 Idemitsu Kosan Co., Ltd. Anthracene derivatives and organic electroluminescent devices made by using the same
JP2001335776A (en) * 1999-07-22 2001-12-04 Fuji Photo Film Co Ltd Novel heterocyclic compound, light-emitting element material and light-emitting element using this material
JP2002154993A (en) * 2000-08-10 2002-05-28 Mitsui Chemicals Inc Hydrocarbon compound, material for organic electroluminescent element and organic electroluminescent element
WO2002088274A1 (en) * 2001-04-27 2002-11-07 Lg Chem, Ltd. Double-spiro organic compounds and electroluminescent devices
JP2003238534A (en) * 2002-02-22 2003-08-27 Idemitsu Kosan Co Ltd New anthracene compound and organic electroluminescent element using the same
JP2003282270A (en) * 2002-03-25 2003-10-03 Konica Corp Organic electroluminescent device and display using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511825B2 (en) * 1996-01-29 2004-03-29 東洋インキ製造株式会社 Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
JPH11111458A (en) * 1997-09-29 1999-04-23 Toyo Ink Mfg Co Ltd Organic electroluminescent element material and organic electroluminescent element using the same
US7990046B2 (en) * 2002-03-15 2011-08-02 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
JP4030093B2 (en) * 2002-03-22 2008-01-09 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006877A (en) * 1999-06-21 2001-01-12 Toray Ind Inc Light-emitting device
JP2001035664A (en) * 1999-07-21 2001-02-09 Mitsui Chemicals Inc Organic electroluminescence element
JP2001335776A (en) * 1999-07-22 2001-12-04 Fuji Photo Film Co Ltd Novel heterocyclic compound, light-emitting element material and light-emitting element using this material
WO2001021729A1 (en) * 1999-09-21 2001-03-29 Idemitsu Kosan Co., Ltd. Organic electroluminescence and organic luminous medium
JP2001223082A (en) * 2000-02-08 2001-08-17 Toray Ind Inc Light emitting element
WO2001072673A1 (en) * 2000-03-29 2001-10-04 Idemitsu Kosan Co., Ltd. Anthracene derivatives and organic electroluminescent devices made by using the same
JP2002154993A (en) * 2000-08-10 2002-05-28 Mitsui Chemicals Inc Hydrocarbon compound, material for organic electroluminescent element and organic electroluminescent element
WO2002088274A1 (en) * 2001-04-27 2002-11-07 Lg Chem, Ltd. Double-spiro organic compounds and electroluminescent devices
JP2004529937A (en) * 2001-04-27 2004-09-30 エルジー ケミカル エルティーディー. Double spiro-type organic compound and electroluminescent device
JP2003238534A (en) * 2002-02-22 2003-08-27 Idemitsu Kosan Co Ltd New anthracene compound and organic electroluminescent element using the same
JP2003282270A (en) * 2002-03-25 2003-10-03 Konica Corp Organic electroluminescent device and display using the same

Also Published As

Publication number Publication date
JP2004002297A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4646494B2 (en) Novel nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
JP4185097B2 (en) Novel nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
JP5343089B2 (en) INDENOFLUORINE ON DERIVATIVE, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL AND ORGANIC ELECTROLUMINESCENT ELEMENT
JP5274459B2 (en) Material for organic electroluminescence device and organic electroluminescence device
KR101336544B1 (en) Anthracene derivative and organic electroluminescent element using the same
JP5719308B2 (en) Compounds having substituted anthracene ring structure and pyridoindole ring structure and organic electroluminescence device
JP4864697B2 (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
EP1582516B1 (en) Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
JP5619853B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JP5711220B2 (en) Compound for organic photoelectric device and organic photoelectric device including the same
KR101247626B1 (en) Compounds for organic photoelectric device and organic photoelectric device containing the same
US20160149140A1 (en) Compound for organic electroluminescent device and organic electroluminescent device including the same
JP2013136582A (en) New anthracene derivative and organic electronic element using the same
JPWO2005091686A1 (en) Organic electroluminescence device
JP2013546171A (en) Novel compounds for organic electronic materials and organic electroluminescent devices using the same
JP2013530513A (en) Novel organic electroluminescent compound and organic electroluminescent device using the same
JP5737294B2 (en) Electron transport material and organic electroluminescent device using the same
KR20140125061A (en) An organoelectro luminescent compound and an organoelectroluminescent device using the same
TWI719456B (en) Heteroaromatic compound and organic electroluminescence device using the same
JP6058531B2 (en) Organic electroluminescence device
JP6402904B2 (en) Electron transport material and organic electroluminescent device using the same
JP6136311B2 (en) Electron transport material and organic electroluminescent device using the same
TW202045479A (en) Trisubstituted benzene compound having nitrogen-containing hetero ring in molecular terminus and organic electroluminescence element
TW201502110A (en) Compound for organic electroluminescent device and organic electroluminescent device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees