WO2011152466A1 - Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element - Google Patents

Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element Download PDF

Info

Publication number
WO2011152466A1
WO2011152466A1 PCT/JP2011/062620 JP2011062620W WO2011152466A1 WO 2011152466 A1 WO2011152466 A1 WO 2011152466A1 JP 2011062620 W JP2011062620 W JP 2011062620W WO 2011152466 A1 WO2011152466 A1 WO 2011152466A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbons
derivatives
group
bis
Prior art date
Application number
PCT/JP2011/062620
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 小野
国防 王
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to KR1020127031124A priority Critical patent/KR101864902B1/en
Priority to CN201180026759.1A priority patent/CN102918037B/en
Priority to JP2012518437A priority patent/JP5783173B2/en
Publication of WO2011152466A1 publication Critical patent/WO2011152466A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Definitions

  • the present invention relates to a carbazole compound having a substituent containing an electron-accepting nitrogen-containing heteroaryl, an electron transport material, an organic electroluminescent element, a display device, and a lighting device using the same.
  • the present inventors have made an organic electroluminescent device comprising an organic layer containing a compound represented by the following formula (1) as an electron transporting material, in particular, the device.
  • the present inventors have found that an organic electroluminescent device having an excellent lifetime and a well-balanced driving voltage can be obtained. That is, the present invention provides the following carbazole compounds.
  • a carbazole compound represented by the following formula (1-1) is aryl having 6 to 24 carbons or heteroaryl having 2 to 24 carbons, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons;
  • Hy 1 and Hy 2 are each independently an electron-accepting nitrogen-containing heteroaryl having 2 to 24 carbon atoms, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • Ar 1 and Ar 2 are each independently aryl having 6 to 24 carbon atoms which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons; At least one hydrogen atom in the carbazole compound represented by the formula (1-1) may be substituted with deuterium.
  • R is phenyl, biphenylyl, terphenylyl, quaterphenyl, naphthyl, phenyl-substituted naphthyl, phenanthrolinyl optionally substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons , Pyridyl, bipyridyl, terpyridyl, quinolinyl, isoquinolinyl, pyrimidinyl, pyrazinyl, pyridazinyl and triazinyl, Hy 1 and Hy 2 are each independently pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaind, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • Lydinyl benzoimidazolyl, benzothiazolyl, benzoxazolyl, indazolyl, purinyl, carbolinyl, naphthyridinyl, quinoxalinyl, quinolinyl, isoquinolinyl, pyridylquinolinyl, pyridylisoquinolinyl, acridinyl, phenanthrolinyl, phenazinyl and imidazopyridinyl
  • Ar 1 and Ar 2 are each independently benzene, naphthalene, anthracene, naphthacene, pentacene, biphenyl, acenaphthylene, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons,
  • R is phenyl, biphenylyl, terphenylyl, quaterphenyl, naphthyl, phenyl-substituted naphthyl, phenanthrolinyl optionally substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons
  • a group selected from the group consisting of pyridyl, quinolinyl and isoquinolinyl, Hy 1 and Hy 2 are each independently pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaind, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • Ar 1 and Ar 2 are each independently benzene, naphthalene, anthracene, pyrene, triphenylene, fluorene, biphenyl, which may be substituted with alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms, and
  • R is a group represented by the following formulas (R-1) to (R-20), which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • a group selected from the group consisting of Hy 1 and Hy 2 are each independently groups represented by the following formulas (Hy-1-1) to (Hy-1-3), and the following formulas (Hy-2-1) to (Hy-2-).
  • Ar 1 and Ar 2 each independently represents a divalent structure selected from the group consisting of benzene and naphthalene, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Which is the basis of The carbazole compound described in [1] above.
  • R is a group represented by the above formulas (R-1) to (R-14), which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • a group selected from the group consisting of Hy 1 and Hy 2 are each independently groups represented by the above formulas (Hy-1-1) to (Hy-1-3), and the above formulas (Hy-2-1) to (Hy-2-).
  • Ar 1 and Ar 2 are each independently 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,4-naphthalene-diyl, 1,5-naphthalene-diyl, 2,6- A divalent group selected from the group consisting of naphthalene-diyl and 2,7-naphthalene-diyl, The carbazole compound described in [1] above.
  • a pair of electrodes including an anode and a cathode, a light emitting layer disposed between the pair of electrodes, an electron transport material according to the above [9] disposed between the cathode and the light emitting layer.
  • An organic electroluminescent device having an electron transport layer and / or an electron injection layer.
  • At least one of the electron transport layer and the electron injection layer further includes at least one selected from the group consisting of a quinolinol-based metal complex, a pyridine derivative, a bipyridine derivative, a phenanthroline derivative, a borane derivative, and a benzimidazole derivative.
  • a quinolinol-based metal complex a pyridine derivative, a bipyridine derivative, a phenanthroline derivative, a borane derivative, and a benzimidazole derivative.
  • At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, At least one selected from the group consisting of alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes
  • alkaline earth metal halides At least one selected from the group consisting of alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes
  • a display device comprising the organic electroluminescent element according to any one of [10] to [12].
  • an organic electroluminescent element excellent in the lifetime of the light emitting element can be obtained.
  • the preferred electron transport material of the present invention is particularly suitable for a blue light emitting element, and according to this electron transport material, a blue light emitting element having an element life comparable to a red or green light emitting element can be produced. Can do.
  • a high-performance display device such as a full-color display can be obtained.
  • Carbazole Compound Represented by Formula (1) The carbazole compound having a substituent containing an electron-accepting nitrogen-containing heteroaryl according to the present invention will be described in detail.
  • the carbazole compound of the present invention is a compound represented by the following formula (1).
  • a 0 or 1
  • b 0 or 1
  • R is aryl having 6 to 24 carbon atoms or heteroaryl having 2 to 24 carbon atoms.
  • Hy 1 and Hy 2 are each independently an electron-accepting nitrogen-containing heteroaryl having 2 to 24 carbon atoms, and may be the same or different.
  • R, Hy 1 , Hy 2 , Ar 1 and Ar 2 may each independently be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • alkyl having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, Examples thereof include 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl and 2-ethylbutyl.
  • methyl, isopropyl or t-butyl is preferable, and t-butyl is particularly preferable.
  • the cycloalkyl having 3 to 6 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl and dimethylcyclohexyl.
  • the number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • the “aryl having 6 to 24 carbon atoms” in R is preferably an aryl having 6 to 16 carbon atoms, and more preferably an aryl having 6 to 12 carbon atoms.
  • aryl include monocyclic aryl phenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl.
  • Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, o-terpheny
  • the number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, phenylnaphthyl and those substituted with alkyl having 1 to 6 carbon atoms or cyclohexyl having 3 to 6 carbon atoms are preferable.
  • heteroaryl having 2 to 24 carbon atoms in R is preferably a heteroaryl having 2 to 20 carbon atoms, more preferably a heteroaryl having 2 to 15 carbon atoms, and particularly preferably 2 to 10 carbon atoms. Of heteroaryl. Examples of the “heteroaryl” include a heterocyclic group containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom.
  • heteroaryl examples include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H -Indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl, pteridinyl, carbazolyl, a
  • R include groups represented by the following formulas (R-1) to (R-20). Of these, groups represented by the following formulas (R-1) to (R-14), and groups represented by the following formulas (R-1) to (R-9) are particularly preferable. .
  • Hy 1 and Hy 2 are each independently an electron-accepting nitrogen-containing heteroaryl, and the electron-accepting nitrogen represents a nitrogen atom that forms a double bond with an adjacent atom.
  • Examples of the electron-accepting nitrogen-containing heteroaryl include pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaindolidinyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, indazolyl, purinyl, carbolinyl, naphthyridinyl, quinoxalinyl, quinolinyl, isoquinolinyl, Examples include pyridylquinolinyl, pyridylisoquinolinyl, acridinyl, phenanthrolinyl, phenazinyl and imidazopyridinyl.
  • pyridyl preferred are pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaindolizinyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, pyridylquinolinyl, pyridylisoquinolinyl and imidazopyridinyl. Particularly preferred are pyridyl and bipyridyl.
  • Hy 1 or Hy 2 is preferably a group represented by the following formulas (Hy-1-1) to (Hy-1-3), or the following formulas (Hy-2-1) to (Hy-2-). 18), and groups represented by the following formulas (Hy-3-1) to (Hy-3-27).
  • Hy 1 or Hy 2 More preferred as Hy 1 or Hy 2 are groups represented by the above formulas (Hy-1-1) to (Hy-1-3), and the above formulas (Hy-2-1) to (Hy-2-18). It is group represented by these.
  • arylene a divalent group derived from an aromatic hydrocarbon group such as benzene, naphthalene, anthracene, naphthacene, pentacene, acenaphthylene, phenalene, phenanthrene, pyrene, triphenylene, fluorene, biphenyl, and perylene can be used.
  • a divalent group derived from naphthalene is preferred.
  • Divalent groups derived from benzene or naphthalene include 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,4-naphthalene-diyl, 1,5-naphthalene-diyl, 2,6- And naphthalene-diyl and 2,7-naphthalene-diyl.
  • the specific aryl of Ar 2 includes the groups exemplified in the above description of R, and the groups represented by the above formulas (R-1) to (R-9) are preferable. Particularly preferred are groups represented by the above formula (R-1), formula (R-6) and formula (R-7).
  • Hy 1 and Hy 2 may be the same or different, but are preferably the same, and Ar 1 and Ar 2 are also the same. Or may be different, but preferably the same.
  • Specific examples of the compound represented by the above formula (1) include, for example, the following formulas (1-1-1) to (1-1-1458) belonging to the compound represented by the above formula (1-1). ), Compounds represented by the following formulas (1-2-1) to (1-2-629) belonging to the compounds represented by the above formula (1-2), the above formula (1) -3) belonging to the compound represented by the following formulas (1-3-1) to (1-3-924), belonging to the compound represented by the above formula (1-4), Examples thereof include compounds represented by the following formulas (1-4-1) to (1-4-561).
  • the carbazole compound of the present invention basically comprises a known compound and a known synthesis method such as Suzuki coupling reaction or Negishi coupling reaction (for example, “Metal-Catalyzed Cross-Coupling Reactions—Second, Completely Revised”). and Enlarged Edition ”). It can also be synthesized by combining both reactions.
  • a scheme for synthesizing the carbazole compound represented by the formula (1) by Suzuki coupling reaction or Negishi coupling reaction is illustrated below.
  • Hy 1- (Ar 1 ) a ” and “(Hy 2 ) b —Ar 2 ” mean groups bonded to the 2nd and 7th positions of the carbazole skeleton of the compound represented by the formula (1). , A and b are 0 or 1.
  • the palladium catalyst used in the Suzuki coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (Dba) 3 ⁇ CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , PdCl 2 ⁇ P (t-Bu) 2- (p-NMe 2 -Ph) ⁇ 2 , palladium bis ( Dibenzylidene).
  • a phosphine compound may be added to these palladium compounds in some cases.
  • the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis (di-t-butylphos Fino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,1′-binaphthy
  • bases used in the Suzuki coupling reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate. , Tripotassium phosphate, or potassium fluoride.
  • solvent used in the Suzuki coupling reaction examples include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1 1,4-dioxane, methanol, ethanol, cyclopentyl methyl ether or isopropyl alcohol.
  • solvents can be appropriately selected and may be used alone or as a mixed solvent.
  • the palladium catalyst used in the Negishi coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (Dba) 3 ⁇ CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (tri-t-butylphosphino) palladium (0), or (1,1′-bis (diphenylphosphine) Fino) ferrocene) dichlor
  • solvent used in the Negishi coupling reaction examples include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, cyclopentyl. Examples include methyl ether or 1,4-dioxane. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
  • ZnCl 2 ⁇ TMEDA is a tetramethylethylenediamine complex of zinc chloride.
  • R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • Also illustrated here is a method for synthesizing 2- (4-bromophenyl) pyridine and 2- (4-bromonaphthalen-1-yl) pyridine using 1,4-dibromobenzene or 1,4-dibromonaphthalene as raw materials.
  • 1,3-dibromobenzene, 2,6-dibromonaphthalene or 2,7-dibromonaphthalene as a raw material, dichloro, diiodo, bis (trifluoromethanesulfonate)
  • a mixture of them for example: 1-bromo-4-iodobenzene, etc.
  • the corresponding target product ie, 2- (3-bromophenyl) pyridine, 2- (6-bromonaphthalen-2-yl) ) Pyridine and 2- (7-bromonaphthalen-2-yl) pyridine can be obtained. Kill.
  • a similar target product can be obtained by reacting pyridylboronic acid or pyridylboronic acid ester (coupling reaction).
  • R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • 2- (4-bromophenyl) pyridine or 2- (4-bromonaphthalen-1-yl) pyridine may be lithiated using an organolithium reagent, or magnesium Or an organomagnesium reagent to form a Grignard reagent and react with bis (pinacolato) diboron or 4,4,5,5-tetramethyl-1,3,2-dioxaborolane to produce other 4- (pyridine-2- Yl) phenylboronic acid esters and 4- (pyridin-2-yl) naphthalen-1-ylboronic acid esters can be synthesized.
  • 2- (4-bromophenyl) pyridine or 2- (4-bromonaphthalen-1-yl) pyridine and bis (pinacolato) diboron or 4,4,5 The same 4- (pyridin-2-yl) phenylboronic acid ester and 4- (pyridine) can also be obtained by coupling reaction of 5-tetramethyl-1,3,2-dioxaborolane with a palladium catalyst and a base. -2-yl) naphthalen-1-ylboronic acid ester can be synthesized.
  • R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the carbazole compound of the present invention has a “Hy 1- (Ar 1 ) a —” group and a “(Hy 2 ) b —Ar 2 —” group at the 2nd and 7th positions of the carbazole skeleton as described above.
  • “Ar 1 (or Ar 2 )” and “Hy 1 (or Hy 2 )” may be bonded in order to the carbazole skeleton as follows.
  • Cz-R-ArOR "is synthesized. Next, demethylation is performed using boron tribromide, pyridine hydrochloride, or the like to synthesize a compound represented by “Cz—R—ArOH”. Thereafter, a compound represented by “Cz—R—ArOTf” is obtained by reacting with trifluoromethanesulfonic anhydride.
  • R which is an alkyl part of alkoxy and R which is a substituent bonded to the 9-position of carbazole are represented by the same symbol, but they may be the same or different.
  • the compounds of the present invention include those in which at least a part of the hydrogen atoms are substituted with deuterium.
  • a compound can be obtained by using a raw material in which a desired position is deuterated. It can be synthesized in the same way.
  • FIG. 1 is a schematic cross-sectional view showing an organic electroluminescent element according to this embodiment.
  • An organic electroluminescent device 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103.
  • the cathode 108 provided on the electron injection layer 107.
  • the organic electroluminescent element 100 is manufactured in the reverse order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer.
  • a structure including the hole injection layer 103 provided above and the anode 102 provided on the hole injection layer 103 may be employed.
  • each said layer may consist of a single layer, respectively, and may consist of multiple layers.
  • the substrate 101 serves as a support for the organic electroluminescent device 100, and usually quartz, glass, metal, plastic, or the like is used.
  • the substrate 101 is formed into a plate shape, a film shape, or a sheet shape according to the purpose.
  • a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
  • glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate, polysulfone and the like are preferable.
  • soda lime glass, non-alkali glass, or the like is used, and the thickness only needs to be sufficient to maintain the mechanical strength.
  • the upper limit value of the thickness is, for example, 2 mm or less, preferably 1 mm or less.
  • the glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass.
  • soda lime glass with a barrier coat such as SiO 2 is also commercially available, so it can be used. it can.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one surface in order to improve the gas barrier property, and a synthetic resin plate, film or sheet having a low gas barrier property is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
  • the anode 102 serves to inject holes into the light emitting layer 105.
  • the hole injection layer 103 and / or the hole transport layer 104 are provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 through these layers. .
  • Examples of the material for forming the anode 102 include inorganic compounds and organic compounds.
  • Examples of inorganic compounds include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide) Products (IZO), metal halides (copper iodide, etc.), copper sulfide, carbon black, ITO glass, Nesa glass, and the like.
  • Examples of the organic compound include polythiophene such as poly (3-methylthiophene), conductive polymer such as polypyrrole and polyaniline, and the like. In addition, it can select suitably from the substances currently used as an anode of an organic electroluminescent element, and can use it.
  • the resistance of the transparent electrode is not particularly limited as long as a current sufficient for light emission of the light emitting element can be supplied, but it is desirable that the resistance is low from the viewpoint of power consumption of the light emitting element.
  • an ITO substrate of 300 ⁇ / ⁇ or less functions as an element electrode, but at present, since it is possible to supply a substrate of about 10 ⁇ / ⁇ , for example, 100 to 5 ⁇ / ⁇ , preferably 50 to 5 ⁇ . It is particularly desirable to use a low resistance product of / ⁇ .
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
  • the hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104.
  • the hole transport layer 104 plays a role of efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 through the hole injection layer 103 to the light emitting layer 105.
  • the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one kind or two or more kinds of hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder. Is done.
  • an inorganic salt such as iron (III) chloride may be added to the hole injection / transport material to form a layer.
  • a hole injection / transport material As a hole injection / transport material, it is necessary to efficiently inject and transport holes from the positive electrode between electrodes to which an electric field is applied. The hole injection efficiency is high, and the injected holes are transported efficiently. It is desirable to do. For this purpose, it is preferable to use a substance that has a low ionization potential, a high hole mobility, excellent stability, and is less likely to generate trapping impurities during production and use.
  • a compound conventionally used as a charge transport material for holes, a p-type semiconductor, and a hole injection of an organic electroluminescent element are used.
  • Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), triarylamine derivatives (aromatic tertiary class).
  • Styrene derivatives polyvinyl carbazole, polysilane, and the like are preferable, but there is no particular limitation as long as it is a compound that forms a thin film necessary for manufacturing a light-emitting element, can inject holes from the anode, and can further transport holes. .
  • organic semiconductors are strongly influenced by the doping.
  • Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
  • Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donor materials.
  • TCNQ tetracyanoquinone dimethane
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane
  • the light emitting layer 105 emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied.
  • the material for forming the light-emitting layer 105 may be a compound that emits light by being excited by recombination of holes and electrons (a light-emitting compound), can form a stable thin film shape, and is in a solid state It is preferable that the compound exhibits a high emission (fluorescence and / or phosphorescence) efficiency.
  • the light emitting layer may be either a single layer or a plurality of layers, each formed of a light emitting material (host material, dopant material). Each of the host material and the dopant material may be one kind or a plurality of combinations.
  • the dopant material may be included in the host material as a whole, or may be included partially. As a doping method, it can be formed by a co-evaporation method with a host material, but it may be pre-mixed with the host material and then simultaneously deposited.
  • the amount of host material used depends on the type of host material and can be determined according to the characteristics of the host material.
  • the amount of the host material used is preferably 50 to 99.999% by weight of the entire light emitting material, more preferably 80 to 99.95% by weight, and still more preferably 90 to 99.9% by weight. .
  • the amount of dopant material used depends on the type of dopant material, and can be determined according to the characteristics of the dopant material.
  • the standard of the amount of dopant used is preferably 0.001 to 50% by weight of the entire light emitting material, more preferably 0.05 to 20% by weight, and still more preferably 0.1 to 10% by weight.
  • the above range is preferable in that, for example, the concentration quenching phenomenon can be prevented.
  • the light emitting material of the light emitting device according to this embodiment may be either fluorescent or phosphorescent.
  • the host material is not particularly limited, but has previously been known as a phosphor, fused ring derivatives such as anthracene and pyrene, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bis Bisstyryl derivatives such as styryl anthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, pyrrolopyrrole
  • fluorene derivatives, benzofluorene derivatives, and polymer systems polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives are preferably used.
  • the dopant material is not particularly limited, and a known compound can be used, and can be selected from various materials according to a desired emission color.
  • condensed ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopylene, dibenzopyrene, rubrene, and chrysene
  • benzoxazole derivatives benzothiazole derivatives, benzimidazole derivatives, benzotriazole derivatives
  • Bisstyryl such as oxazole derivatives, oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazoline derivatives, stilbene derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives and dist
  • blue to blue-green dopant materials include naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, indene, chrysene and other aromatic hydrocarbon compounds and derivatives thereof, furan, pyrrole, thiophene, Aromatic complex such as silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene Ring compounds and their derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imidazo
  • green to yellow dopant material examples include coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, and naphthacene derivatives such as rubrene.
  • a compound in which a substituent capable of increasing the wavelength such as aryl, heteroaryl, arylvinyl, amino, and cyano is introduced into the compound exemplified as the blue to blue-green dopant material is also a suitable example.
  • orange to red dopant materials include naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, rare earth complexes such as Eu complexes having acetylacetone, benzoylacetone and phenanthroline as ligands, 4 -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone Derivatives, phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, violanthrone derivatives, phenazine derivatives, phenoxazo Derivatives, thi
  • a compound into which a group is introduced is also a suitable example.
  • a phosphorescent metal complex having iridium or platinum represented by tris (2-phenylpyridine) iridium (III) as a central metal is also a suitable example.
  • the dopant can be appropriately selected from compounds described in Chemical Industry, June 2004, page 13, and references cited therein.
  • perylene derivatives perylene derivatives, borane derivatives, amine-containing styryl derivatives, aromatic amine derivatives, coumarin derivatives, pyran derivatives, iridium complexes, or platinum complexes are particularly preferable.
  • perylene derivatives examples include 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, 3,4- Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1'-pyrenyl) -8,11-di (t-butyl) perylene 3- (9′-anthryl) -8,11-di (t-butyl) perylene, 3,3′-bis (8,11-di (t-butyl) perylenyl), and the like.
  • JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A No. 2000-34234, JP-A No. 2001-267075, JP-A No. 2001-217077 and the like may be used.
  • borane derivatives examples include 1,8-diphenyl-10- (dimesitylboryl) anthracene, 9-phenyl-10- (dimesitylboryl) anthracene, 4- (9′-anthryl) dimesitylborylnaphthalene, 4- (10 ′ -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4 '-(N-carbazolyl) phenyl) And -10- (dimesitylboryl) anthracene.
  • amine-containing styryl derivatives include N, N, N ′, N′-tetra (4-biphenylyl) -4,4′-diaminostilbene, N, N, N ′, N′-tetra (1-naphthyl).
  • aromatic amine derivative examples include N, N, N, N-tetraphenylanthracene-9,10-diamine, 9,10-bis (4-diphenylamino-phenyl) anthracene, and 9,10-bis (4- Di (1-naphthylamino) phenyl) anthracene, 9,10-bis (4-di (2-naphthylamino) phenyl) anthracene, 10-di-p-tolylamino-9- (4-di-p-tolylamino-1) -Naphthyl) anthracene, 10-diphenylamino-9- (4-diphenylamino-1-naphthyl) anthracene, 10-diphenylamino-9- (6-diphenylamino-2-naphthyl) anthracene, [4- (4-diphenyl) Amino-phenyl) naphthalen-1-yl
  • Examples of coumarin derivatives include coumarin-6 and coumarin-334. Moreover, you may use the coumarin derivative described in Unexamined-Japanese-Patent No. 2004-43646, Unexamined-Japanese-Patent No. 2001-76876, and Unexamined-Japanese-Patent No. 6-298758.
  • Examples of the pyran derivative include the following DCM and DCJTB. Also, JP 2005-126399, JP 2005-097283, JP 2002-234892, JP 2001-220577, JP 2001-081090, and JP 2001-052869. Alternatively, pyran derivatives described in the above may be used.
  • iridium complex examples include Ir (ppy) 3 described below. Further, the iridium complexes described in JP-A-2006-089398, JP-A-2006-080419, JP-A-2005-298483, JP-A-2005-097263, JP-A-2004-111379, etc. It may be used.
  • platinum complex examples include the following PtOEP. Further, the platinum complexes described in JP-A-2006-190718, JP-A-2006-128634, JP-A-2006-093542, JP-A-2004-335122, JP-A-2004-331508, etc. It may be used.
  • the electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106.
  • the electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105.
  • the electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials or a mixture of the electron transport / injection material and the polymer binder.
  • the electron injection / transport layer is a layer that is responsible for injecting electrons from the cathode and further transporting the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. For this purpose, it is preferable to use a substance that has a high electron affinity, a high electron mobility, excellent stability, and is unlikely to generate trapping impurities during production and use. However, considering the transport balance between holes and electrons, if the role of effectively preventing the holes from the anode from flowing to the cathode side without recombination is mainly played, the electron transport capability is much higher. Even if it is not high, the effect of improving the luminous efficiency is equivalent to that of a material having a high electron transport capability. Therefore, the electron injection / transport layer in this embodiment may include a function of a layer that can efficiently block the movement of holes.
  • a compound represented by the above formula (1) can be used as the material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107.
  • a compound represented by the above formula (1) can be used as the material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107.
  • the content of the compound represented by the above formula (1) in the electron transport layer 106 or the electron injection layer 107 differs depending on the type of the compound and may be determined according to the characteristics of the compound.
  • the standard for the content of the compound represented by the formula (1) is preferably 1 to 100% by weight, more preferably 10 to 100% by weight, based on the whole electron transport layer material (or electron injection layer material). More preferably, it is 50 to 100% by weight, and particularly preferably 80 to 100% by weight.
  • the compound represented by the formula (1) is not used alone (100% by weight), other materials described in detail below may be mixed.
  • Other materials for forming the electron transport layer or electron injection layer include compounds conventionally used as electron transport compounds in photoconductive materials, and known materials used for electron injection layers and electron transport layers of organic electroluminescent devices. Any of these compounds can be selected and used.
  • condensed ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinones And quinone derivatives such as diphenoquinone, phosphorus oxide derivatives, carbazole derivatives other than the compound represented by the above formula (1), and indole derivatives.
  • metal complexes having electron-accepting nitrogen examples include hydroxyazole complexes such as hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. These materials can be used alone or in combination with different materials.
  • anthracene derivatives such as 9,10-bis (2-naphthyl) anthracene, styryl aromatic ring derivatives such as 4,4′-bis (diphenylethenyl) biphenyl, 4,4′-bis (N-carbazolyl) biphenyl
  • a carbazole derivative such as 1,3,5-tris (N-carbazolyl) benzene is preferably used from the viewpoint of durability.
  • pyridine derivatives other than the compound represented by the above formula (1) naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives represented by the formula (1) , Naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives (such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene), thiophene Derivatives, triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4-triazole, etc.), thiadiazole derivatives, metal complexes of oxine derivatives, quinolinol metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazole Compound
  • metal complexes having electron-accepting nitrogen can also be used, such as hydroxyazole complexes such as quinolinol-based metal complexes and hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. Is given.
  • the above-mentioned materials can be used alone, but they may be mixed with different materials.
  • quinolinol metal complexes bipyridine derivatives, phenanthroline derivatives, borane derivatives or benzimidazole derivatives are preferable.
  • the quinolinol-based metal complex is a compound represented by the following general formula (E-1).
  • R 1 to R 6 are hydrogen or a substituent
  • M is Al, Ga, Be, or Zn
  • n is an integer of 2 or 3.
  • quinolinol-based metal complexes include tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3,4-dimethyl-).
  • 8-quinolinolato) aluminum tris (4,5-dimethyl-8-quinolinolato) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) (phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (4- Methyl phenolate) Aluminum Bis (2-methyl-8-quinolinolato) (2-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (3-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (4-Phenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,3-dimethylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,6-dimethylphenol
  • the bipyridine derivative is a compound represented by the following general formula (E-2).
  • G represents a simple bond or an n-valent linking group, and n is an integer of 2 to 8. Further, carbon not used for bonding of pyridine-pyridine or pyridine-G may be substituted.
  • G in the general formula (E-2) examples include the following structural formulas.
  • each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
  • pyridine derivative examples include 2,5-bis (2,2′-bipyridin-6-yl) -1,1-dimethyl-3,4-diphenylsilole, 2,5-bis (2,2′- Bipyridin-6-yl) -1,1-dimethyl-3,4-dimesitylsilole, 2,5-bis (2,2′-bipyridin-5-yl) -1,1-dimethyl-3,4 Diphenylsilole, 2,5-bis (2,2′-bipyridin-5-yl) -1,1-dimethyl-3,4-dimesitylsilole 9,10-di (2,2′-bipyridine-6- Yl) anthracene, 9,10-di (2,2′-bipyridin-5-yl) anthracene, 9,10-di (2,3′-bipyridin-6-yl) anthracene, 9,10-di (2, 3′-b
  • the phenanthroline derivative is a compound represented by the following general formula (E-3-1) or (E-3-2).
  • R 1 to R 8 are hydrogen or a substituent, adjacent groups may be bonded to each other to form a condensed ring, G represents a simple bond or an n-valent linking group, and n represents 2 It is an integer of ⁇ 8.
  • Examples of G in the general formula (E-3-2) include the same ones as described in the bipyridine derivative column.
  • phenanthroline derivatives include 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10-phenanthroline- 2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9′-difluor -Bis (1,10-phenanthroline-5-yl), bathocuproin, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and the like.
  • a phenanthroline derivative is used for the electron transport layer and the electron injection layer.
  • the substituent itself has a three-dimensional structure, or a phenanthroline skeleton or Those having a three-dimensional structure by steric repulsion with an adjacent substituent or those having a plurality of phenanthroline skeletons linked to each other are preferred.
  • a compound containing a conjugated bond, a substituted or unsubstituted aromatic hydrocarbon, or a substituted or unsubstituted aromatic heterocycle in the linking unit is more preferable.
  • the borane derivative is a compound represented by the following general formula (E-4), and is disclosed in detail in JP-A-2007-27587.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X is an optionally substituted arylene
  • Y is a substituted Aryl having 16 or less carbon atoms, substituted boryl, or optionally substituted carbazole
  • each n is independently an integer of 0 to 3.
  • the compound represented by -1-4) is preferred. Specific examples include 9- [4- (4-Dimesitylborylnaphthalen-1-yl) phenyl] carbazole, 9- [4- (4-Dimesitylborylnaphthalen-1-yl) naphthalen-1-yl. Carbazole and the like.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • R 21 and R 22 are each independently hydrogen, alkyl, or substituted.
  • X 1 is an optionally substituted arylene having 20 or less carbon atoms
  • n is each Each independently represents an integer of 0 to 3, and each m independently represents an integer of 0 to 4;
  • R 31 to R 34 are each independently methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X 1 is an optionally substituted arylene having 20 or less carbon atoms
  • N is an integer of 0 to 3 independently.
  • R 31 to R 34 are each independently any of methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently any of hydrogen, methyl, isopropyl or phenyl It is.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X 1 is an optionally substituted arylene having 10 or less carbon atoms
  • Y 1 is an optionally substituted aryl having 14 or less carbon atoms
  • n is each independently an integer of 0 to 3.
  • R 31 to R 34 are each independently methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
  • the benzimidazole derivative is a compound represented by the following general formula (E-5).
  • Ar 1 to Ar 3 are each independently hydrogen or aryl having 6 to 30 carbon atoms which may be substituted.
  • a benzimidazole derivative which is anthryl optionally substituted with Ar 1 is preferable.
  • aryl having 6 to 30 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, acenaphthylene-1-yl, acenaphthylene-3-yl, acenaphthylene-4-yl, acenaphthylene-5-yl, and fluorene-1- Yl, fluoren-2-yl, fluoren-3-yl, fluoren-4-yl, fluoren-9-yl, phenalen-1-yl, phenalen-2-yl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, 1-anthryl, 2-anthryl, 9-anthryl, fluoranthen-1-yl, fluoranthen-2-yl, fluoranthen-3-yl, fluoranthen-7-yl, fluoranthen-8-yl, Triphenylene-1-yl, 2-
  • benzimidazole derivative examples include 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- (naphthalene-2) -Yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1- Phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4- (10 -(Naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10-di (n)-
  • the electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer.
  • a substance capable of reducing the material forming the electron transport layer or the electron injection layer various substances can be used as long as they have a certain reducing ability.
  • alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkali Group consisting of earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes At least one selected from can be preferably used.
  • Preferred reducing substances include alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. 9eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV), and alkaline earth metals such as those having a work function of 2.9 eV or less are particularly preferable.
  • a more preferable reducing substance is an alkali metal of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals have particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transport layer or the electron injection layer, the luminance of the organic EL element can be improved and the lifetime can be extended.
  • a reducing substance having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferable.
  • a combination containing Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • the cathode 108 serves to inject electrons into the light emitting layer 105 through the electron injection layer 107 and the electron transport layer 106.
  • the material for forming the cathode 108 is not particularly limited as long as it is a substance that can efficiently inject electrons into the organic layer, but the same material as that for forming the anode 102 can be used.
  • metals such as tin, magnesium, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium, and magnesium or their alloys (magnesium-silver Alloys, magnesium-indium alloys, aluminum-lithium alloys such as lithium fluoride / aluminum) and the like are preferred.
  • lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys using these metals, and inorganic substances such as silica, titania, and silicon nitride, polyvinyl alcohol, Preferred examples include laminating vinyl chloride, hydrocarbon polymer compounds and the like.
  • the method for producing these electrodes is not particularly limited as long as conduction can be achieved, such as resistance heating, electron beam, sputtering, ion plating, and coating.
  • the materials used for the above hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer can form each layer alone, but as a polymer binder, polyvinyl chloride, polycarbonate , Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate resin, ABS resin, polyurethane Can be used by being dispersed in solvent-soluble resins such as resins, and curable resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins, unsaturated polyester resins, alkyd resins, epoxy resins, and silicone resins.
  • solvent-soluble resins such as resins
  • curable resins such as phenol resins, xylene resins,
  • Each layer constituting the organic electroluminescent element is formed by a method such as vapor deposition, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, printing method, spin coating method, casting method, or coating method.
  • the film can be formed by forming a thin film.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a crystal oscillation type film thickness measuring device or the like.
  • the vapor deposition conditions vary depending on the type of material, the target crystal structure and association structure of the film, and the like.
  • Deposition conditions generally include boat heating temperature +50 to + 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature ⁇ 150 to + 300 ° C., film thickness 2 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • an organic electric field composed of an anode / hole injection layer / hole transport layer / a light emitting layer composed of a host material and a dopant material / electron transport layer / electron injection layer / cathode.
  • a method for manufacturing a light-emitting element will be described.
  • a thin film of an anode material is formed on a suitable substrate by vapor deposition or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a host material and a dopant material are co-evaporated to form a thin film to form a light emitting layer.
  • An electron transport layer and an electron injection layer are formed on the light emitting layer, and a thin film made of a cathode material is formed by vapor deposition. By forming it as a cathode, a desired organic electroluminescent element can be obtained.
  • the order of preparation may be reversed, and the cathode, electron injection layer, electron transport layer, light emitting layer, hole transport layer, hole injection layer, and anode may be fabricated in this order. Is possible.
  • the anode When a DC voltage is applied to the organic electroluminescent device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, the organic electroluminescent device is transparent or translucent. Luminescence can be observed from the electrode side (anode or cathode, and both). The organic electroluminescence device emits light when a pulse current or an alternating current is applied. The alternating current waveform to be applied may be arbitrary.
  • the present invention can also be applied to a display device provided with an organic electroluminescent element or a lighting device provided with an organic electroluminescent element.
  • a display device or an illuminating device including an organic electroluminescent element can be manufactured by a known method such as connecting the organic electroluminescent element according to the present embodiment and a known driving device, such as direct current driving, pulse driving, or alternating current. It can be driven by appropriately using a known driving method such as driving.
  • Examples of the display device include a panel display such as a color flat panel display, and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066 and JP-A-2003-321546). Gazette, JP-A-2004-281086, etc.).
  • Examples of the display method of the display include a matrix and / or segment method. Note that the matrix display and the segment display may coexist in the same panel.
  • a matrix is a pixel in which pixels for display are arranged two-dimensionally, such as a grid or mosaic, and displays characters and images as a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a line sequential driving method or an active matrix.
  • the line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
  • a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light.
  • a predetermined region is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer, the operation status display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be given.
  • the illuminating device examples include an illuminating device such as indoor lighting, a backlight of a liquid crystal display device, and the like (for example, JP 2003-257621 A, JP 2003-277741 A, JP 2004-119211 A).
  • the backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, and the like.
  • a backlight for liquid crystal display devices especially personal computers for which thinning is an issue, considering that conventional methods are made of fluorescent lamps and light guide plates, it is difficult to reduce the thickness.
  • the backlight using the light emitting element according to the embodiment is thin and lightweight.
  • the reaction solution was cooled to room temperature, water was added, and washing operation was performed.
  • the reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and the precipitate was collected by suction filtration.
  • EDTA ethylenediaminetetraacetic acid
  • the obtained solid was washed with methanol, dissolved in heated chlorobenzene, and filtered while hot using a Kiriyama funnel covered with activated alumina. Crystals precipitated by gradually distilling off the obtained filtrate under reduced pressure were collected by suction filtration, and 2,7-bis (4-ethoxynaphthalen-1-yl) -9-phenyl-9H-carbazole (21 0.8 g) was obtained.
  • reaction solution was cooled to room temperature and washed repeatedly with water and methanol warmed to about 75 ° C., whereby 4,4 ′-(9-phenyl-9H-carbazole-2,7-diyl) bis (naphthalene-1- All) (19.3 g) was obtained.
  • the resulting precipitate was washed with water and then with methanol. Further, it was purified by activated alumina column chromatography (developing solution: toluene), and (9-phenyl-9H-carbazole-2,7-diyl) bis (naphthalene-4,1-diyl) bis (trifluoromethanesulfonate) (18 0.5 g) was obtained.
  • the reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and the precipitate was collected by suction filtration. The obtained precipitate was washed with methanol, dissolved in heated chlorobenzene, and filtered while hot.
  • EDTA ethylenediaminetetraacetic acid
  • the reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and the precipitate was collected by suction filtration.
  • the compound represented was 9-phenyl-2,7-bis (4- (pyridin-4-yl) naphthalen-1-yl) -9H-carbazole (0.4 g).
  • reaction solution was cooled to room temperature, and an aqueous solution of ethylenediaminetetraacetic acid (EDTA) was added for liquid separation.
  • EDTA ethylenediaminetetraacetic acid
  • the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solution: toluene). Methanol was added to the oil obtained by distilling off the solvent under reduced pressure to perform reprecipitation, and 9-([1 , 1 ′: 3 ′, 1 ′′ -terphenyl] -5′-yl) -2,7-bis (3-methoxyphenyl) -9H-carbazole (11.5 g).
  • the compounds of the present invention include those in which at least a part of the hydrogen atoms are substituted with deuterium.
  • Such a compound can be obtained by using a raw material in which a desired position is deuterated. It can be synthesized in the same way.
  • Example 1 The electroluminescent elements according to Example 1 and Comparative Example 1 were manufactured, the driving start voltage (V) in the constant current driving test, the time (h) for maintaining the luminance of 90% (1800 cd / m 2 ) or more of the initial luminance, and The external quantum efficiency at 1000 cd / m 2 was measured.
  • V driving start voltage
  • h time for maintaining the luminance of 90% (1800 cd / m 2 ) or more of the initial luminance
  • the external quantum efficiency at 1000 cd / m 2 was measured.
  • the quantum efficiency of a light-emitting element includes an internal quantum efficiency and an external quantum efficiency.
  • the ratio of external energy injected as electrons (or holes) into the light-emitting layer of the light-emitting element is converted into photons purely. What is shown is the internal quantum efficiency.
  • the external quantum efficiency is calculated based on the amount of photons emitted to the outside of the light emitting element, and some of the photons generated in the light emitting layer are absorbed inside the light emitting element.
  • the external quantum efficiency is lower than the internal quantum efficiency because it is continuously reflected and is not emitted outside the light emitting element.
  • the external quantum efficiency is measured as follows.
  • a voltage / current generator R6144 manufactured by Advantest Corporation was used to apply a voltage at which the luminance of the element was 1000 cd / m 2 to cause the element to emit light.
  • a spectral radiance meter SR-2A manufactured by TOPCON the spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface. Assuming that the light emitting surface is a completely diffusing surface, the value obtained by dividing the measured spectral radiance value of each wavelength component by the wavelength energy and multiplying by ⁇ is the number of photons at each wavelength.
  • the value obtained by dividing the applied current value by the elementary charge is the number of carriers injected into the device, and the number obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device is the external quantum efficiency.
  • Table 1 below shows the material structure of each layer in the electroluminescent devices according to the manufactured Example 1 and Comparative Example 1.
  • CuPc copper phthalocyanine
  • NPD N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl
  • compound (A) is 9-phenyl-10- [6 -(1,1 ′; 3,1 ′′) terphenyl-5′-yl] naphthalen-2-ylanthracene
  • compound (B) is N 5 , N 5 , N 9 , N 9 -7,7-hexaphenyl -7H-benzo [c] fluorene-5,9-diamine
  • compound (C) is 9,10-bis (4- (pyridin-4-yl) phenyl) anthracene
  • Liq is 8-quinolinol lithium .
  • the chemical structure is shown below.
  • Example 1 ⁇ Device Using Compound (1-1-856) for Electron Transport Layer>
  • a glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing CuPc, a molybdenum vapor deposition boat containing NPD, and a compound (A) are placed therein.
  • Molybdenum deposition boat molybdenum deposition boat containing compound (B), molybdenum deposition boat containing compound represented by formula (1-1-856), molybdenum deposition boat containing Liq A boat, a molybdenum boat containing magnesium, and a tungsten evaporation boat containing silver were installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, the vapor deposition boat containing CuPc was heated to deposit to a film thickness of 50 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed. Next, the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm.
  • the deposition rate was adjusted so that the weight ratio of compound (A) to compound (B) was approximately 95 to 5.
  • the evaporation boat containing the compound represented by the formula (1-1-856) was heated and evaporated to a thickness of 15 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode.
  • the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and the cathode was formed so that the deposition rate was from 0.1 nm to 10 nm to obtain an organic electroluminescent device.
  • Electroluminescent devices according to Examples 2 to 9 and Comparative Examples 2 to 4 were manufactured, and the driving start voltage (V) in the constant current driving test and the luminance of 80% (1600 cd / m 2 ) or more of the initial luminance were maintained. Measurement of the external quantum efficiency at a time (h) and 1000 cd / m 2 .
  • V driving start voltage
  • h time
  • 1000 cd / m 2
  • Table 3 below shows the material structure of each layer in the devices according to Examples 2 to 9 and Comparative Examples 2 to 4.
  • HI refers to N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine
  • compound (D) is 9-phenyl-10- (4-phenylnaphthalen-1-yl) anthracene
  • compound (E) is 2,7-di ([2,4′-bipyridine] -6- Yl) -9-phenyl-9H-carbazole
  • compound (F) is 9,10-bis (4- (pyridin-4-yl) naphthalen-1-yl) anthracene
  • compound (G) is 9,10-bis ( 4- (Pyridin-2-yl) phenyl) anthracene.
  • Example 2 ⁇ Device Using Compound (1-1-854) for Electron Transport Layer>
  • a glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and compound (D) are placed therein.
  • Molybdenum deposition boat molybdenum deposition boat containing compound (B), molybdenum deposition boat containing compound (1-1-854), molybdenum deposition boat containing Liq, magnesium A molybdenum boat and a tungsten evaporation boat containing silver were installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (D) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm.
  • the deposition rate was adjusted so that the weight ratio of compound (D) to compound (B) was approximately 95 to 5.
  • the evaporation boat containing the compound (1-1-854) was heated and evaporated to a thickness of 20 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time to form a cathode with a thickness of 100 nm.
  • the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and the cathode was formed so that the deposition rate was from 0.1 nm to 10 nm to obtain an organic electroluminescent device.
  • Example 3 ⁇ Device Using Compound (1-1-855) for Electron Transport Layer> An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-855).
  • a constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the drive test start voltage was 5.16 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 321 hours.
  • the external quantum efficiency of this device at 1000 cd / m 2 was 6.79%.
  • Example 4 ⁇ Device Using Compound (1-1-856) for Electron Transport Layer> An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-856). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 4.84 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 198 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 5.29%.
  • Example 5 ⁇ Device Using Compound (1-1-851) for Electron Transport Layer> An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-851). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 4.83 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 334 hours.
  • the external quantum efficiency in 1000 cd / m ⁇ 2 > of this element was 5.01%.
  • Example 6> ⁇ Device Using Compound (1-1-852) for Electron Transport Layer> An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-852). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 5.08 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 289 hours.
  • the external quantum efficiency of this device at 1000 cd / m 2 was 6.59%.
  • Example 7 ⁇ Device Using Compound (1-1-853) for Electron Transport Layer> An organic EL device was obtained in the same manner as in Example 2, except that the compound (1-1-854) was replaced with the compound (1-1-853). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The drive test starting voltage was 4.03 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 229 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 6.89%.
  • Example 8> ⁇ Device Using Compound (1-1-98) for Electron Transport Layer>
  • An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was changed to the compound (1-1-98).
  • a constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the drive test start voltage was 5.51 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 235 hours.
  • the external quantum efficiency of this device at 1000 cd / m 2 was 5.95%.
  • Example 9 ⁇ Device Using Compound (1-1-99) for Electron Transport Layer> An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-99). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 6.35 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 186 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 4.91%.
  • an organic electroluminescent element that improves the lifetime of the light emitting element and has an excellent balance with the driving voltage, a display device including the organic electroluminescent element, and a lighting device including the organic electroluminescent element. it can.

Abstract

The purpose of the present invention is to provide an organic electroluminescent element in which the drive voltage and the longevity of the electroluminescent element are excellent. A carbazole compound represented by formula (1-1) is used as an electron transport material to manufacture an organic electroluminescent element. (In formula (1-1), R is an aryl or a heteroaryl, Hy1 and Hy2 are each C2-24 electron-accepting nitrogen-containing heteroaryls, and Ar1 and Ar2 are each C6-24 arylenes.)

Description

電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices
 本発明は、電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物並びにこれを用いた電子輸送材料、有機電界発光素子、表示装置および照明装置に関する。 The present invention relates to a carbazole compound having a substituent containing an electron-accepting nitrogen-containing heteroaryl, an electron transport material, an organic electroluminescent element, a display device, and a lighting device using the same.
 従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料からなる有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色をはじめとする発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。 2. Description of the Related Art Conventionally, display devices using light emitting elements that emit electroluminescence have been studied variously because they can save power and can be thinned. Further, organic electroluminescent elements made of organic materials can be easily reduced in weight and size. Therefore, it has been actively studied. In particular, the development of organic materials with light emission characteristics such as blue, which is one of the three primary colors of light, and organic materials that have charge transporting ability (such as semiconductors and superconductors) such as holes and electrons The development of materials has been actively studied so far, regardless of whether it is a high molecular compound or a low molecular compound.
 例えば、アントラセンの中心骨格にピリジル基などのアリール・ヘテロアリールが置換した化合物を用いた有機電界発光素子が報告されている(特開2003-146951号公報;特許文献1、特開2005-170911号公報;特許文献2、国際公開第2007/086552パンフレット;特許文献3)。 For example, an organic electroluminescent device using a compound in which an aryl-heteroaryl such as a pyridyl group is substituted on the central skeleton of anthracene has been reported (Japanese Patent Laid-Open No. 2003-146951; Japanese Patent Laid-Open No. 2005-170911). Gazette; Patent Document 2, International Publication No. 2007/085652 Pamphlet; Patent Document 3).
 また、中心骨格をビアントラセン、ビナフタレンまたはナフタレンとアントラセンとの結合体とした化合物が有機電界発光素子用の材料(例えば電子輸送層や電子注入層の材料;電子輸送材料)として用いられることが報告されている(特開平8-12600号公報;特許文献4、特開2003-123983号公報;特許文献5、特開平11-297473号公報;特許文献6)。 In addition, it is reported that compounds with a central skeleton of bianthracene, binaphthalene, or a combination of naphthalene and anthracene can be used as materials for organic electroluminescent devices (for example, materials for electron transport layers and electron injection layers; electron transport materials). (JP-A-8-12600; Patent Document 4, JP-A-2003-123983; Patent Document 5, JP-A-11-297473; Patent Document 6).
 さらに、カルバゾール環とピリジン環やピリミジン環を含む化合物が電荷輸送(正孔輸送性および電子輸送性)材料として用いられることが報告されている(特開2006-199679号公報;特許文献7、特開2005-268199号公報;特許文献8、特開2007-088433号公報;特許文献9、国際公開第2003/078541パンフレット;特許文献10、国際公開第2003/080760パンフレット;特許文献11)。 Furthermore, it has been reported that a compound containing a carbazole ring and a pyridine ring or a pyrimidine ring is used as a charge transport (hole transport property and electron transport property) material (Japanese Patent Laid-Open No. 2006-199679; JP 2005-268199 A; Patent Document 8, JP 2007-088433 A; Patent Document 9, International Publication No. 2003/078541 Pamphlet; Patent Document 10, International Publication No. 2003/080760 Pamphlet;
特開2003-146951号公報JP 2003-146951 A 特開2005-170911号公報JP 2005-170911 A 国際公開第2007/086552パンフレットInternational Publication No. 2007/086552 Pamphlet 特開平8-12600号公報JP-A-8-12600 特開2003-123983号公報JP 2003-123983 A 特開平11-297473号公報Japanese Patent Laid-Open No. 11-297473 特開2006-199679号公報JP 2006-199679 A 特開2005-268199号公報JP 2005-268199 A 特開2007-088433号公報JP 2007-088433 A 国際公開第2003/078541パンフレットInternational Publication No. 2003/078541 Pamphlet 国際公開第2003/080760パンフレットInternational Publication No. 2003/080760 Pamphlet
 上記のように、アントラセンの中心骨格にアリール基やヘテロアリールが置換した化合物や中心骨格としてビアントラセン、ビナフタレンまたはナフタレンとアントラセンとの結合体を用いた化合物やカルバゾール環とピリジン環やピリミジン環を含む化合物はいくつか知られているが、これらの公知の材料は、電子輸送材料に一般的に求められる、素子の長寿命化・高効率化を、十分にかつバランスよく満たすものではない。このような状況において、発光素子の寿命および駆動電圧が優れた電子輸送材料の開発が望まれている。特に、青色の発光素子は、赤色や緑色の発光素子と比較して優れた特性の電子輸送材料が得られておらず、青色の発光素子の特性向上に好適な電子輸送材料の開発が望まれている。 As described above, compounds in which the central skeleton of anthracene is substituted with an aryl group or heteroaryl, compounds using bianthracene, binaphthalene, or a combination of naphthalene and anthracene as the central skeleton, and carbazole rings, pyridine rings, and pyrimidine rings Although several compounds are known, these known materials do not satisfy the long life and high efficiency of the device, which are generally required for electron transport materials, in a sufficient and balanced manner. Under such circumstances, it is desired to develop an electron transport material that has an excellent lifetime and driving voltage of the light emitting element. In particular, for blue light-emitting elements, an electron transport material having superior characteristics compared to red and green light-emitting elements has not been obtained, and development of an electron transport material suitable for improving the characteristics of blue light-emitting elements is desired. ing.
 本発明者らは、前記課題を解決するため鋭意検討した結果、電子輸送材料として下記式(1)で表される化合物を含有する有機層を備えた有機電界発光素子とすることにより、特に素子の寿命において優れ、駆動電圧とのバランスも優れた有機電界発光素子が得られることを見出し、本発明を完成させた。すなわち本発明は、以下のようなカルバゾール化合物を提供する。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have made an organic electroluminescent device comprising an organic layer containing a compound represented by the following formula (1) as an electron transporting material, in particular, the device. The present inventors have found that an organic electroluminescent device having an excellent lifetime and a well-balanced driving voltage can be obtained. That is, the present invention provides the following carbazole compounds.
[1] 下記式(1-1)で表されるカルバゾール化合物。
Figure JPOXMLDOC01-appb-C000006

 上記式(1-1)中、
 Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、炭素数6~24のアリールまたは炭素数2~24のヘテロアリールであり、
 HyおよびHyは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、炭素数2~24の電子受容性窒素含有へテロアリールであり、
 ArおよびArは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、炭素数6~24のアリーレンであり、
 式(1-1)で表されるカルバゾール化合物における少なくとも1つの水素原子が重水素で置換されていてもよい。
[1] A carbazole compound represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000006

In the above formula (1-1),
R is aryl having 6 to 24 carbons or heteroaryl having 2 to 24 carbons, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons;
Hy 1 and Hy 2 are each independently an electron-accepting nitrogen-containing heteroaryl having 2 to 24 carbon atoms, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. Yes,
Ar 1 and Ar 2 are each independently aryl having 6 to 24 carbon atoms which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons;
At least one hydrogen atom in the carbazole compound represented by the formula (1-1) may be substituted with deuterium.
[2] Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、フェニル、ビフェニリル、テルフェニリル、クアテルフェニル、ナフチル、フェニル置換ナフチル、フェナントロリニル、ピリジル、ビピリジル、テルピリジル、キノリニル、イソキノリニル、ピリミジニル、ピラジニル、ピリダジニルおよびトリアジニルからなる群から選択される基であり、
 HyおよびHyは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ピリジル、ビピリジル、テルピリジル、ピリミジニル、ピラジニル、トリアジニル、アザインドリジニル、ベンゾイミダゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、インダゾリル、プリニル、カルボリニル、ナフチリジニル、キノキサリニル、キノリニル、イソキノリニル、ピリジルキノリニル、ピリジルイソキノリニル、アクリジニル、フェナントロリニル、フェナジニルおよびイミダゾピリジニルからなる群から選択される基であり、
 ArおよびArは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ベンゼン、ナフタレン、アントラセン、ナフタセン、ペンタセン、ビフェニル、アセナフチレン、フルオレン、フェナレン、フェナントレン、トリフェニレン、ピレンおよびペリレンからなる群から選択される構造の2価の基である、
 上記[1]に記載するカルバゾール化合物。
[2] R is phenyl, biphenylyl, terphenylyl, quaterphenyl, naphthyl, phenyl-substituted naphthyl, phenanthrolinyl optionally substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons , Pyridyl, bipyridyl, terpyridyl, quinolinyl, isoquinolinyl, pyrimidinyl, pyrazinyl, pyridazinyl and triazinyl,
Hy 1 and Hy 2 are each independently pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaind, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. Lydinyl, benzoimidazolyl, benzothiazolyl, benzoxazolyl, indazolyl, purinyl, carbolinyl, naphthyridinyl, quinoxalinyl, quinolinyl, isoquinolinyl, pyridylquinolinyl, pyridylisoquinolinyl, acridinyl, phenanthrolinyl, phenazinyl and imidazopyridinyl A group selected from the group consisting of:
Ar 1 and Ar 2 are each independently benzene, naphthalene, anthracene, naphthacene, pentacene, biphenyl, acenaphthylene, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, A divalent group having a structure selected from the group consisting of fluorene, phenalene, phenanthrene, triphenylene, pyrene and perylene,
The carbazole compound described in [1] above.
[3] Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、フェニル、ビフェニリル、テルフェニリル、クアテルフェニル、ナフチル、フェニル置換ナフチル、フェナントロリニル、ピリジル、キノリニルおよびイソキノリニルからなる群から選択される基であり、
 HyおよびHyは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ピリジル、ビピリジル、テルピリジル、ピリミジニル、ピラジニル、トリアジニル、アザインドリジニル、ベンゾイミダゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、キノリニル、イソキノリニル、ピリジルキノリニル、ピリジルイソキノリニルおよびイミダゾピリジニルからなる群から選択される基であり、
 ArおよびArは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ベンゼン、ナフタレン、アントラセン、ピレン、トリフェニレン、フルオレン、ビフェニルおよびペリレンからなる群から選択される構造の2価の基である、
 上記[1]に記載するカルバゾール化合物。
[3] R is phenyl, biphenylyl, terphenylyl, quaterphenyl, naphthyl, phenyl-substituted naphthyl, phenanthrolinyl optionally substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons , A group selected from the group consisting of pyridyl, quinolinyl and isoquinolinyl,
Hy 1 and Hy 2 are each independently pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaind, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. A group selected from the group consisting of lysinyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, pyridylquinolinyl, pyridylisoquinolinyl and imidazopyridinyl;
Ar 1 and Ar 2 are each independently benzene, naphthalene, anthracene, pyrene, triphenylene, fluorene, biphenyl, which may be substituted with alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms, and A divalent group of a structure selected from the group consisting of perylene,
The carbazole compound described in [1] above.
[4] Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、下記式(R-1)~式(R-20)で表される基からなる群から選択される基であり、
Figure JPOXMLDOC01-appb-C000007

 HyおよびHyは、それぞれ独立して、下記式(Hy-1-1)~(Hy-1-3)で表される基、下記式(Hy-2-1)~(Hy-2-18)で表される基、下記式(Hy-3-1)~(Hy-3-27)で表される基からなる群から選択される基であり、
Figure JPOXMLDOC01-appb-C000008

 ArおよびArは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ベンゼンおよびナフタレンからなる群から選択される構造の2価の基である、
 上記[1]に記載するカルバゾール化合物。
[4] R is a group represented by the following formulas (R-1) to (R-20), which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. A group selected from the group consisting of
Figure JPOXMLDOC01-appb-C000007

Hy 1 and Hy 2 are each independently groups represented by the following formulas (Hy-1-1) to (Hy-1-3), and the following formulas (Hy-2-1) to (Hy-2-). 18) a group selected from the group consisting of groups represented by the following formulas (Hy-3-1) to (Hy-3-27):
Figure JPOXMLDOC01-appb-C000008

Ar 1 and Ar 2 each independently represents a divalent structure selected from the group consisting of benzene and naphthalene, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Which is the basis of
The carbazole compound described in [1] above.
[5] Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、上記式(R-1)~式(R-14)で表される基からなる群から選択される基であり、
 HyおよびHyは、それぞれ独立して、上記式(Hy-1-1)~(Hy-1-3)で表される基、上記式(Hy-2-1)~(Hy-2-18)で表される基からなる群から選択される基であり、
 ArおよびArは、それぞれ独立して、1,2-フェニレン、1,3-フェニレン、1,4-フェニレン、1,4-ナフタレン-ジイル、1,5-ナフタレン-ジイル、2,6-ナフタレン-ジイルおよび2,7-ナフタレン-ジイルからなる群から選択される2価の基である、
 上記[1]に記載するカルバゾール化合物。
[5] R is a group represented by the above formulas (R-1) to (R-14), which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. A group selected from the group consisting of
Hy 1 and Hy 2 are each independently groups represented by the above formulas (Hy-1-1) to (Hy-1-3), and the above formulas (Hy-2-1) to (Hy-2-). 18) a group selected from the group consisting of groups represented by:
Ar 1 and Ar 2 are each independently 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,4-naphthalene-diyl, 1,5-naphthalene-diyl, 2,6- A divalent group selected from the group consisting of naphthalene-diyl and 2,7-naphthalene-diyl,
The carbazole compound described in [1] above.
[6] HyおよびHyが同一であり、ArおよびArが同一である、上記[5]に記載するカルバゾール化合物。 [6] The carbazole compound according to [5], wherein Hy 1 and Hy 2 are the same, and Ar 1 and Ar 2 are the same.
[7] 下記式(1-1-856)で表される、上記[1]に記載するカルバゾール化合物。
Figure JPOXMLDOC01-appb-C000009
[7] The carbazole compound according to the above [1], represented by the following formula (1-1-856).
Figure JPOXMLDOC01-appb-C000009
[8] 下記式(1-1-854)、式(1-1-855)、式(1-1-851)、式(1-1-852)、式(1-1-853)、式(1-1-1198)、式(1-1-1202)、式(1-1-98)、式(1-1-99)または式(1-1-1455)で表される、上記[1]に記載するカルバゾール化合物。
Figure JPOXMLDOC01-appb-C000010
[8] The following formula (1-1-854), formula (1-1-855), formula (1-1-851), formula (1-1-852), formula (1-1-853), formula (1-1-1198), formula (1-1-1220), formula (1-1-98), formula (1-1-99) or formula (1-1-1455), 1].
Figure JPOXMLDOC01-appb-C000010
[9] 上記[1]~[8]のいずれかに記載する化合物を含有する、電子輸送材料。 [9] An electron transport material containing the compound described in any one of [1] to [8] above.
[10] 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、上記[9]に記載する電子輸送材料を含有する電子輸送層および/または電子注入層とを有する、有機電界発光素子。 [10] A pair of electrodes including an anode and a cathode, a light emitting layer disposed between the pair of electrodes, an electron transport material according to the above [9] disposed between the cathode and the light emitting layer. An organic electroluminescent device having an electron transport layer and / or an electron injection layer.
[11] 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、上記[10]に記載する有機電界発光素子。 [11] At least one of the electron transport layer and the electron injection layer further includes at least one selected from the group consisting of a quinolinol-based metal complex, a pyridine derivative, a bipyridine derivative, a phenanthroline derivative, a borane derivative, and a benzimidazole derivative. The organic electroluminescent element as described in [10] above.
[12] 前記電子輸送層および電子注入層の少なくとも1つは、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、上記[11]に記載する有機電界発光素子。 [12] At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, At least one selected from the group consisting of alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes The organic electroluminescent element as described in [11] above.
[13] 上記[10]~[12]のいずれかに記載する有機電界発光素子を備えた表示装置。 [13] A display device comprising the organic electroluminescent element according to any one of [10] to [12].
[14] 上記[10]~[12]のいずれかに記載する有機電界発光素子を備えた照明装置。 [14] An illumination device including the organic electroluminescent element according to any one of [10] to [12].
 本発明の好ましい態様によれば、特に発光素子の寿命において優れた有機電界発光素子を得ることができる。また、本発明の他の好ましい態様によれば、優れた素子寿命を実現するだけでなく、駆動電圧とのバランスも優れたものとすることができる。また、本発明の好ましい電子輸送材料は、特に青色の発光素子に好適であり、この電子輸送材料によれば、赤色や緑色の発光素子に匹敵する素子寿命を有する青色の発光素子を製造することができる。さらに、この有機電界発光素子を用いることにより、フルカラー表示などの高性能のディスプレイ装置を得ることができる。 According to a preferred embodiment of the present invention, an organic electroluminescent element excellent in the lifetime of the light emitting element can be obtained. In addition, according to another preferable aspect of the present invention, not only an excellent element lifetime can be realized, but also the balance with the driving voltage can be made excellent. Further, the preferred electron transport material of the present invention is particularly suitable for a blue light emitting element, and according to this electron transport material, a blue light emitting element having an element life comparable to a red or green light emitting element can be produced. Can do. Furthermore, by using this organic electroluminescent element, a high-performance display device such as a full-color display can be obtained.
本実施形態に係る有機電界発光素子を示す概略断面図である。It is a schematic sectional drawing which shows the organic electroluminescent element which concerns on this embodiment.
1.式(1)で表されるカルバゾール化合物
 本発明の電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物について詳細に説明する。本発明のカルバゾール化合物は、下記式(1)で表される化合物である。
1. Carbazole Compound Represented by Formula (1) The carbazole compound having a substituent containing an electron-accepting nitrogen-containing heteroaryl according to the present invention will be described in detail. The carbazole compound of the present invention is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(1)中、aは0または1、bは0または1であり、aおよびbの組合せによって下記式(1-1)~式(1-4)で表す4つの構造がある。これらの中でも、本願では、特に、a=1かつb=1の態様、すなわち上記式(1-1)で表される化合物が好ましい。 In the formula (1), a is 0 or 1, b is 0 or 1, and there are four structures represented by the following formulas (1-1) to (1-4) depending on the combination of a and b. Among these, in the present application, an embodiment in which a = 1 and b = 1, that is, a compound represented by the above formula (1-1) is particularly preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 また、式(1)中、Rは炭素数6~24のアリールまたは炭素数2~24のヘテロアリールである。また、HyおよびHyは、それぞれ独立して、炭素数2~24の電子受容性窒素含有へテロアリールであり、同一であっても異なっていてもよい。さらに、ArおよびArは、それぞれ独立して、炭素数6~24のアリーレンであるが、b=0の場合、Arは炭素数6~24のアリールである。 In the formula (1), R is aryl having 6 to 24 carbon atoms or heteroaryl having 2 to 24 carbon atoms. Hy 1 and Hy 2 are each independently an electron-accepting nitrogen-containing heteroaryl having 2 to 24 carbon atoms, and may be the same or different. Furthermore, Ar 1 and Ar 2 are each independently arylene having 6 to 24 carbon atoms, but when b = 0, Ar 2 is aryl having 6 to 24 carbon atoms.
 また、R、Hy、Hy、ArおよびArは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい。炭素数1~6のアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチルまたは2-エチルブチルなどがあげられるが、これらの中でも、メチル、イソプロピルまたはt-ブチルが好ましく、t-ブチルが特に好ましい。炭素数3~6のシクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。置換基の数は、例えば、最大置換可能な数であり、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個である。 R, Hy 1 , Hy 2 , Ar 1 and Ar 2 may each independently be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. Examples of the alkyl having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, Examples thereof include 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl and 2-ethylbutyl. Among these, methyl, isopropyl or t-butyl is preferable, and t-butyl is particularly preferable. Examples of the cycloalkyl having 3 to 6 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl and dimethylcyclohexyl. The number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
 Rにおける「炭素数6~24のアリール」については、好ましくは炭素数6~16のアリールであり、より好ましくは炭素数6~12のアリールである。 The “aryl having 6 to 24 carbon atoms” in R is preferably an aryl having 6 to 16 carbon atoms, and more preferably an aryl having 6 to 12 carbon atoms.
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。また、縮合環系アリールの任意の位置にフェニル基が置換した基などもあげられる。置換基の数は、例えば、最大置換可能な数であり、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個である。これらの中でも、フェニル、ビフェニリル、テルフェニリル、ナフチル、フェナントリル、フェニルナフチルおよびこれらが炭素数1~6のアルキルまたは炭素数3~6のシクロヘキシルで置換されたものが好ましい。 Specific examples of “aryl” include monocyclic aryl phenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl. Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-terphenyl-4-yl) Asena, which is a fused tricyclic aryl Tylene- (1-, 3-, 4-, 5-) yl, fluorene- (1-, 2-, 3-, 4-, 9-) yl, phenalen- (1-, 2-) yl, (1 -, 2-, 3-, 4-, 9-) phenanthryl, quaterphenylyl which is a tetracyclic aryl (5'-phenyl-m-terphenyl-2-yl, 5'-phenyl-m-terphenyl) -3-yl, 5′-phenyl-m-terphenyl-4-yl, m-quaterphenyl), condensed tetracyclic aryl triphenylene- (1-, 2-) yl, pyrene- (1-, 2-, 4-) yl, naphthacene- (1-, 2-, 5-) yl, condensed pentacyclic aryl perylene- (1-, 2-, 3-) yl, pentacene- (1-, 2) -, 5-, 6-) yl and the like. Moreover, the group etc. which the phenyl group substituted by the arbitrary positions of condensed ring system aryl are mention | raise | lifted. The number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1. Among these, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, phenylnaphthyl and those substituted with alkyl having 1 to 6 carbon atoms or cyclohexyl having 3 to 6 carbon atoms are preferable.
 Rにおける「炭素数2~24のヘテロアリール」については、好ましくは炭素数2~20のヘテロアリールであり、より好ましくは炭素数2~15のヘテロアリールであり、特に好ましくは炭素数2~10のヘテロアリールである。また、「ヘテロアリール」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環基などがあげられる。 The “heteroaryl having 2 to 24 carbon atoms” in R is preferably a heteroaryl having 2 to 20 carbon atoms, more preferably a heteroaryl having 2 to 15 carbon atoms, and particularly preferably 2 to 10 carbon atoms. Of heteroaryl. Examples of the “heteroaryl” include a heterocyclic group containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom.
 「ヘテロアリール」としては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリニル、イソキノリニル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニル、フラザニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、フェノキサチイニル、チアントレニルなどがあげられる。これらの中でも、ピリジル、キノリニルおよびイソキノリニルなどが好ましい。 Examples of “heteroaryl” include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H -Indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl, pteridinyl, carbazolyl, acridinyl, phenoxazinyl, phenothiazinyl, phenothiazinyl, phenothiazinyl Frazanyl, benzofuranyl, isobenzof Sulfonyl, benzo [b] thienyl, phenoxathiinyl, etc. thianthrenyl and the like. Among these, pyridyl, quinolinyl, isoquinolinyl and the like are preferable.
 Rとして特に好ましくは、下記式(R-1)~式(R-20)で表される基があげられる。また、これらの中でも、下記式(R-1)~式(R-14)で表される基、さらには下記式(R-1)~式(R-9)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000013
Particularly preferred examples of R include groups represented by the following formulas (R-1) to (R-20). Of these, groups represented by the following formulas (R-1) to (R-14), and groups represented by the following formulas (R-1) to (R-9) are particularly preferable. .
Figure JPOXMLDOC01-appb-C000013
 HyおよびHyはそれぞれ独立して電子受容性窒素含有へテロアリールであるが、電子受容性窒素とは、隣接原子との間に2重結合を形成している窒素原子を表わす。 Hy 1 and Hy 2 are each independently an electron-accepting nitrogen-containing heteroaryl, and the electron-accepting nitrogen represents a nitrogen atom that forms a double bond with an adjacent atom.
 電子受容性窒素含有へテロアリールとしては、ピリジル、ビピリジル、テルピリジル、ピリミジニル、ピラジニル、トリアジニル、アザインドリジニル、ベンゾイミダゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、インダゾリル、プリニル、カルボリニル、ナフチリジニル、キノキサリニル、キノリニル、イソキノリニル、ピリジルキノリニル、ピリジルイソキノリニル、アクリジニル、フェナントロリニル、フェナジニルおよびイミダゾピリジニルなどが挙げられる。中でもピリジル、ビピリジル、テルピリジル、ピリミジニル、ピラジニル、トリアジニル、アザインドリジニル、ベンゾイミダゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、キノリニル、イソキノリニル、ピリジルキノリニル、ピリジルイソキノリニルおよびイミダゾピリジニルなどが好ましく、ピリジルおよびビピリジルなどが特に好ましい。 Examples of the electron-accepting nitrogen-containing heteroaryl include pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaindolidinyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, indazolyl, purinyl, carbolinyl, naphthyridinyl, quinoxalinyl, quinolinyl, isoquinolinyl, Examples include pyridylquinolinyl, pyridylisoquinolinyl, acridinyl, phenanthrolinyl, phenazinyl and imidazopyridinyl. Among them, preferred are pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaindolizinyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, pyridylquinolinyl, pyridylisoquinolinyl and imidazopyridinyl. Particularly preferred are pyridyl and bipyridyl.
 上述した中でもHyまたはHyとして好ましくは、下記式(Hy-1-1)~(Hy-1-3)で表される基、下記式(Hy-2-1)~(Hy-2-18)で表される基、および下記式(Hy-3-1)~(Hy-3-27)で表される基が挙げられる。 Among the above, Hy 1 or Hy 2 is preferably a group represented by the following formulas (Hy-1-1) to (Hy-1-3), or the following formulas (Hy-2-1) to (Hy-2-). 18), and groups represented by the following formulas (Hy-3-1) to (Hy-3-27).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 HyまたはHyとしてさらに好ましくは、上記式(Hy-1-1)~(Hy-1-3)で表される基、上記式(Hy-2-1)~(Hy-2-18)で表される基である。 More preferred as Hy 1 or Hy 2 are groups represented by the above formulas (Hy-1-1) to (Hy-1-3), and the above formulas (Hy-2-1) to (Hy-2-18). It is group represented by these.
 ArおよびArはそれぞれ独立して、炭素数6~24アリーレンであるが、b=0の場合(Hy基がない場合)、Arは炭素数6~24のアリールである。 Ar 1 and Ar 2 are each independently an arylene having 6 to 24 carbon atoms, but when b = 0 (when there is no Hy 2 group), Ar 2 is an aryl having 6 to 24 carbon atoms.
 アリーレンとしては、ベンゼン、ナフタレン、アントラセン、ナフタセン、ペンタセン、アセナフチレン、フェナレン、フェナントレン、ピレン、トリフェニレン、フルオレン、ビフェニル、ペリレンなどの芳香族炭化水素基から導かれる2価の基を利用できるが、ベンゼンまたはナフタレンから導かれる2価の基が好ましい。 As the arylene, a divalent group derived from an aromatic hydrocarbon group such as benzene, naphthalene, anthracene, naphthacene, pentacene, acenaphthylene, phenalene, phenanthrene, pyrene, triphenylene, fluorene, biphenyl, and perylene can be used. A divalent group derived from naphthalene is preferred.
 ベンゼンまたはナフタレンから導かれる2価の基としては1,2-フェニレン、1,3-フェニレン、1,4-フェニレン、1,4-ナフタレン-ジイル、1,5-ナフタレン-ジイル、2,6-ナフタレン-ジイルおよび2,7-ナフタレン-ジイルが挙げられる。 Divalent groups derived from benzene or naphthalene include 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,4-naphthalene-diyl, 1,5-naphthalene-diyl, 2,6- And naphthalene-diyl and 2,7-naphthalene-diyl.
 b=0の場合、Arの具体的なアリールとしては上述したRの説明で例示された基が挙げられ、上記式(R-1)~式(R-9)で表される基が好ましく、上記式(R-1)、式(R-6)および式(R-7)で表される基が特に好ましい。 When b = 0, the specific aryl of Ar 2 includes the groups exemplified in the above description of R, and the groups represented by the above formulas (R-1) to (R-9) are preferable. Particularly preferred are groups represented by the above formula (R-1), formula (R-6) and formula (R-7).
 また、特に上記式(1-1)で表される構造の場合について、HyおよびHyは同一であっても異なっていてもよいが同一であることが好ましく、ArおよびArも同一であっても異なっていてもよいが同一であることが好ましい。 In particular, in the case of the structure represented by the above formula (1-1), Hy 1 and Hy 2 may be the same or different, but are preferably the same, and Ar 1 and Ar 2 are also the same. Or may be different, but preferably the same.
 また、上記式(1)で表される化合物を構成する、カルバゾールにおける水素原子、カルバゾールに置換するR、Ar、Ar、HyまたはHyにおける水素原子の全てまたは一部が重水素であってもよい。 In addition, all or part of the hydrogen atoms in carbazole and R, Ar 1 , Ar 2 , Hy 1 or Hy 2 substituted for carbazole, which constitute the compound represented by the above formula (1), are deuterium. There may be.
 上記式(1)で表される化合物の具体例としては、例えば、上記式(1-1)で表される化合物に属する、下記式(1-1-1)~式(1-1-1458)で表される化合物、上記式(1-2)で表される化合物に属する、下記式(1-2-1)~式(1-2-629)で表される化合物、上記式(1-3)で表される化合物に属する、下記式(1-3-1)~式(1-3-924)で表される化合物、上記式(1-4)で表される化合物に属する、下記式(1-4-1)~式(1-4-561)で表される化合物があげられる。 Specific examples of the compound represented by the above formula (1) include, for example, the following formulas (1-1-1) to (1-1-1458) belonging to the compound represented by the above formula (1-1). ), Compounds represented by the following formulas (1-2-1) to (1-2-629) belonging to the compounds represented by the above formula (1-2), the above formula (1) -3) belonging to the compound represented by the following formulas (1-3-1) to (1-3-924), belonging to the compound represented by the above formula (1-4), Examples thereof include compounds represented by the following formulas (1-4-1) to (1-4-561).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000244
Figure JPOXMLDOC01-appb-C000244
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000248
Figure JPOXMLDOC01-appb-C000248
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000259
Figure JPOXMLDOC01-appb-C000259
Figure JPOXMLDOC01-appb-C000260
Figure JPOXMLDOC01-appb-C000260
Figure JPOXMLDOC01-appb-C000261
Figure JPOXMLDOC01-appb-C000261
 上記式(1-1-1)~式(1-1-1458)で表される化合物について、これらの中でも、上記式(1-1-1)~式(1-1-9)、式(1-1-13)~式(1-1-18)、式(1-1-25)~式(1-1-27)、式(1-1-31)~式(1-1-36)、式(1-1-97)~式(1-1-102)、式(1-1-106)~式(1-1-111)、式(1-1-289)~式(1-1-293)、式(1-1-332)~式(1-1-334)、式(1-1-375)~式(1-1-378)、式(1-1-417)~式(1-1-419)、式(1-1-462)~式(1-1-464)、式(1-1-514)~式(1-1-516)、式(1-1-559)、式(1-1-560)、式(1-1-599)~式(1-1-601)、式(1-1-644)、式(1-1-683)~式(1-1-685)、式(1-1-826)、式(1-1-827)、式(1-1-836)、式(1-1-851)~式(1-1-859)、式(1-1-863)~式(1-1-868)、式(1-1-875)~式(1-1-877)、式(1-1-881)~式(1-1-886)、式(1-1-943)~式(1-1-948)、式(1-1-987)~式(1-1-993)、式(1-1-1032)~式(1-1-1034)、式(1-1-1036)~式(1-1-1038)、式(1-1-1076)~式(1-1-1087)、式(1-1-1091)~式(1-1-1096)、式(1-1-1103)~式(1-1-1105)、式(1-1-1109)~式(1-1-1114)、式(1-1-1171)~式(1-1-1175)、式(1-1-1178)~式(1-1-1184)、式(1-1-1187)~式(1-1-1195)、式(1-1-1198)~式(1-1-1206)、式(1-1-1210)~式(1-1-1215)、式(1-1-1222)~式(1-1-1224)、式(1-1-1228)~式(1-1-1233)、式(1-1-1290)~式(1-1-1294)、式(1-1-1297)~式(1-1-1303)、式(1-1-1306)~式(1-1-1314)、式(1-1-1317)~式(1-1-1325)、式(1-1-1329)~式(1-1-1334)、式(1-1-1341)~式(1-1-1343)、式(1-1-1347)~式(1-1-1349)、式(1-1-1409)~式(1-1-1413)、式(1-1-1416)~式(1-1-1422)、式(1-1-1425)~式(1-1-1433)、式(1-1-1438)~式(1-1-1440)および式(1-1-1448)~式(1-1-1456)で表される化合物が好ましい。また、上記式(1-1-1)~式(1-1-6)、式(1-1-97)~式(1-1-99)、式(1-1-559)、式(1-1-560)、式(1-1-851)~式(1-1-856)、式(1-1-1198)~式(1-1-1203)、式(1-1-1317)~式(1-1-1322)、式(1-1-1448)~式(1-1-1450)および式(1-1-1454)~式(1-1-1456)で表される化合物がより好ましい。 Among the compounds represented by the above formulas (1-1-1) to (1-1-1458), among these, the above formulas (1-1-1) to (1-1-9), 1-1-13) to Formula (1-1-18), Formula (1-1-25) to Formula (1-1-27), Formula (1-1-31) to Formula (1-1-36) ), Formula (1-1-97) to Formula (1-1-102), Formula (1-1-106) to Formula (1-1-111), Formula (1-1-289) to Formula (1) -293), Formula (1-1-332) to Formula (1-1-334), Formula (1-1-375) to Formula (1-1-378), Formula (1-1-417) Formula (1-1-419), Formula (1-1-462) to Formula (1-1-464), Formula (1-1-514) to Formula (1-1-516), Formula (1- 1-559), formula (1-1-560), formula (1-1-599) to formula 1-1-601), formula (1-1-644), formula (1-1-683) to formula (1-1-685), formula (1-1-826), formula (1-1-827) ), Formula (1-1-836), Formula (1-1-851) to Formula (1-1-859), Formula (1-1-863) to Formula (1-1-868), Formula (1) -1-875) to formula (1-1-877), formula (1-1-881) to formula (1-1-886), formula (1-1-943) to formula (1-1-948) Formula (1-1-987) to Formula (1-1-993), Formula (1-1-1032) to Formula (1-1-1034), Formula (1-1-1036) to Formula (1- 1-1038), Formula (1-1-1076) to Formula (1-1-1087), Formula (1-1-1091) to Formula (1-1-1096), Formula (1-11-1103) to Formula (1-1-1105), Formula (1-1 1109) to Formula (1-11-1114), Formula (1-1-1171) to Formula (1-1-1175), Formula (1-1-1178) to Formula (1-1-1184), Formula ( 1-1-1187) to formula (1-1-1195), formula (1-11-1198) to formula (1-1-1206), formula (1-1-1210) to formula (1-1-1215) ), Formula (1-11-222) to formula (1-1-1224), formula (1-1-1228) to formula (1-1-1233), formula (1-1-1290) to formula (1) -1-1294), formula (1-1-1297) to formula (1-1-1303), formula (1-1-1306) to formula (1-1-1314), formula (1-1-1317) Formula (1-1-1325), Formula (1-1-1329) to Formula (1-1-1334), Formula (1-1-1341) to Formula (1-1-1343), Formula (1) -1-1347) to Formula (1-1-1349), Formula (1-11409) to Formula (1-1-1413), Formula (1-1-1416) to Formula (1-1-1422) , Formula (1-1-1425) to Formula (1-1-1433), Formula (1-1-1438) to Formula (1-1-1440), and Formula (1-1-1448) to Formula (1- 1-1456) is preferred. Further, the above formula (1-1-1) to formula (1-1-6), formula (1-1-97) to formula (1-1-99), formula (1-1-559), formula ( 1-1-560), formula (1-1-851) to formula (1-1-856), formula (1-1-1198) to formula (1-1-1203), formula (1-1-1317) ) To formula (1-11322), formula (1-1-1448) to formula (1-1-1450) and formula (1-1-1454) to formula (1-1-1456). Compounds are more preferred.
2.式(1)で表される化合物の製造方法
 次に、本発明のカルバゾール化合物の製造方法について説明する。
 本発明のカルバゾール化合物は、基本的には、公知の化合物を用いて、公知の合成法、例えば鈴木カップリング反応や根岸カップリング反応(例えば、「Metal-Catalyzed Cross-Coupling Reactions - Second, Completely Revised and Enlarged Edition」などに記載)を利用して合成することができる。また、両反応を組み合わせても合成することができる。式(1)で表されるカルバゾール化合物を、鈴木カップリング反応または根岸カップリング反応で合成するスキームを以下に例示する。
2. Method for Producing Compound Represented by Formula (1) Next, the method for producing the carbazole compound of the present invention will be described.
The carbazole compound of the present invention basically comprises a known compound and a known synthesis method such as Suzuki coupling reaction or Negishi coupling reaction (for example, “Metal-Catalyzed Cross-Coupling Reactions—Second, Completely Revised”). and Enlarged Edition ”). It can also be synthesized by combining both reactions. A scheme for synthesizing the carbazole compound represented by the formula (1) by Suzuki coupling reaction or Negishi coupling reaction is illustrated below.
<式(1)で表されるカルバゾール化合物の合成方法(その1)>
<N位がRで置換されたカルバゾール-2,7-ジイル ビス(トリフルオロメタンスルホナート):Cz-R-OTfの合成>
 下記反応式(1)に示すように、公知の合成法(Macromolecules, vol.35, pp.2122-2128 (2002))を用いて得られた「Cz-H-OMe」で表される化合物に、パラジウム触媒を用いたカップリング反応やウルマン反応または、炭酸セシウムを用いた求核置換反応により置換基Rを導入して「Cz-R-OMe」で表される化合物とした後、三臭化ホウ素やピリジン塩酸塩などにて脱メチル化を行い「Cz-R-OH」で表される化合物を合成する。その後、トリフルオロメタンスルホン酸無水物と反応させることで、「Cz-R-OTf」で表される化合物が得られる。
<Method for Synthesizing Carbazole Compound Represented by Formula (1) (Part 1)>
<Synthesis of carbazole-2,7-diyl bis (trifluoromethanesulfonate) substituted with R at N-position: Cz-R-OTf>
As shown in the following reaction formula (1), a compound represented by “Cz-H-OMe” obtained by using a known synthesis method (Macromolecules, vol.35, pp.2122-2128 (2002)) After introducing a substituent R by a coupling reaction using a palladium catalyst, an Ullmann reaction, or a nucleophilic substitution reaction using cesium carbonate to obtain a compound represented by “Cz—R—OMe”, tribromide A compound represented by “Cz—R—OH” is synthesized by demethylation with boron or pyridine hydrochloride. Thereafter, a compound represented by “Cz—R—OTf” is obtained by reacting with trifluoromethanesulfonic anhydride.
Figure JPOXMLDOC01-appb-C000262
Figure JPOXMLDOC01-appb-C000262
<N位がRで置換されたカルバゾール-2,7-ジブロモ):Cz-R-Brの合成>
 下記反応式(2)に示すように、公知の合成法(Chemistry of Materials, vol.16, pp.4736-4742 (2004)、Journal of Organic Chemistry, vol.70, pp.5014-5019 (2005))を用いて得られた「Cz-H-Br」で表される化合物に、パラジウム触媒を用いたカップリング反応やウルマン反応または、炭酸セシウムを用いた求核置換反応により置換基Rを導入する「Cz-R-Br」で表される化合物が得られる。
<Carbazole-2,7-dibromo substituted with R at N-position): Synthesis of Cz-R-Br>
As shown in the following reaction formula (2), a known synthesis method (Chemistry of Materials, vol.16, pp.4736-4742 (2004), Journal of Organic Chemistry, vol.70, pp.5014-5019 (2005) The substituent R is introduced into the compound represented by “Cz—H—Br” obtained by using a coupling reaction using a palladium catalyst, an Ullmann reaction, or a nucleophilic substitution reaction using cesium carbonate. A compound represented by “Cz—R—Br” is obtained.
Figure JPOXMLDOC01-appb-C000263
Figure JPOXMLDOC01-appb-C000263
<N位がRで置換されたカルバゾール-2,7-ジボロン酸エステル:Cz-R-BPinの合成>
 下記反応式(3)に示すように、以上のようにして得られた「Cz-R-OTf」または「Cz-R-Br」で表される化合物と、ビス(ピナコラート)ジボロンまたは4,4,5,5-テトラメチル-1,3,2-ジオキサボロランとを、パラジウム触媒と塩基を用いてカップリング反応させることにより、「Cz-R-BPin」で表される化合物を合成することができる。
<Carbazole-2,7-diboronic acid ester substituted with R at N-position: Synthesis of Cz-R-BPin>
As shown in the following reaction formula (3), the compound represented by “Cz—R—OTf” or “Cz—R—Br” obtained as described above, and bis (pinacolato) diboron or 4,4 , 5,5-tetramethyl-1,3,2-dioxaborolane can be synthesized by a coupling reaction using a palladium catalyst and a base to synthesize a compound represented by “Cz-R-BPin”. .
Figure JPOXMLDOC01-appb-C000264
Figure JPOXMLDOC01-appb-C000264
<本発明に係るカルバゾール化合物の合成>
 最後に、下記反応式(4)~(6)に示すように、以上のようにして得られた「Cz-R-OTf」または「Cz-R-BPin」で表される化合物と、反応性の置換基を有する「Hy-(Ar」および「(Hy-Ar」とを鈴木カップリングや根岸カップリングで反応させることで、式(1)で表されるカルバゾール化合物を得ることができる。ここで、「Hy-(Ar」および「(Hy-Ar」は式(1)で表される化合物のカルバゾール骨格の2位および7位に結合する基を意味し、aおよびbは0または1である。
<Synthesis of Carbazole Compound According to the Present Invention>
Finally, as shown in the following reaction formulas (4) to (6), the compound represented by “Cz-R-OTf” or “Cz-R-BPin” obtained as described above and the reactivity By reacting “Hy 1- (Ar 1 ) a ” and “(Hy 2 ) b —Ar 2 ” having a substituent of the following by Suzuki coupling or Negishi coupling, the carbazole represented by the formula (1) A compound can be obtained. Here, “Hy 1- (Ar 1 ) a ” and “(Hy 2 ) b —Ar 2 ” mean groups bonded to the 2nd and 7th positions of the carbazole skeleton of the compound represented by the formula (1). , A and b are 0 or 1.
 ここでHyおよびHyは、それぞれ独立して、置換されていてもよい炭素数2~24の電子受容性窒素含有へテロアリールであり、同一であっても異なっていてもよく、また、ArおよびArは、それぞれ独立して、置換されていてもよい炭素数6~24のアリーレンである。但し、b=0の場合、Arは、置換されていてもよい炭素数6~24のアリールである。 Here, Hy 1 and Hy 2 are each independently an optionally substituted electron-accepting nitrogen-containing heteroaryl having 2 to 24 carbon atoms, which may be the same or different, and Ar 1 and Ar 2 are each independently an arylene having 6 to 24 carbon atoms which may be substituted. However, when b = 0, Ar 2 is an optionally substituted aryl having 6 to 24 carbon atoms.
Figure JPOXMLDOC01-appb-C000265
Figure JPOXMLDOC01-appb-C000265
 ここで、「Hy-(Ar」および「(Hy-Ar」が同一の基を表す場合は、これらの基に反応性の置換基を結合させたものである電子受容性窒素含有へテロアリール誘導体を2倍モル用いることで、本発明に係るカルバゾール化合物を合成することができる。また、「Hy-(Ar」と「(Hy-Ar」が異なる基を表す場合、これらの基に反応性の置換基を結合させたものであるそれぞれの電子受容性窒素含有へテロアリール誘導体を、1倍モルずつ同時にまたは段階的に反応させることで、本発明に係るカルバゾール誘導体を合成することができる。 Here, when “Hy 1- (Ar 1 ) a ” and “(Hy 2 ) b —Ar 2 ” represent the same group, an electron obtained by bonding a reactive substituent to these groups The carbazole compound according to the present invention can be synthesized by using 2-fold moles of the accepting nitrogen-containing heteroaryl derivative. In addition, when “Hy 1- (Ar 1 ) a ” and “(Hy 2 ) b —Ar 2 ” represent different groups, the respective electron acceptors in which reactive substituents are bonded to these groups. The carbazole derivative according to the present invention can be synthesized by reacting the functional nitrogen-containing heteroaryl derivative at the same time or in steps of 1 mole.
<反応で用いる試薬>
 鈴木カップリング反応で用いられるパラジウム触媒の具体例としては、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、PdCl{P(t-Bu)-(p-NMe-Ph)}、パラジウム ビス(ジベンジリデン)などがあげられる。
<Reagent used in reaction>
Specific examples of the palladium catalyst used in the Suzuki coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (Dba) 3 · CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , PdCl 2 {P (t-Bu) 2- (p-NMe 2 -Ph)} 2 , palladium bis ( Dibenzylidene).
 また、反応を促進させるため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例としては、トリ(t-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、または2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルがあげられる。 In order to promote the reaction, a phosphine compound may be added to these palladium compounds in some cases. Specific examples of the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis (di-t-butylphos Fino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,1′-binaphthyl, or 2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl.
 鈴木カップリング反応で用いられる塩基の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、リン酸三カリウム、またはフッ化カリウムがあげられる。 Specific examples of bases used in the Suzuki coupling reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate. , Tripotassium phosphate, or potassium fluoride.
 また、鈴木カップリング反応で用いられる溶媒の具体例としては、ベンゼン、トルエン、キシレン、1,2,4-トリメチルベンゼン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、シクロペンチルメチルエーテルまたはイソプロピルアルコールがあげられる。これらの溶媒は適宜選択でき、単独で用いてもよく、混合溶媒として用いてもよい。 Specific examples of the solvent used in the Suzuki coupling reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1 1,4-dioxane, methanol, ethanol, cyclopentyl methyl ether or isopropyl alcohol. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
 根岸カップリング反応で用いられるパラジウム触媒の具体例としては、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、ビス(トリt-ブチルホスフィノ)パラジウム(0)、または(1,1’-ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II):Pd(dppf)Clがあげられる。 Specific examples of the palladium catalyst used in the Negishi coupling reaction include tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (Dba) 3 · CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (tri-t-butylphosphino) palladium (0), or (1,1′-bis (diphenylphosphine) Fino) ferrocene) dichloropalladium (II): Pd (dpp ) Cl 2, and the like.
 また、根岸カップリング反応で用いられる溶媒の具体例としては、ベンゼン、トルエン、キシレン、1,2,4-トリメチルベンゼン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、シクロペンチルメチルエーテルまたは1,4-ジオキサンがあげられる。これらの溶媒は適宜選択でき、単独で用いてもよく、混合溶媒として用いてもよい。 Specific examples of the solvent used in the Negishi coupling reaction include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, cyclopentyl. Examples include methyl ether or 1,4-dioxane. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
<式(1)で表される化合物のカルバゾール骨格の2位および7位に結合する基の合成>
 「Hy-(Ar」および「(Hy-Ar」に反応性の置換基を結合させたものは公知の反応を組み合わせることで得ることができるが、ここでは例としてHyおよびHyがピリジル基、ArおよびArがフェニレンまたはナフタレニレンの場合を示す。
<Synthesis of groups bonded to positions 2 and 7 of the carbazole skeleton of the compound represented by formula (1)>
“Hy 1- (Ar 1 ) a ” and “(Hy 2 ) b —Ar 2 ” having a reactive substituent bonded thereto can be obtained by combining known reactions. The case where Hy 1 and Hy 2 are pyridyl groups and Ar 1 and Ar 2 are phenylene or naphthalenylene is shown.
<ピリジル置換のブロモフェニル/ブロモナフチルの合成>
 まず下記反応式(7)に示すようにピリジンの塩化亜鉛錯体を合成し、次に下記反応式(8)に示すようにピリジンの塩化亜鉛錯体と1,4-ジブロモベンゼンまたは1,4-ジブロモナフタレンとを反応させることにより、2-(4-ブロモフェニル)ピリジンまたは2-(4-ブロモナフタレン-1-イル)ピリジンを合成することができる。
<Synthesis of pyridyl-substituted bromophenyl / bromonaphthyl>
First, a zinc chloride complex of pyridine is synthesized as shown in the following reaction formula (7), and then a zinc chloride complex of pyridine and 1,4-dibromobenzene or 1,4-dibromo as shown in the following reaction formula (8). 2- (4-bromophenyl) pyridine or 2- (4-bromonaphthalen-1-yl) pyridine can be synthesized by reacting with naphthalene.
Figure JPOXMLDOC01-appb-C000266
Figure JPOXMLDOC01-appb-C000266
 なお、上記反応式(7)中の「ZnCl・TMEDA」は塩化亜鉛のテトラメチルエチレンジアミン錯体である。また、Rは直鎖または分岐のアルキル基を表すが、好ましくは炭素数1~4の直鎖または炭素数3~4の分岐アルキル基である。 In the reaction formula (7), “ZnCl 2 · TMEDA” is a tetramethylethylenediamine complex of zinc chloride. R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
 ここでは原料として2-ブロモピリジンを用いた2-(4-ブロモフェニル)ピリジンおよび2-(4-ブロモナフタレン-1-イル)ピリジンの合成法を例示したが、原料として3-ブロモピリジンまたは4-ブロモピリジンを用いることによって、また、ヨードピリジンを用いることによってそれぞれ対応する目的物、すなわち3-(4-ブロモフェニル)ピリジン(または3-(4-ブロモナフタレン-1-イル)ピリジン)および4-(4-ブロモフェニル)ピリジン(または4-(4-ブロモナフタレン-1-イル)ピリジン)を得ることができる。また、ここでは原料として1,4-ジブロモベンゼンまたは1,4-ジブロモナフタレンを用いた2-(4-ブロモフェニル)ピリジンおよび2-(4-ブロモナフタレン-1-イル)ピリジンの合成法を例示したが、原料として1,3-ジブロモベンゼン、2,6-ジブロモナフタレンまたは2,7-ジブロモナフタレンを用いることによって、さらに、ジブロモ体ではなくジクロロ体、ジヨード体、ビス(トリフルオロメタンスルホナート)またはそれらが混ざった物(例えば:1-ブロモ-4-ヨードベンゼンなど)を用いることによっても対応する目的物、すなわち2-(3-ブロモフェニル)ピリジン、2-(6-ブロモナフタレン-2-イル)ピリジンおよび2-(7-ブロモナフタレン-2-イル)ピリジンなどを得ることができる。 Here, the synthesis method of 2- (4-bromophenyl) pyridine and 2- (4-bromonaphthalen-1-yl) pyridine using 2-bromopyridine as a raw material is exemplified, but 3-bromopyridine or 4 By using -bromopyridine and by using iodopyridine, the corresponding objects, ie 3- (4-bromophenyl) pyridine (or 3- (4-bromonaphthalen-1-yl) pyridine) and 4 respectively -(4-Bromophenyl) pyridine (or 4- (4-bromonaphthalen-1-yl) pyridine) can be obtained. Also illustrated here is a method for synthesizing 2- (4-bromophenyl) pyridine and 2- (4-bromonaphthalen-1-yl) pyridine using 1,4-dibromobenzene or 1,4-dibromonaphthalene as raw materials. However, by using 1,3-dibromobenzene, 2,6-dibromonaphthalene or 2,7-dibromonaphthalene as a raw material, dichloro, diiodo, bis (trifluoromethanesulfonate) By using a mixture of them (for example: 1-bromo-4-iodobenzene, etc.), the corresponding target product, ie, 2- (3-bromophenyl) pyridine, 2- (6-bromonaphthalen-2-yl) ) Pyridine and 2- (7-bromonaphthalen-2-yl) pyridine can be obtained. Kill.
 また、1,4-ジブロモベンゼンなどにピリジンの塩化亜鉛錯体を反応させる代わりに、ピリジルボロン酸やピリジルボロン酸エステルを反応させること(カップリング反応)によっても同様の目的物を得ることができる。 Further, instead of reacting 1,4-dibromobenzene or the like with a zinc chloride complex of pyridine, a similar target product can be obtained by reacting pyridylboronic acid or pyridylboronic acid ester (coupling reaction).
<ピリジル置換フェニル/ナフチルボロン酸およびボロン酸エステルの合成>
 次に、下記反応式(9)に示すように、2-(4-ブロモフェニル)ピリジンまたは2-(4-ブロモナフタレン-1-イル)ピリジンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、ホウ酸トリメチル、ホウ酸トリエチルまたはホウ酸トリイソプロピルなどと反応させることにより、4-(ピリジン-2-イル)フェニルボロン酸エステルおよび4-(ピリジン-2-イル)ナフタレン-1-イルボロン酸エステルを合成することができる。さらに、下記反応式(10)に示すように、該ボロン酸エステルを加水分解することにより、4-(2-ピリジル)フェニルボロン酸および4-(ピリジン-2-イル)ナフタレン-1-イルボロン酸を合成することができる。
<Synthesis of pyridyl-substituted phenyl / naphthylboronic acid and boronate ester>
Next, as shown in the following reaction formula (9), 2- (4-bromophenyl) pyridine or 2- (4-bromonaphthalen-1-yl) pyridine is lithiated using an organolithium reagent, By using magnesium or an organomagnesium reagent as a Grignard reagent and reacting with trimethyl borate, triethyl borate or triisopropyl borate, 4- (pyridin-2-yl) phenylboronic acid ester and 4- (pyridine- 2-yl) naphthalen-1-ylboronic acid esters can be synthesized. Further, as shown in the following reaction formula (10), 4- (2-pyridyl) phenylboronic acid and 4- (pyridin-2-yl) naphthalen-1-ylboronic acid are obtained by hydrolyzing the boronic ester. Can be synthesized.
Figure JPOXMLDOC01-appb-C000267
Figure JPOXMLDOC01-appb-C000267
 上記反応式(9)において、Rは直鎖または分岐のアルキル基を表すが、好ましくは炭素数1~4の直鎖または炭素数3~4の分岐アルキル基である。 In the above reaction formula (9), R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
 また、下記反応式(11)に示すように、2-(4-ブロモフェニル)ピリジンまたは2-(4-ブロモナフタレン-1-イル)ピリジンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、ビス(ピナコラート)ジボロンまたは4,4,5,5-テトラメチル-1,3,2-ジオキサボロランと反応させることにより、他の4-(ピリジン-2-イル)フェニルボロン酸エステルおよび4-(ピリジン-2-イル)ナフタレン-1-イルボロン酸エステルを合成することができる。また、下記反応式(12)に示すように、2-(4-ブロモフェニル)ピリジンまたは2-(4-ブロモナフタレン-1-イル)ピリジンと、ビス(ピナコラート)ジボロンまたは4,4,5,5-テトラメチル-1,3,2-ジオキサボロランとを、パラジウム触媒と塩基を用いてカップリング反応させることによっても、同様の4-(ピリジン-2-イル)フェニルボロン酸エステルおよび4-(ピリジン-2-イル)ナフタレン-1-イルボロン酸エステルを合成することができる。 Alternatively, as shown in the following reaction formula (11), 2- (4-bromophenyl) pyridine or 2- (4-bromonaphthalen-1-yl) pyridine may be lithiated using an organolithium reagent, or magnesium Or an organomagnesium reagent to form a Grignard reagent and react with bis (pinacolato) diboron or 4,4,5,5-tetramethyl-1,3,2-dioxaborolane to produce other 4- (pyridine-2- Yl) phenylboronic acid esters and 4- (pyridin-2-yl) naphthalen-1-ylboronic acid esters can be synthesized. Further, as shown in the following reaction formula (12), 2- (4-bromophenyl) pyridine or 2- (4-bromonaphthalen-1-yl) pyridine and bis (pinacolato) diboron or 4,4,5, The same 4- (pyridin-2-yl) phenylboronic acid ester and 4- (pyridine) can also be obtained by coupling reaction of 5-tetramethyl-1,3,2-dioxaborolane with a palladium catalyst and a base. -2-yl) naphthalen-1-ylboronic acid ester can be synthesized.
Figure JPOXMLDOC01-appb-C000268
Figure JPOXMLDOC01-appb-C000268
 上記反応式(11)において、Rは直鎖または分岐のアルキル基を表すが、好ましくは炭素数1~4の直鎖または炭素数3~4の分岐アルキル基である。 In the above reaction formula (11), R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
 なお、上記反応式(9)、(11)または(12)において、3-(4-ブロモフェニル)ピリジン、4-(4-ブロモフェニル)ピリジン、2-(3-ブロモフェニル)ピリジン、3-(3-ブロモフェニル)ピリジン、4-(3-ブロモフェニル)ピリジン、3-(4-ブロモナフタレン-1-イル)ピリジン、4-(4-ブロモナフタレン-1-イル)ピリジン、2-(4-ブロモナフタレン-1-イル)ピリジン、4-(4-ブロモナフタレン-1-イル)ピリジン、2-(6-ブロモナフタレン-2-イル)ピリジン、3-(6-ブロモナフタレン-2-イル)ピリジン、4-(6-ブロモナフタレン-2-イル)ピリジン、2-(7-ブロモナフタレン-2-イル)ピリジン、3-(7-ブロモナフタレン-2-イル)ピリジン、4-(7-ブロモナフタレン-2-イル)ピリジンといった位置異性体を用いても対応するボロン酸/ボロン酸エステルを合成することができる。 In the above reaction formula (9), (11) or (12), 3- (4-bromophenyl) pyridine, 4- (4-bromophenyl) pyridine, 2- (3-bromophenyl) pyridine, 3- (3-bromophenyl) pyridine, 4- (3-bromophenyl) pyridine, 3- (4-bromonaphthalen-1-yl) pyridine, 4- (4-bromonaphthalen-1-yl) pyridine, 2- (4 -Bromonaphthalen-1-yl) pyridine, 4- (4-bromonaphthalen-1-yl) pyridine, 2- (6-bromonaphthalen-2-yl) pyridine, 3- (6-bromonaphthalen-2-yl) Pyridine, 4- (6-bromonaphthalen-2-yl) pyridine, 2- (7-bromonaphthalen-2-yl) pyridine, 3- (7-bromonaphthalen-2-yl) pyrid , It can be synthesized corresponding boronic acid / boronate esters with 4- (7-bromo-2-yl) regioisomer like pyridine.
 また、上記反応式(9)、(11)または(12)において、2-(4-ブロモフェニル)ピリジンおよび3-(4-ブロモナフタレン-1-イル)ピリジンのような臭化物の代わりに、塩化物、ヨウ化物またはトリフルオロメタンスルホナートを用いても、同様に合成することができる。 Further, in the above reaction formula (9), (11) or (12), instead of bromides such as 2- (4-bromophenyl) pyridine and 3- (4-bromonaphthalen-1-yl) pyridine, A compound can be synthesized in the same manner using a compound, iodide or trifluoromethanesulfonate.
<式(1)で表されるカルバゾール化合物の合成方法(その2)>
 本発明のカルバゾール化合物は、上述したような、カルバゾール骨格の2位と7位に「Hy-(Ar-」基および「(Hy-Ar-」基を鈴木カップリングなどで結合する方法の他に、以下のように、カルバゾール骨格に「Ar(またはAr)」および「Hy(またはHy)」を順に結合させて得ることもできる。
<Method for Synthesizing Carbazole Compound Represented by Formula (1) (Part 2)>
The carbazole compound of the present invention has a “Hy 1- (Ar 1 ) a —” group and a “(Hy 2 ) b —Ar 2 —” group at the 2nd and 7th positions of the carbazole skeleton as described above. In addition to the method of bonding by, for example, “Ar 1 (or Ar 2 )” and “Hy 1 (or Hy 2 )” may be bonded in order to the carbazole skeleton as follows.
<N位がRで置換されたカルバゾール-2,7-ジイル ビス(トリフルオロメタンスルホナート):Cz-R-ArOTfの合成>
 下記反応式(13)に示すように、「Cz-H-Br」で表される化合物に、鈴木カップリング反応により、アルコキシアリール(例えばR=メトキシ基やエトキシ基が結合した、Ar=フェニルまたはナフチル)のボロン酸を反応させることで、「Cz-H-ArOR」で表される化合物とした後、パラジウム触媒を用いたカップリング反応やウルマン反応または炭酸セシウムを用いた求核置換反応により「Cz-R-ArOR」を合成する。次いで、三臭化ホウ素やピリジン塩酸塩などを用いて脱メチル化を行い、「Cz-R-ArOH」で表される化合物を合成する。その後、トリフルオロメタンスルホン酸無水物と反応させることで、「Cz-R-ArOTf」で表される化合物が得られる。なお、反応式(13)ではアルコキシのアルキル部分であるRとカルバゾールの9位に結合する置換基であるRとを同じ記号で表したが、これらは同じであっても異なっていてもよい。
<Synthesis of carbazole-2,7-diyl bis (trifluoromethanesulfonate) substituted with R at N-position: Cz-R-ArOTf>
As shown in the following reaction formula (13), a compound represented by “Cz—H—Br” is bonded to an alkoxyaryl (for example, R = methoxy group or ethoxy group, Ar = phenyl or The compound represented by “Cz—H—ArOR” is reacted with a boronic acid of naphthyl) and then subjected to a coupling reaction using a palladium catalyst, an Ullmann reaction, or a nucleophilic substitution reaction using cesium carbonate. Cz-R-ArOR "is synthesized. Next, demethylation is performed using boron tribromide, pyridine hydrochloride, or the like to synthesize a compound represented by “Cz—R—ArOH”. Thereafter, a compound represented by “Cz—R—ArOTf” is obtained by reacting with trifluoromethanesulfonic anhydride. In the reaction formula (13), R which is an alkyl part of alkoxy and R which is a substituent bonded to the 9-position of carbazole are represented by the same symbol, but they may be the same or different.
Figure JPOXMLDOC01-appb-C000269
Figure JPOXMLDOC01-appb-C000269
<本発明に係るカルバゾール化合物の合成>
 下記反応式(14)または反応式(15)に示すように、以上のようにして得られた「Cz-R-ArOTf」で表される化合物と、反応性の置換基を有する「Hy」および「Hy」とを鈴木カップリングや根岸カップリングで反応させることで、式(1)で表されるカルバゾール化合物を得ることができる。また、下記反応式(16)のように、Pd触媒を用いてトリフラートをボロン酸エステルへ変換した後、これを「Hy」および「Hy」のハロゲン化物やトリフラートと鈴木カップリング反応を用いてカップリングさせることによっても、式(1)で表されるカルバゾール化合物を得ることができる。
<Synthesis of Carbazole Compound According to the Present Invention>
As shown in the following reaction formula (14) or reaction formula (15), the compound represented by “Cz—R—ArOTf” obtained as described above and “Hy 1 ” having a reactive substituent. And by reacting “Hy 2 ” with Suzuki coupling or Negishi coupling, the carbazole compound represented by the formula (1) can be obtained. Further, as shown in the following reaction formula (16), after the triflate is converted into a boronic acid ester using a Pd catalyst, this is converted into a halide or triflate of “Hy 1 ” and “Hy 2 ” with a Suzuki coupling reaction. The carbazole compound represented by the formula (1) can also be obtained by coupling them.
Figure JPOXMLDOC01-appb-C000270
Figure JPOXMLDOC01-appb-C000270
 上記反応式(13)~(16)による合成法は、HyおよびHyは同一であっても異なっていてもよいがArおよびArは同一であるようなカルバゾール化合物の合成に最適である。 The synthesis method according to the above reaction formulas (13) to (16) is optimal for the synthesis of a carbazole compound in which Hy 1 and Hy 2 may be the same or different, but Ar 1 and Ar 2 are the same. is there.
 また、本発明の化合物には、少なくとも一部の水素原子が重水素で置換されているものも含まれるが、このような化合物は所望の箇所が重水素化された原料を用いることで、上記と同様に合成することができる。 In addition, the compounds of the present invention include those in which at least a part of the hydrogen atoms are substituted with deuterium. Such a compound can be obtained by using a raw material in which a desired position is deuterated. It can be synthesized in the same way.
3.有機電界発光素子
 本発明に係るカルバゾール化合物は、例えば、有機電界発光素子の材料として用いることができる。以下に、本実施形態に係る有機電界発光素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機電界発光素子を示す概略断面図である。
3. Organic Electroluminescent Device The carbazole compound according to the present invention can be used as a material for an organic electroluminescent device, for example. Below, the organic electroluminescent element which concerns on this embodiment is demonstrated in detail based on drawing. FIG. 1 is a schematic cross-sectional view showing an organic electroluminescent element according to this embodiment.
<有機電界発光素子の構造>
 図1に示された有機電界発光素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
<Structure of organic electroluminescence device>
An organic electroluminescent device 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103. A hole transport layer 104 provided on the light emitting layer 105, a light emitting layer 105 provided on the hole transport layer 104, an electron transport layer 106 provided on the light emitting layer 105, and an electron transport layer 106. And the cathode 108 provided on the electron injection layer 107.
 なお、有機電界発光素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。 The organic electroluminescent element 100 is manufactured in the reverse order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer. An electron transport layer 106 provided on 107, a light-emitting layer 105 provided on the electron transport layer 106, a hole transport layer 104 provided on the light-emitting layer 105, and a hole transport layer 104 A structure including the hole injection layer 103 provided above and the anode 102 provided on the hole injection layer 103 may be employed.
 上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と電子輸送層106および/または電子注入層107と陰極108とからなる構成として、正孔注入層103および正孔輸送層104は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。 Not all of the above-described layers are necessary, and the minimum structural unit is composed of the anode 102, the light emitting layer 105, the electron transport layer 106 and / or the electron injection layer 107 and the cathode 108. The hole transport layer 104 is an arbitrarily provided layer. Moreover, each said layer may consist of a single layer, respectively, and may consist of multiple layers.
 有機電界発光素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。 As an aspect of the layer constituting the organic electroluminescence device, in addition to the above-described configuration aspect of “substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode”, "Substrate / anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode", "substrate / anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode", "substrate / Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode ”,“ substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ”,“ substrate ” / Anode / light emitting layer / electron transport layer / electron injection layer / cathode ”,“ substrate / anode / hole transport layer / light emitting layer / electron injection layer / cathode ”,“ substrate / anode / hole transport layer / light emitting layer / “Electron transport layer / cathode”, “substrate / anode / hole injection layer / light emitting layer / electron injection layer / cathode”, “substrate / anode / hole injection layer / light emitting layer / electron” Okuso / cathode "," substrate / anode / light emitting layer / electron transporting layer / cathode "may be configured aspect of the" substrate / anode / light emitting layer / electron injection layer / cathode ".
<有機電界発光素子における基板>
 基板101は、有機電界発光素子100の支持体となるものであり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、およびポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<Substrate in organic electroluminescence device>
The substrate 101 serves as a support for the organic electroluminescent device 100, and usually quartz, glass, metal, plastic, or the like is used. The substrate 101 is formed into a plate shape, a film shape, or a sheet shape according to the purpose. For example, a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used. Of these, glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate, polysulfone and the like are preferable. In the case of a glass substrate, soda lime glass, non-alkali glass, or the like is used, and the thickness only needs to be sufficient to maintain the mechanical strength. The upper limit value of the thickness is, for example, 2 mm or less, preferably 1 mm or less. The glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass. However, soda lime glass with a barrier coat such as SiO 2 is also commercially available, so it can be used. it can. Further, the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one surface in order to improve the gas barrier property, and a synthetic resin plate, film or sheet having a low gas barrier property is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
<有機電界発光素子における陽極>
 陽極102は、発光層105へ正孔を注入する役割を果たすものである。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
<Anode in organic electroluminescence device>
The anode 102 serves to inject holes into the light emitting layer 105. When the hole injection layer 103 and / or the hole transport layer 104 are provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 through these layers. .
 陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機電界発光素子の陽極として用いられている物質の中から適宜選択して用いることができる。 Examples of the material for forming the anode 102 include inorganic compounds and organic compounds. Examples of inorganic compounds include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide) Products (IZO), metal halides (copper iodide, etc.), copper sulfide, carbon black, ITO glass, Nesa glass, and the like. Examples of the organic compound include polythiophene such as poly (3-methylthiophene), conductive polymer such as polypyrrole and polyaniline, and the like. In addition, it can select suitably from the substances currently used as an anode of an organic electroluminescent element, and can use it.
 透明電極の抵抗は、発光素子の発光に十分な電流が供給できれば特に限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100~300nmの間で用いられることが多い。 The resistance of the transparent electrode is not particularly limited as long as a current sufficient for light emission of the light emitting element can be supplied, but it is desirable that the resistance is low from the viewpoint of power consumption of the light emitting element. For example, an ITO substrate of 300Ω / □ or less functions as an element electrode, but at present, since it is possible to supply a substrate of about 10Ω / □, for example, 100 to 5Ω / □, preferably 50 to 5Ω. It is particularly desirable to use a low resistance product of / □. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
<有機電界発光素子における正孔注入層、正孔輸送層>
 正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たすものである。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たすものである。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
<Hole injection layer and hole transport layer in organic electroluminescence device>
The hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104. The hole transport layer 104 plays a role of efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 through the hole injection layer 103 to the light emitting layer 105. The hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one kind or two or more kinds of hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder. Is done. In addition, an inorganic salt such as iron (III) chloride may be added to the hole injection / transport material to form a layer.
 正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。 As a hole injection / transport material, it is necessary to efficiently inject and transport holes from the positive electrode between electrodes to which an electric field is applied. The hole injection efficiency is high, and the injected holes are transported efficiently. It is desirable to do. For this purpose, it is preferable to use a substance that has a low ionization potential, a high hole mobility, excellent stability, and is less likely to generate trapping impurities during production and use.
 正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機電界発光素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノ基を主鎖あるいは側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。 As a material for forming the hole injection layer 103 and the hole transport layer 104, in a photoconductive material, a compound conventionally used as a charge transport material for holes, a p-type semiconductor, and a hole injection of an organic electroluminescent element are used. Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), triarylamine derivatives (aromatic tertiary class). Polymer having amino group in main chain or side chain, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N′-diphenyl-N, N′-di (3-methylphenyl)- 4,4'-diaminobiphenyl, N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl, N, N'-diphenyl-N, N'-di (3-methylphenyl)- 4,4′-diphenyl-1,1′-diamine, N, N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl- , 1'-diamine, 4,4 ', 4 "-tris (3-methylphenyl (phenyl) amino) triphenylamine, and other triphenylamine derivatives, starburst amine derivatives, stilbene derivatives, phthalocyanine derivatives (metal-free, Copper phthalocyanine, etc.), pyrazoline derivatives, hydrazone compounds, benzofuran derivatives, thiophene derivatives, heterocyclic compounds such as oxadiazole derivatives, porphyrin derivatives, polysilanes, etc. Styrene derivatives, polyvinyl carbazole, polysilane, and the like are preferable, but there is no particular limitation as long as it is a compound that forms a thin film necessary for manufacturing a light-emitting element, can inject holes from the anode, and can further transport holes. .
 また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニンZnPcなど)が知られている(特開2005-167175号公報)。 It is also known that the conductivity of organic semiconductors is strongly influenced by the doping. Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property. Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donor materials. (For example, the document “M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (22), 3202-3204 (1998)”) and the document “J. Blochwitz, M Pheiffer, T. Fritz, K. Leo, Appl. Phys. Lett., 73 (6), 729-731 (1998)). These generate so-called holes by an electron transfer process in an electron donating base material (hole transport material). Depending on the number and mobility of holes, the conductivity of the base material varies considerably. Known matrix substances having hole transporting properties include, for example, benzidine derivatives (TPD and the like), starburst amine derivatives (TDATA and the like), and specific metal phthalocyanines (particularly zinc phthalocyanine ZnPc and the like). 2005-167175).
<有機電界発光素子における発光層>
 発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光するものである。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光および/または燐光)効率を示す化合物であるのが好ましい。
<Light emitting layer in organic electroluminescent element>
The light emitting layer 105 emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied. The material for forming the light-emitting layer 105 may be a compound that emits light by being excited by recombination of holes and electrons (a light-emitting compound), can form a stable thin film shape, and is in a solid state It is preferable that the compound exhibits a high emission (fluorescence and / or phosphorescence) efficiency.
 発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成される。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。 The light emitting layer may be either a single layer or a plurality of layers, each formed of a light emitting material (host material, dopant material). Each of the host material and the dopant material may be one kind or a plurality of combinations. The dopant material may be included in the host material as a whole, or may be included partially. As a doping method, it can be formed by a co-evaporation method with a host material, but it may be pre-mixed with the host material and then simultaneously deposited.
 ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光材料全体の50~99.999重量%であり、より好ましくは80~99.95重量%であり、さらに好ましくは90~99.9重量%である。 ∙ The amount of host material used depends on the type of host material and can be determined according to the characteristics of the host material. The amount of the host material used is preferably 50 to 99.999% by weight of the entire light emitting material, more preferably 80 to 99.95% by weight, and still more preferably 90 to 99.9% by weight. .
 ドーパント材料の使用量はドーパント材料の種類によって異なり、そのドーパント材料の特性に合わせて決めればよい。ドーパントの使用量の目安は、好ましくは発光材料全体の0.001~50重量%であり、より好ましくは0.05~20重量%であり、さらに好ましくは0.1~10重量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。 The amount of dopant material used depends on the type of dopant material, and can be determined according to the characteristics of the dopant material. The standard of the amount of dopant used is preferably 0.001 to 50% by weight of the entire light emitting material, more preferably 0.05 to 20% by weight, and still more preferably 0.1 to 10% by weight. The above range is preferable in that, for example, the concentration quenching phenomenon can be prevented.
 本実施形態に係る発光素子の発光材料は蛍光性であっても燐光性であってもどちらでもかまわない。 The light emitting material of the light emitting device according to this embodiment may be either fluorescent or phosphorescent.
 ホスト材料としては、特に限定されるものではないが、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムをはじめとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ピロロピロール誘導体、フルオレン誘導体、ベンゾフルオレン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体が好適に用いられる。 The host material is not particularly limited, but has previously been known as a phosphor, fused ring derivatives such as anthracene and pyrene, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bis Bisstyryl derivatives such as styryl anthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, pyrrolopyrrole In derivatives, fluorene derivatives, benzofluorene derivatives, and polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives are preferably used.
 その他、ホスト材料としては、化学工業2004年6月号13頁、およびそれにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。 In addition, as a host material, it can be used by appropriately selecting from compounds described in Chemical Industry, June 2004, page 13, and references cited therein.
 また、ドーパント材料としては、特に限定されるものではなく、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレン、ルブレン、およびクリセンなどの縮合環誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1-245087号公報)、ビススチリルアリーレン誘導体(特開平2-247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2-メチルフェニル)イソベンゾフラン、ジ(2-トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7-ジアルキルアミノクマリン誘導体、7-ピペリジノクマリン誘導体、7-ヒドロキシクマリン誘導体、7-メトキシクマリン誘導体、7-アセトキシクマリン誘導体、3-ベンゾチアゾリルクマリン誘導体、3-ベンゾイミダゾリルクマリン誘導体、3-ベンゾオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンゾアンスラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5-チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体、デアザフラビン誘導体、フルオレン誘導体、およびベンゾフルオレン誘導体などがあげられる。 Further, the dopant material is not particularly limited, and a known compound can be used, and can be selected from various materials according to a desired emission color. Specifically, for example, condensed ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopylene, dibenzopyrene, rubrene, and chrysene, benzoxazole derivatives, benzothiazole derivatives, benzimidazole derivatives, benzotriazole derivatives, Bisstyryl such as oxazole derivatives, oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazoline derivatives, stilbene derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives and distyrylbenzene derivatives Derivatives (Japanese Patent Laid-Open No. 1-245087), bisstyrylarylene derivatives (Japanese Patent Laid-Open No. 2-2472) No. 8), diazaindacene derivatives, furan derivatives, benzofuran derivatives, phenylisobenzofuran, dimesitylisobenzofuran, di (2-methylphenyl) isobenzofuran, di (2-trifluoromethylphenyl) isobenzofuran, phenylisobenzofuran, etc. Isobenzofuran derivatives, dibenzofuran derivatives, 7-dialkylaminocoumarin derivatives, 7-piperidinocoumarin derivatives, 7-hydroxycoumarin derivatives, 7-methoxycoumarin derivatives, 7-acetoxycoumarin derivatives, 3-benzothiazolylcoumarin derivatives, Coumarin derivatives such as 3-benzimidazolylcoumarin derivatives, 3-benzoxazolylcoumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, polymethine derivatives, Anine derivatives, oxobenzoanthracene derivatives, xanthene derivatives, rhodamine derivatives, fluorescein derivatives, pyrylium derivatives, carbostyril derivatives, acridine derivatives, oxazine derivatives, phenylene oxide derivatives, quinacridone derivatives, quinazoline derivatives, pyrrolopyridine derivatives, furopyridine derivatives, 1, Examples include 2,5-thiadiazolopyrene derivatives, pyromethene derivatives, perinone derivatives, pyrrolopyrrole derivatives, squarylium derivatives, violanthrone derivatives, phenazine derivatives, acridone derivatives, deazaflavin derivatives, fluorene derivatives, and benzofluorene derivatives.
 発色光ごとに例示すると、青~青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデン、クリセンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体、およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などがあげられる。 Illustratively for each color light, blue to blue-green dopant materials include naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, indene, chrysene and other aromatic hydrocarbon compounds and derivatives thereof, furan, pyrrole, thiophene, Aromatic complex such as silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene Ring compounds and their derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imidazole, thiazole, thiadia Azole derivatives such as azole, carbazole, oxazole, oxadiazole, triazole and metal complexes thereof, and N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1 , 1'-diamine and aromatic amine derivatives.
 また、緑~黄色ドーパント材料としては、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体、およびルブレンなどのナフタセン誘導体などがあげられ、さらに上記青~青緑色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。 Examples of the green to yellow dopant material include coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, and naphthacene derivatives such as rubrene. A compound in which a substituent capable of increasing the wavelength such as aryl, heteroaryl, arylvinyl, amino, and cyano is introduced into the compound exemplified as the blue to blue-green dopant material is also a suitable example.
 さらに、橙~赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体、およびチアジアゾロピレン誘導体などあげられ、さらに上記青~青緑色、および緑~黄色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。さらに、トリス(2-フェニルピリジン)イリジウム(III)に代表されるイリジウムや白金を中心金属とした燐光性金属錯体も好適な例としてあげられる。 Furthermore, orange to red dopant materials include naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, rare earth complexes such as Eu complexes having acetylacetone, benzoylacetone and phenanthroline as ligands, 4 -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone Derivatives, phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, violanthrone derivatives, phenazine derivatives, phenoxazo Derivatives, thiadiazolopyrene derivatives and the like, and further substitutions such as aryls, heteroaryls, arylvinyls, aminos, cyanos, etc. to the compounds exemplified as the blue-blue-green and green-yellow dopant materials. A compound into which a group is introduced is also a suitable example. Further, a phosphorescent metal complex having iridium or platinum represented by tris (2-phenylpyridine) iridium (III) as a central metal is also a suitable example.
 その他、ドーパントとしては、化学工業2004年6月号13頁、およびそれにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。 In addition, the dopant can be appropriately selected from compounds described in Chemical Industry, June 2004, page 13, and references cited therein.
 上述するドーパント材料の中でも、特にペリレン誘導体、ボラン誘導体、アミン含有スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ピラン誘導体、イリジウム錯体または白金錯体が好ましい。 Among the dopant materials described above, perylene derivatives, borane derivatives, amine-containing styryl derivatives, aromatic amine derivatives, coumarin derivatives, pyran derivatives, iridium complexes, or platinum complexes are particularly preferable.
 ペリレン誘導体としては、例えば、3,10-ビス(2,6-ジメチルフェニル)ペリレン、3,10-ビス(2,4,6-トリメチルフェニル)ペリレン、3,10-ジフェニルペリレン、3,4-ジフェニルペリレン、2,5,8,11-テトラ-t-ブチルペリレン、3,4,9,10-テトラフェニルペリレン、3-(1’-ピレニル)-8,11-ジ(t-ブチル)ペリレン、3-(9’-アントリル)-8,11-ジ(t-ブチル)ペリレン、3,3’-ビス(8,11-ジ(t-ブチル)ペリレニル)などがあげられる。
 また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
Examples of perylene derivatives include 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, 3,4- Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1'-pyrenyl) -8,11-di (t-butyl) perylene 3- (9′-anthryl) -8,11-di (t-butyl) perylene, 3,3′-bis (8,11-di (t-butyl) perylenyl), and the like.
JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A No. 2000-34234, JP-A No. 2001-267075, JP-A No. 2001-217077 and the like may be used.
 ボラン誘導体としては、例えば、1,8-ジフェニル-10-(ジメシチルボリル)アントラセン、9-フェニル-10-(ジメシチルボリル)アントラセン、4-(9’-アントリル)ジメシチルボリルナフタレン、4-(10’-フェニル-9’-アントリル)ジメシチルボリルナフタレン、9-(ジメシチルボリル)アントラセン、9-(4’-ビフェニリル)-10-(ジメシチルボリル)アントラセン、9-(4’-(N-カルバゾリル)フェニル)-10-(ジメシチルボリル)アントラセンなどがあげられる。
 また、国際公開第2000/40586号パンフレットなどに記載されたボラン誘導体を用いてもよい。
Examples of the borane derivatives include 1,8-diphenyl-10- (dimesitylboryl) anthracene, 9-phenyl-10- (dimesitylboryl) anthracene, 4- (9′-anthryl) dimesitylborylnaphthalene, 4- (10 ′ -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4 '-(N-carbazolyl) phenyl) And -10- (dimesitylboryl) anthracene.
Moreover, you may use the borane derivative described in the international publication 2000/40586 pamphlet.
 アミン含有スチリル誘導体としては、例えば、N,N,N’,N’-テトラ(4-ビフェニリル)-4、4’-ジアミノスチルベン、N,N,N’,N’-テトラ(1-ナフチル)-4、4’-ジアミノスチルベン、N,N,N’,N’-テトラ(2-ナフチル)-4、4’-ジアミノスチルベン、N,N’-ジ(2-ナフチル)-N,N’-ジフェニル-4、4’-ジアミノスチルベン、N,N’-ジ(9-フェナントリル)-N,N’-ジフェニル-4、4’-ジアミノスチルベン、4,4’-ビス[4”-ビス(ジフェニルアミノ)スチリル]-ビフェニル、1,4-ビス[4’-ビス(ジフェニルアミノ)スチリル]-ベンゼン、2,7-ビス[4’-ビス(ジフェニルアミノ)スチリル]-9,9-ジメチルフルオレン、4,4’-ビス(9-エチル-3-カルバゾビニレン)-ビフェニル、4,4’-ビス(9-フェニル-3-カルバゾビニレン)-ビフェニルなどがあげられる。
 また、特開2003-347056号公報、および特開2001-307884号公報などに記載されたアミン含有スチリル誘導体を用いてもよい。
Examples of amine-containing styryl derivatives include N, N, N ′, N′-tetra (4-biphenylyl) -4,4′-diaminostilbene, N, N, N ′, N′-tetra (1-naphthyl). -4,4'-diaminostilbene, N, N, N ', N'-tetra (2-naphthyl) -4,4'-diaminostilbene, N, N'-di (2-naphthyl) -N, N'-Diphenyl-4,4'-diaminostilbene, N, N'-di (9-phenanthryl) -N, N'-diphenyl-4,4'-diaminostilbene, 4,4'-bis [4 "-bis ( Diphenylamino) styryl] -biphenyl, 1,4-bis [4′-bis (diphenylamino) styryl] -benzene, 2,7-bis [4′-bis (diphenylamino) styryl] -9,9-dimethylfluorene 4,4'-bis (9-ethyl-3-carbazobi Nylene) -biphenyl, 4,4′-bis (9-phenyl-3-carbazovinylene) -biphenyl, and the like.
In addition, amine-containing styryl derivatives described in JP2003-347056A and JP2001-307884A may be used.
 芳香族アミン誘導体としては、例えば、N,N,N,N-テトラフェニルアントラセン-9,10-ジアミン、9,10-ビス(4-ジフェニルアミノ-フェニル)アントラセン、9,10-ビス(4-ジ(1-ナフチルアミノ)フェニル)アントラセン、9,10-ビス(4-ジ(2-ナフチルアミノ)フェニル)アントラセン、10-ジ-p-トリルアミノ-9-(4-ジ-p-トリルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(4-ジフェニルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(6-ジフェニルアミノ-2-ナフチル)アントラセン、[4-(4-ジフェニルアミノ-フェニル)ナフタレン-1-イル]-ジフェニルアミン、[4-(4-ジフェニルアミノ-フェニル)ナフタレン-1-イル]-ジフェニルアミン、[6-(4-ジフェニルアミノ-フェニル)ナフタレン-2-イル]-ジフェニルアミン、4,4’-ビス[4-ジフェニルアミノナフタレン-1-イル]ビフェニル、4,4’-ビス[6-ジフェニルアミノナフタレン-2-イル]ビフェニル、4,4”-ビス[4-ジフェニルアミノナフタレン-1-イル]-p-テルフェニル、4,4”-ビス[6-ジフェニルアミノナフタレン-2-イル]-p-テルフェニルなどがあげられる。
 また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
Examples of the aromatic amine derivative include N, N, N, N-tetraphenylanthracene-9,10-diamine, 9,10-bis (4-diphenylamino-phenyl) anthracene, and 9,10-bis (4- Di (1-naphthylamino) phenyl) anthracene, 9,10-bis (4-di (2-naphthylamino) phenyl) anthracene, 10-di-p-tolylamino-9- (4-di-p-tolylamino-1) -Naphthyl) anthracene, 10-diphenylamino-9- (4-diphenylamino-1-naphthyl) anthracene, 10-diphenylamino-9- (6-diphenylamino-2-naphthyl) anthracene, [4- (4-diphenyl) Amino-phenyl) naphthalen-1-yl] -diphenylamine, [4- (4-diphenylamino-phenyl) na Talen-1-yl] -diphenylamine, [6- (4-diphenylamino-phenyl) naphthalen-2-yl] -diphenylamine, 4,4′-bis [4-diphenylaminonaphthalen-1-yl] biphenyl, 4, 4'-bis [6-diphenylaminonaphthalen-2-yl] biphenyl, 4,4 "-bis [4-diphenylaminonaphthalen-1-yl] -p-terphenyl, 4,4" -bis [6-diphenyl Aminonaphthalen-2-yl] -p-terphenyl and the like.
Moreover, you may use the aromatic amine derivative described in Unexamined-Japanese-Patent No. 2006-156888.
 クマリン誘導体としては、クマリン-6、クマリン-334などがあげられる。
 また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
Examples of coumarin derivatives include coumarin-6 and coumarin-334.
Moreover, you may use the coumarin derivative described in Unexamined-Japanese-Patent No. 2004-43646, Unexamined-Japanese-Patent No. 2001-76876, and Unexamined-Japanese-Patent No. 6-298758.
 ピラン誘導体としては、下記のDCM、DCJTBなどがあげられる。
Figure JPOXMLDOC01-appb-C000271

 また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
Examples of the pyran derivative include the following DCM and DCJTB.
Figure JPOXMLDOC01-appb-C000271

Also, JP 2005-126399, JP 2005-097283, JP 2002-234892, JP 2001-220577, JP 2001-081090, and JP 2001-052869. Alternatively, pyran derivatives described in the above may be used.
 イリジウム錯体としては、下記のIr(ppy)などがあげられる。
Figure JPOXMLDOC01-appb-C000272

 また、特開2006-089398号公報、特開2006-080419号公報、特開2005-298483号公報、特開2005-097263号公報、および特開2004-111379号公報などに記載されたイリジウム錯体を用いてもよい。
Examples of the iridium complex include Ir (ppy) 3 described below.
Figure JPOXMLDOC01-appb-C000272

Further, the iridium complexes described in JP-A-2006-089398, JP-A-2006-080419, JP-A-2005-298483, JP-A-2005-097263, JP-A-2004-111379, etc. It may be used.
 白金錯体としては、下記のPtOEPなどがあげられる。
Figure JPOXMLDOC01-appb-C000273

 また、特開2006-190718号公報、特開2006-128634号公報、特開2006-093542号公報、特開2004-335122号公報、および特開2004-331508号公報などに記載された白金錯体を用いてもよい。
Examples of the platinum complex include the following PtOEP.
Figure JPOXMLDOC01-appb-C000273

Further, the platinum complexes described in JP-A-2006-190718, JP-A-2006-128634, JP-A-2006-093542, JP-A-2004-335122, JP-A-2004-331508, etc. It may be used.
<有機電界発光素子における電子注入層、電子輸送層>
 電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たすものである。電子輸送層106は、陰極108から注入された電子、または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たすものである。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
<Electron injection layer and electron transport layer in organic electroluminescence device>
The electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106. The electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105. The electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials or a mixture of the electron transport / injection material and the polymer binder.
 電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。 The electron injection / transport layer is a layer that is responsible for injecting electrons from the cathode and further transporting the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. For this purpose, it is preferable to use a substance that has a high electron affinity, a high electron mobility, excellent stability, and is unlikely to generate trapping impurities during production and use. However, considering the transport balance between holes and electrons, if the role of effectively preventing the holes from the anode from flowing to the cathode side without recombination is mainly played, the electron transport capability is much higher. Even if it is not high, the effect of improving the luminous efficiency is equivalent to that of a material having a high electron transport capability. Therefore, the electron injection / transport layer in this embodiment may include a function of a layer that can efficiently block the movement of holes.
 電子輸送層106または電子注入層107を形成する材料(電子輸送材料)として、上記式(1)で表される化合物を用いることができる。これらの中でも、本願では、特に、a=1かつb=1の態様、すなわち上記式(1-1)で表される化合物が好ましく用いられる。 As the material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107, a compound represented by the above formula (1) can be used. Among these, in the present application, in particular, an embodiment in which a = 1 and b = 1, that is, a compound represented by the above formula (1-1) is preferably used.
 電子輸送層106または電子注入層107における上記式(1)で表される化合物の含有量は、化合物の種類によって異なり、その化合物の特性に合わせて決めればよい。式(1)で表される化合物の含有量の目安は、好ましくは電子輸送層用材料(または電子注入層用材料)の全体の1~100重量%であり、より好ましくは10~100重量%であり、さらに好ましくは50~100重量%であり、特に好ましくは80~100重量%である。式(1)で表される化合物を単独(100重量%)で用いない場合には、以下に詳述する他の材料を混合すればよい。 The content of the compound represented by the above formula (1) in the electron transport layer 106 or the electron injection layer 107 differs depending on the type of the compound and may be determined according to the characteristics of the compound. The standard for the content of the compound represented by the formula (1) is preferably 1 to 100% by weight, more preferably 10 to 100% by weight, based on the whole electron transport layer material (or electron injection layer material). More preferably, it is 50 to 100% by weight, and particularly preferably 80 to 100% by weight. When the compound represented by the formula (1) is not used alone (100% by weight), other materials described in detail below may be mixed.
 他の電子輸送層または電子注入層を形成する材料としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機電界発光素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。 Other materials for forming the electron transport layer or electron injection layer include compounds conventionally used as electron transport compounds in photoconductive materials, and known materials used for electron injection layers and electron transport layers of organic electroluminescent devices. Any of these compounds can be selected and used.
 電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素、およびリンの中から選ばれる一種以上の原子で構成される芳香環もしくは複素芳香環からなる化合物、ピロール誘導体およびその縮合環誘導体、および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香環誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、上記式(1)で表される化合物以外のカルバゾール誘導体、およびインドール誘導体などがあげられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体、およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。中でも、9,10-ビス(2-ナフチル)アントラセンなどのアントラセン誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルなどのスチリル系芳香環誘導体、4,4’-ビス(N-カルバゾリル)ビフェニル、1,3,5-トリス(N-カルバゾリル)ベンゼンなどのカルバゾール誘導体が、耐久性の観点から好ましく用いられる。 As a material used for the electron transport layer or the electron injection layer, a compound composed of an aromatic ring or a heteroaromatic ring composed of one or more atoms selected from carbon, hydrogen, oxygen, sulfur, silicon, and phosphorus, pyrrole It is preferable to contain at least one selected from a derivative, a condensed ring derivative thereof, and a metal complex having an electron-accepting nitrogen. Specifically, condensed ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinones And quinone derivatives such as diphenoquinone, phosphorus oxide derivatives, carbazole derivatives other than the compound represented by the above formula (1), and indole derivatives. Examples of metal complexes having electron-accepting nitrogen include hydroxyazole complexes such as hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. These materials can be used alone or in combination with different materials. Among them, anthracene derivatives such as 9,10-bis (2-naphthyl) anthracene, styryl aromatic ring derivatives such as 4,4′-bis (diphenylethenyl) biphenyl, 4,4′-bis (N-carbazolyl) biphenyl A carbazole derivative such as 1,3,5-tris (N-carbazolyl) benzene is preferably used from the viewpoint of durability.
 また、他の電子伝達化合物の具体例として、上記式(1)で表される化合物以外のピリジン誘導体、式(1)で表される化合物ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、上記式(1)で表される化合物以外のカルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などがあげられる。 Further, as specific examples of other electron transfer compounds, pyridine derivatives other than the compound represented by the above formula (1), naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives represented by the formula (1) , Naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives (such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene), thiophene Derivatives, triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4-triazole, etc.), thiadiazole derivatives, metal complexes of oxine derivatives, quinolinol metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazole Compound, gallium complex, pyrazole derivative, perfluorinated phenylene derivative, triazine derivative, pyrazine derivative, benzoquinoline derivative (2,2′-bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene Etc.), imidazopyridine derivatives, borane derivatives, benzimidazole derivatives (such as tris (N-phenylbenzoimidazol-2-yl) benzene), benzoxazole derivatives, benzothiazole derivatives, quinoline derivatives, oligopyridine derivatives such as terpyridine, bipyridine derivatives Terpyridine derivatives (such as 1,3-bis (4 ′-(2,2 ′: 6′2 ″ -terpyridinyl)) benzene), naphthyridine derivatives (bis (1-naphthyl) -4- (1,8-naphthyridine- 2-yl) phenylphosphine Side etc.), aldazine derivatives, carbazole derivatives other than the compounds represented by the above formula (1), indole derivatives, phosphorus oxide derivatives, such as bis-styryl derivatives.
 また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体、およびベンゾキノリン金属錯体などがあげられる。 In addition, metal complexes having electron-accepting nitrogen can also be used, such as hydroxyazole complexes such as quinolinol-based metal complexes and hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. Is given.
 上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。 The above-mentioned materials can be used alone, but they may be mixed with different materials.
 上述した材料の中でも、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体、ボラン誘導体またはベンゾイミダゾール誘導体が好ましい。 Among the materials described above, quinolinol metal complexes, bipyridine derivatives, phenanthroline derivatives, borane derivatives or benzimidazole derivatives are preferable.
 キノリノール系金属錯体は、下記一般式(E-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000274

 式中、R~Rは水素または置換基であり、MはAl、Ga、Be、またはZnであり、nは2または3の整数である。
The quinolinol-based metal complex is a compound represented by the following general formula (E-1).
Figure JPOXMLDOC01-appb-C000274

In the formula, R 1 to R 6 are hydrogen or a substituent, M is Al, Ga, Be, or Zn, and n is an integer of 2 or 3.
 キノリノール系金属錯体の具体例としては、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。 Specific examples of quinolinol-based metal complexes include tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3,4-dimethyl-). 8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolato) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) (phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (4- Methyl phenolate) Aluminum Bis (2-methyl-8-quinolinolato) (2-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (3-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (4-Phenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,3-dimethylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,6-dimethylphenolate) aluminum Bis (2-methyl-8-quinolinolato) (3,4-dimethylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3,5-dimethylphenolato) aluminum, bis (2-methyl-8) -Quinolinolate) (3,5-Di-t-butylphenolate) Aluminum Bis (2-methyl-8-quinolinolato) (2,6-diphenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,4,6-triphenylphenolato) aluminum, bis (2 -Methyl-8-quinolinolato) (2,4,6-trimethylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2,4,5,6-tetramethylphenolato) aluminum, bis (2- Methyl-8-quinolinolato) (1-naphtholato) aluminum, bis (2-methyl-8-quinolinolato) (2-naphtholato) aluminum, bis (2,4-dimethyl-8-quinolinolato) (2-phenylphenolato) aluminum Bis (2,4-dimethyl-8-quinolinolato) (3-phenylphenola) ) Aluminum, bis (2,4-dimethyl-8-quinolinolato) (4-phenylphenolate) aluminum, bis (2,4-dimethyl-8-quinolinolato) (3,5-dimethylphenolate) aluminum, bis (2,4-Dimethyl-8-quinolinolato) (3,5-di-t-butylphenolate) aluminum, bis (2-methyl-8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-8- Quinolinolato) aluminum, bis (2,4-dimethyl-8-quinolinolato) aluminum-μ-oxo-bis (2,4-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-4-ethyl-8-quinolinolato) Aluminum-μ-oxo-bis (2-methyl-4-ethyl-8-quinolinolato) aluminum Bis (2-methyl-4-methoxy-8-quinolinolato) aluminum-μ-oxo-bis (2-methyl-4-methoxy-8-quinolinolato) aluminum, bis (2-methyl-5-cyano-8- Quinolinolato) aluminum-μ-oxo-bis (2-methyl-5-cyano-8-quinolinolato) aluminum, bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum-μ-oxo-bis (2- Methyl-5-trifluoromethyl-8-quinolinolato) aluminum, bis (10-hydroxybenzo [h] quinoline) beryllium and the like.
 ビピリジン誘導体は、下記一般式(E-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000275

 式中、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、ピリジン-ピリジンまたはピリジン-Gの結合に用いられない炭素は置換されていてもよい。
The bipyridine derivative is a compound represented by the following general formula (E-2).
Figure JPOXMLDOC01-appb-C000275

In the formula, G represents a simple bond or an n-valent linking group, and n is an integer of 2 to 8. Further, carbon not used for bonding of pyridine-pyridine or pyridine-G may be substituted.
 一般式(E-2)のGとしては、例えば、以下の構造式のものがあげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルである。
Figure JPOXMLDOC01-appb-C000276
Examples of G in the general formula (E-2) include the following structural formulas. In the following structural formulas, each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
Figure JPOXMLDOC01-appb-C000276
 ピリジン誘導体の具体例としては、2,5-ビス(2,2’-ビピリジン-6-イル)-1,1-ジメチル-3,4-ジフェニルシロール、2,5-ビス(2,2’-ビピリジン-6-イル)-1,1-ジメチル-3,4-ジメシチルシロール、2,5-ビス(2,2’-ビピリジン-5-イル)-1,1-ジメチル-3,4-ジフェニルシロール、2,5-ビス(2,2’-ビピリジン-5-イル)-1,1-ジメチル-3,4-ジメシチルシロール9,10-ジ(2,2’-ビピリジン-6-イル)アントラセン、9,10-ジ(2,2’-ビピリジン-5-イル)アントラセン、9,10-ジ(2,3’-ビピリジン-6-イル)アントラセン、9,10-ジ(2,3’-ビピリジン-5-イル)アントラセン、9,10-ジ(2,3’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,3’-ビピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(2,2’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,2’-ビピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(2,4’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,4’-ビピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(3,4’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(3,4’-ビピリジン-5-イル)-2-フェニルアントラセン、3,4-ジフェニル-2,5-ジ(2,2’-ビピリジン-6-イル)チオフェン、3,4-ジフェニル-2,5-ジ(2,3’-ビピリジン-5-イル)チオフェン、6’6”-ジ(2-ピリジル)2,2’:4’,4”:2”,2”’-クアテルピリジンなどがあげられる。 Specific examples of the pyridine derivative include 2,5-bis (2,2′-bipyridin-6-yl) -1,1-dimethyl-3,4-diphenylsilole, 2,5-bis (2,2′- Bipyridin-6-yl) -1,1-dimethyl-3,4-dimesitylsilole, 2,5-bis (2,2′-bipyridin-5-yl) -1,1-dimethyl-3,4 Diphenylsilole, 2,5-bis (2,2′-bipyridin-5-yl) -1,1-dimethyl-3,4-dimesitylsilole 9,10-di (2,2′-bipyridine-6- Yl) anthracene, 9,10-di (2,2′-bipyridin-5-yl) anthracene, 9,10-di (2,3′-bipyridin-6-yl) anthracene, 9,10-di (2, 3′-bipyridin-5-yl) anthracene, 9,10-di (2, '-Bipyridin-6-yl) -2-phenylanthracene, 9,10-di (2,3'-bipyridin-5-yl) -2-phenylanthracene, 9,10-di (2,2'-bipyridine) 6-yl) -2-phenylanthracene, 9,10-di (2,2′-bipyridin-5-yl) -2-phenylanthracene, 9,10-di (2,4′-bipyridin-6-yl) -2-Phenylanthracene, 9,10-di (2,4′-bipyridin-5-yl) -2-phenylanthracene, 9,10-di (3,4′-bipyridin-6-yl) -2-phenyl Anthracene, 9,10-di (3,4'-bipyridin-5-yl) -2-phenylanthracene, 3,4-diphenyl-2,5-di (2,2'-bipyridin-6-yl) thiophene, 3,4-dipheni -2,5-di (2,3′-bipyridin-5-yl) thiophene, 6′6 ″ -di (2-pyridyl) 2,2 ′: 4 ′, 4 ″: 2 ″, 2 ″ ′-qua Examples include terpyridine.
 フェナントロリン誘導体は、下記一般式(E-3-1)または(E-3-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000277

 式中、R~Rは水素または置換基であり、隣接する基は互いに結合して縮合環を形成してもよく、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、一般式(E-3-2)のGとしては、例えば、ビピリジン誘導体の欄で説明したものと同じものがあげられる。
The phenanthroline derivative is a compound represented by the following general formula (E-3-1) or (E-3-2).
Figure JPOXMLDOC01-appb-C000277

In the formula, R 1 to R 8 are hydrogen or a substituent, adjacent groups may be bonded to each other to form a condensed ring, G represents a simple bond or an n-valent linking group, and n represents 2 It is an integer of ~ 8. Examples of G in the general formula (E-3-2) include the same ones as described in the bipyridine derivative column.
 フェナントロリン誘導体の具体例としては、4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオル-ビス(1,10-フェナントロリン-5-イル)、バソクプロインや1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンなどがあげられる。 Specific examples of phenanthroline derivatives include 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10-phenanthroline- 2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9′-difluor -Bis (1,10-phenanthroline-5-yl), bathocuproin, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and the like.
 特に、フェナントロリン誘導体を電子輸送層、電子注入層に用いた場合について説明する。長時間にわたって安定な発光を得るには、熱的安定性や薄膜形成性に優れた材料が望まれ、フェナントロリン誘導体の中でも、置換基自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により三次元的立体構造を有するもの、あるいは複数のフェナントロリン骨格を連結したものが好ましい。さらに、複数のフェナントロリン骨格を連結する場合、連結ユニット中に共役結合、置換もしくは無置換の芳香族炭化水素、置換もしくは無置換の芳香複素環を含んでいる化合物がより好ましい。 In particular, the case where a phenanthroline derivative is used for the electron transport layer and the electron injection layer will be described. In order to obtain stable light emission over a long period of time, a material excellent in thermal stability and thin film formation is desired, and among phenanthroline derivatives, the substituent itself has a three-dimensional structure, or a phenanthroline skeleton or Those having a three-dimensional structure by steric repulsion with an adjacent substituent or those having a plurality of phenanthroline skeletons linked to each other are preferred. Furthermore, when linking a plurality of phenanthroline skeletons, a compound containing a conjugated bond, a substituted or unsubstituted aromatic hydrocarbon, or a substituted or unsubstituted aromatic heterocycle in the linking unit is more preferable.
 ボラン誘導体は、下記一般式(E-4)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure JPOXMLDOC01-appb-C000278

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換ボリル、または置換されていてもよいカルバゾールであり、そして、nはそれぞれ独立して0~3の整数である。
The borane derivative is a compound represented by the following general formula (E-4), and is disclosed in detail in JP-A-2007-27587.
Figure JPOXMLDOC01-appb-C000278

Wherein R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano, R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl, X is an optionally substituted arylene, and Y is a substituted Aryl having 16 or less carbon atoms, substituted boryl, or optionally substituted carbazole, and each n is independently an integer of 0 to 3.
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-1)で表される化合物、さらに下記一般式(E-4-1-1)~(E-4-1-4)で表される化合物が好ましい。具体例としては、9-[4-(4-ジメシチルボリルナフタレン-1-イル)フェニル]カルバゾール、9-[4-(4-ジメシチルボリルナフタレン-1-イル)ナフタレン-1-イル]カルバゾールなどがあげられる。
Figure JPOXMLDOC01-appb-C000279

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。
Among the compounds represented by the general formula (E-4), compounds represented by the following general formula (E-4-1), and further the following general formulas (E-4-1-1) to (E-4) The compound represented by -1-4) is preferred. Specific examples include 9- [4- (4-Dimesitylborylnaphthalen-1-yl) phenyl] carbazole, 9- [4- (4-Dimesitylborylnaphthalen-1-yl) naphthalen-1-yl. Carbazole and the like.
Figure JPOXMLDOC01-appb-C000279

Wherein R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano, R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl, and R 21 and R 22 are each independently hydrogen, alkyl, or substituted. At least one of optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocyclic ring, or cyano, X 1 is an optionally substituted arylene having 20 or less carbon atoms, and n is each Each independently represents an integer of 0 to 3, and each m independently represents an integer of 0 to 4;
Figure JPOXMLDOC01-appb-C000280

 各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
Figure JPOXMLDOC01-appb-C000280

In each formula, R 31 to R 34 are each independently methyl, isopropyl or phenyl, and R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-2)で表される化合物、さらに下記一般式(E-4-2-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000281

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。
Among the compounds represented by the above general formula (E-4), a compound represented by the following general formula (E-4-2), and a compound represented by the following general formula (E-4-2-1) Is preferred.
Figure JPOXMLDOC01-appb-C000281

In which R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano, R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl; X 1 is an optionally substituted arylene having 20 or less carbon atoms; N is an integer of 0 to 3 independently.
Figure JPOXMLDOC01-appb-C000282

 式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
Figure JPOXMLDOC01-appb-C000282

In the formula, R 31 to R 34 are each independently any of methyl, isopropyl or phenyl, and R 35 and R 36 are each independently any of hydrogen, methyl, isopropyl or phenyl It is.
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-3)で表される化合物、さらに下記一般式(E-4-3-1)または(E-4-3-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000283

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数10以下のアリーレンであり、Yは、置換されていてもよい炭素数14以下のアリールであり、そして、nはそれぞれ独立して0~3の整数である。
Among the compounds represented by the above general formula (E-4), compounds represented by the following general formula (E-4-3-3), and further represented by the following general formula (E-4-3-1) or (E-4) The compound represented by -3-2) is preferable.
Figure JPOXMLDOC01-appb-C000283

Wherein R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano, R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl; X 1 is an optionally substituted arylene having 10 or less carbon atoms; Y 1 is an optionally substituted aryl having 14 or less carbon atoms, and n is each independently an integer of 0 to 3.
Figure JPOXMLDOC01-appb-C000284

 各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
Figure JPOXMLDOC01-appb-C000284

In each formula, R 31 to R 34 are each independently methyl, isopropyl or phenyl, and R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
 ベンゾイミダゾール誘導体は、下記一般式(E-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000285

 式中、Ar~Arはそれぞれ独立に水素または置換されてもよい炭素数6~30のアリールである。特に、Arが置換されてもよいアントリルであるベンゾイミダゾール誘導体が好ましい。
The benzimidazole derivative is a compound represented by the following general formula (E-5).
Figure JPOXMLDOC01-appb-C000285

In the formula, Ar 1 to Ar 3 are each independently hydrogen or aryl having 6 to 30 carbon atoms which may be substituted. In particular, a benzimidazole derivative which is anthryl optionally substituted with Ar 1 is preferable.
 炭素数6~30のアリールの具体例は、フェニル、1-ナフチル、2-ナフチル、アセナフチレン-1-イル、アセナフチレン-3-イル、アセナフチレン-4-イル、アセナフチレン-5-イル、フルオレン-1-イル、フルオレン-2-イル、フルオレン-3-イル、フルオレン-4-イル、フルオレン-9-イル、フェナレン-1-イル、フェナレン-2-イル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル,9-フェナントリル、1-アントリル、2-アントリル、9-アントリル、フルオランテン-1-イル、フルオランテン-2-イル、フルオランテン-3-イル、フルオランテン-7-イル、フルオランテン-8-イル、トリフェニレン-1-イル、トリフェニレン-2-イル、ピレン-1-イル、ピレン-2-イル、ピレン-4-イル、クリセン-1-イル、クリセン-2-イル、クリセン-3-イル、クリセン-4-イル、クリセン-5-イル、クリセン-6-イル、ナフタセン-1-イル、ナフタセン-2-イル、ナフタセン-5-イル、ペリレン-1-イル、ペリレン-2-イル、ペリレン-3-イル、ペンタセン-1-イル、ペンタセン-2-イル、ペンタセン-5-イル、ペンタセン-6-イルである。 Specific examples of aryl having 6 to 30 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, acenaphthylene-1-yl, acenaphthylene-3-yl, acenaphthylene-4-yl, acenaphthylene-5-yl, and fluorene-1- Yl, fluoren-2-yl, fluoren-3-yl, fluoren-4-yl, fluoren-9-yl, phenalen-1-yl, phenalen-2-yl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, 1-anthryl, 2-anthryl, 9-anthryl, fluoranthen-1-yl, fluoranthen-2-yl, fluoranthen-3-yl, fluoranthen-7-yl, fluoranthen-8-yl, Triphenylene-1-yl, triphenylene-2-yl, pi N-1-yl, pyren-2-yl, pyren-4-yl, chrysen-1-yl, chrysen-2-yl, chrysen-3-yl, chrysen-4-yl, chrysen-5-yl, chrysene- 6-yl, naphthacene-1-yl, naphthacene-2-yl, naphthacene-5-yl, perylene-1-yl, perylene-2-yl, perylene-3-yl, pentacene-1-yl, pentacene-2- Yl, pentacene-5-yl and pentacene-6-yl.
 ベンゾイミダゾール誘導体の具体例は、1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールである。 Specific examples of the benzimidazole derivative include 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- (naphthalene-2) -Yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1- Phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4- (10 -(Naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10-di (naphthalene) -2-yl) anthracen-2-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 1- (4- (9,10-di (naphthalen-2-yl) anthracen-2-yl) Phenyl) -2-phenyl-1H-benzo [d] imidazole, 5- (9,10-di (naphthalen-2-yl) anthracen-2-yl) -1,2-diphenyl-1H-benzo [d] imidazole It is.
 電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
 好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
The electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer. As this reducing substance, various substances can be used as long as they have a certain reducing ability. For example, alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkali Group consisting of earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes At least one selected from can be preferably used.
Preferred reducing substances include alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. 9eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV), and alkaline earth metals such as those having a work function of 2.9 eV or less are particularly preferable. Among these, a more preferable reducing substance is an alkali metal of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs. These alkali metals have particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transport layer or the electron injection layer, the luminance of the organic EL element can be improved and the lifetime can be extended. Further, as a reducing substance having a work function of 2.9 eV or less, a combination of two or more alkali metals is also preferable. Particularly, a combination containing Cs, such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred. By containing Cs, the reducing ability can be efficiently exhibited, and by adding to the material for forming the electron transport layer or the electron injection layer, the luminance of the organic EL element can be improved and the lifetime can be extended.
<有機電界発光素子における陰極>
 陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たすものである。
<Cathode in organic electroluminescence device>
The cathode 108 serves to inject electrons into the light emitting layer 105 through the electron injection layer 107 and the electron transport layer 106.
 陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様のものを用いることができる。なかでも、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウム、およびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム、またはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウム、および酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されるものではない。 The material for forming the cathode 108 is not particularly limited as long as it is a substance that can efficiently inject electrons into the organic layer, but the same material as that for forming the anode 102 can be used. Among them, metals such as tin, magnesium, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium, and magnesium or their alloys (magnesium-silver Alloys, magnesium-indium alloys, aluminum-lithium alloys such as lithium fluoride / aluminum) and the like are preferred. In order to increase the electron injection efficiency and improve the device characteristics, lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective. However, these low work function metals are often often unstable in the atmosphere. In order to improve this point, for example, a method is known in which an organic layer is doped with a small amount of lithium, cesium or magnesium and a highly stable electrode is used. As other dopants, inorganic salts such as lithium fluoride, cesium fluoride, lithium oxide, and cesium oxide can also be used. However, it is not limited to these.
 さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウム、およびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニア、および窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティング、およびコーティングなど、導通を取ることができれば特に制限されない。 Further, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys using these metals, and inorganic substances such as silica, titania, and silicon nitride, polyvinyl alcohol, Preferred examples include laminating vinyl chloride, hydrocarbon polymer compounds and the like. The method for producing these electrodes is not particularly limited as long as conduction can be achieved, such as resistance heating, electron beam, sputtering, ion plating, and coating.
<各層で用いてもよい結着剤>
 以上の正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
<Binder that may be used in each layer>
The materials used for the above hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer can form each layer alone, but as a polymer binder, polyvinyl chloride, polycarbonate , Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate resin, ABS resin, polyurethane Can be used by being dispersed in solvent-soluble resins such as resins, and curable resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins, unsaturated polyester resins, alkyd resins, epoxy resins, and silicone resins. Is
<有機電界発光素子の作製方法>
 有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法、キャスト法、またはコーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
<Method for producing organic electroluminescent element>
Each layer constituting the organic electroluminescent element is formed by a method such as vapor deposition, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, printing method, spin coating method, casting method, or coating method. The film can be formed by forming a thin film. The film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a crystal oscillation type film thickness measuring device or the like. When a thin film is formed using a vapor deposition method, the vapor deposition conditions vary depending on the type of material, the target crystal structure and association structure of the film, and the like. Deposition conditions generally include boat heating temperature +50 to + 400 ° C., vacuum degree 10 −6 to 10 −3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature −150 to + 300 ° C., film thickness 2 nm to 5 μm. It is preferable to set appropriately within the range.
 次に、有機電界発光素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機電界発光素子が得られる。なお、上述の有機電界発光素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 Next, as an example of a method for producing an organic electroluminescent device, an organic electric field composed of an anode / hole injection layer / hole transport layer / a light emitting layer composed of a host material and a dopant material / electron transport layer / electron injection layer / cathode. A method for manufacturing a light-emitting element will be described. A thin film of an anode material is formed on a suitable substrate by vapor deposition or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode. A host material and a dopant material are co-evaporated to form a thin film to form a light emitting layer. An electron transport layer and an electron injection layer are formed on the light emitting layer, and a thin film made of a cathode material is formed by vapor deposition. By forming it as a cathode, a desired organic electroluminescent element can be obtained. In the preparation of the organic electroluminescence device described above, the order of preparation may be reversed, and the cathode, electron injection layer, electron transport layer, light emitting layer, hole transport layer, hole injection layer, and anode may be fabricated in this order. Is possible.
 このようにして得られた有機電界発光素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機電界発光素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic electroluminescent device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, the organic electroluminescent device is transparent or translucent. Luminescence can be observed from the electrode side (anode or cathode, and both). The organic electroluminescence device emits light when a pulse current or an alternating current is applied. The alternating current waveform to be applied may be arbitrary.
<有機電界発光素子の応用例>
 また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
 有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
<Application examples of organic electroluminescent devices>
The present invention can also be applied to a display device provided with an organic electroluminescent element or a lighting device provided with an organic electroluminescent element.
A display device or an illuminating device including an organic electroluminescent element can be manufactured by a known method such as connecting the organic electroluminescent element according to the present embodiment and a known driving device, such as direct current driving, pulse driving, or alternating current. It can be driven by appropriately using a known driving method such as driving.
 表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 Examples of the display device include a panel display such as a color flat panel display, and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066 and JP-A-2003-321546). Gazette, JP-A-2004-281086, etc.). Examples of the display method of the display include a matrix and / or segment method. Note that the matrix display and the segment display may coexist in the same panel.
 マトリクスとは、表示のための画素が格子状やモザイク状など二次元的に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。 A matrix is a pixel in which pixels for display are arranged two-dimensionally, such as a grid or mosaic, and displays characters and images as a set of pixels. The shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 μm or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become. In monochrome display, pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix driving method may be either a line sequential driving method or an active matrix. The line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
 セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示、および自動車のパネル表示などがあげられる。 In the segment method (type), a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light. For example, the time and temperature display in a digital clock or a thermometer, the operation status display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be given.
 照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板、および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。 Examples of the illuminating device include an illuminating device such as indoor lighting, a backlight of a liquid crystal display device, and the like (for example, JP 2003-257621 A, JP 2003-277741 A, JP 2004-119211 A). Etc.) The backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, and the like. In particular, as a backlight for liquid crystal display devices, especially personal computers for which thinning is an issue, considering that conventional methods are made of fluorescent lamps and light guide plates, it is difficult to reduce the thickness. The backlight using the light emitting element according to the embodiment is thin and lightweight.
<式(1-1-856)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000286
<Synthesis Example of Compound Represented by Formula (1-1-856)>
Figure JPOXMLDOC01-appb-C000286
 2,7-ジメトキシ-9-(ナフタレン-1-イル)-9H-カルバゾールの合成
 公知の文献に記載された方法に従って合成した2,7-ジメトキシ-9H-カルバゾール(10g)、1-フルオロナフタレン(9.7g)、炭酸セシウム(17.2g)およびジメチルスルホキシド(150ml)の入ったフラスコを、窒素雰囲気下、150℃で11時間攪拌した。その後、反応液を室温まで冷却し、吸引濾過で析出物を濾別し、水とトルエンを加え、水洗操作を行なった。次いでシリカゲルクロマトグラフィー(トルエン/酢酸エチル=5/1(容量比))で精製し、2,7-ジメトキシ-9-(ナフタレン-1-イル)-9H-カルバゾール(12.4g)を得た。
Synthesis of 2,7-dimethoxy-9- (naphthalen-1-yl) -9H-carbazole 2,7-dimethoxy-9H-carbazole (10 g) synthesized according to a method described in known literature, 1-fluoronaphthalene ( 9.7 g), a flask containing cesium carbonate (17.2 g) and dimethyl sulfoxide (150 ml) was stirred at 150 ° C. for 11 hours under a nitrogen atmosphere. Thereafter, the reaction solution was cooled to room temperature, the precipitate was separated by suction filtration, water and toluene were added, and a water washing operation was performed. Subsequently, the residue was purified by silica gel chromatography (toluene / ethyl acetate = 5/1 (volume ratio)) to obtain 2,7-dimethoxy-9- (naphthalen-1-yl) -9H-carbazole (12.4 g).
 9-(ナフタレン-1-イル)-9H-カルバゾール-2,7-ジオールの合成
 以上のようにして得られた2,7-ジメトキシ-9-(ナフタレン-1-イル)-9H-カルバゾール(12.0g)を窒素雰囲気下、ジクロロメタン(100ml)に溶かし、塩氷水で冷却した。ここに三臭化ホウ素の1Mジクロロメタン溶液(75ml)を滴下し、滴下終了後、室温で16時間撹拌した。水を加え反応を停止し、炭酸水素ナトリウム水で中和した溶液を、分液ロートで分液した。ジクロロメタン層を濃縮後、シリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=10/1(容量比))で精製し、9-(ナフタレン-1-イル)-9H-カルバゾール-2,7-ジオール(11.1g)を得た。
Synthesis of 9- (naphthalen-1-yl) -9H-carbazole-2,7-diol 2,7-dimethoxy-9- (naphthalen-1-yl) -9H-carbazole (12 0.0 g) was dissolved in dichloromethane (100 ml) under a nitrogen atmosphere and cooled with brine. Boron tribromide in 1M dichloromethane (75 ml) was added dropwise thereto, and after completion of the dropwise addition, the mixture was stirred at room temperature for 16 hours. The reaction was stopped by adding water, and the solution neutralized with aqueous sodium hydrogen carbonate was separated using a separatory funnel. The dichloromethane layer was concentrated and purified by silica gel column chromatography (toluene / ethyl acetate = 10/1 (volume ratio)), and 9- (naphthalen-1-yl) -9H-carbazole-2,7-diol (11. 1 g) was obtained.
 9-(ナフタレン-1-イル)-9H-カルバゾール-2,7-ジイル ビス(トリフルオロメタンスルホン酸)の合成
 以上のようにして得られた9-(ナフタレン-1-イル)-9H-カルバゾール-2,7-ジオール(11.0g)を窒素雰囲気下、ピリジン(100ml)に溶かし、氷水で冷却した。ここに無水トリフルオロメタンスルホン酸(25g)を滴下し、滴下終了後室温で15時間撹拌した。水を加え反応を停止後、反応液を分液ロートに移し変えて、酢酸エチルで抽出した。エバポレーターにて濃縮して得られた固体を、メタノール、水、メタノールの順に洗浄後、THF/エタノールの混合溶媒から再結晶し、9-(ナフタレン-1-イル)-9H-カルバゾール-2,7-ジイル ビス(トリフルオロメタンスルホン酸)(12.7g)を得た。
Synthesis of 9- (naphthalen-1-yl) -9H-carbazole-2,7-diyl bis (trifluoromethanesulfonic acid) 9- (naphthalen-1-yl) -9H-carbazole- obtained as described above 2,7-diol (11.0 g) was dissolved in pyridine (100 ml) under a nitrogen atmosphere and cooled with ice water. Trifluoromethanesulfonic anhydride (25 g) was added dropwise thereto, and the mixture was stirred at room temperature for 15 hours after completion of the addition. Water was added to stop the reaction, and the reaction solution was transferred to a separatory funnel and extracted with ethyl acetate. The solid obtained by concentrating with an evaporator was washed with methanol, water and methanol in this order, and then recrystallized from a mixed solvent of THF / ethanol to give 9- (naphthalen-1-yl) -9H-carbazole-2,7 -Diyl bis (trifluoromethanesulfonic acid) (12.7 g) was obtained.
 9-(ナフタレン-1-イル)-2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾールの合成
 シクロペンチルメチルエーテル(100ml)に以上のようにして得られた9-(ナフタレン-1-イル)-9H-カルバゾール-2,7-ジイル ビス(トリフルオロメタンスルホン酸)(9.5g)およびビス(ピナコラート)ジボロン(9.0g)を加えた溶液に、窒素雰囲気下、ビス(ジベンジリデンアセトン)パラジウム(0)(1.4g)、トリシクロヘキシルホスフィン(1.6g)および酢酸カリウム(4.7g)を室温で攪拌しながら加えた。その後、還流温度で4時間攪拌した後、反応液を室温まで冷却し、トルエンを加え、吸引濾過にて析出分を濾別した。濾液をエバポレーターにて濃縮し、シリカゲルカラムクロマトグラフィー(トルエン)で精製した。次いでジクロロメタン/エタノール混合溶媒から再結晶し9-(ナフタレン-1-イル)-2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾール(3.6g)を得た
Synthesis of 9- (naphthalen-1-yl) -2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9H-carbazole Cyclopentyl methyl ether (100 ml ) 9- (naphthalen-1-yl) -9H-carbazole-2,7-diyl bis (trifluoromethanesulfonic acid) (9.5 g) and bis (pinacolato) diboron (9. 0 g) was added with stirring bis (dibenzylideneacetone) palladium (0) (1.4 g), tricyclohexylphosphine (1.6 g) and potassium acetate (4.7 g) at room temperature under a nitrogen atmosphere. added. Then, after stirring at reflux temperature for 4 hours, the reaction solution was cooled to room temperature, toluene was added, and the precipitate was separated by suction filtration. The filtrate was concentrated with an evaporator and purified by silica gel column chromatography (toluene). Subsequently, recrystallization from a dichloromethane / ethanol mixed solvent 9- (naphthalen-1-yl) -2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)- 9H-carbazole (3.6 g) was obtained.
 式(1-1-856)で表される化合物;9-(ナフタレン-1-イル)-2,7-ビス(3-(ピリジン-4-イル)フェニル)-9H-カルバゾールの合成
 以上のようにして得られた9-(ナフタレン-1-イル)-2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾール(3.5g)、4-(3-ブロモフェニル)ピリジン(3.3g)、炭酸ナトリウム(2.7g)およびPd(PPh(0.5g)の入ったフラスコに、アルゴン雰囲気下、トルエン(30ml)、エタノール(10ml)および水(10ml)を入れ、還流温度で13時間撹拌した。反応液を室温まで冷却し、水を加え水洗操作を行なった。水洗操作にて塩を除去した有機物を活性アルミナカラムクロマトグラフィー(トルエン/酢酸エチル=1/4(容量比))で精製し、最終的に、式(1-1-856)で表される化合物である9-(ナフタレン-1-イル)-2,7-ビス(3-(ピリジン-4-イル)フェニル)-9H-カルバゾール(1.1g)を得た。
Synthesis of compound represented by formula (1-1-856); 9- (naphthalen-1-yl) -2,7-bis (3- (pyridin-4-yl) phenyl) -9H-carbazole 9- (Naphthalen-1-yl) -2,7-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9H-carbazole (3 0.5 g), 4- (3-bromophenyl) pyridine (3.3 g), sodium carbonate (2.7 g), and Pd (PPh 3 ) 4 (0.5 g) under an argon atmosphere with toluene ( 30 ml), ethanol (10 ml) and water (10 ml) were added and stirred at reflux temperature for 13 hours. The reaction solution was cooled to room temperature, water was added, and washing operation was performed. The organic substance from which salts have been removed by washing with water is purified by activated alumina column chromatography (toluene / ethyl acetate = 1/4 (volume ratio)), and finally the compound represented by the formula (1-1-856) 9- (Naphthalen-1-yl) -2,7-bis (3- (pyridin-4-yl) phenyl) -9H-carbazole (1.1 g) was obtained.
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(500MHz,CDCl):δ=8.65(dd,4H),8.3(d,2H),8.08(dd,1H),8.04(d,1H),7.77(m,2H),7.68-7.75(m,2H),7.52-7.62(m,7H),7.45-7.49(m,6H),7.35-7.41(m,2H),7.21(m,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (500 MHz, CDCl 3 ): δ = 8.65 (dd, 4H), 8.3 (d, 2H), 8.08 (dd, 1H), 8.04 (d, 1H), 7 .77 (m, 2H), 7.68-7.75 (m, 2H), 7.52-7.62 (m, 7H), 7.45-7.49 (m, 6H), 7.35 -7.41 (m, 2H), 7.21 (m, 2H).
<式(1-1-854)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000287
<Synthesis Example of Compound Represented by Formula (1-1-854)>
Figure JPOXMLDOC01-appb-C000287
 9-(ナフタレン-1-イル)-2,7-ビス(3-(ピリジン-2-イル)フェニル)-9H-カルバゾールの合成
 9-(ナフタレン-1-イル)-2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾール(3.0g)、2-(3-ブロモフェニル)ピリジン(3.2g)、炭酸カリウム(3.0g)およびPdCl{P(t-Bu)-(p-NMe-Ph)}(ジョンソン・マッセイ社製、Pd-132)(0.05g)の入ったフラスコに、アルゴン雰囲気下、トルエン(25ml)および水(2.5ml)を入れ、還流温度で6時間撹拌した。反応液を室温まで冷却後、トルエンおよび水を加え分液し、トルエンを減圧留去した。得られた濃縮物をアミノ基修飾シリカゲル(NH DM1020:富士シリシア製)カラムクロマトグラフィー(ヘプタン/酢酸エチル=3/1(容量比))で精製した。次いで活性アルミナカラムクロマトグラフィー(トルエン/酢酸エチル=50/1(容量比))で精製し、最終的に、式(1-1-854)で表される化合物である、9-(ナフタレン-1-イル)-2,7-ビス(3-(ピリジン-2-イル)フェニル)-9H-カルバゾール(0.9g)を得た。
Synthesis of 9- (Naphthalen-1-yl) -2,7-bis (3- (pyridin-2-yl) phenyl) -9H-carbazole 9- (Naphthalen-1-yl) -2,7-bis (4 , 4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9H-carbazole (3.0 g), 2- (3-bromophenyl) pyridine (3.2 g), potassium carbonate ( 3.0 g) and PdCl 2 {P (t-Bu) 2- (p-NMe 2 -Ph)} 2 (Johnson Massey, Pd-132) (0.05 g) in an argon atmosphere. Below, toluene (25 ml) and water (2.5 ml) were added, and the mixture was stirred at reflux temperature for 6 hours. After cooling the reaction solution to room temperature, toluene and water were added for liquid separation, and toluene was distilled off under reduced pressure. The obtained concentrate was purified by amino group-modified silica gel (NH DM1020: manufactured by Fuji Silysia) column chromatography (heptane / ethyl acetate = 3/1 (volume ratio)). Subsequently, the product is purified by activated alumina column chromatography (toluene / ethyl acetate = 50/1 (volume ratio)), and finally 9- (naphthalene-1) which is a compound represented by the formula (1-1-854) -Il) -2,7-bis (3- (pyridin-2-yl) phenyl) -9H-carbazole (0.9 g) was obtained.
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.67(m,2H)、8.29(d,2H)、8.16(m,2H)、8.05(d,1H)、8.01(d,1H)、7.88(d,2H)、7.66-7.74(m,6H)、7.65(d,2H)、7.56(d,2H)、7.53(t,1H)、7.45(t,2H)、7.40(d,1H)、7.15(t,1H)、7.25(m,2H)、7.20(m,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 8.67 (m, 2H), 8.29 (d, 2H), 8.16 (m, 2H), 8.05 (d, 1H), 8.01 (D, 1H), 7.88 (d, 2H), 7.66-7.74 (m, 6H), 7.65 (d, 2H), 7.56 (d, 2H), 7.53 ( t, 1H), 7.45 (t, 2H), 7.40 (d, 1H), 7.15 (t, 1H), 7.25 (m, 2H), 7.20 (m, 2H).
<式(1-1-855)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000288
<Synthesis Example of Compound Represented by Formula (1-1-855)>
Figure JPOXMLDOC01-appb-C000288
 9-(ナフタレン-1-イル)-2,7-ビス(3-(ピリジン-3-イル)フェニル)-9H-カルバゾールの合成
 9-(ナフタレン-1-イル)-2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾール(3.0g)、3-(3-ブロモフェニル)ピリジン(3.2g)、炭酸カリウム(3.0g)およびPdCl{P(t-Bu)-(p-NMe-Ph)}(ジョンソン・マッセイ社製、Pd-132)(0.04g)の入ったフラスコに、アルゴン雰囲気下、トルエン(25ml)および水(2.5ml)を入れ、還流温度で4時間半撹拌した。反応液を室温まで冷却後、トルエンおよび水を加え分液し、トルエンを減圧留去した。得られた濃縮物を活性アルミナカラムクロマトグラフィー(トルエン/酢酸エチル=5/1(容量比))で精製した。次いでアミノ基修飾シリカゲル(NH DM1020:富士シリシア製)カラムクロマトグラフィー(ヘプタン/酢酸エチル=3/1(容量比))で精製し、最終的に、式(1-1-855)で表される化合物である、9-(ナフタレン-1-イル)-2,7-ビス(3-(ピリジン-3-イル)フェニル)-9H-カルバゾール(0.7g)を得た。
Synthesis of 9- (Naphthalen-1-yl) -2,7-bis (3- (pyridin-3-yl) phenyl) -9H-carbazole 9- (Naphthalen-1-yl) -2,7-bis (4 , 4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9H-carbazole (3.0 g), 3- (3-bromophenyl) pyridine (3.2 g), potassium carbonate ( 3.0 g) and PdCl 2 {P (t-Bu) 2- (p-NMe 2 -Ph)} 2 (Johnson Massey, Pd-132) (0.04 g) in an argon atmosphere. Then, toluene (25 ml) and water (2.5 ml) were added, and the mixture was stirred at reflux temperature for 4 and a half hours. After cooling the reaction solution to room temperature, toluene and water were added for liquid separation, and toluene was distilled off under reduced pressure. The obtained concentrate was purified by activated alumina column chromatography (toluene / ethyl acetate = 5/1 (volume ratio)). Subsequently, it is purified by column chromatography (heptane / ethyl acetate = 3/1 (volume ratio)) with amino group-modified silica gel (NH DM1020: manufactured by Fuji Silysia), and finally represented by the formula (1-1-855) The compound 9- (naphthalen-1-yl) -2,7-bis (3- (pyridin-3-yl) phenyl) -9H-carbazole (0.7 g) was obtained.
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.83(m,2H)、8.58(m,2H)、8.30(d,2H)、8.07(d,1H)、8.02(d,1H)、7.85(d,2H)、7.67-7.78(m,4H)、7.61(d,2H)、7.56(m,3H)、7.49(m,4H)、7.30-7.40(m,4H)、7.21(s,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 8.83 (m, 2H), 8.58 (m, 2H), 8.30 (d, 2H), 8.07 (d, 1H), 8.02 (D, 1H), 7.85 (d, 2H), 7.67-7.78 (m, 4H), 7.61 (d, 2H), 7.56 (m, 3H), 7.49 ( m, 4H), 7.30-7.40 (m, 4H), 7.21 (s, 2H).
<式(1-1-851)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000289
<Synthesis Example of Compound Represented by Formula (1-1-851)>
Figure JPOXMLDOC01-appb-C000289
 9-(ナフタレン-1-イル)-2,7-ビス(4-(ピリジン-2-イル)フェニル)-9H-カルバゾールの合成
 9-(ナフタレン-1-イル)-2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾール(3.0g)、2-(4-ブロモフェニル)ピリジン(2.8g)、炭酸ナトリウム(2.4g)およびPd(PPh(0.2g)の入ったフラスコに、アルゴン雰囲気下、トルエン(17ml)、エタノール(6ml)および水(6ml)を入れ、還流温度で12時間半撹拌した。反応液を室温まで冷却後、水を加え吸引濾過にて、固体を取得した。次いで得られた固体を活性アルミナカラムカラムクロマトグラフィー(展開液:クロロベンゼン/酢酸エチル混合溶媒)で精製した。この際、「有機化学実験のてびき(1)-物質取扱法と分離精製法-」株式会社化学同人出版、94頁に記載の方法を参考にして、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。次いでオルトジクロロベンゼンから再結晶し、最終的に、式(1-1-851)で表される化合物である、9-(ナフタレン-1-イル)-2,7-ビス(4-(ピリジン-2-イル)フェニル)-9H-カルバゾール(1.0g)を得た。
Synthesis of 9- (Naphthalen-1-yl) -2,7-bis (4- (pyridin-2-yl) phenyl) -9H-carbazole 9- (Naphthalen-1-yl) -2,7-bis (4 , 4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9H-carbazole (3.0 g), 2- (4-bromophenyl) pyridine (2.8 g), sodium carbonate ( 2.4 g) and Pd (PPh 3 ) 4 (0.2 g) were charged with toluene (17 ml), ethanol (6 ml) and water (6 ml) under an argon atmosphere and stirred at reflux temperature for 12 hours and a half. did. After cooling the reaction solution to room temperature, water was added and a solid was obtained by suction filtration. Subsequently, the obtained solid was purified by activated alumina column column chromatography (developing solution: chlorobenzene / ethyl acetate mixed solvent). At this time, referring to the method described in “Chemical Doujinshi Publishing Co., Ltd., page 94”, gradually increase the ratio of ethyl acetate in the developing solution. The target product was eluted by increasing the amount to 1. Subsequently, recrystallization from orthodichlorobenzene and finally 9- (naphthalen-1-yl) -2,7-bis (4- (pyridine-), which is a compound represented by the formula (1-1-851) 2-yl) phenyl) -9H-carbazole (1.0 g) was obtained.
 NMR測定により得られた化合物の構造を確認しようと試みたが、溶解性が低いため、分解能が悪く、うまく確認することができなかった。しかしながら液体クロマトグラフ質量分析(LCMS)では目的とする式(1-1-851)で表される化合物の分子量が確認された。 An attempt was made to confirm the structure of the compound obtained by NMR measurement, but because of low solubility, the resolution was poor and could not be confirmed well. However, liquid chromatography mass spectrometry (LCMS) confirmed the molecular weight of the target compound represented by the formula (1-1-851).
<式(1-1-852)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000290
<Synthesis Example of Compound Represented by Formula (1-1-852)>
Figure JPOXMLDOC01-appb-C000290
 9-(ナフタレン-1-イル)-2,7-ビス(4-(ピリジン-3-イル)フェニル)-9H-カルバゾールの合成
 9-(ナフタレン-1-イル)-2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾール(3.0g)、3-(4-ブロモフェニル)ピリジン(3.2g)、炭酸カリウム(3.0g)およびPdCl{P(t-Bu)-(p-NMe-Ph)}(ジョンソン・マッセイ社製、Pd-132)(0.04g)の入ったフラスコに、アルゴン雰囲気下、トルエン(25ml)および水(2.5ml)を入れ、還流温度で5時間半撹拌した。反応液を室温まで冷却後、水を加え吸引濾過にて、固体を取得した。得られた固体を水洗、次いでメタノールで洗浄した。さらにN,N-ジメチルホルムアミドから再結晶し、最終的に、式(1-1-852)で表される化合物である、9-(ナフタレン-1-イル)-2,7-ビス(4-(ピリジン-3-イル)フェニル)-9H-カルバゾール(0.7g)を得た。
Synthesis of 9- (Naphthalen-1-yl) -2,7-bis (4- (pyridin-3-yl) phenyl) -9H-carbazole 9- (Naphthalen-1-yl) -2,7-bis (4 , 4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9H-carbazole (3.0 g), 3- (4-bromophenyl) pyridine (3.2 g), potassium carbonate ( 3.0 g) and PdCl 2 {P (t-Bu) 2- (p-NMe 2 -Ph)} 2 (Johnson Massey, Pd-132) (0.04 g) in an argon atmosphere. Then, toluene (25 ml) and water (2.5 ml) were added, and the mixture was stirred at reflux temperature for 5 and a half hours. After cooling the reaction solution to room temperature, water was added and a solid was obtained by suction filtration. The obtained solid was washed with water and then with methanol. Further, recrystallization from N, N-dimethylformamide and finally 9- (naphthalen-1-yl) -2,7-bis (4-), which is a compound represented by the formula (1-1-852) (Pyridin-3-yl) phenyl) -9H-carbazole (0.7 g) was obtained.
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.85(m,2H)、8.57(dd,2H)、8.30(d,2H)、8.10(m,1H)、8.05(d,1H)、7.86(m,2H)、7.72(m,2H)、7.66(m,4H)、7.62(dd,2H)、7.55-7.60(m,5H)、7.32-7.41(m,4H)、7.23(m,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 8.85 (m, 2H), 8.57 (dd, 2H), 8.30 (d, 2H), 8.10 (m, 1H), 8.05 (D, 1H), 7.86 (m, 2H), 7.72 (m, 2H), 7.66 (m, 4H), 7.62 (dd, 2H), 7.55 to 7.60 ( m, 5H), 7.32-7.41 (m, 4H), 7.23 (m, 2H).
<式(1-1-853)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000291
<Synthesis Example of Compound Represented by Formula (1-1-853)>
Figure JPOXMLDOC01-appb-C000291
 9-(ナフタレン-1-イル)-2,7-ビス(4-(ピリジン-4-イル)フェニル)-9H-カルバゾールの合成
 9-(ナフタレン-1-イル)-2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9H-カルバゾール(3.0g)、3-(4-ブロモフェニル)ピリジン(3.2g)、炭酸カリウム(3.0g)およびPdCl{P(t-Bu)-(p-NMe-Ph)}(ジョンソン・マッセイ社製、Pd-132)(0.04g)の入ったフラスコに、アルゴン雰囲気下、トルエン(25ml)および水(2.5ml)を入れ、還流温度で6時間半撹拌した。反応液を室温まで冷却後、水を加え吸引濾過にて、固体を取得した。得られた固体を水洗、次いでメタノール、さらには酢酸エチルで洗浄し、さらに活性アルミナカラムカラムクロマトグラフィー(展開液:クロロベンゼン/酢酸エチル混合溶媒)で精製した。この際、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。溶媒を減圧留去した後、クロロベンゼン、次いでN,N-ジメチルホルムアミドから再結晶し、最終的に、式(1-1-853)で表される化合物である、9-(ナフタレン-1-イル)-2,7-ビス(4-(ピリジン-4-イル)フェニル)-9H-カルバゾール(0.5g)を得た。
Synthesis of 9- (Naphthalen-1-yl) -2,7-bis (4- (pyridin-4-yl) phenyl) -9H-carbazole 9- (Naphthalen-1-yl) -2,7-bis (4 , 4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9H-carbazole (3.0 g), 3- (4-bromophenyl) pyridine (3.2 g), potassium carbonate ( 3.0 g) and PdCl 2 {P (t-Bu) 2- (p-NMe 2 -Ph)} 2 (Johnson Massey, Pd-132) (0.04 g) in an argon atmosphere. Then, toluene (25 ml) and water (2.5 ml) were added, and the mixture was stirred at reflux temperature for 6 and a half hours. After cooling the reaction solution to room temperature, water was added and a solid was obtained by suction filtration. The obtained solid was washed with water, then with methanol and further with ethyl acetate, and further purified by activated alumina column column chromatography (developing solution: chlorobenzene / ethyl acetate mixed solvent). At this time, the target product was eluted by gradually increasing the ratio of ethyl acetate in the developing solution. The solvent was distilled off under reduced pressure, and then recrystallized from chlorobenzene and then N, N-dimethylformamide, and finally 9- (naphthalen-1-yl, which is a compound represented by the formula (1-1-853) ) -2,7-bis (4- (pyridin-4-yl) phenyl) -9H-carbazole (0.5 g) was obtained.
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl):δ=8.64(m,4H)、8.31(d,2H)、8.12(t,1H)、8.06(d,1H)、7.73(m,2H)、7.60-7.70(m,10H)、7.57(m,1H)、7.49(m,4H)、7.39(m,2H)、7.23(m,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 8.64 (m, 4H), 8.31 (d, 2H), 8.12 (t, 1H), 8.06 (d, 1H), 7.73 (M, 2H), 7.60-7.70 (m, 10H), 7.57 (m, 1H), 7.49 (m, 4H), 7.39 (m, 2H), 7.23 ( m, 2H).
<式(1-1-1198)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000292
<Synthesis Example of Compound Represented by Formula (1-1-1198)>
Figure JPOXMLDOC01-appb-C000292
9-([1,1’-ビフェニル]-3-イル)-2,7-ジブロモ-9H-カルバゾールの合成
 2,7-ブロモ-9H-カルバゾール(26.9g)、3-フルオロ-1,1’-ビフェニル(21.4g)、炭酸セシウム(40.5g)およびジメチルスルホキシド(400ml)の入ったフラスコを、窒素雰囲気下、170℃で22時間半攪拌した。その後、反応液を室温まで冷却し、水と酢酸エチルを加え分液した。酢酸エチルを減圧留去し得られた固体を加熱したクロロホルムに溶解させ、熱時濾過を行なった。得られた濾液をシリカゲルに吸着させた後、乾燥させ、別途準備しておいたシリカゲルクロマトグラフィー(展開液:ヘプタン/トルエン混合溶媒)にチャージした。展開液中のトルエンの比率を徐々に増加させて目的物を溶出させた。さらにヘプタンから再結晶し、9-([1,1’-ビフェニル]-3-イル)-2,7-ジブロモ-9H-カルバゾール(4.2g)を得た。
Synthesis of 9-([1,1′-biphenyl] -3-yl) -2,7-dibromo-9H-carbazole 2,7-bromo-9H-carbazole (26.9 g), 3-fluoro-1,1 A flask containing '-biphenyl (21.4 g), cesium carbonate (40.5 g) and dimethyl sulfoxide (400 ml) was stirred at 170 ° C. for 22 and a half hours under a nitrogen atmosphere. Then, the reaction liquid was cooled to room temperature, and water and ethyl acetate were added and liquid-separated. Ethyl acetate was distilled off under reduced pressure, and the resulting solid was dissolved in heated chloroform and filtered while hot. The obtained filtrate was adsorbed on silica gel, dried, and charged in silica gel chromatography (developing solution: heptane / toluene mixed solvent) prepared separately. The target product was eluted by gradually increasing the ratio of toluene in the developing solution. Further, recrystallization from heptane gave 9-([1,1′-biphenyl] -3-yl) -2,7-dibromo-9H-carbazole (4.2 g).
 9-([1,1’-ビフェニル]-3-イル)-2,7-ビス(4-(ピリジン-2-イル)フェニル)-9H-カルバゾールの合成
 まず、パラジウム触媒を用いて、2-(4-ブロモフェニル)ピリジンおよびビスピナコラートジボロンをカップリング反応させることにより、2-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジンを合成した。次に、9-([1,1’-ビフェニル]-3-イル)-2,7-ジブロモ-9H-カルバゾール(1.5g)、2-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン(1.8g)、炭酸カリウム(1.7g)およびPdCl{P(t-Bu)-(p-NMe-Ph)}(ジョンソン・マッセイ社製、Pd-132)(0.06g)の入ったフラスコに、アルゴン雰囲気下、トルエン(15ml)および水(3ml)を入れ、還流温度で8時間撹拌した。反応液を室温まで冷却し、水およびクロロホルムを加え分液した。クロロホルムを減圧留去し、得られた固体をアミノ基修飾シリカゲル(NH DM1020:富士シリシア製)カラムクロマトグラフィー(ヘプタン/トルエン=1/2(容量比))で精製した。溶媒を減圧留去した後、酢酸エチルで洗浄し、最終的に、式(1-1-1198)で表される化合物である、9-([1,1’-ビフェニル]-3-イル)-2,7-ビス(4-(ピリジン-2-イル)フェニル)-9H-カルバゾール(0.3g)を得た。
Synthesis of 9-([1,1′-biphenyl] -3-yl) -2,7-bis (4- (pyridin-2-yl) phenyl) -9H-carbazole First, using a palladium catalyst, By coupling reaction of (4-bromophenyl) pyridine and bispinacolatodiboron, 2- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) Phenyl) pyridine was synthesized. Next, 9-([1,1′-biphenyl] -3-yl) -2,7-dibromo-9H-carbazole (1.5 g), 2- (4- (4,4,5,5-tetra Methyl-1,3,2-dioxaborolan-2-yl) phenyl) pyridine (1.8 g), potassium carbonate (1.7 g) and PdCl 2 {P (t-Bu) 2- (p-NMe 2 -Ph) } Toluene (15 ml) and water (3 ml) were placed in a flask containing 2 (manufactured by Johnson Matthey, Pd-132) (0.06 g) under an argon atmosphere, and stirred at reflux temperature for 8 hours. The reaction solution was cooled to room temperature, and water and chloroform were added for liquid separation. Chloroform was distilled off under reduced pressure, and the resulting solid was purified by amino group-modified silica gel (NH DM1020: manufactured by Fuji Silysia) column chromatography (heptane / toluene = 1/2 (volume ratio)). The solvent was distilled off under reduced pressure, followed by washing with ethyl acetate, and finally 9-([1,1′-biphenyl] -3-yl), which is a compound represented by the formula (1-1-1198). -2,7-bis (4- (pyridin-2-yl) phenyl) -9H-carbazole (0.3 g) was obtained.
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl):δ=8.70(m,2H)、8.23(d,2H)、8.07(d,4H)、7.87(m,1H)、7.60-7.80(m,17H)、7.46(t,2H)、7.37(t,1H)、7.22(m,2H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 8.70 (m, 2H), 8.23 (d, 2H), 8.07 (d, 4H), 7.87 (m, 1H), 7.60 -7.80 (m, 17H), 7.46 (t, 2H), 7.37 (t, 1H), 7.22 (m, 2H).
<式(1-1-1202)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000293
<Synthesis Example of Compound Represented by Formula (1-1-1202)>
Figure JPOXMLDOC01-appb-C000293
 9-([1,1’-ビフェニル]-3-イル)-2,7-ビス(3-(ピリジン-3-イル)フェニル)-9H-カルバゾールの合成
 まず、パラジウム触媒を用いて、3-(3-ブロモフェニル)ピリジンおよびビスピナコラートジボロンをカップリング反応させることにより、3-(3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジンを合成した。次に、9-([1,1’-ビフェニル]-3-イル)-2,7-ジブロモ-9H-カルバゾール(1.5g)、3-(3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン(1.8g)、炭酸カリウム(1.7g)およびPdCl{P(t-Bu)-(p-NMe-Ph)}(ジョンソン・マッセイ社製、Pd-132)(0.06g)の入ったフラスコに、アルゴン雰囲気下、トルエン(15ml)および水(3ml)を入れ、還流温度で11時間撹拌した。反応液を室温まで冷却し、水およびトルエンを加え分液した。トルエンを減圧留去し、得られた固体をアミノ基修飾シリカゲル(NH DM1020:富士シリシア製)カラムクロマトグラフィー(展開液:ヘプタン/酢酸エチル=1/1(容量比))で精製し、最終的に、式(1-1-1202)で表される化合物である、9-([1,1’-ビフェニル]-3-イル)-2,7-ビス(3-(ピリジン-3-イル)フェニル)-9H-カルバゾール(0.7g)を得た。
Synthesis of 9-([1,1′-biphenyl] -3-yl) -2,7-bis (3- (pyridin-3-yl) phenyl) -9H-carbazole First, using a palladium catalyst, By coupling reaction of (3-bromophenyl) pyridine and bispinacolatodiboron, 3- (3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) Phenyl) pyridine was synthesized. Next, 9-([1,1′-biphenyl] -3-yl) -2,7-dibromo-9H-carbazole (1.5 g), 3- (3- (4,4,5,5-tetra Methyl-1,3,2-dioxaborolan-2-yl) phenyl) pyridine (1.8 g), potassium carbonate (1.7 g) and PdCl 2 {P (t-Bu) 2- (p-NMe 2 -Ph) } Toluene (15 ml) and water (3 ml) were placed in a flask containing 2 (manufactured by Johnson Matthey, Pd-132) (0.06 g) under an argon atmosphere, and stirred at reflux temperature for 11 hours. The reaction solution was cooled to room temperature, and water and toluene were added for liquid separation. Toluene was distilled off under reduced pressure, and the resulting solid was purified by amino group-modified silica gel (NH DM1020: manufactured by Fuji Silysia) column chromatography (developing solution: heptane / ethyl acetate = 1/1 (volume ratio)), and finally And 9-([1,1′-biphenyl] -3-yl) -2,7-bis (3- (pyridin-3-yl), which is a compound represented by the formula (1-1-1202). Phenyl) -9H-carbazole (0.7 g) was obtained.
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl):δ=8.90(m,2H)、8.61(dd,2H)、8.25(d,2H)、7.90(m,2H)、7.87(m,1H)、7.83(s,2H)、7.60-7.75(m,11H)、7.54(m,4H)、7.43(t,2H)、7.36(m,3H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 8.90 (m, 2H), 8.61 (dd, 2H), 8.25 (d, 2H), 7.90 (m, 2H), 7.87 (M, 1H), 7.83 (s, 2H), 7.60-7.75 (m, 11H), 7.54 (m, 4H), 7.43 (t, 2H), 7.36 ( m, 3H).
<式(1-1-98)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000294
<Synthesis Example of Compound Represented by Formula (1-1-98)>
Figure JPOXMLDOC01-appb-C000294
2,7-ビス(4-エトキシナフタレン-1-イル)-9H-カルバゾールの合成
 2,7-ジブロモ-9H-カルバゾール(20g)、(4-エトキシナフタレン-1-イル)ボロン酸(33.2g)、Pd(PPh(2.1g)およびリン酸三カリウム(52.3g)の入ったフラスコに、アルゴン雰囲気下、トルエン(150ml)および水(15ml)を入れ、還流温度で2時間撹拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液を加え、吸引濾過にて析出物を採取した。得られた固体をメタノールで洗浄後、クロロベンゼンから再結晶し、さらにはトルエンで洗浄し、2,7-ビス(4-エトキシナフタレン-1-イル)-9H-カルバゾール(22.6g)を得た。
Synthesis of 2,7-bis (4-ethoxynaphthalen-1-yl) -9H-carbazole 2,7-dibromo-9H-carbazole (20 g), (4-ethoxynaphthalen-1-yl) boronic acid (33.2 g) ), Pd (PPh 3 ) 4 (2.1 g), and tripotassium phosphate (52.3 g) were charged with toluene (150 ml) and water (15 ml) under an argon atmosphere at reflux temperature for 2 hours. Stir. The reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and the precipitate was collected by suction filtration. The obtained solid was washed with methanol, recrystallized from chlorobenzene, and further washed with toluene to obtain 2,7-bis (4-ethoxynaphthalen-1-yl) -9H-carbazole (22.6 g). .
2,7-ビス(4-エトキシナフタレン-1-イル)-9-フェニル-9H-カルバゾールの合成
 以上のようにして得られた2,7-ビス(4-エトキシナフタレン-1-イル)-9H-カルバゾール(22.5g)、ブロモベンゼン(10.4g)、酢酸パラジウム(0.2g)、トリt-ブチルホスフィン(0.5g)、リン酸三カリウム(28.2g)およびキシレン(200ml)の入ったフラスコを、アルゴン雰囲気下、還流温度で12時間半撹拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液を加え、吸引濾過にて析出物を採取した。得られた固体をメタノールで洗浄後、加熱したクロロベンゼンに溶解させ、活性アルミナを敷いた桐山ロートを用い、熱時濾過をおこなった。得られた濾液を徐々に減圧留去することで析出する結晶を、吸引濾過にて採取し、2,7-ビス(4-エトキシナフタレン-1-イル)-9-フェニル-9H-カルバゾール(21.8g)を得た。
Synthesis of 2,7-bis (4-ethoxynaphthalen-1-yl) -9-phenyl-9H-carbazole 2,7-bis (4-ethoxynaphthalen-1-yl) -9H obtained as described above -Carbazole (22.5 g), bromobenzene (10.4 g), palladium acetate (0.2 g), tri-t-butylphosphine (0.5 g), tripotassium phosphate (28.2 g) and xylene (200 ml) The flask was stirred at reflux temperature for 12 and a half hours under an argon atmosphere. The reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and the precipitate was collected by suction filtration. The obtained solid was washed with methanol, dissolved in heated chlorobenzene, and filtered while hot using a Kiriyama funnel covered with activated alumina. Crystals precipitated by gradually distilling off the obtained filtrate under reduced pressure were collected by suction filtration, and 2,7-bis (4-ethoxynaphthalen-1-yl) -9-phenyl-9H-carbazole (21 0.8 g) was obtained.
4,4’-(9-フェニル-9H-カルバゾール-2,7-ジイル)ビス(ナフタレン-1-オール)の合成
 以上のようにして得られた2,7-ビス(4-エトキシナフタレン-1-イル)-9-フェニル-9H-カルバゾール(21.8g)、ピリジン塩酸塩(86.0g)およびN-メチルピロリドン(25ml)の入ったフラスコを220℃に加熱したオイルバス中で11時間撹拌した。反応液を室温まで冷却し、75℃程度に温めた水およびメタノールで繰り返し洗浄することで、4,4’-(9-フェニル-9H-カルバゾール-2,7-ジイル)ビス(ナフタレン-1-オール)(19.3g)を得た。
Synthesis of 4,4 ′-(9-phenyl-9H-carbazol-2,7-diyl) bis (naphthalen-1-ol) 2,7-bis (4-ethoxynaphthalene-1) obtained as described above -Il) -9-phenyl-9H-carbazole (21.8 g), pyridine hydrochloride (86.0 g) and a flask containing N-methylpyrrolidone (25 ml) were stirred in an oil bath heated to 220 ° C. for 11 hours. did. The reaction solution was cooled to room temperature and washed repeatedly with water and methanol warmed to about 75 ° C., whereby 4,4 ′-(9-phenyl-9H-carbazole-2,7-diyl) bis (naphthalene-1- All) (19.3 g) was obtained.
(9-フェニル-9H-カルバゾール-2,7-ジイル)ビス(ナフタレン-4,1-ジイル)ビス(トリフルオロメタンスルホナート)の合成
 以上のようにして得られた4,4’-(9-フェニル-9H-カルバゾール-2,7-ジイル)ビス(ナフタレン-1-オール)(19.3g)を窒素雰囲気下、ピリジン(100ml)に溶かし、氷水で冷却した。ここに無水トリフルオロメタンスルホン酸(31.0g)を滴下し、滴下終了後に室温で22時間撹拌した。水を加え析出物を吸引濾過にて取得した。得られた析出物を水、次いでメタノールで洗浄した。さらに活性アルミナカラムクロマトグラフィー(展開液:トルエン)で精製し、(9-フェニル-9H-カルバゾール-2,7-ジイル)ビス(ナフタレン-4,1-ジイル)ビス(トリフルオロメタンスルホナート)(18.5g)を得た。
Synthesis of (9-phenyl-9H-carbazole-2,7-diyl) bis (naphthalene-4,1-diyl) bis (trifluoromethanesulfonate) 4,4 ′-(9- Phenyl-9H-carbazol-2,7-diyl) bis (naphthalen-1-ol) (19.3 g) was dissolved in pyridine (100 ml) under a nitrogen atmosphere and cooled with ice water. Trifluoromethanesulfonic anhydride (31.0 g) was added dropwise thereto, and the mixture was stirred at room temperature for 22 hours after completion of the dropwise addition. Water was added and the precipitate was obtained by suction filtration. The resulting precipitate was washed with water and then with methanol. Further, it was purified by activated alumina column chromatography (developing solution: toluene), and (9-phenyl-9H-carbazole-2,7-diyl) bis (naphthalene-4,1-diyl) bis (trifluoromethanesulfonate) (18 0.5 g) was obtained.
 9-フェニル-2,7-ビス(4-(ピリジン-3-イル)ナフタレン-1-イル)-9H-カルバゾールの合成
 以上のようにして得られた(9-フェニル-9H-カルバゾール-2,7-ジイル)ビス(ナフタレン-4,1-ジイル)ビス(トリフルオロメタンスルホナート)(3.0g)、3-ピリジンボロン酸(1.2g)、Pd(PPh(0.2g)およびリン酸三カリウム(3.2g)の入ったフラスコに、アルゴン雰囲気下、N,N-ジメチルホルムアミド(18ml)を加え、110℃で7時間半撹拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液を加え、吸引濾過にて析出物を採取した。得られた析出物をメタノールで洗浄後、加熱したクロロベンゼンに溶解させ、熱時濾過を行なった。得られた濾液を減圧留去し、アミノ基修飾シリカゲル(NH DM1020:富士シリシア製)カラムクロマトグラフィー(展開液:トルエン/酢酸エチル=10/1(容量比))で精製し、最終的に、式(1-1-98)で表される化合物である、9-フェニル-2,7-ビス(4-(ピリジン-3-イル)ナフタレン-1-イル)-9H-カルバゾール(0.9g)を得た。
Synthesis of 9-phenyl-2,7-bis (4- (pyridin-3-yl) naphthalen-1-yl) -9H-carbazole (9-phenyl-9H-carbazole-2, obtained as described above) 7-diyl) bis (naphthalene-4,1-diyl) bis (trifluoromethanesulfonate) (3.0 g), 3-pyridineboronic acid (1.2 g), Pd (PPh 3 ) 4 (0.2 g) and N, N-dimethylformamide (18 ml) was added to a flask containing tripotassium phosphate (3.2 g) under an argon atmosphere, and the mixture was stirred at 110 ° C. for 7 and a half hours. The reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and the precipitate was collected by suction filtration. The obtained precipitate was washed with methanol, dissolved in heated chlorobenzene, and filtered while hot. The obtained filtrate was distilled off under reduced pressure and purified by amino group-modified silica gel (NH DM1020: manufactured by Fuji Silysia) column chromatography (developing solution: toluene / ethyl acetate = 10/1 (volume ratio)), and finally, 9-phenyl-2,7-bis (4- (pyridin-3-yl) naphthalen-1-yl) -9H-carbazole (0.9 g) which is a compound represented by the formula (1-1-98) Got.
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl):δ=8.81(m,2H)、8.71(dd,2H)、8.34(d,2H)、8.07(m,2H)、7.87(m,4H)、7.64(m,2H)、7.59(m,4H)、7.44-7.55(m,12H)、7.38(t,1H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 8.81 (m, 2H), 8.71 (dd, 2H), 8.34 (d, 2H), 8.07 (m, 2H), 7.87 (M, 4H), 7.64 (m, 2H), 7.59 (m, 4H), 7.44-7.55 (m, 12H), 7.38 (t, 1H).
<式(1-1-99)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000295
<Synthesis Example of Compound Represented by Formula (1-1-99)>
Figure JPOXMLDOC01-appb-C000295
 9-フェニル-2,7-ビス(4-(ピリジン-4-イル)ナフタレン-1-イル)-9H-カルバゾールの合成
 (9-フェニル-9H-カルバゾール-2,7-ジイル)ビス(ナフタレン-4,1-ジイル)ビス(トリフルオロメタンスルホナート)(2.0g)、4-ピリジンボロン酸(1.2g)、Pd(dba)(0.1g)、トリシクロヘキシルホスフィン(0.1g)およびリン酸三カリウム(3.2g)の入ったフラスコに、アルゴン雰囲気下、N,N-ジメチルアセトアミド(12ml)を加え、還流温度で10時間半撹拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液を加え、吸引濾過にて析出物を採取した。得られた析出物をメタノールで洗浄後、活性アルミナカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=10/1(容量比))で精製し、最終的に、式(1-1-99)で表される化合物である、9-フェニル-2,7-ビス(4-(ピリジン-4-イル)ナフタレン-1-イル)-9H-カルバゾール(0.4g)を得た。
Synthesis of 9-phenyl-2,7-bis (4- (pyridin-4-yl) naphthalen-1-yl) -9H-carbazole (9-phenyl-9H-carbazole-2,7-diyl) bis (naphthalene- 4,1-diyl) bis (trifluoromethanesulfonate) (2.0 g), 4-pyridineboronic acid (1.2 g), Pd (dba) 2 (0.1 g), tricyclohexylphosphine (0.1 g) and N, N-dimethylacetamide (12 ml) was added to a flask containing tripotassium phosphate (3.2 g) under an argon atmosphere, and the mixture was stirred at reflux temperature for 10 hours and a half. The reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and the precipitate was collected by suction filtration. The obtained precipitate was washed with methanol, and then purified by activated alumina column chromatography (developing solution: toluene / ethyl acetate = 10/1 (volume ratio)). The compound represented was 9-phenyl-2,7-bis (4- (pyridin-4-yl) naphthalen-1-yl) -9H-carbazole (0.4 g).
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl):δ=8.76(m,4H)、8.34(d,2H)、8.06(m,2H)、7.91(m,2H)、7.64(d,2H)、7.59(m,4H)、7.45-7.55(m,14H)、7.38(t,1H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 8.76 (m, 4H), 8.34 (d, 2H), 8.06 (m, 2H), 7.91 (m, 2H), 7.64 (D, 2H), 7.59 (m, 4H), 7.45-7.55 (m, 14H), 7.38 (t, 1H).
<式(1-1-1455)で表される化合物の合成例>
Figure JPOXMLDOC01-appb-C000296
<Synthesis Example of Compound Represented by Formula (1-1-1455)>
Figure JPOXMLDOC01-appb-C000296
2,7-ビス(3-メトキシフェニル)-9H-カルバゾールの合成
 2,7-ジブロモ-9H-カルバゾール(30g)、3-メトキシフェニルボロン酸(35.1g)、PdCl{P(t-Bu)-(p-NMe-Ph)}(ジョンソン・マッセイ社製、Pd-132)(0.32g)および炭酸カリウム(51.0g)の入ったフラスコに、アルゴン雰囲気下、トルエン(185ml)および水(18ml)を入れ、還流温度で1.5時間撹拌した。反応液を室温まで冷却し、酢酸エチルおよび水を加え分液した。溶媒を減圧留去し得られた固体を、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=10/1(容量比))で精製し、2,7-ビス(3-メトキシフェニル)-9H-カルバゾール(35.0g)を得た。
Synthesis of 2,7-bis (3-methoxyphenyl) -9H-carbazole 2,7-dibromo-9H-carbazole (30 g), 3-methoxyphenylboronic acid (35.1 g), PdCl 2 {P (t-Bu ) 2- (p-NMe 2 -Ph)} 2 (Johnson Massey, Pd-132) (0.32 g) and potassium carbonate (51.0 g) were placed in a flask containing toluene (185 ml) under an argon atmosphere. ) And water (18 ml) were added and stirred at reflux temperature for 1.5 hours. The reaction solution was cooled to room temperature, and ethyl acetate and water were added for liquid separation. The solid obtained by distilling off the solvent under reduced pressure was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate = 10/1 (volume ratio)) to obtain 2,7-bis (3-methoxyphenyl) -9H. -Carbazole (35.0 g) was obtained.
9-([1,1’:3’,1”-テルフェニル]-5’-イル)-2,7-ビス(3-メトキシフェニル)-9H-カルバゾールの合成
 以上のようにして得られた2,7-ビス(3-メトキシフェニル)-9H-カルバゾール(10.0g)、5’-ブロモ-1,1’:3’,1”-テルフェニル(12.2g)、酢酸パラジウム(0.12g)、トリt-ブチルホスフィン(0.32g)、リン酸三カリウム(16.8g)およびキシレン(88ml)の入ったフラスコを、アルゴン雰囲気下、還流温度で20時間撹拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液を加え分液した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開液:トルエン)で精製し、溶媒を減圧留去して得られた油状分にメタノールを加えることで、再沈殿を行い、9-([1,1’:3’,1”-テルフェニル]-5’-イル)-2,7-ビス(3-メトキシフェニル)-9H-カルバゾール(11.5g)を得た。
Synthesis of 9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -2,7-bis (3-methoxyphenyl) -9H-carbazole 2,7-bis (3-methoxyphenyl) -9H-carbazole (10.0 g), 5′-bromo-1,1 ′: 3 ′, 1 ″ -terphenyl (12.2 g), palladium acetate (0. A flask containing 12 g), tri-t-butylphosphine (0.32 g), tripotassium phosphate (16.8 g) and xylene (88 ml) was stirred at reflux temperature for 20 hours under an argon atmosphere. The reaction solution was cooled to room temperature, and an aqueous solution of ethylenediaminetetraacetic acid (EDTA) was added for liquid separation. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solution: toluene). Methanol was added to the oil obtained by distilling off the solvent under reduced pressure to perform reprecipitation, and 9-([1 , 1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -2,7-bis (3-methoxyphenyl) -9H-carbazole (11.5 g).
3,3’-(9-([1,1’:3’,1”-テルフェニル]-5’-イル)-9H-カルバゾール-2,7-ジイル)ジフェノールの合成
 以上のようにして得られた9-([1,1’:3’,1”-テルフェニル]-5’-イル)-2,7-ビス(3-メトキシフェニル)-9H-カルバゾール(11.5g)およびピリジン塩酸塩(121.0g)の入ったフラスコを210℃に加熱したオイルバス中で10時間撹拌した。反応液を室温まで冷却し、水およびメタノールで繰り返し洗浄することで、3,3’-(9-([1,1’:3’,1”-テルフェニル]-5’-イル)-9H-カルバゾール-2,7-ジイル)ジフェノール(10.6g)を得た。
Synthesis of 3,3 ′-(9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -9H-carbazol-2,7-diyl) diphenol The resulting 9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -2,7-bis (3-methoxyphenyl) -9H-carbazole (11.5 g) and pyridine A flask containing hydrochloride (121.0 g) was stirred in an oil bath heated to 210 ° C. for 10 hours. The reaction solution was cooled to room temperature and washed repeatedly with water and methanol to give 3,3 ′-(9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -9H. -Carbazole-2,7-diyl) diphenol (10.6 g) was obtained.
(9-([1,1’:3’,1”-テルフェニル]-5’-イル)-9H-カルバゾール-2,7-ジイル)ビス(3,1-フェニレン)ビス(トリフルオロメタンスルホナート)の合成
 以上のようにして得られた3,3’-(9-([1,1’:3’,1”-テルフェニル]-5’-イル)-9H-カルバゾール-2,7-ジイル)ジフェノール(10.6g)を窒素雰囲気下、ピリジン(53ml)に溶かし、氷水で冷却した。ここに無水トリフルオロメタンスルホン酸(15.6g)を滴下し、滴下終了後室温で16時間撹拌した。水を加え析出物を吸引濾過にて採取し、得られた析出物を水、次いでメタノールで洗浄した。さらにシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/1(容量比))で精製した。溶媒を減圧留去し得られた油状分にメタノールを加えることで再沈殿を行い、(9-([1,1’:3’,1”-テルフェニル]-5’-イル)-9H-カルバゾール-2,7-ジイル)ビス(3,1-フェニレン)ビス(トリフルオロメタンスルホナート)(12.7g)を得た。
(9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -9H-carbazol-2,7-diyl) bis (3,1-phenylene) bis (trifluoromethanesulfonate ) 3,3 ′-(9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -9H-carbazole-2,7- Diyl) diphenol (10.6 g) was dissolved in pyridine (53 ml) under a nitrogen atmosphere and cooled with ice water. Trifluoromethanesulfonic anhydride (15.6 g) was added dropwise thereto, and the mixture was stirred at room temperature for 16 hours after completion of the dropwise addition. Water was added, and the precipitate was collected by suction filtration. The obtained precipitate was washed with water and then with methanol. Further purification was performed by silica gel column chromatography (developing solution: toluene / heptane = 1/1 (volume ratio)). The solvent was distilled off under reduced pressure and reprecipitation was performed by adding methanol to the resulting oily component to obtain (9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -9H— Carbazole-2,7-diyl) bis (3,1-phenylene) bis (trifluoromethanesulfonate) (12.7 g) was obtained.
 9-([1,1’:3’,1”-テルフェニル]-5’-イル)-2,7-ビス(3-(ピリジン-3-イル)フェニル)-9H-カルバゾールの合成
 以上のようにして得られた(9-([1,1’:3’,1”-テルフェニル]-5’-イル)-9H-カルバゾール-2,7-ジイル)ビス(3,1-フェニレン)ビス(トリフルオロメタンスルホナート)(4.0g)、3-ピリジンボロン酸(1.4g)、Pd(dba)(0.15g)、トリシクロヘキシルホスフィン(0.12g)およびリン酸三カリウム(4.0g)の入ったフラスコに、アルゴン雰囲気下、N,N-ジメチルアセトアミド(20ml)を加え、120℃で5時間撹拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液を加え、析出物を吸引濾過にて採取した。ついで、トルエンに溶解させ、水を加え分液した。溶媒を減圧留去し、アミノ基修飾シリカゲル(NH DM1020:富士シリシア製)カラムクロマトグラフィー(展開液:トルエン/酢酸エチル=20/1(容量比))で精製した後、トルエンから再結晶し、9-([1,1’:3’,1”-テルフェニル]-5’-イル)-2,7-ビス(3-(ピリジン-3-イル)フェニル)-9H-カルバゾール(1.2g)を得た。
Synthesis of 9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -2,7-bis (3- (pyridin-3-yl) phenyl) -9H-carbazole (9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -9H-carbazol-2,7-diyl) bis (3,1-phenylene) Bis (trifluoromethanesulfonate) (4.0 g), 3-pyridineboronic acid (1.4 g), Pd (dba) 2 (0.15 g), tricyclohexylphosphine (0.12 g) and tripotassium phosphate (4 0.0 g) was added with N, N-dimethylacetamide (20 ml) under an argon atmosphere and stirred at 120 ° C. for 5 hours. The reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and the precipitate was collected by suction filtration. Subsequently, it was dissolved in toluene, and water was added for liquid separation. The solvent was distilled off under reduced pressure and purified by amino group-modified silica gel (NH DM1020: manufactured by Fuji Silysia) column chromatography (developing solution: toluene / ethyl acetate = 20/1 (volume ratio)), and then recrystallized from toluene. 9-([1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-yl) -2,7-bis (3- (pyridin-3-yl) phenyl) -9H-carbazole (1.2 g )
 NMR測定により得られた化合物の構造を確認した。
 H-NMR(CDCl):δ=8.90(m,2H)、8.60(dd,2H)、8.27(d,2H)、7.96(m,1H)、7.91(m,2H)、7.85(m,5H)、7.68-7.73(m,6H)、7.63(dd,2H)、7.54(m,5H)、7.46(t,4H)、7.33-7.41(m,4H).
The structure of the compound obtained by NMR measurement was confirmed.
1 H-NMR (CDCl 3 ): δ = 8.90 (m, 2H), 8.60 (dd, 2H), 8.27 (d, 2H), 7.96 (m, 1H), 7.91 (M, 2H), 7.85 (m, 5H), 7.68-7.73 (m, 6H), 7.63 (dd, 2H), 7.54 (m, 5H), 7.46 ( t, 4H), 7.33-7.41 (m, 4H).
 原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他のカルバゾール化合物を合成することができる。また、本発明の化合物には、少なくとも一部の水素原子が重水素で置換されているものも含まれるが、このような化合物は所望の箇所が重水素化された原料を用いることで、上記と同様に合成することができる。 By appropriately changing the raw material compound, another carbazole compound of the present invention can be synthesized by a method according to the synthesis example described above. In addition, the compounds of the present invention include those in which at least a part of the hydrogen atoms are substituted with deuterium. Such a compound can be obtained by using a raw material in which a desired position is deuterated. It can be synthesized in the same way.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited to these examples.
 実施例1および比較例1に係る電界発光素子を作製し、定電流駆動試験における駆動開始電圧(V)、初期輝度の90%(1800cd/m)以上の輝度を保持する時間(h)および1000cd/mにおける外部量子効率の測定を行った。以下、実施例および比較例について詳細に説明する。 The electroluminescent elements according to Example 1 and Comparative Example 1 were manufactured, the driving start voltage (V) in the constant current driving test, the time (h) for maintaining the luminance of 90% (1800 cd / m 2 ) or more of the initial luminance, and The external quantum efficiency at 1000 cd / m 2 was measured. Hereinafter, examples and comparative examples will be described in detail.
 なお、発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示したものが内部量子効率である。一方、この光子が発光素子の外部にまで放出された量に基づいて算出されるものが外部量子効率であり、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりあるいは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。 Note that the quantum efficiency of a light-emitting element includes an internal quantum efficiency and an external quantum efficiency. The ratio of external energy injected as electrons (or holes) into the light-emitting layer of the light-emitting element is converted into photons purely. What is shown is the internal quantum efficiency. On the other hand, the external quantum efficiency is calculated based on the amount of photons emitted to the outside of the light emitting element, and some of the photons generated in the light emitting layer are absorbed inside the light emitting element. The external quantum efficiency is lower than the internal quantum efficiency because it is continuously reflected and is not emitted outside the light emitting element.
 外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、素子の輝度が1000cd/mになる電圧を印加して素子を発光させた。TOPCON社製分光放射輝度計SR-2Aを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。 The external quantum efficiency is measured as follows. A voltage / current generator R6144 manufactured by Advantest Corporation was used to apply a voltage at which the luminance of the element was 1000 cd / m 2 to cause the element to emit light. Using a spectral radiance meter SR-2A manufactured by TOPCON, the spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface. Assuming that the light emitting surface is a completely diffusing surface, the value obtained by dividing the measured spectral radiance value of each wavelength component by the wavelength energy and multiplying by π is the number of photons at each wavelength. Next, the number of photons in the entire wavelength region observed was integrated to obtain the total number of photons emitted from the device. The value obtained by dividing the applied current value by the elementary charge is the number of carriers injected into the device, and the number obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device is the external quantum efficiency.
 作製した実施例1および比較例1に係る電界発光素子における、各層の材料構成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000297
Table 1 below shows the material structure of each layer in the electroluminescent devices according to the manufactured Example 1 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000297
 表1において、「CuPc」は銅フタロシアニン、「NPD」はN,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、化合物(A)は9-フェニル-10-[6-(1,1’;3,1”)テルフェニル-5’-イル]ナフタレン-2-イルアントラセン、化合物(B)はN,N,N,N-7,7-ヘキサフェニル-7H-ベンゾ[c]フルオレン-5,9-ジアミン、化合物(C)は9,10-ビス(4-(ピリジン-4-イル)フェニル)アントラセン、そして「Liq」は8-キノリノールリチウムである。以下に化学構造を示す。 In Table 1, “CuPc” is copper phthalocyanine, “NPD” is N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl, and compound (A) is 9-phenyl-10- [6 -(1,1 ′; 3,1 ″) terphenyl-5′-yl] naphthalen-2-ylanthracene, compound (B) is N 5 , N 5 , N 9 , N 9 -7,7-hexaphenyl -7H-benzo [c] fluorene-5,9-diamine, compound (C) is 9,10-bis (4- (pyridin-4-yl) phenyl) anthracene, and “Liq” is 8-quinolinol lithium . The chemical structure is shown below.
Figure JPOXMLDOC01-appb-C000298
Figure JPOXMLDOC01-appb-C000298
<実施例1>
<化合物(1-1-856)を電子輸送層に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、CuPcを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(A)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、式(1-1-856)で表される化合物を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデンボートおよび銀を入れたタングステン製蒸着用ボートを装着した。
<Example 1>
<Device Using Compound (1-1-856) for Electron Transport Layer>
A glass substrate of 26 mm × 28 mm × 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing CuPc, a molybdenum vapor deposition boat containing NPD, and a compound (A) are placed therein. Molybdenum deposition boat, molybdenum deposition boat containing compound (B), molybdenum deposition boat containing compound represented by formula (1-1-856), molybdenum deposition boat containing Liq A boat, a molybdenum boat containing magnesium, and a tungsten evaporation boat containing silver were installed.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、CuPcが入った蒸着用ボートを加熱して膜厚50nmになるように蒸着して正孔注入層を形成し、次いで、NPDが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、化合物(A)が入った蒸着用ボートと化合物(B)の入った蒸着用ボートを同時に加熱して膜厚35nmになるように蒸着して発光層を形成した。化合物(A)と化合物(B)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、式(1-1-856)で表される化合物の入った蒸着用ボートを加熱して膜厚15nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber was depressurized to 5 × 10 −4 Pa, first, the vapor deposition boat containing CuPc was heated to deposit to a film thickness of 50 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed. Next, the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm. The deposition rate was adjusted so that the weight ratio of compound (A) to compound (B) was approximately 95 to 5. Next, the evaporation boat containing the compound represented by the formula (1-1-856) was heated and evaporated to a thickness of 15 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second.
 その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。この時、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.1nmから10nmになるように陰極を形成し有機電界発光素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode. At this time, the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and the cathode was formed so that the deposition rate was from 0.1 nm to 10 nm to obtain an organic electroluminescent device.
 ITO電極を陽極、マグネシウム/銀電極を陰極として、直流電圧を印加すると、波長約460nmの青色発光が得られた。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.07Vで、初期輝度の90%(1800cd/m)以上の輝度を保持する時間は212時間であった。また、本素子の1000cd/mにおける外部量子効率は7.25%であった。 When a direct current voltage was applied using the ITO electrode as the anode and the magnesium / silver electrode as the cathode, blue light emission with a wavelength of about 460 nm was obtained. In addition, a constant current driving test was performed at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 5.07 V, and the time for maintaining the luminance of 90% (1800 cd / m 2 ) or more of the initial luminance was 212 hours. Moreover, the external quantum efficiency in 1000 cd / m < 2 > of this element was 7.25%.
<比較例1>
<化合物(C)を電子輸送層に用いた素子>
 式(1-1-856)で表される化合物を化合物(C)で表される化合物に替えた以外は実施例1と同様にして有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、直流電圧を印加すると、波長約455nmの青色発光が得られた。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.64Vで、初期輝度の90%(1800cd/m)以上の輝度を保持する時間は42時間であった。また、本素子の1000cd/mにおける外部量子効率は6.58%であった。
<Comparative Example 1>
<Device using Compound (C) for Electron Transport Layer>
An organic EL device was obtained in the same manner as in Example 1 except that the compound represented by the formula (1-1-856) was changed to the compound represented by the compound (C). When a direct current voltage was applied using the ITO electrode as the anode and the magnesium / silver electrode as the cathode, blue light emission with a wavelength of about 455 nm was obtained. In addition, a constant current driving test was performed at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 4.64 V, and the time for maintaining the luminance of 90% (1800 cd / m 2 ) or more of the initial luminance was 42 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 6.58%.
 以上の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000299
The above results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000299
 実施例2~9および比較例2~4に係る電界発光素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期輝度の80%(1600cd/m)以上の輝度を保持する時間(h)および1000cd/mにおける外部量子効率の測定を行った。以下、実施例および比較例について詳細に説明する。なお、外部量子効率の測定方法は上述する通りである。 Electroluminescent devices according to Examples 2 to 9 and Comparative Examples 2 to 4 were manufactured, and the driving start voltage (V) in the constant current driving test and the luminance of 80% (1600 cd / m 2 ) or more of the initial luminance were maintained. Measurement of the external quantum efficiency at a time (h) and 1000 cd / m 2 . Hereinafter, examples and comparative examples will be described in detail. The method for measuring the external quantum efficiency is as described above.
 作製した実施例2~9および比較例2~4に係る素子における、各層の材料構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000300
Table 3 below shows the material structure of each layer in the devices according to Examples 2 to 9 and Comparative Examples 2 to 4.
Figure JPOXMLDOC01-appb-T000300
 表3において、「HI」はN,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、化合物(D)は9-フェニル-10-(4-フェニルナフタレン-1-イル)アントラセン、化合物(E)は2,7-ジ([2,4’-ビピリジン]-6-イル)-9-フェニル-9H-カルバゾール、化合物(F)は9,10-ビス(4-(ピリジン-4-イル)ナフタレン-1-イル)アントラセン、化合物(G)は9,10-ビス(4-(ピリジン-2-イル)フェニル)アントラセンである。 In Table 3, “HI” refers to N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine, compound (D) is 9-phenyl-10- (4-phenylnaphthalen-1-yl) anthracene, and compound (E) is 2,7-di ([2,4′-bipyridine] -6- Yl) -9-phenyl-9H-carbazole, compound (F) is 9,10-bis (4- (pyridin-4-yl) naphthalen-1-yl) anthracene, and compound (G) is 9,10-bis ( 4- (Pyridin-2-yl) phenyl) anthracene.
Figure JPOXMLDOC01-appb-C000301
Figure JPOXMLDOC01-appb-C000301
<実施例2>
<化合物(1-1-854)を電子輸送層に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(D)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、化合物(1-1-854)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデンボートおよび銀を入れたタングステン製蒸着用ボートを装着した。
<Example 2>
<Device Using Compound (1-1-854) for Electron Transport Layer>
A glass substrate of 26 mm × 28 mm × 0.7 mm (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and compound (D) are placed therein. Molybdenum deposition boat, molybdenum deposition boat containing compound (B), molybdenum deposition boat containing compound (1-1-854), molybdenum deposition boat containing Liq, magnesium A molybdenum boat and a tungsten evaporation boat containing silver were installed.
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、次いで、NPDが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、化合物(D)が入った蒸着用ボートと化合物(B)の入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。化合物(D)と化合物(B)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-1-854)の入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber was depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (D) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm. The deposition rate was adjusted so that the weight ratio of compound (D) to compound (B) was approximately 95 to 5. Next, the evaporation boat containing the compound (1-1-854) was heated and evaporated to a thickness of 20 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second.
 その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。ついで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。この時、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.1nmから10nmになるように陰極を形成し有機電界発光素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a boat containing magnesium and a boat containing silver were heated at the same time to form a cathode with a thickness of 100 nm. At this time, the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and the cathode was formed so that the deposition rate was from 0.1 nm to 10 nm to obtain an organic electroluminescent device.
 ITO電極を陽極、マグネシウム/銀電極を陰極として、直流電圧を印加すると、波長約460nmの青色発光が得られた。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施したところ、駆動試験開始電圧は6.23Vで、初期輝度の80%(1600cd/m)以上の輝度を保持する時間は170時間であった。また、本素子の1000cd/mにおける外部量子効率は4.39%であった。 When a direct current voltage was applied using the ITO electrode as the anode and the magnesium / silver electrode as the cathode, blue light emission with a wavelength of about 460 nm was obtained. Further, when a constant current driving test was performed with a current density for obtaining an initial luminance of 2000 cd / m 2 , the driving test start voltage was 6.23 V, and the luminance was 80% (1600 cd / m 2 ) or more of the initial luminance. The holding time was 170 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 4.39%.
<実施例3>
<化合物(1-1-855)を電子輸送層に用いた素子>
 化合物(1-1-854)を化合物(1-1-855)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.16Vで、初期輝度の80%以上の輝度を保持する時間は321時間であった。また、本素子の1000cd/mにおける外部量子効率は6.79%であった。
<Example 3>
<Device Using Compound (1-1-855) for Electron Transport Layer>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-855). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The drive test start voltage was 5.16 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 321 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 6.79%.
<実施例4>
<化合物(1-1-856)を電子輸送層に用いた素子>
 化合物(1-1-854)を化合物(1-1-856)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.84Vで、初期輝度の80%以上の輝度を保持する時間は198時間であった。また、本素子の1000cd/mにおける外部量子効率は5.29%であった。
<Example 4>
<Device Using Compound (1-1-856) for Electron Transport Layer>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-856). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 4.84 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 198 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 5.29%.
<実施例5>
<化合物(1-1-851)を電子輸送層に用いた素子>
 化合物(1-1-854)を化合物(1-1-851)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.83Vで、初期輝度の80%以上の輝度を保持する時間は334時間であった。また、本素子の1000cd/mにおける外部量子効率は5.01%であった。
<Example 5>
<Device Using Compound (1-1-851) for Electron Transport Layer>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-851). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 4.83 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 334 hours. Moreover, the external quantum efficiency in 1000 cd / m < 2 > of this element was 5.01%.
<実施例6>
<化合物(1-1-852)を電子輸送層に用いた素子>
 化合物(1-1-854)を化合物(1-1-852)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.08Vで、初期輝度の80%以上の輝度を保持する時間は289時間であった。また、本素子の1000cd/mにおける外部量子効率は6.59%であった。
<Example 6>
<Device Using Compound (1-1-852) for Electron Transport Layer>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-852). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 5.08 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 289 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 6.59%.
<実施例7>
<化合物(1-1-853)を電子輸送層に用いた素子>
 化合物(1-1-854)を化合物(1-1-853)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.03Vで、初期輝度の80%以上の輝度を保持する時間は229時間であった。また、本素子の1000cd/mにおける外部量子効率は6.89%であった。
<Example 7>
<Device Using Compound (1-1-853) for Electron Transport Layer>
An organic EL device was obtained in the same manner as in Example 2, except that the compound (1-1-854) was replaced with the compound (1-1-853). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The drive test starting voltage was 4.03 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 229 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 6.89%.
<実施例8>
<化合物(1-1-98)を電子輸送層に用いた素子>
 化合物(1-1-854)を化合物(1-1-98)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.51Vで、初期輝度の80%以上の輝度を保持する時間は235時間であった。また、本素子の1000cd/mにおける外部量子効率は5.95%であった。
<Example 8>
<Device Using Compound (1-1-98) for Electron Transport Layer>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was changed to the compound (1-1-98). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The drive test start voltage was 5.51 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 235 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 5.95%.
<実施例9>
<化合物(1-1-99)を電子輸送層に用いた素子>
 化合物(1-1-854)を化合物(1-1-99)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は6.35Vで、初期輝度の80%以上の輝度を保持する時間は186時間であった。また、本素子の1000cd/mにおける外部量子効率は4.91%であった。
<Example 9>
<Device Using Compound (1-1-99) for Electron Transport Layer>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was replaced with the compound (1-1-99). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 6.35 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 186 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 4.91%.
<比較例2>
 化合物(1-1-854)を化合物(E)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.57Vで、初期輝度の80%以上の輝度を保持する時間は114時間であった。また、本素子の1000cd/mにおける外部量子効率は5.20%であった。
<Comparative Example 2>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was changed to the compound (E). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The drive test start voltage was 3.57 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 114 hours. Moreover, the external quantum efficiency in 1000 cd / m < 2 > of this element was 5.20%.
<比較例3>
 化合物(1-1-854)を化合物(F)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.61Vで、初期輝度の80%以上の輝度を保持する時間は120時間であった。また、本素子の1000cd/mにおける外部量子効率は5.12%であった。
<Comparative Example 3>
An organic EL device was obtained in the same manner as in Example 2 except that the compound (1-1-854) was changed to the compound (F). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 3.61 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 120 hours. Moreover, the external quantum efficiency in 1000 cd / m < 2 > of this element was 5.12%.
<比較例4>
 化合物(1-1-854)を化合物(G)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.05Vで、初期輝度の80%以上の輝度を保持する時間は135時間であった。また、本素子の1000cd/mにおける外部量子効率は6.20%であった。
<Comparative Example 4>
An organic EL device was obtained by the method according to Example 2 except that the compound (1-1-854) was replaced with the compound (G). A constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test start voltage was 4.05 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 135 hours. In addition, the external quantum efficiency of this device at 1000 cd / m 2 was 6.20%.
 以上の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000302
The above results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000302
 本発明の好ましい態様によれば、特に発光素子の寿命を向上させ、駆動電圧とのバランスも優れた有機電界発光素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。 According to a preferred aspect of the present invention, it is possible to provide an organic electroluminescent element that improves the lifetime of the light emitting element and has an excellent balance with the driving voltage, a display device including the organic electroluminescent element, and a lighting device including the organic electroluminescent element. it can.
 100  有機電界発光素子
 101  基板
 102  陽極
 103  正孔注入層
 104  正孔輸送層
 105  発光層
 106  電子輸送層
 107  電子注入層
 108  陰極
DESCRIPTION OF SYMBOLS 100 Organic electroluminescent element 101 Substrate 102 Anode 103 Hole injection layer 104 Hole transport layer 105 Light emitting layer 106 Electron transport layer 107 Electron injection layer 108 Cathode

Claims (14)

  1.  下記式(1-1)で表されるカルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000001

     上記式(1-1)中、
     Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、炭素数6~24のアリールまたは炭素数2~24のヘテロアリールであり、
     HyおよびHyは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、炭素数2~24の電子受容性窒素含有へテロアリールであり、
     ArおよびArは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、炭素数6~24のアリーレンであり、
     式(1-1)で表されるカルバゾール化合物における少なくとも1つの水素原子が重水素で置換されていてもよい。
    A carbazole compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000001

    In the above formula (1-1),
    R is aryl having 6 to 24 carbons or heteroaryl having 2 to 24 carbons, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons;
    Hy 1 and Hy 2 are each independently an electron-accepting nitrogen-containing heteroaryl having 2 to 24 carbon atoms, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. Yes,
    Ar 1 and Ar 2 are each independently aryl having 6 to 24 carbon atoms which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons;
    At least one hydrogen atom in the carbazole compound represented by the formula (1-1) may be substituted with deuterium.
  2.  Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、フェニル、ビフェニリル、テルフェニリル、クアテルフェニル、ナフチル、フェニル置換ナフチル、フェナントロリニル、ピリジル、ビピリジル、テルピリジル、キノリニル、イソキノリニル、ピリミジニル、ピラジニル、ピリダジニルおよびトリアジニルからなる群から選択される基であり、
     HyおよびHyは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ピリジル、ビピリジル、テルピリジル、ピリミジニル、ピラジニル、トリアジニル、アザインドリジニル、ベンゾイミダゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、インダゾリル、プリニル、カルボリニル、ナフチリジニル、キノキサリニル、キノリニル、イソキノリニル、ピリジルキノリニル、ピリジルイソキノリニル、アクリジニル、フェナントロリニル、フェナジニルおよびイミダゾピリジニルからなる群から選択される基であり、
     ArおよびArは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ベンゼン、ナフタレン、アントラセン、ナフタセン、ペンタセン、ビフェニル、アセナフチレン、フルオレン、フェナレン、フェナントレン、トリフェニレン、ピレンおよびペリレンからなる群から選択される構造の2価の基である、
     請求項1に記載するカルバゾール化合物。
    R is phenyl, biphenylyl, terphenylyl, quaterphenyl, naphthyl, phenyl-substituted naphthyl, phenanthrolinyl, pyridyl, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. A group selected from the group consisting of bipyridyl, terpyridyl, quinolinyl, isoquinolinyl, pyrimidinyl, pyrazinyl, pyridazinyl and triazinyl;
    Hy 1 and Hy 2 are each independently pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaind, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. Lydinyl, benzoimidazolyl, benzothiazolyl, benzoxazolyl, indazolyl, purinyl, carbolinyl, naphthyridinyl, quinoxalinyl, quinolinyl, isoquinolinyl, pyridylquinolinyl, pyridylisoquinolinyl, acridinyl, phenanthrolinyl, phenazinyl and imidazopyridinyl A group selected from the group consisting of:
    Ar 1 and Ar 2 are each independently benzene, naphthalene, anthracene, naphthacene, pentacene, biphenyl, acenaphthylene, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons, A divalent group having a structure selected from the group consisting of fluorene, phenalene, phenanthrene, triphenylene, pyrene and perylene,
    The carbazole compound according to claim 1.
  3.  Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、フェニル、ビフェニリル、テルフェニリル、クアテルフェニル、ナフチル、フェニル置換ナフチル、フェナントロリニル、ピリジル、キノリニルおよびイソキノリニルからなる群から選択される基であり、
     HyおよびHyは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ピリジル、ビピリジル、テルピリジル、ピリミジニル、ピラジニル、トリアジニル、アザインドリジニル、ベンゾイミダゾリル、ベンゾチアゾリル、ベンゾオキサゾリル、キノリニル、イソキノリニル、ピリジルキノリニル、ピリジルイソキノリニルおよびイミダゾピリジニルからなる群から選択される基であり、
     ArおよびArは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ベンゼン、ナフタレン、アントラセン、ピレン、トリフェニレン、フルオレン、ビフェニルおよびペリレンからなる群から選択される構造の2価の基である、
     請求項1に記載するカルバゾール化合物。
    R is phenyl, biphenylyl, terphenylyl, quaterphenyl, naphthyl, phenyl-substituted naphthyl, phenanthrolinyl, pyridyl, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. A group selected from the group consisting of quinolinyl and isoquinolinyl;
    Hy 1 and Hy 2 are each independently pyridyl, bipyridyl, terpyridyl, pyrimidinyl, pyrazinyl, triazinyl, azaind, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. A group selected from the group consisting of lysinyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, pyridylquinolinyl, pyridylisoquinolinyl and imidazopyridinyl;
    Ar 1 and Ar 2 are each independently benzene, naphthalene, anthracene, pyrene, triphenylene, fluorene, biphenyl, which may be substituted with alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms, and A divalent group of a structure selected from the group consisting of perylene,
    The carbazole compound according to claim 1.
  4.  Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、下記式(R-1)~式(R-20)で表される基からなる群から選択される基であり、
    Figure JPOXMLDOC01-appb-C000002

     HyおよびHyは、それぞれ独立して、下記式(Hy-1-1)~(Hy-1-3)で表される基、下記式(Hy-2-1)~(Hy-2-18)で表される基、下記式(Hy-3-1)~(Hy-3-27)で表される基からなる群から選択される基であり、
    Figure JPOXMLDOC01-appb-C000003

     ArおよびArは、それぞれ独立して、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、ベンゼンおよびナフタレンからなる群から選択される構造の2価の基である、
     請求項1に記載するカルバゾール化合物。
    R is selected from the group consisting of groups represented by the following formulas (R-1) to (R-20), which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. A group to be selected,
    Figure JPOXMLDOC01-appb-C000002

    Hy 1 and Hy 2 are each independently groups represented by the following formulas (Hy-1-1) to (Hy-1-3), and the following formulas (Hy-2-1) to (Hy-2-). 18) a group selected from the group consisting of groups represented by the following formulas (Hy-3-1) to (Hy-3-27):
    Figure JPOXMLDOC01-appb-C000003

    Ar 1 and Ar 2 each independently represents a divalent structure selected from the group consisting of benzene and naphthalene, which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons Which is the basis of
    The carbazole compound according to claim 1.
  5.  Rは、炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置換されていてもよい、上記式(R-1)~式(R-14)で表される基からなる群から選択される基であり、
     HyおよびHyは、それぞれ独立して、上記式(Hy-1-1)~(Hy-1-3)で表される基、上記式(Hy-2-1)~(Hy-2-18)で表される基からなる群から選択される基であり、
     ArおよびArは、それぞれ独立して、1,2-フェニレン、1,3-フェニレン、1,4-フェニレン、1,4-ナフタレン-ジイル、1,5-ナフタレン-ジイル、2,6-ナフタレン-ジイルおよび2,7-ナフタレン-ジイルからなる群から選択される2価の基である、
     請求項1に記載するカルバゾール化合物。
    R is selected from the group consisting of the groups represented by the above formulas (R-1) to (R-14), which may be substituted with alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. A group to be selected,
    Hy 1 and Hy 2 are each independently groups represented by the above formulas (Hy-1-1) to (Hy-1-3), and the above formulas (Hy-2-1) to (Hy-2-). 18) a group selected from the group consisting of groups represented by:
    Ar 1 and Ar 2 are each independently 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,4-naphthalene-diyl, 1,5-naphthalene-diyl, 2,6- A divalent group selected from the group consisting of naphthalene-diyl and 2,7-naphthalene-diyl,
    The carbazole compound according to claim 1.
  6.  HyおよびHyが同一であり、ArおよびArが同一である、請求項5に記載するカルバゾール化合物。 The carbazole compound according to claim 5, wherein Hy 1 and Hy 2 are the same, and Ar 1 and Ar 2 are the same.
  7.  下記式(1-1-856)で表される、請求項1に記載するカルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000004
    The carbazole compound according to claim 1, which is represented by the following formula (1-1-856).
    Figure JPOXMLDOC01-appb-C000004
  8.  下記式(1-1-854)、式(1-1-855)、式(1-1-851)、式(1-1-852)、式(1-1-853)、式(1-1-1198)、式(1-1-1202)、式(1-1-98)、式(1-1-99)または式(1-1-1455)で表される、請求項1に記載するカルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000005
    The following formula (1-1-854), formula (1-1-855), formula (1-1-851), formula (1-1-852), formula (1-1-853), formula (1- 1-1198), formula (1-1-1202), formula (1-1-98), formula (1-1-99) or formula (1-1-1455) Carbazole compounds.
    Figure JPOXMLDOC01-appb-C000005
  9.  請求項1~8のいずれかに記載する化合物を含有する、電子輸送材料。 An electron transport material comprising the compound according to any one of claims 1 to 8.
  10.  陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、請求項9に記載する電子輸送材料を含有する電子輸送層および/または電子注入層とを有する、有機電界発光素子。 The electron transport containing the electron transport material of Claim 9 arrange | positioned between a pair of electrode which consists of an anode and a cathode, the light emitting layer arrange | positioned between this pair of electrodes, and the said cathode and this light emitting layer An organic electroluminescent device having a layer and / or an electron injection layer.
  11.  前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、請求項10に記載する有機電界発光素子。 At least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of quinolinol-based metal complexes, pyridine derivatives, bipyridine derivatives, phenanthroline derivatives, borane derivatives, and benzimidazole derivatives. The organic electroluminescent element according to claim 10.
  12.  前記電子輸送層および電子注入層の少なくとも1つは、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項11に記載する有機電界発光素子。 At least one of the electron transport layer and the electron injection layer may further include an alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth Containing at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes, The organic electroluminescent element according to claim 11.
  13.  請求項10~12のいずれかに記載する有機電界発光素子を備えた表示装置。 A display device comprising the organic electroluminescent element according to any one of claims 10 to 12.
  14.  請求項10~12のいずれかに記載する有機電界発光素子を備えた照明装置。 An illumination device comprising the organic electroluminescent element according to any one of claims 10 to 12.
PCT/JP2011/062620 2010-06-02 2011-06-01 Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element WO2011152466A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127031124A KR101864902B1 (en) 2010-06-02 2011-06-01 Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element
CN201180026759.1A CN102918037B (en) 2010-06-02 2011-06-01 Carbazole compound, electronic delivery material, organic electroluminescent element, display device and illumination device
JP2012518437A JP5783173B2 (en) 2010-06-02 2011-06-01 Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010126544 2010-06-02
JP2010-126544 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011152466A1 true WO2011152466A1 (en) 2011-12-08

Family

ID=45066824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062620 WO2011152466A1 (en) 2010-06-02 2011-06-01 Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element

Country Status (5)

Country Link
JP (1) JP5783173B2 (en)
KR (1) KR101864902B1 (en)
CN (1) CN102918037B (en)
TW (1) TWI538910B (en)
WO (1) WO2011152466A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002871A1 (en) * 2012-06-28 2014-01-03 Jnc株式会社 Electron transport material and organic electroluminescent element using same
JP2015051966A (en) * 2013-08-07 2015-03-19 Jnc株式会社 Electron transport material and organic electroluminescent element using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560315B1 (en) * 2014-05-19 2015-10-15 주식회사 엘엠에스 Novel compound and light-emitting diode containing the same
KR102523099B1 (en) * 2015-06-18 2023-04-18 엘지디스플레이 주식회사 Organic light emitting device
CN108299389A (en) * 2017-12-26 2018-07-20 上海道亦化工科技有限公司 A kind of compound based on phenanthrene and carbazole and application thereof and organic electroluminescence device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282270A (en) * 2002-03-25 2003-10-03 Konica Corp Organic electroluminescent device and display using the same
JP2008150365A (en) * 2006-11-20 2008-07-03 Chisso Corp Electron transport material and organic electroluminescent device using the same
JP2008247895A (en) * 2007-03-07 2008-10-16 Chisso Corp Electron transport material and organic electroluminescent element using the same
JP2009173642A (en) * 2007-12-27 2009-08-06 Chisso Corp Anthracene derivative compound comprising pyridylphenyl group, and organic electroluminescent device
JP2010168363A (en) * 2008-12-25 2010-08-05 Chisso Corp Anthracene derivative having pyridylnaphthyl group and organic electroluminescent device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3816969B2 (en) 1994-04-26 2006-08-30 Tdk株式会社 Organic EL device
JP3148176B2 (en) 1998-04-15 2001-03-19 日本電気株式会社 Organic electroluminescence device
JP4407102B2 (en) 2001-08-06 2010-02-03 三菱化学株式会社 Anthracene compound, method for producing the same, and organic electroluminescent device
JP4172172B2 (en) 2001-10-10 2008-10-29 コニカミノルタホールディングス株式会社 Organic electroluminescence device
EP2770036B1 (en) * 2002-03-15 2017-12-20 Idemitsu Kosan Co., Ltd Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
WO2003080760A1 (en) 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent devices and organic electroluminescent devices made by using the same
CN100366703C (en) * 2002-03-22 2008-02-06 出光兴产株式会社 Material for organic electroluminescent device and organic electroluminescent device using the same
JP4170655B2 (en) * 2002-04-17 2008-10-22 出光興産株式会社 Novel aromatic compound and organic electroluminescence device using the same
JP4561221B2 (en) 2003-07-31 2010-10-13 三菱化学株式会社 Compound, charge transport material and organic electroluminescence device
JP2005170911A (en) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd Aromatic compound and organic electroluminescent element using the same
WO2006067976A1 (en) 2004-12-24 2006-06-29 Pioneer Corporation Organic compound, charge-transporting material, and organic electroluminescent element
JP5167607B2 (en) 2005-08-23 2013-03-21 三菱化学株式会社 Charge transport material, charge transport material composition, and organic electroluminescent device
JP5119929B2 (en) 2006-01-30 2013-01-16 Jnc株式会社 Novel compound and organic electroluminescence device using the same
KR101507166B1 (en) * 2008-12-08 2015-04-30 엘지디스플레이 주식회사 Blue Color Emitting Compounds And Organic Light Emitting Diode Comprising Thereof
KR101149528B1 (en) * 2009-08-10 2012-05-29 에스에프씨 주식회사 Aromatic Compound and organoelectroluminescent device using the same
DE102009053382A1 (en) * 2009-11-14 2011-05-19 Merck Patent Gmbh Materials for electronic devices
TWI491602B (en) * 2009-12-03 2015-07-11 Jnc Corp Benzo(c)carbazole compound having substituent including pyridine and organic electroluminescent device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282270A (en) * 2002-03-25 2003-10-03 Konica Corp Organic electroluminescent device and display using the same
JP2008150365A (en) * 2006-11-20 2008-07-03 Chisso Corp Electron transport material and organic electroluminescent device using the same
JP2008247895A (en) * 2007-03-07 2008-10-16 Chisso Corp Electron transport material and organic electroluminescent element using the same
JP2009173642A (en) * 2007-12-27 2009-08-06 Chisso Corp Anthracene derivative compound comprising pyridylphenyl group, and organic electroluminescent device
JP2010168363A (en) * 2008-12-25 2010-08-05 Chisso Corp Anthracene derivative having pyridylnaphthyl group and organic electroluminescent device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002871A1 (en) * 2012-06-28 2014-01-03 Jnc株式会社 Electron transport material and organic electroluminescent element using same
CN104379572A (en) * 2012-06-28 2015-02-25 捷恩智株式会社 Electron transport material and organic electroluminescent element using same
JPWO2014002871A1 (en) * 2012-06-28 2016-05-30 Jnc株式会社 Electron transport material and organic electroluminescent device using the same
CN104379572B (en) * 2012-06-28 2016-09-21 捷恩智株式会社 Benzo [a] carbazole compound, electron transport materials and use its organic electric-field light-emitting element
JP2015051966A (en) * 2013-08-07 2015-03-19 Jnc株式会社 Electron transport material and organic electroluminescent element using the same

Also Published As

Publication number Publication date
KR101864902B1 (en) 2018-06-05
KR20130112690A (en) 2013-10-14
JP5783173B2 (en) 2015-09-24
JPWO2011152466A1 (en) 2013-08-01
CN102918037A (en) 2013-02-06
TWI538910B (en) 2016-06-21
TW201202216A (en) 2012-01-16
CN102918037B (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP7232448B2 (en) Organic device material and organic electroluminescence device using the same
JP5353233B2 (en) Anthracene derivative compound having pyridylphenyl group and organic electroluminescence device
JP5556168B2 (en) Anthracene derivative having pyridylnaphthyl group and organic electroluminescent device
JP5799637B2 (en) Anthracene derivative and organic electroluminescence device using the same
JP5786578B2 (en) Light emitting layer material and organic electroluminescent device using the same
JP5233228B2 (en) Benzofluorene compound, light emitting layer material and organic electroluminescent device using the compound
JP5617398B2 (en) Benzofluorene compound, light emitting layer material and organic electroluminescent device using the compound
JP5780132B2 (en) Benzofluorene compound, light emitting layer material and organic electroluminescent device using the compound
JP5509606B2 (en) Anthracene derivative compound having pyridyl group and organic electroluminescence device
WO2011068204A1 (en) Benzo[c]carbazole compound that has substituent bearing pyridine ring, and organic electroluminescent element
WO2013150674A1 (en) Benzofluorene compound, material for light-emitting layer which is produced using said compound, and organic electroluminescent element
JP5824827B2 (en) Benzofluorene compound, light emitting layer material and organic electroluminescent device using the compound
WO2014065391A1 (en) Benzofluorene compound, material for luminescent layer using same, and organic electroluminescent element
JP5949779B2 (en) Benzofluorene compound, light emitting layer material and organic electroluminescent device using the compound
JP6094490B2 (en) Anthracene derivative and organic electroluminescence device using the same
JP5783173B2 (en) Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices
JP5217476B2 (en) Benzofluorene compound, light emitting layer material and organic electroluminescent device using the compound
JP2012094823A (en) Pyridylphenyl-substituted anthracene compound and organic electroluminescent element
JP5807601B2 (en) Anthracene derivative and organic electroluminescence device using the same
JP5402128B2 (en) Anthracene or naphthalene derivative compound having bipyridyl group and organic electroluminescence device
JP2013018717A (en) Benzofluorene compound, material for light-emitting layer using the compound, and organic electroluminescent element
JP5949354B2 (en) Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices
JP2015203027A (en) Anthracene derivative and organic el element
JP5549270B2 (en) Anthracene derivative and organic electroluminescence device using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026759.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518437

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127031124

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789868

Country of ref document: EP

Kind code of ref document: A1