WO2014002871A1 - Electron transport material and organic electroluminescent element using same - Google Patents

Electron transport material and organic electroluminescent element using same Download PDF

Info

Publication number
WO2014002871A1
WO2014002871A1 PCT/JP2013/066978 JP2013066978W WO2014002871A1 WO 2014002871 A1 WO2014002871 A1 WO 2014002871A1 JP 2013066978 W JP2013066978 W JP 2013066978W WO 2014002871 A1 WO2014002871 A1 WO 2014002871A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
phenyl
carbons
aryl
carbon atoms
Prior art date
Application number
PCT/JP2013/066978
Other languages
French (fr)
Japanese (ja)
Inventor
国防 王
洋平 小野
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to KR1020147030758A priority Critical patent/KR102022437B1/en
Priority to CN201380032113.3A priority patent/CN104379572B/en
Priority to JP2014522579A priority patent/JP6183363B2/en
Publication of WO2014002871A1 publication Critical patent/WO2014002871A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a novel electron transport material having a pyridyl group, an organic electroluminescence device using the electron transport material (hereinafter, sometimes abbreviated as an organic EL device or simply a device), and the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-123983 discloses that an organic EL device can be driven at a low voltage by using a 2,2′-bipyridyl compound, which is a phenanthroline derivative or an analog thereof, as an electron transport material. It is stated that it can be done.
  • An object of the present invention is to provide an electron transport material that contributes to high luminous efficiency and long life of an organic EL element. Furthermore, this invention makes it a subject to provide the organic EL element using this electron transport material.
  • a benzo [a] carbazole compound represented by the following formula (1) represented by the following formula (1).
  • a, b, c, and d are independently 1 or 0, but a and b are not 0 at the same time;
  • Py 1 and Py 2 are independently pyridyl or bipyridyl, and any hydrogen of the pyridyl or bipyridyl is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or Optionally substituted with heteroaryl having 2 to 12 carbons;
  • Ar 1 is hydrogen or aryl having 6 to 20 carbon atoms when a is 0;
  • Ar 1 is arylene having 6 to 20 carbon atoms when a is 1;
  • Ar 2 is hydrogen or carbon when b is 0
  • Py 1 and Py 2 are independently groups represented by the following formulas (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2-18) One selected from the group of Any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, or pyridyl;
  • Ar 1 and Ar 2 are independently phenylene, naphthalenediyl, anthracenediyl, or chrysenediyl, and any hydrogen in these groups is replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl May be;
  • A is phenyl, naphthyl or phenanthryl, and any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cycl
  • Py 2 is selected from the group of groups represented by the following formulas (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2-18) And Any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, or pyridyl;
  • Ar 1 is hydrogen, phenyl, naphthyl, anthryl, phenanthryl, or chrycenyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
  • Ar 2 is phenylene, naphthalenediyl, anthracenediyl, or chrysenediyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t
  • Py 1 is selected from the group of groups represented by the following formulas (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2-18) And Any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, or pyridyl;
  • Ar 1 is phenylene, naphthalenediyl, anthracenediyl, or chrysenediyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
  • Ar 2 is hydrogen, phenyl, naphthyl, anthryl, phenanthryl, or chrysenyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t
  • Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-1), (Py-2- 2), (Py-2-3), (Py-2-7), (Py-2-8), (Py-2-9), (Py-2-10), (Py-2-11) And any one of the groups represented by (Py-2-12), wherein any hydrogen of these groups may be replaced by methyl, t-butyl, phenyl, naphthyl, or pyridyl Often; Ar 1 and Ar 2 are independently 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-1,6-diyl, naphthalene-2,6-diyl, naphthalene-2,7 -Diyl, or anthracene-9,10-diyl, any hydrogen of these groups may be replaced by methyl, t-butyl, or
  • Py 2 is represented by the formula (Py-1-1), (Py-1-2), (Py-l-3), (Py-2-1), (Py-2-2), (Py- 2-3), (Py-2-7), (Py-2-8), (Py-2-9), (Py-2-10), (Py-2-11), and (Py-2) -12) is one selected from the group of groups, and any hydrogen of these groups may be replaced by methyl, t-butyl, phenyl, naphthyl, or pyridyl;
  • Ar 1 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, or phenyl;
  • Ar 2 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-1,6-diyl, naphthalene-2,6-
  • Py 1 is represented by the formula (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-1), (Py-2-2), (Py- 2-3), (Py-2-7), (Py-2-8), (Py-2-9), (Py-2-10), (Py-2-11), and (Py-2) -12) is one selected from the group of groups, and any hydrogen of these groups may be replaced by methyl, t-butyl, phenyl, naphthyl, or pyridyl;
  • Ar 1 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-1,6-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene- 9,10-diyl, any hydrogen of these groups may be replaced by methyl, t-butyl, or phenyl;
  • Ar 2 is
  • Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-2), (Py-2- 3) one selected from the group of groups represented by (Py-2-8), (Py-2-9), (Py-2-11), and (Py-2-12);
  • Ar 1 and Ar 2 are independently 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene-9, 10-diyl;
  • A is phenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
  • R 1 to R 8 are all hydrogen; and
  • Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-2), (Py-2- 3) one selected from the group of groups represented by (Py-2-8), (Py-2-9), (Py-2-11), and (Py-2-12);
  • Ar 1 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
  • Ar 2 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene-9,10-diyl;
  • A is phenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, 1-naphthyl, 2-naph
  • Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-2), (Py-2- 3) one selected from the group of groups represented by (Py-2-8), (Py-2-9), (Py-2-11), and (Py-2-12);
  • Ar 1 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene-9,10-diyl;
  • Ar 2 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
  • A is phenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, 1-naphthyl, 2-naph
  • a pair of electrodes composed of an anode and a cathode, a light emitting layer disposed between the pair of electrodes, an electron transport material according to the item [22], disposed between the cathode and the light emitting layer.
  • An organic electroluminescent device having an electron transport layer and / or an electron injection layer containing
  • At least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of a quinolinol-based metal complex, a bipyridine derivative, a phenanthroline derivative, and a borane derivative, [23]
  • a quinolinol-based metal complex a bipyridine derivative, a phenanthroline derivative, and a borane derivative
  • At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or alkaline earth. Containing at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes The organic electroluminescence device as described in the item [23].
  • the compound of the present invention is stable even when a voltage is applied in a thin film state and has a feature of high charge transport capability.
  • the compound of the present invention is suitable as a charge transport material in an organic EL device.
  • an organic EL device having high luminous efficiency and a long lifetime can be obtained.
  • a high-performance display device such as full-color display can be created.
  • arbitrary used in the definition of a compound may mean “can be freely selected not only by position but also by number”.
  • the expression “any hydrogen of phenyl may be substituted with alkyl having 1 to 6 carbon atoms” not only means “one hydrogen may be substituted with alkyl”, but also “ It may also mean “same alkyl, or each may be replaced by a different alkyl”.
  • the symbols Me, Et, i-Pr, t-Bu, Cy, and Ph used in the structural formulas, chemical reaction formulas, and the like of this specification represent methyl, ethyl, isopropyl, tertiary butyl, cyclohexyl, and phenyl, respectively. .
  • a first invention of the present application is a benzo [a] carbazole compound having pyridyl or bipyridyl represented by the following formula (1).
  • a, b, c and d are independently 1 or 0, but a and b are not 0 at the same time.
  • pyridyl or bipyridyl is linked to the 3rd and 9th positions of benzo [a] carbazole directly or via arylene.
  • the LUMO level is lowered, and the injection of electrons from the cathode to the electron transport layer or the electron injection layer is likely to occur. It is thought to bring about effects such as lowering.
  • a structure of the formula (1-1) in which pyridyl or bipyridyl is connected to both ends of the molecule is more preferable. Even if arylene is interposed between benzo [a] carbazole and pyridyl or bipyridyl, there is no significant characteristic variation, and c and d in the formula may be 0 or 1.
  • a compound in which bipyridyl is directly linked to benzo [a] carbazole has limitations on the intermediate materials that can be used, and thus the production methods that can be selected are limited.
  • the side to which bipyridyl is linked is preferably via arylene.
  • pyridyl or bipyridyl is linked to the 9-position of benzo [a] carbazole directly or via arylene.
  • pyridyl or bipyridyl is linked to the 3-position of benzo [a] carbazole directly or via arylene.
  • a compound having pyridyl or bipyridyl linked to one end of these molecules is preferable next to the compound represented by the above formula (1-1) as a material used for the electron transport layer or the electron injection layer.
  • the position of benzo [a] carbazole to which pyridyl and bipyridyl are linked may be the 3rd position or the 9th position.
  • Py 1 and Py 2 are independently pyridyl or bipyridyl.
  • pyridyl is 2-pyridyl, 3-pyridyl and 4-pyridyl represented by the following formulas (Py-1-1), (Py-1-2) and (Py-1-3).
  • Bipyridyl is specifically a group represented by the following formulas (Py-2-1) to (Py-2-30).
  • Any hydrogen of this pyridyl or bipyridyl may be replaced by alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 12 carbons .
  • the number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • alkyl having 1 to 6 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, Examples thereof include 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl and the like. Among these, methyl, ethyl, isopropyl, and t-butyl are preferable, methyl and t-butyl are more preferable, and methyl is particularly preferable.
  • Examples of the cycloalkyl having 3 to 6 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Among these, cyclohexyl is preferable because of easy availability of raw materials and ease of production.
  • aryl having 6 to 14 carbon atoms examples include phenyl, naphthyl, anthryl, phenanthryl and the like. Among these, phenyl and naphthyl are preferable, and phenyl is more preferable because of easy availability of raw materials and ease of production.
  • heteroaryl having 2 to 12 carbon atoms include a heterocyclic group containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom.
  • Py 1 and Py 2 may be the same or different groups, but are preferably the same in terms of ease of production of the compound. Whether Py 1 and Py 2 are the same or different, (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2- 18) is preferably selected from the group of groups represented by (Py-1-1) to (Py-1-3), (Py-2-1) to (Py-2-3) and (Py It is more preferably selected from the group of groups represented by -2-7) to (Py-2-12).
  • Py 1 or Py 2 is (Py-1-1) to (Py-1-3) and (Py-2-1).
  • Py-1-1) to (Py-1-3) and (Py-2-1) are preferably selected from the group of groups represented by (Py-1-1) to (Py-1-3), (Py-2-1) to (Py--). It is more preferable that the group is selected from the group of groups represented by 2-3) and (Py-2-7) to (Py-2-12).
  • Ar 1 is hydrogen or aryl having 6 to 20 carbon atoms, preferably aryl having 6 to 20 carbon atoms
  • Ar 2 is arylene having 6 to 20 carbon atoms. is there.
  • Ar 1 is arylene having 6 to 20 carbon atoms
  • Ar 2 is hydrogen or aryl having 6 to 20 carbon atoms, and aryl having 6 to 20 carbon atoms preferable.
  • aryl having 6 to 20 carbon atoms examples include phenyl, naphthyl, anthryl, phenanthryl, triphenylenyl, pyrenyl, chrycenyl, naphthacenyl, perylenyl and the like.
  • phenyl, naphthyl, anthryl, and phenanthryl are preferable, and phenyl, naphthyl, and anthryl are more preferable.
  • Examples of the arylene having 6 to 20 carbon atoms include phenylene, naphthalenediyl, anthracenediyl, phenanthrene diyl, pyrenediyl, chrysenediyl, naphthacene diyl, perylene diyl and the like.
  • phenylene, naphthalenediyl, anthracenediyl and chrysenediyl are preferable, and phenylene, naphthalenediyl and anthracenediyl are more preferable.
  • Any hydrogen in the above aryl or arylene may be replaced with alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms.
  • substituents include those exemplified as the above-mentioned pyridyl or bipyridyl substituents, and methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, anthryl and phenanthryl are preferred, and methyl, ethyl , Isopropyl, t-butyl, cyclohexyl, phenyl, and naphthyl are more preferable, and methyl, t-butyl, and phenyl are more preferable.
  • the number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • Ar 1 and Ar 2 are aryl, including aryl having a substituent, phenyl, 1-naphthyl, 2-naphthyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5 ′ -Iyl and 9-phenanthryl are preferred, with phenyl, 1-naphthyl, 2-naphthyl, 3-biphenylyl, and m-terphenyl-5'-yl being more preferred.
  • Ar 1 and Ar 2 are arylene, 1,4-phenylene, 1,3-phenylene, 1,4-naphthalenediyl, 2,7-naphthalenediyl, and 9,10-anthracenediyl are preferred, 4-phenylene, 1,4-naphthalenediyl and 9,10-anthracenediyl are more preferred.
  • A is aryl having 6 to 20 carbon atoms, and any hydrogen of the aryl is alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms or aryl having 6 to 14 carbon atoms. It may be replaced.
  • Examples of the aryl having 6 to 20 carbon atoms include the groups exemplified for Ar 1 and Ar 2 above.
  • Examples of the substituents of alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, and aryl having 6 to 14 carbon atoms include the groups exemplified as the substituents for the above-mentioned pyridyl or bipyridyl.
  • A is preferably phenyl, 1-naphthyl, 2-naphthyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, and 9-phenanthryl, including aryl having a substituent. More preferred are phenyl, 1-naphthyl, 2-naphthyl, 3-biphenylyl, and 4-biphenylyl.
  • R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons.
  • Aryl, and any hydrogen of the aryl or heteroaryl may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons.
  • Examples of the alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, aryl having 6 to 14 carbon atoms, and heteroaryl having 2 to 10 carbon atoms include the groups exemplified as the substituents for the above-mentioned pyridyl or bipyridyl. .
  • R 1 to R 8 are preferably hydrogen, methyl, ethyl, isopropyl, t-butyl, cyclohexyl and phenyl, more preferably hydrogen, methyl, t-butyl, cyclohexyl and phenyl, and even more preferably all hydrogen.
  • Specific examples of the compound represented by the formula (1-1) in the embodiment of the present invention include the following compounds (1-1-1) to (1-1-861) and (1-1-871) to ( 1-1-1019).
  • preferred compounds are (1-1-1) to (1-1-56), (1-1-65) to (1-1-67), (1-1-71) to (1-1 -76), (1-1-86) to (1-1-88), (1-1-92) to (1-1-97), (1-1-102) to (1-1-104) ), (1-1-108) to (1-1-113), (1-1-118), (1-1-119), (1-1-123) to (1-1-133), (1-1-137) to (1-1-141), (1-1-145) to (1-1-150), (1-1-154) to (1-1-159), (1 -1-163) to (1-1-177), (1-1-181) to (1-1-183), (1-1-205), (1-1-206), (1-1 -208) to (1-1-213), (1-1-215) to (1 1-220), (1-1-222) to (1-1-227), (1-1-230) to (1
  • Specific examples of the compound represented by the formula (1-2) in the embodiment of the present invention include the following compounds (1-2-1) to (1-2-365) and (1-2-381) to ( 1-2-656). Of these, preferred compounds are (1-2-1) to (1-2-146), (1-2-149), (1-2-150), (1-2-153) to (1-2).
  • Specific examples of the compound represented by the formula (1-3) in the embodiment of the present invention include the following compounds (1-3-1) to (1-3-352) and (1-3-361) to ( 1-3-654).
  • preferred compounds are (1-3-1) to (1-3-132), (1-136) to (1-3-141), (1-3-144) to (1-3 -161), (1-3-165) to (1-3-170), (1-3-173), (1-3-174), (1-3-177) to (1-3-179) ), (1-3-183) to (1-3-189), (1-3-193) to (1-3-198), (1-3-201), (1-3-202), (1-3-205) to (1-3-207), (1-3-211) to (1-3-214), (1-3-225) to (1-3-352), and ( 1-3-479) to (1-3-620).
  • the compound represented by Formula (1) can be manufactured using a known synthesis method. For example, it can be synthesized by following the routes shown in the following reactions 1 to 8. It can also be synthesized by following the routes shown in the following reactions 9 to 17.
  • reaction 2 the nitro group of compound (a-1) is reductively cyclized with triphenylphosphine: PPh 3 or triethoxyphosphine: P (OEt) 3 to synthesize compound (a-2).
  • Reaction 3 using a palladium catalyst or a copper catalyst, compound (a-2) is reacted with bromide or iodide of A in the presence of a base and a reaction accelerator to synthesize compound (a-3).
  • a in the formula is the same as described above including the following.
  • compound (a-5) is synthesized by reacting compound (a-4) with trifluoromethanesulfonic anhydride in the presence of a base.
  • compound (a-6) is synthesized by reacting compound (a-5) with bis (pinacolato) diboron in the presence of a base using a palladium catalyst.
  • Reaction 7 is the final step.
  • Compound (a-6) obtained in Reaction 6 is subjected to Suzuki coupling reaction with 2 moles of pyridyl, bipyridyl halide or pyridylaryl (A 0 ) halide or triflate, and the compound represented by Formula (1) Is synthesized.
  • the compound (a-5) obtained in Reaction 5 was added to a boronic acid of 2-fold moles of pyridyl, bipyridyl or pyridylaryl (A 0 ) in the presence of a base using a palladium catalyst or A boronic ester can also be subjected to a Suzuki coupling reaction to synthesize a compound represented by the formula (1).
  • a 0 is 2-pyridyl or bipyridyl
  • the reaction 7 is preferred in view of the stability of the reaction intermediate.
  • compound (b-3) is synthesized by reacting compound (b-2) with a bromide or iodide of A in the presence of a base and a reaction accelerator using a palladium catalyst or a copper catalyst.
  • a in the formula is the same as described above including the following.
  • compound (b-3) is reacted with boronic acid or boronic acid ester of pyridylaryl or aryl (A 02 ) in the presence of a base to synthesize compound (b-4). To do.
  • This reaction can be used even when A 02 is pyridyl or bipyridyl.
  • Y of compound (b-3) is lithiated or used as a Grignard reagent, and then a boronic ester is used according to a conventional method.
  • compound (b-7) is synthesized by reacting compound (b-6) with bis (pinacolato) diboron in the presence of a base using a palladium catalyst.
  • Reaction 16 is the final step.
  • the compound (b-7) obtained in Reaction 15 is subjected to Suzuki coupling reaction with a pyridyl, bipyridyl, pyridylaryl, or aryl (A 01 ) halide or triflate to synthesize a compound represented by Formula (1). .
  • the compound (b-6) obtained in the reaction 14 was subjected to a Suzuki coupling reaction with a boronic acid or boronic acid ester of pyridylaryl or aryl (A 01 ) in the presence of a base using a palladium catalyst to obtain a compound of the formula
  • the compound represented by (1) can also be synthesized. This reaction can be used even when A 01 is pyridyl or bipyridyl, but reaction 16 is preferred in view of the stability of the reaction intermediate.
  • a method for synthesizing a compound in which Ar 1 in formula (1-2) is hydrogen will be described.
  • naphthalen-2-ylboronic acid in which the 6-position of the naphthalene ring is hydrogen is used. do it.
  • synthesizing via the route of reactions 9 to 17 in place of (6-methoxynaphthalen-2-yl) boronic acid used in reaction 9, naphthalen-2-ylboronic acid in which the 6-position of the naphthalene ring is hydrogen is used. do it.
  • a method for synthesizing a compound of formula (1-3) in which Ar 2 is hydrogen will be described.
  • a compound in which the 4-position of the benzene ring is hydrogen may be used.
  • a halide or triflate in which Y of nitrobenzene, which is the starting material of reaction 9 is hydrogen may be used.
  • the compound represented by the formula (1) can be synthesized by a route other than the above route.
  • 2-nitrohalobenzene or triflate previously substituted at the 4-position with pyridyl, bipyridyl, pyridylaryl, aryl (A 02 ), etc., and the 6-position previously substituted with pyridyl, bipyridyl, pyridylaryl, aryl (A 01 ), etc.
  • Naphthalen-2-ylboronic acid is synthesized, respectively, and subjected to Suzuki coupling reaction according to a conventional method.
  • the nitro group is reductively cyclized using PPh 3 or P (OEt) 3 to obtain an 11H-benzo [a] carbazole derivative.
  • 11H-benzo [a] carbazole derivative with bromide or iodide of A using a palladium catalyst or a copper catalyst in the presence of a base and a reaction accelerator, the formula (1) of the present invention Can be synthesized.
  • This reaction route is suitable for synthesizing a compound in which the 3-position and 9-position groups of benzo [c] carbazole are different, but can also be applied to a compound in which the 3-position and 9-position groups are the same. In either case, when a compound in which pyridyl or bipyridyl is linked to the 9-position of benzo [c] carbazole is synthesized, it is preferable to go through this reaction route.
  • the palladium catalyst used in the above-described Suzuki coupling reaction is tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis ( Triphenylphosphine) dichloropalladium (II): PdCl 2 (PPh 3 ) 2 , palladium acetate (II): Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , Tris (Dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (dba) 3 .CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (tri-t-butylphosphino) palladium (0): Pd (P ( t-Bu) 3) 2 or [1,
  • a phosphine compound may be added to these palladium compounds in some cases.
  • the phosphine compound include tri (t-butyl) phosphine: t-Bu 3 P, tricyclohexylphosphine: PCy 3 , 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino ) Ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1 ′ -Bis (di-t-butylphosphino) ferrocene, 2,2'-bis (di-t-butylphosphino) -1,1'-binaphthyl, 2-methoxy-2 '-(di-(di-)
  • bases used in the reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, phosphorus
  • bases used in the reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, phosphorus
  • Examples include tripotassium acid: K 3 PO 4 , and potassium fluoride.
  • Solvents used in the reaction include benzene, toluene, xylene, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4-dioxane, methanol, ethanol, Examples thereof include isopropyl alcohol and cyclopentyl methyl ether. These solvents may be used alone or as a mixed solvent.
  • the reaction is usually carried out in the temperature range of 50 to 180 ° C, more preferably 70 to 130 ° C.
  • reaction solvent used in Reaction 2 and Reaction 10 examples include toluene, xylene, chlorobenzene, o-dichlorobenzene, N, N-dimethylformamide, N, N-dimethylacetamide, and 1-methyl-2-pyrrolidone.
  • a solvent may be used independently and may be used as a mixed solvent.
  • the reaction temperature is usually in the range of 100 ° C to 220 ° C. More preferably, it is 130 to 190 ° C.
  • a copper catalyst When a copper catalyst is used in Reaction 3 and Reaction 11, copper powder, copper oxide, copper halide, or the like is used.
  • the base used at the same time is potassium carbonate, sodium carbonate, sodium bicarbonate, sodium hydride and the like, and the reaction accelerator is crown ether (for example, 18-crown-6-ether), polyethylene glycol (PEG), polyethylene glycol dialkyl. And ether (PEGDM).
  • the reaction solvent N, N-dimethylformamide, N, N-dimethylacetamide, nitrobenzene, dimethyl sulfoxide, dichlorobenzene, quinoline and the like are used.
  • the reaction temperature is 160 to 250 ° C. However, when the reactivity of the substrate is low, a higher temperature reaction may be performed using an autoclave or the like.
  • the bases used at the same time are lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydride, alkoxy potassium (for example, methoxy potassium, ethoxy potassium, normal propoxy potassium, isopropoxy potassium, n- Butoxy potassium, etc.), and alkoxy sodium (eg, methoxy sodium, ethoxy sodium, normal propoxy sodium, isopropoxy sodium, n-butoxy sodium, and t-butoxy sodium).
  • alkoxy potassium for example, methoxy potassium, ethoxy potassium, normal propoxy potassium, isopropoxy potassium, n- Butoxy potassium, etc.
  • alkoxy sodium eg, methoxy sodium, ethoxy sodium, normal propoxy sodium, isopropoxy sodium, n-butoxy sodium, and t-butoxy sodium.
  • the reaction accelerator is 2,2 ′-(diphenylphosphino) -1,1′-binaphthyl, 1,1 ′-(diphenylphosphino) ferrocene, dicyclohexylphosphinobiphenyl, di-t-butylphosphinobiphenyl, tri ( t-butyl) phosphine: t-Bu 3 P, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2 -(Di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1'-bis (di-t-butylphosphino) ferrocene, 1,1'-bis (di-t-butylphosphin
  • reaction solvent an aromatic hydrocarbon solvent such as benzene, toluene, xylene, or mesitylene is used.
  • a solvent may be used independently and may be used as a mixed solvent.
  • the reaction temperature is usually 50 to 200 ° C., more preferably 80 to 140 ° C.
  • reaction solvent used in Reaction 4 and Reaction 13 examples include 1-methyl-2-pyrrolidone, N, N-dimethylacetamide, nitrobenzene, dimethyl sulfoxide, dichlorobenzene, quinoline and the like.
  • a solvent may be used independently and may be used as a mixed solvent. In some cases, the reaction may be performed without a solvent.
  • the reaction is usually carried out in a temperature range of 150 to 220 ° C, more preferably 180 to 200 ° C.
  • Examples of the solvent used in Reaction 5 and Reaction 14 include pyridine, toluene, xylene, N, N-dimethylformamide, N, N-dimethylacetamide, CH 2 Cl 2 , CHCl 3 , and CH 3 CN. These solvents may be used alone or as a mixed solvent.
  • the reaction is usually carried out in the temperature range of ⁇ 10 to 50 ° C., more preferably 0 to 30 ° C.
  • the phosphine compound includes tri (t-butyl) phosphine: t-Bu 3 P, tricyclohexylphosphine: PCy 3 , 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis ( Di-t-butylphosphino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino)
  • the bases used in Reaction 6 and Reaction 15 are sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, potassium acetate. : KOAc, tripotassium phosphate: K 3 PO 4 , potassium fluoride and the like.
  • Solvents used in Reaction 6 and Reaction 15 are benzene, toluene, xylene, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4-dioxane, methanol, Ethanol, isopropyl alcohol, cyclopentyl methyl ether and the like. These solvents may be used alone or as a mixed solvent.
  • the reaction temperature is usually 50 to 180 ° C, more preferably 70 to 130 ° C.
  • the Suzuki coupling reaction is used in the step of bonding rings such as aryl and heteroaryl, but Negishi coupling reaction can be used depending on the types of available raw materials and reagents.
  • the compound of the present invention When the compound of the present invention is used for an electron injection layer or an electron transport layer in an organic EL device, it is stable when an electric field is applied. These represent that the compound of the present invention is excellent as an electron injecting material or an electron transporting material for an electroluminescent device.
  • the electron injection layer mentioned here is a layer for receiving electrons from the cathode to the organic layer
  • the electron transport layer is a layer for transporting the injected electrons to the light emitting layer.
  • the electron transport layer can also serve as the electron injection layer.
  • the material used for each layer is referred to as an electron injection material and an electron transport material.
  • 2nd invention of this application is an organic EL element containing the compound represented by Formula (1) of this invention in an electron injection layer or an electron carrying layer.
  • the organic EL element of the present invention has a low driving voltage and high durability during driving.
  • the structure of the organic EL device of the present invention has various modes, it is basically a multilayer structure in which at least a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between an anode and a cathode.
  • Examples of the specific configuration of the device are (1) anode / hole transport layer / light emitting layer / electron transport layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer. / Cathode, (3) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, etc.
  • the compound of the present invention Since the compound of the present invention has high electron injecting property and electron transporting property, it can be used for an electron injecting layer or an electron transporting layer alone or in combination with other materials.
  • the organic EL device of the present invention emits blue, green, red and white light by combining a hole injection layer, a hole transport layer, a light emitting layer, etc. using other materials with the electron transport material of the present invention. It can also be obtained.
  • the light-emitting material or light-emitting dopant that can be used in the organic EL device of the present invention is daylight fluorescence as described in the Polymer Society of Japan, Polymer Functional Materials Series “Optical Functional Materials”, Joint Publication (1991), P236. Materials, fluorescent brighteners, laser dyes, organic scintillators, various fluorescent analysis reagents and other luminescent materials, supervised by Koji Koji, “Organic EL materials and displays” published by CMMC (2001) P155-156 And a light emitting material of a triplet material as described in P170 to 172.
  • the compounds that can be used as the light emitting material or the light emitting dopant are polycyclic aromatic compounds, heteroaromatic compounds, organometallic complexes, dyes, polymer light emitting materials, styryl derivatives, aromatic amine derivatives, coumarin derivatives, borane derivatives, oxazines. Derivatives, compounds having a spiro ring, oxadiazole derivatives, fluorene derivatives and the like.
  • Examples of the polycyclic aromatic compound are anthracene derivatives, phenanthrene derivatives, naphthacene derivatives, pyrene derivatives, chrysene derivatives, perylene derivatives, coronene derivatives, rubrene derivatives, and the like.
  • heteroaromatic compounds are oxadiazole derivatives having a dialkylamino group or diarylamino group, pyrazoloquinoline derivatives, pyridine derivatives, pyran derivatives, phenanthroline derivatives, silole derivatives, thiophene derivatives having a triphenylamino group, quinacridone derivatives Etc.
  • organometallic complexes examples include zinc, aluminum, beryllium, europium, terbium, dysprosium, iridium, platinum, osmium, gold, etc., quinolinol derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, A complex with a benzimidazole derivative, a pyrrole derivative, a pyridine derivative, a phenanthroline derivative, or the like.
  • dyes are xanthene derivatives, polymethine derivatives, porphyrin derivatives, coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, oxobenzanthracene derivatives, carbostyril derivatives, perylene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazoles And pigments such as derivatives.
  • the polymer light-emitting material are polyparaphenyl vinylene derivatives, polythiophene derivatives, polyvinyl carbazole derivatives, polysilane derivatives, polyfluorene derivatives, polyparaphenylene derivatives, and the like.
  • styryl derivatives are amine-containing styryl derivatives, styrylarylene derivatives, and the like.
  • electron transport materials used in the organic EL device of the present invention are arbitrarily selected from compounds that can be used as electron transport compounds in photoconductive materials and compounds that can be used in the electron transport layer and electron injection layer of organic EL devices. Can be used.
  • electron transport materials include quinolinol metal complexes, 2,2′-bipyridyl derivatives, phenanthroline derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives, thiophene derivatives, triazole derivatives, thiadiazole derivatives, oxine derivatives.
  • a compound conventionally used as a charge transport material for holes or a hole injection of an organic EL device is used in a photoconductive material.
  • Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof are carbazole derivatives, triarylamine derivatives, phthalocyanine derivatives and the like.
  • Each layer constituting the organic EL element of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as a vapor deposition method, a spin coating method, or a casting method.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm.
  • a vapor deposition method as a method of thinning the light emitting material from the standpoint that a homogeneous film can be easily obtained and pinholes are hardly generated.
  • the vapor deposition conditions differ depending on the type of the light emitting material of the present invention.
  • Deposition conditions generally include boat heating temperature 50 to 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature ⁇ 150 to + 300 ° C., film thickness 5 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • the organic EL device of the present invention is preferably supported by a substrate in any of the structures described above.
  • the substrate only needs to have mechanical strength, thermal stability, and transparency, and glass, a transparent plastic film, and the like can be used.
  • the anode material metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO 2 , ZnO, and the like.
  • Cathode materials can use metals, alloys, electrically conductive compounds, and mixtures thereof with work functions of less than 4 eV. Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like. Specific examples of the alloy include aluminum / lithium fluoride, aluminum / lithium, magnesium / silver, and magnesium / indium. In order to efficiently extract light emitted from the organic EL element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more.
  • the sheet resistance as the electrode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the properties of the electrode material, it is usually set in the range of 10 nm to 1 ⁇ m, preferably 10 to 400 nm.
  • Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.
  • the organic material comprising the above-mentioned anode / hole injection layer / hole transport layer / light emitting layer / electron transport material of the present invention / cathode
  • a method for creating an EL element will be described.
  • a thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a light emitting layer thin film is formed thereon.
  • the electron transport material of this invention is vacuum-deposited, a thin film is formed, and it is set as an electron carrying layer.
  • the target organic EL element is obtained by forming the thin film which consists of a substance for cathodes by a vapor deposition method, and making it a cathode.
  • the production order can be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
  • the anode When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both). The organic EL element also emits light when an alternating voltage is applied.
  • the alternating current waveform to be applied may be arbitrary.
  • reaction solution was cooled and 150 ml of pure water was added.
  • the reaction mixture was extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, the desiccant was removed, the solvent was distilled off under reduced pressure, and the resulting crude product was purified with a silica gel short column (solvent: toluene). did. Further, reprecipitation was performed with heptane, and intermediate compound (a-6a): 11-phenyl-3,9-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2- Yl) -11H-benzo [a] carbazole (12 g, yield: 87%) was obtained.
  • the product is recrystallized from toluene and further purified by sublimation to obtain the target compound (1-2-8): 3-([naphthalen-2-yl) -11-phenyl-9- (pyridin-3-yl). ) -11H-benzo [a] carbazole 0.8 g (yield: 38%) was obtained.
  • the structure of the compound (1-2-8) was confirmed by MS spectrum and NMR measurement.
  • the target compound (1-3-300) 9-([1,1′-biphenyl] -3-yl) -11-phenyl-3- (3- (pyridin-3-yl) phenyl) -11H -1.29 g (yield: 64%) of benzo [a] carbazole was obtained.
  • the structure of the compound (1-3-300) was confirmed by MS spectrum and NMR measurement.
  • the quantum efficiency of a light-emitting element includes an internal quantum efficiency and an external quantum efficiency.
  • the ratio of external energy injected as electrons (or holes) into the light-emitting layer of the light-emitting element is converted into photons purely. What is shown is the internal quantum efficiency.
  • the external quantum efficiency is calculated based on the amount of photons emitted to the outside of the light emitting element, and some of the photons generated in the light emitting layer are absorbed inside the light emitting element.
  • the external quantum efficiency is lower than the internal quantum efficiency because it is continuously reflected and is not emitted outside the light emitting element.
  • the external quantum efficiency is measured as follows. Using a voltage / current generator R6144 manufactured by Advantest, a current was applied so that the luminance of the device was 1000 cd / m 2 , and the device was caused to emit light. Using a spectral radiance meter SR-3AR manufactured by TOPCON, the spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface. Assuming that the light emitting surface is a completely diffusing surface, the value obtained by dividing the measured spectral radiance value of each wavelength component by the wavelength energy and multiplying by ⁇ is the number of photons at each wavelength.
  • the value obtained by dividing the applied current value by the elementary charge is the number of carriers injected into the device, and the number obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device is the external quantum efficiency.
  • Table 1 below shows the material configuration of each layer in the manufactured organic EL elements according to Examples 1 to 3 and Comparative Examples 1 to 3.
  • HI refers to N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine
  • HT is N 4 , N 4 , N 4 ′ , N 4 ′ -tetra [1,1′-biphenyl] -4-yl)-[1,1′-biphenyl] -4,4 '-Diamine
  • BH1 is 9- (4- (naphthalen-1-yl) phenyl) -10-phenylanthracene
  • BH2 is 9-phenyl-10- (4-phenylnaphthalen-1-yl) anthracene
  • BD1 4,4 ′-((7,7-diphenyl-7H-benzo [c] fluorene-5,9-diyl) bis (phenylazanezyl
  • Example 1 A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm by element sputtering using the compound (1-1-66) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HT, and a molybdenum vapor vessel containing BH1.
  • Vapor deposition boat molybdenum vapor deposition boat containing BD1, molybdenum vapor deposition boat containing compound (1-1-66) of the present invention, molybdenum vapor deposition boat containing quinolinol lithium (Liq), and aluminum A tungsten vapor deposition boat was installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, the vapor deposition boat containing HI was heated to deposit to a film thickness of 40 nm to form a hole injection layer, and then HT entered. The vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer. Next, the vapor deposition boat containing BH1 and the vapor deposition boat containing BD1 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm. The deposition rate was adjusted so that the weight ratio of BH1 to BD1 was approximately 95: 5.
  • an evaporation boat containing the compound (1-1-66) and an evaporation boat containing Liq were simultaneously heated to evaporate to a thickness of 20 nm to form an electron transport layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (1-1-66) and Liq was approximately 1: 1.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • the characteristics at 1000 cd / m 2 emission were measured. It was. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 321 hours.
  • Example 1 An organic EL device was obtained in the same manner as in Example 1 except that the compound (1-1-66) in the electron transport layer was changed to the compound (ET1). Using the ITO electrode as the anode and the quinolinol lithium / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 5.5 V and the external quantum efficiency was 3.2% (blue emission with a wavelength of about 451 nm). there were.
  • the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 63 hours.
  • Example 2 The compound (BH1), which is the host material of the device light emitting layer using the compound (1-1-758) for the electron transport layer, is replaced with the compound (BH2), and the compound (BD1) which is the dopant material of the light emitting layer ) Was replaced with compound (BD2), and compound (1-1-66), which was an electron transport material for the electron transport layer, was replaced with compound (1-1-758).
  • An organic EL device was obtained. Using the ITO electrode as the anode and the quinolinol lithium / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 5.8 V and the external quantum efficiency was 5.1% (blue emission with a wavelength of about 455 nm). there were.
  • the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 170 hours.
  • Example 3 Device using compound (1-1-66) as an electron transport layer
  • the same transparent support substrate as used in Example 1 was used as a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.).
  • Molybdenum deposition boat with HI and fixed, molybdenum deposition boat with HT, molybdenum deposition boat with BH1, molybdenum deposition boat with BD1, compound of the present invention (1- A molybdenum vapor deposition boat containing 1-66), a molybdenum vapor deposition boat containing Liq, and a tungsten vapor deposition boat containing aluminum were mounted.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI was heated to deposit to a film thickness of 40 nm to form a hole injection layer, and then HT entered.
  • the vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer.
  • the vapor deposition boat containing BH1 and the vapor deposition boat containing BD1 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm.
  • the deposition rate was adjusted so that the weight ratio of BH1 to BD1 was approximately 95: 5.
  • the vapor deposition boat containing the compound (1-1-66) was heated and vapor-deposited to a film thickness of 20 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • the characteristics at 1000 cd / m 2 emission were measured.
  • the drive voltage was 3.7 V and the external quantum efficiency was 4.5% (blue emission with a wavelength of about 451 nm). It was.
  • the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 345 hours.
  • Example 2 An organic EL device was obtained in the same manner as in Example 3, except that the compound (1-1-66), which was the electron transport material for the electron transport layer, was changed to the compound (ET1). Using the ITO electrode as the anode and the quinolinol lithium / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. there were. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 0.5 hours. It was.
  • Example 3 An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-1-66), which was the electron transport material for the electron transport layer, was changed to the compound (ET2). Using the ITO electrode as the anode and the quinolinol lithium / aluminum electrode as the cathode, measuring the characteristics at 1000 cd / m 2 emission, the drive voltage is 5.4 V, the external quantum efficiency is 2.2% (blue emission with a wavelength of about 453 nm) there were.
  • the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 22 hours.
  • Table 3 below shows the material configuration of each layer in the manufactured organic EL elements according to Examples 4 to 8 and Comparative Examples 4 to 7.
  • HI2 is 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-hexacarbonitrile
  • E3 is 5,9-di ( [2,3′-bipyridin] -6-yl) -7-phenyl-7H-benzo [c] carbazole
  • E4 is 3- (6- (10-phenylanthracen-9-yl) naphthalen-2-yl ) Pyridine
  • E5 is 2-([1,1′-biphenyl] -3-yl) -7-([2,3′-bipyridin] -6-yl) -9-phenyl-9H-carbazole
  • “ET6” is 9-phenyl-2,7-bis (4- (pyridin-4-yl) naphthalen-1-yl) -9H-carbazole.
  • the chemical structure is shown below.
  • Example 4 A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm by element sputtering using the compound (1-1-66) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm.
  • the deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5.
  • the vapor deposition boat containing the compound (1-1-66) and the vapor deposition boat containing Liq were heated at the same time so as to have a film thickness of 30 nm to form an electron transport layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (1-1-66) and Liq was approximately 1: 1.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • the characteristics at 1000 cd / m 2 emission were measured.
  • the drive voltage was 3.8 V and the external quantum efficiency was 5.1% (blue emission with a wavelength of about 454 nm). It was. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 396 hours.
  • Example 4 An organic EL device was obtained in the same manner as in Example 4 except that the compound (1-1-66) in the electron transport layer was changed to the compound (ET3). Using the ITO electrode as the anode and the Liq / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 4.0 V and the external quantum efficiency was 4.6% (blue emission with a wavelength of about 458 nm). It was. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 279 hours.
  • Example 5 A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm formed by element sputtering using the compound (1-2-125) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm.
  • the deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5.
  • the vapor deposition boat containing the compound (1-2-125) and the vapor deposition boat containing Liq were heated at the same time to be vapor-deposited to a film thickness of 30 nm to form an electron transport layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (1-2-125) and Liq was approximately 1: 1.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode.
  • the vapor deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and an organic EL device was obtained so that the vapor deposition rate was 0.01 to 2 nm / second.
  • the characteristics at 1000 cd / m 2 emission were measured.
  • the drive voltage was 3.8 V and the external quantum efficiency was 6.0% (blue emission with a wavelength of about 458 nm). Met.
  • the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 220 hours.
  • Example 5 An organic EL device was obtained in the same manner as in Example 5 except that the compound (1-2-125) in the electron transport layer was changed to the compound (ET4). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, measuring the characteristics at 1000 cd / m 2 emission, the drive voltage is 3.5 V, the external quantum efficiency is 5.5% (blue emission with a wavelength of about 454 nm) Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 170 hours.
  • Example 6 Example 5 except that the compound (1-2-125) in the device electron transport layer was changed to the compound (1-3-206) using the compound (1-3-206) in the electron transport layer.
  • An organic EL device was obtained by a method according to the above. Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.8 V and the external quantum efficiency was 5.3% (blue emission with a wavelength of about 455 nm). Met.
  • the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 307 hours.
  • Example 6 An organic EL device was obtained by the method according to Example 5 except that the compound (1-2-125) in the electron transport layer was changed to the compound (ET5). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.9 V and the external quantum efficiency was 4.4% (blue emission with a wavelength of about 456 nm). Met. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 201 hours.
  • Example 7 A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm by element sputtering using the compound (1-1-893) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm.
  • the deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5.
  • the evaporation boat containing the compound (1-1-893) was heated and evaporated to a thickness of 30 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode.
  • the vapor deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and an organic EL device was obtained so that the vapor deposition rate was 0.01 to 2 nm / second.
  • the drive voltage is 3.3 V
  • the external quantum efficiency is 3.6% (blue emission with a wavelength of about 456 nm) Met.
  • the time for maintaining the luminance of 90% (1800 cd / m 2 ) or more of the initial value was 56 hours.
  • An organic EL device was obtained by a method according to the above. Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 4.2 V and the external quantum efficiency was 4.8% (blue emission with a wavelength of about 456 nm). Met.
  • the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 80 hours.
  • Example 7 An organic EL device was obtained in the same manner as in Example 7 except that the compound (1-1-893) in the electron transport layer was changed to the compound (ET6). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 5.6 V and the external quantum efficiency was 4.8% (blue emission with a wavelength of about 455 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 35 hours.
  • Table 5 below shows the material configuration of each layer in the manufactured organic EL elements according to Examples 9 and 10 and Comparative Examples 8 and 9.
  • E7 is 2-phenyl-9,10-di ([2,2′-bipyridin] -5-yl) anthracene
  • E8 is 7-phenyl-5,9-bis (3- ( Pyridin-4-yl) phenyl) -7H-benzo [c] carbazole
  • E9 is 9- (4 ′-(dimesitylboryl)-[1,1′-binaphthalene] -4-yl) -9H-carbazole
  • “ET10” is 4,4 ′-((2-phenylanthracene-9,10-diyl) bis (4,1-phenylene)) dipyridine.
  • the chemical structure is shown below.
  • Example 9 A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm by element sputtering using the compound (1-1-765) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT.
  • LiF lithium fluoride
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm.
  • the deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5.
  • the vapor deposition boat containing the compound (1-1-765) is heated and vapor-deposited to a film thickness of 20 nm to form the first electron transport layer, and further the vapor deposition boat containing ET7 was heated to a thickness of 10 nm to form a second electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • the characteristics at 1000 cd / m 2 emission were measured.
  • the drive voltage was 3.8 V and the external quantum efficiency was 5.3% (blue emission with a wavelength of about 456 nm). It was.
  • the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 107 hours.
  • Example 8 An organic EL device was obtained in the same manner as in Example 9 except that the compound (1-1-765) in the electron transport layer was changed to the compound (ET8). Using the ITO electrode as the anode and the LiF / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 5.3 V and the external quantum efficiency was 4.3% (blue emission with a wavelength of about 455 nm). It was. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 48 hours.
  • Example 10 A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm formed by element sputtering using the compound (1-1-973) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT.
  • Vapor deposition boat molybdenum vapor deposition boat containing BH2, molybdenum vapor deposition boat containing BD2, molybdenum vapor deposition boat containing ET9, molybdenum product containing the compound of the present invention (1-1973)
  • a vapor deposition boat, a molybdenum vapor deposition boat containing lithium fluoride (LiF), and a tungsten vapor deposition boat containing aluminum were mounted.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm.
  • the deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5.
  • the vapor deposition boat containing the compound (ET9) was heated and vapor-deposited to a film thickness of 20 nm to form the first electron transport layer, and the compound (1-1-973) was further contained.
  • a vapor deposition boat was heated and vapor-deposited to a film thickness of 10 nm to form a second electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • the characteristics at 1000 cd / m 2 emission were measured.
  • the drive voltage was 4.3 V and the external quantum efficiency was 5.9% (blue emission with a wavelength of about 457 nm). It was.
  • the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 338 hours.
  • Example 9 An organic EL device was obtained by a method according to Example 10 except that the compound (1-1 to 973) in the electron transport layer was changed to the compound (ET10). Using the ITO electrode as the anode and the LiF / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 4.3 V and the external quantum efficiency was 5.4% (blue emission with a wavelength of about 455 nm). It was. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 200 hours.
  • Table 7 below shows the material structure of each layer in the organic EL elements according to Examples 11 to 15 thus manufactured.
  • Example 11 A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm formed by element sputtering using the compound (1-1-765) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm.
  • the deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5.
  • the vapor deposition boat containing the compound (1-1-765) and the vapor deposition boat containing Liq were heated at the same time to form a 20 nm-thick film, thereby forming an electron transport layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (1-1-765) and Liq was approximately 1: 1.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
  • the characteristics at 1000 cd / m 2 emission were measured.
  • the drive voltage was 3.7 V and the external quantum efficiency was 7.4% (blue emission with a wavelength of about 456 nm). It was. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 243 hours.
  • Example 12 An organic EL device was obtained in the same manner as in Example 11 except that the compound (1-1-765) in the electron transport layer was changed to the compound (1-2-125). Using the ITO electrode as the anode and the Liq / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 4.3 V and the external quantum efficiency was 6.2% (blue emission with a wavelength of about 456 nm). It was.
  • the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 223 hours.
  • Example 13 A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm formed by element sputtering using the compound (1-1-2) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm.
  • the deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5.
  • the vapor deposition boat containing the compound (1-1-2) and the vapor deposition boat containing Liq were heated at the same time so as to have a film thickness of 20 nm, thereby forming an electron transport layer.
  • the deposition rate was adjusted so that the weight ratio of compound (1-1-2) to Liq was approximately 1: 1.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode.
  • the vapor deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and an organic EL device was obtained so that the vapor deposition rate was 0.01 to 2 nm / second.
  • the characteristics at 1000 cd / m 2 emission were measured.
  • the drive voltage was 3.9 V and the external quantum efficiency was 6.2% (blue emission with a wavelength of about 458 nm). Met.
  • the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 150 hours.
  • Example 14 An organic EL device was obtained in the same manner as in Example 13 except that the compound (1-1-2) in the electron transport layer was changed to the compound (1-1-765). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.5 V and the external quantum efficiency was 6.7% (blue emission with a wavelength of about 457 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 210 hours.
  • Example 15 An organic EL device was obtained by a method according to Example 13 except that the compound (1-1-2) in the electron transport layer was changed to the compound (1-1-973). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.8 V and the external quantum efficiency was 6.7% (blue emission with a wavelength of about 455 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 170 hours.
  • an organic electroluminescent element having excellent luminous efficiency and element lifetime, a display device including the same, a lighting device including the display device, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

A benzo[a]carbazole compound represented by formula (1) of the present invention is an electron transport material that contributes to increasing the lifespan, the high light-emitting efficiency, and the like of an organic electroluminescent element. Use of the compound in the production of an organic electroluminescent element enables the production of an organic electroluminescent element having high light-emitting efficiency and stabling operating characteristics over a long period of time. In formula (1): a, b, c, and d are 1 or 0; a and b are not 0 simultaneously; Py1 and Py2 are a pyridyl or bipyridyl; if a is 0, Ar1 is hydrogen or an aryl, if a is 1, Ar1 is an arylene, if b is 0, Ar2 is hydrogen or an aryl, and if b is 1, Ar2 is an arylene; A is an aryl; and R1-R8 each represent hydrogen, an alkyl, a cycloalkyl, an aryl, or a heteroaryl.

Description

電子輸送材料およびこれを用いた有機電界発光素子Electron transport material and organic electroluminescent device using the same
本発明は、ピリジル基を有する新規な電子輸送材料、この電子輸送材料を用いた有機電界発光素子(以下、有機EL素子または単に素子と略記することがある。)等に関する。 The present invention relates to a novel electron transport material having a pyridyl group, an organic electroluminescence device using the electron transport material (hereinafter, sometimes abbreviated as an organic EL device or simply a device), and the like.
近年、次世代のフルカラーフラットパネルディスプレイとして有機EL素子が注目され、活発な研究がなされている。有機EL素子の実用化を促進するには、素子の駆動電圧の低減、長寿命化が不可欠な要素であり、これらを達成するために新しい電子輸送材料の開発がなされてきた。特に、青色素子の駆動電圧低下、長寿命化は必須である。特許文献1(特開2003-123983号公報)には、フェナントロリン誘導体またはその類似体である2,2’-ビピリジル化合物を電子輸送材料に使用することで有機EL素子を低電圧で駆動させることができると記載されている。しかしながらこの文献の実施例に報告されている素子の特性(駆動電圧、発光効率など)は比較例を基準にした相対値のみであり、実用的な値と判断できる実測値は記載されていない。他に、2,2’-ビピリジル化合物を電子輸送材料に使用した例が、非特許文献1(Proceedings of the 10th International Workshop on Inorganic and Organic Electroluminescence)、特許文献2(特開2002-158093号公報)および特許文献3(国際公開2007/86552パンフレット)に開示されている。非特許文献1に記載されている化合物はTgが低く、実用的ではなかった。特許文献2および3に記載の化合物は比較的低電圧で有機EL素子を駆動させることができるが、実用化に向けては更なる高効率化と長寿命化が望まれている。 In recent years, organic EL elements have attracted attention as next-generation full-color flat panel displays, and active research has been conducted. In order to promote the practical use of organic EL elements, it is indispensable to reduce the drive voltage and extend the life of the elements, and new electron transport materials have been developed to achieve these. In particular, it is essential to lower the driving voltage and extend the life of the blue element. Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-123983) discloses that an organic EL device can be driven at a low voltage by using a 2,2′-bipyridyl compound, which is a phenanthroline derivative or an analog thereof, as an electron transport material. It is stated that it can be done. However, the element characteristics (driving voltage, light emission efficiency, etc.) reported in the examples of this document are only relative values based on comparative examples, and no actual measurement values that can be judged as practical values are described. Alternatively, example of using 2,2'-bipyridyl compound to the electron transport material, non-patent document 1 (Proceedings of the 10 th International Workshop on Inorganic and Organic Electroluminescence), Patent Document 2 (JP 2002-158093 JP ) And Patent Document 3 (International Publication No. 2007/86552 pamphlet). The compound described in Non-Patent Document 1 has a low Tg and is not practical. Although the compounds described in Patent Documents 2 and 3 can drive an organic EL device at a relatively low voltage, further higher efficiency and longer life are desired for practical use.
特開2003-123983号公報JP 2003-123983 A 特開2002-158093号公報JP 2002-158093 A 国際公開2007/86552パンフレットInternational Publication 2007/86552 Pamphlet
本発明は、このような従来技術が有する課題に鑑みてなされたものである。本発明は、有機EL素子の高い発光効率と長寿命化等に寄与する電子輸送材料を提供することを課題とする。さらに本発明は、この電子輸送材料を用いた有機EL素子を提供することを課題とする。 The present invention has been made in view of the problems of such conventional techniques. An object of the present invention is to provide an electron transport material that contributes to high luminous efficiency and long life of an organic EL element. Furthermore, this invention makes it a subject to provide the organic EL element using this electron transport material.
本発明者らは鋭意検討した結果、ベンゾ[a]カルバゾールの3位および/または9位に、直接またはアリーレンを介して、ピリジルまたはビピリジルが連結した化合物を有機EL素子の電子輸送層に用いることにより、発光効率が高く、長寿命で駆動できる有機EL素子が得られることを見出し、この知見に基づいて本発明を完成した。
上記の課題は以下に示す各項によって解決される。
As a result of intensive studies, the present inventors have used a compound in which pyridyl or bipyridyl is linked to the 3-position and / or 9-position of benzo [a] carbazole, directly or via arylene, in the electron transport layer of the organic EL device. Thus, it was found that an organic EL element having high luminous efficiency and capable of being driven with a long lifetime was obtained, and the present invention was completed based on this finding.
Said subject is solved by each item shown below.
[1] 下記式(1)で表されるベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000019
式(1)において、
a、b、c、およびdは独立して1または0であるが、aおよびbが同時に0であることはなく;
PyおよびPyは独立してピリジルまたはビピリジルであり、このピリジルまたはビピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~12のヘテロアリールで置き換えられていてもよく;
Arは、aが0であるとき水素または炭素数6~20のアリールであり、aが1であるとき炭素数6~20のアリーレンであり、Arはbが0であるとき水素または炭素数6~20のアリールであり、bが1であるとき炭素数6~20のアリーレンであり、これらのアリールまたはアリーレンの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
Aは炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールで置き換えられていてもよく;
~Rは独立して水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~10のヘテロアリールであり、このアリールまたはヘテロアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;また、
式(1)で表される化合物における少なくとも1つの水素が重水素で置き換えられていてもよい。
[1] A benzo [a] carbazole compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000019
In equation (1),
a, b, c, and d are independently 1 or 0, but a and b are not 0 at the same time;
Py 1 and Py 2 are independently pyridyl or bipyridyl, and any hydrogen of the pyridyl or bipyridyl is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or Optionally substituted with heteroaryl having 2 to 12 carbons;
Ar 1 is hydrogen or aryl having 6 to 20 carbon atoms when a is 0; Ar 1 is arylene having 6 to 20 carbon atoms when a is 1; Ar 2 is hydrogen or carbon when b is 0 An aryl having 6 to 20 carbon atoms and an arylene having 6 to 20 carbon atoms when b is 1, any hydrogen of these aryls or arylenes is an alkyl having 1 to 6 carbon atoms or a cyclohexane having 3 to 6 carbon atoms; Optionally substituted with alkyl or aryl of 6 to 14 carbon atoms;
A is aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms ;
R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons, and the aryl Or any hydrogen of heteroaryl may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons;
At least one hydrogen in the compound represented by the formula (1) may be replaced with deuterium.
[2] 下記式(1-1)で表される、前記[1]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000020
式(1-1)において、
PyおよびPyは独立してピリジルまたはビピリジルであり、このピリジルまたはビピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~12のヘテロアリールで置き換えられていてもよく;
ArおよびArは独立して炭素数6~20のアリーレンであり、このアリーレンの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
Aは炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールで置き換えられていてもよく;
~Rは独立して水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~10のヘテロアリールであり、このアリールまたはヘテロアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;そして、
cおよびdは独立して1または0である。
[2] The benzo [a] carbazole compound according to item [1], represented by the following formula (1-1):
Figure JPOXMLDOC01-appb-C000020
In formula (1-1),
Py 1 and Py 2 are independently pyridyl or bipyridyl, and any hydrogen of the pyridyl or bipyridyl is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or Optionally substituted with heteroaryl having 2 to 12 carbons;
Ar 1 and Ar 2 are each independently arylene having 6 to 20 carbon atoms, and any hydrogen of the arylene is alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or 6 to 14 carbon atoms Optionally substituted with aryl;
A is aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms ;
R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons, and the aryl Or any hydrogen in the heteroaryl may be replaced by alkyl of 1 to 6 carbons or cycloalkyl of 3 to 6 carbons; and
c and d are each independently 1 or 0.
[3] 下記式(1-2)で表される、前記[1]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000021
式(1-2)において、
Pyはピリジルまたはビピリジルであり、このピリジルまたはビピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~12のヘテロアリールで置き換えられていてもよく;
Arは水素または炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
Arは炭素数6~20のアリーレンであり、このアリーレンの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
Aは炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールで置き換えられていてもよく;
~Rは独立して水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~10のヘテロアリールであり、このアリールまたはヘテロアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;そして、
dは1または0である。
[3] The benzo [a] carbazole compound according to the item [1], represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000021
In formula (1-2),
Py 2 is pyridyl or bipyridyl, and any hydrogen of the pyridyl or bipyridyl is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or 2 to 12 carbons Optionally substituted with heteroaryl;
Ar 1 is hydrogen or aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl is replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms May be;
Ar 2 is aryl having 6 to 20 carbon atoms, and any hydrogen in the arylene is replaced by alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, or aryl having 6 to 14 carbons Well;
A is aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms ;
R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons, and the aryl Or any hydrogen in the heteroaryl may be replaced by alkyl of 1 to 6 carbons or cycloalkyl of 3 to 6 carbons; and
d is 1 or 0.
[4] 下記式(1-3)で表される、前記[1]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000022
式(1-3)において、
Pyはピリジルまたはビピリジルであり、このピリジルまたはビピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~12のヘテロアリールで置き換えられていてもよく;
Arは炭素数6~20のアリーレンであり、このアリーレンの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
Arは水素または炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
Aは炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールで置き換えられていてもよく;
~Rは独立して水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~10のヘテロアリールであり、このアリールまたはヘテロアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;そして、
cは1または0である。
[4] The benzo [a] carbazole compound according to item [1], represented by the following formula (1-3):
Figure JPOXMLDOC01-appb-C000022
In formula (1-3),
Py 1 is pyridyl or bipyridyl, and any hydrogen of the pyridyl or bipyridyl is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or 2 to 12 carbons Optionally substituted with heteroaryl;
Ar 1 is an arylene having 6 to 20 carbon atoms, and any hydrogen of the arylene is replaced by an alkyl having 1 to 6 carbons, a cycloalkyl having 3 to 6 carbon atoms, or an aryl having 6 to 14 carbon atoms Well;
Ar 2 is hydrogen or aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl is replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms May be;
A is aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms ;
R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons, and the aryl Or any hydrogen in the heteroaryl may be replaced by alkyl of 1 to 6 carbons or cycloalkyl of 3 to 6 carbons; and
c is 1 or 0.
[5] PyおよびPyが独立して下記式(Py-1-1)~(Py-1-3)および(Py-2-1)~(Py-2-18)で表される基の群から選ばれる1つであり、
Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024
これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
ArおよびArが独立してフェニレン、ナフタレンジイル、アントラセンジイル、またはクリセンジイルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
Aがフェニル、ナフチルまたはフェナントリルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
~Rが独立して水素、メチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、またはフェニルであり;そして、
cおよびdが独立して1または0である、前記[2]項に記載のベンゾ[a]カルバゾール化合物。
[5] Py 1 and Py 2 are independently groups represented by the following formulas (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2-18) One selected from the group of
Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024
Any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, or pyridyl;
Ar 1 and Ar 2 are independently phenylene, naphthalenediyl, anthracenediyl, or chrysenediyl, and any hydrogen in these groups is replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl May be;
A is phenyl, naphthyl or phenanthryl, and any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
R 1 to R 8 are independently hydrogen, methyl, ethyl, isopropyl, t-butyl, cyclohexyl, or phenyl; and
The benzo [a] carbazole compound according to item [2], wherein c and d are each independently 1 or 0.
[6] Pyが下記式(Py-1-1)~(Py-1-3)および(Py-2-1)~(Py-2-18)で表される基の群から選ばれる1つであり、
Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026
これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
Arが水素、フェニル、ナフチル、アントリル、フェナントリル、またはクリセニルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
Arがフェニレン、ナフタレンジイル、アントラセンジイル、またはクリセンジイルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
Aがフェニル、ナフチルまたはフェナントリルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
~Rが独立して水素、メチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、またはフェニルであり;そして、
dが1または0である、前記[3]項に記載のベンゾ[a]カルバゾール化合物。
[6] Py 2 is selected from the group of groups represented by the following formulas (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2-18) And
Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026
Any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, or pyridyl;
Ar 1 is hydrogen, phenyl, naphthyl, anthryl, phenanthryl, or chrycenyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
Ar 2 is phenylene, naphthalenediyl, anthracenediyl, or chrysenediyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
A is phenyl, naphthyl or phenanthryl, and any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
R 1 to R 8 are independently hydrogen, methyl, ethyl, isopropyl, t-butyl, cyclohexyl, or phenyl; and
The benzo [a] carbazole compound according to item [3], wherein d is 1 or 0.
[7] Pyが下記式(Py-1-1)~(Py-1-3)および(Py-2-1)~(Py-2-18)で表される基の群から選ばれる1つであり、
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028
これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
Arがフェニレン、ナフタレンジイル、アントラセンジイル、またはクリセンジイルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
Arが水素、フェニル、ナフチル、アントリル、フェナントリル、またはクリセニルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
Aがフェニル、ナフチルまたはフェナントリルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
~Rが独立して水素、メチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、またはフェニルであり;そして、
cが1または0である、前記[4]項に記載のベンゾ[a]カルバゾール化合物。
[7] Py 1 is selected from the group of groups represented by the following formulas (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2-18) And
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028
Any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, or pyridyl;
Ar 1 is phenylene, naphthalenediyl, anthracenediyl, or chrysenediyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
Ar 2 is hydrogen, phenyl, naphthyl, anthryl, phenanthryl, or chrysenyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
A is phenyl, naphthyl or phenanthryl, and any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
R 1 to R 8 are independently hydrogen, methyl, ethyl, isopropyl, t-butyl, cyclohexyl, or phenyl; and
The benzo [a] carbazole compound according to item [4], wherein c is 1 or 0.
[8] PyおよびPyが独立して式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-1)、(Py-2-2)、(Py-2-3)、(Py-2-7)、(Py-2-8)、(Py-2-9)、(Py-2-10)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり、これらの基の任意の水素はメチル、t-ブチル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
ArおよびArが独立して1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-1,6-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
Aがフェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
~Rがすべて水素であり;そして、
cおよびdが独立して1または0である、前記[5]項に記載のベンゾ[a]カルバゾール化合物。
[8] Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-1), (Py-2- 2), (Py-2-3), (Py-2-7), (Py-2-8), (Py-2-9), (Py-2-10), (Py-2-11) And any one of the groups represented by (Py-2-12), wherein any hydrogen of these groups may be replaced by methyl, t-butyl, phenyl, naphthyl, or pyridyl Often;
Ar 1 and Ar 2 are independently 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-1,6-diyl, naphthalene-2,6-diyl, naphthalene-2,7 -Diyl, or anthracene-9,10-diyl, any hydrogen of these groups may be replaced by methyl, t-butyl, or phenyl;
A is phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, or phenyl;
R 1 to R 8 are all hydrogen; and
The benzo [a] carbazole compound according to item [5], wherein c and d are each independently 1 or 0.
[9] Pyが式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-1)、(Py-2-2)、(Py-2-3)、(Py-2-7)、(Py-2-8)、(Py-2-9)、(Py-2-10)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり、これらの基の任意の水素はメチル、t-ブチル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
Arが水素、フェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
Arが1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-1,6-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
Aがフェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
~Rがすべて水素であり;そして、
dが1または0である、前記[6]項に記載のベンゾ[a]カルバゾール化合物。
[9] Py 2 is represented by the formula (Py-1-1), (Py-1-2), (Py-l-3), (Py-2-1), (Py-2-2), (Py- 2-3), (Py-2-7), (Py-2-8), (Py-2-9), (Py-2-10), (Py-2-11), and (Py-2) -12) is one selected from the group of groups, and any hydrogen of these groups may be replaced by methyl, t-butyl, phenyl, naphthyl, or pyridyl;
Ar 1 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, or phenyl;
Ar 2 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-1,6-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene- 9,10-diyl, any hydrogen of these groups may be replaced by methyl, t-butyl, or phenyl;
A is phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, or phenyl;
R 1 to R 8 are all hydrogen; and
The benzo [a] carbazole compound according to item [6], wherein d is 1 or 0.
[10] Pyが式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-1)、(Py-2-2)、(Py-2-3)、(Py-2-7)、(Py-2-8)、(Py-2-9)、(Py-2-10)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり、これらの基の任意の水素はメチル、t-ブチル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
Arが1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-1,6-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
Arが水素、フェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、シクロヘキシル、またはフェニルで置き換えられていてもよく;
Aがフェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
~Rがすべて水素であり;そして、
cが1または0である、前記[7]項に記載のベンゾ[a]カルバゾール化合物。
[10] Py 1 is represented by the formula (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-1), (Py-2-2), (Py- 2-3), (Py-2-7), (Py-2-8), (Py-2-9), (Py-2-10), (Py-2-11), and (Py-2) -12) is one selected from the group of groups, and any hydrogen of these groups may be replaced by methyl, t-butyl, phenyl, naphthyl, or pyridyl;
Ar 1 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-1,6-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene- 9,10-diyl, any hydrogen of these groups may be replaced by methyl, t-butyl, or phenyl;
Ar 2 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, cyclohexyl, or phenyl;
A is phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, or phenyl;
R 1 to R 8 are all hydrogen; and
The benzo [a] carbazole compound according to item [7], wherein c is 1 or 0.
[11] PyおよびPyが独立して式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-2)、(Py-2-3)、(Py-2-8)、(Py-2-9)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり;
ArおよびArが独立して1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり;
Aがフェニル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、m-テルフェニル-5’-イル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
~Rがすべて水素であり;そして、
cおよびdが独立して1または0である、前記[5]項に記載のベンゾ[a]カルバゾール化合物。
[11] Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-2), (Py-2- 3) one selected from the group of groups represented by (Py-2-8), (Py-2-9), (Py-2-11), and (Py-2-12);
Ar 1 and Ar 2 are independently 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene-9, 10-diyl;
A is phenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
R 1 to R 8 are all hydrogen; and
The benzo [a] carbazole compound according to item [5], wherein c and d are each independently 1 or 0.
[12] PyおよびPyが独立して式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-2)、(Py-2-3)、(Py-2-8)、(Py-2-9)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり;
Arが水素、フェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
Arが1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり;
Aがフェニル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、m-テルフェニル-5’-イル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
~Rがすべて水素であり;そして、
dが1または0である、前記[6]項に記載のベンゾ[a]カルバゾール化合物。
[12] Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-2), (Py-2- 3) one selected from the group of groups represented by (Py-2-8), (Py-2-9), (Py-2-11), and (Py-2-12);
Ar 1 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
Ar 2 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene-9,10-diyl;
A is phenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
R 1 to R 8 are all hydrogen; and
The benzo [a] carbazole compound according to item [6], wherein d is 1 or 0.
[13] PyおよびPyが独立して式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-2)、(Py-2-3)、(Py-2-8)、(Py-2-9)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり;
Arが1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり;
Arが水素、フェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
Aがフェニル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、m-テルフェニル-5’-イル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
~Rがすべて水素であり;そして、
cが1または0である、前記[7]項に記載のベンゾ[a]カルバゾール化合物。
[13] Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-2), (Py-2- 3) one selected from the group of groups represented by (Py-2-8), (Py-2-9), (Py-2-11), and (Py-2-12);
Ar 1 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene-9,10-diyl;
Ar 2 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
A is phenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
R 1 to R 8 are all hydrogen; and
The benzo [a] carbazole compound according to item [7], wherein c is 1 or 0.
[14] 下記式(1-1-66)または(1-1-758)で表される、前記[5]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000029
[14] The benzo [a] carbazole compound represented by the following formula (1-1-66) or (1-1-758) according to the item [5].
Figure JPOXMLDOC01-appb-C000029
[15] 下記式(1-2-8)または(1-2-28)で表される、前記[6]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000030
[15] The benzo [a] carbazole compound according to the above item [6], represented by the following formula (1-2-8) or (1-2-28):
Figure JPOXMLDOC01-appb-C000030
[16] 下記式(1-3-206)または(1-3-300)で表される、前記[7]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000031
[16] The benzo [a] carbazole compound according to the above item [7], represented by the following formula (1-3-206) or (1-3-300):
Figure JPOXMLDOC01-appb-C000031
[17] 下記式(1-1-2)で表される、前記[5]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000032
[17] The benzo [a] carbazole compound according to item [5], represented by the following formula (1-1-2).
Figure JPOXMLDOC01-appb-C000032
[18] 下記式(1-1-765)で表される、前記[5]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000033
[18] The benzo [a] carbazole compound according to item [5], represented by the following formula (1-1-765).
Figure JPOXMLDOC01-appb-C000033
[19] 下記式(1-1-893)で表される、前記[5]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000034
[19] The benzo [a] carbazole compound according to item [5], represented by the following formula (1-1-893).
Figure JPOXMLDOC01-appb-C000034
[20] 下記式(1-1-973)で表される、前記[5]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000035
[20] The benzo [a] carbazole compound according to item [5], represented by the following formula (1-1-973):
Figure JPOXMLDOC01-appb-C000035
[21] 下記式(1-2-125)で表される、前記[6]項に記載のベンゾ[a]カルバゾール化合物。
Figure JPOXMLDOC01-appb-C000036
[21] The benzo [a] carbazole compound according to item [6], represented by the following formula (1-2-125):
Figure JPOXMLDOC01-appb-C000036
[22] 前記[1]~[21]のいずれか1項に記載の化合物を含有する電子輸送材料。 [22] An electron transport material containing the compound according to any one of [1] to [21].
[23] 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、前記[22]項に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。 [23] A pair of electrodes composed of an anode and a cathode, a light emitting layer disposed between the pair of electrodes, an electron transport material according to the item [22], disposed between the cathode and the light emitting layer. An organic electroluminescent device having an electron transport layer and / or an electron injection layer containing
[24] 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、前記[23]項に記載の有機電界発光素子。 [24] At least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of a quinolinol-based metal complex, a bipyridine derivative, a phenanthroline derivative, and a borane derivative, [23] The organic electroluminescent element according to item.
[25] 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、前記[23]項に記載の有機電界発光素子。 [25] At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or alkaline earth. Containing at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes The organic electroluminescence device as described in the item [23].
本発明の化合物は薄膜状態で電圧を印加しても安定であり、また、電荷の輸送能力が高いという特徴を持つ。本発明の化合物は有機EL素子における電荷輸送材料として適している。本発明の化合物を有機EL素子の電子輸送層および/または電子注入層に用いることで、高い発光効率と長い寿命を有する有機EL素子を得ることができる。本発明の有機EL素子を用いることにより、フルカラー表示等の高性能のディスプレイ装置を作成できる。 The compound of the present invention is stable even when a voltage is applied in a thin film state and has a feature of high charge transport capability. The compound of the present invention is suitable as a charge transport material in an organic EL device. By using the compound of the present invention for an electron transport layer and / or an electron injection layer of an organic EL device, an organic EL device having high luminous efficiency and a long lifetime can be obtained. By using the organic EL element of the present invention, a high-performance display device such as full-color display can be created.
以下、本発明をさらに詳細に説明する。なお、本明細書においては、例えば「式(1-1-66)で表される化合物」のことを「化合物(1-1-66)」と称することがある。「式(1-1-758)で表される化合物」のことを「化合物(1-1-758)」と称することがある。その他の式記号、式番号についても同様に扱われる。 Hereinafter, the present invention will be described in more detail. In the present specification, for example, the “compound represented by the formula (1-1-66)” may be referred to as “compound (1-1-66)”. The “compound represented by formula (1-1-758)” may be referred to as “compound (1-1-758)”. Other formula symbols and formula numbers are handled in the same manner.
化合物の定義において用いる用語「任意の」は「位置だけでなく数においても自由に選択できること」を意味する場合がある。例えば、「フェニルの任意の水素は炭素数1~6のアルキルで置き換えられていてもよい」という表現は、「1つの水素がアルキルで置き換えられてもよい」のみならず、「複数の水素が同一のアルキル、または各々異なるアルキルで置き換えられていてもよい」ことをも意味する。
本明細書の構造式、化学反応式等で用いられる記号Me、Et、i-Pr、t-Bu、Cy、およびPhは、それぞれメチル、エチル、イソプロピル、ターシャリーブチル、シクロヘキシル、およびフェニルを表す。
The term “arbitrary” used in the definition of a compound may mean “can be freely selected not only by position but also by number”. For example, the expression “any hydrogen of phenyl may be substituted with alkyl having 1 to 6 carbon atoms” not only means “one hydrogen may be substituted with alkyl”, but also “ It may also mean “same alkyl, or each may be replaced by a different alkyl”.
The symbols Me, Et, i-Pr, t-Bu, Cy, and Ph used in the structural formulas, chemical reaction formulas, and the like of this specification represent methyl, ethyl, isopropyl, tertiary butyl, cyclohexyl, and phenyl, respectively. .
<式(1)で表される化合物>
本願の第1の発明は下記の式(1)で表される、ピリジルまたはビピリジルを有するベンゾ[a]カルバゾール化合物である。
Figure JPOXMLDOC01-appb-C000037
式(1)において、a、b、c、およびdは独立して1または0であるが、aおよびbが同時に0であることはない。式(1)で表される化合物には、a=b=1の態様、a=0かつb=1の態様、およびa=1かつb=0の態様がある。
<Compound represented by Formula (1)>
A first invention of the present application is a benzo [a] carbazole compound having pyridyl or bipyridyl represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000037
In formula (1), a, b, c and d are independently 1 or 0, but a and b are not 0 at the same time. The compound represented by formula (1) has an embodiment in which a = b = 1, an embodiment in which a = 0 and b = 1, and an embodiment in which a = 1 and b = 0.
式(1)においてa=b=1の態様は、下記式(1-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000038
式(1-1)で表される化合物は、ベンゾ[a]カルバゾールの3位および9位に、直接またはアリーレンを介して、ピリジルまたはビピリジルが連結している。本発明の化合物を有機EL素子の電子輸送層または電子注入層に使用すると、LUMO準位が下がって、陰極から電子輸送層または電子注入層への電子の注入が起こり易くなるため、駆動電圧が低下するなどの効果をもたらすと考えられる。本発明の態様においては、分子の両端にピリジルまたはビピリジルが連結している式(1-1)の構造がより好ましい。ベンゾ[a]カルバゾールとピリジルまたはビピリジルの間にアリーレンを介しても特性的には大きな変動はなく、式中のcおよびdは0であってもよく、1であってもよい。一方、後述するように、ベンゾ[a]カルバゾールに直接ビピリジルが連結した化合物は、使用できる中間原料に制約があるため、選択できる製造法が制限される。PyおよびPyの片方または両方がビピリジルである化合物の場合、製造の容易さという観点では、ビピリジルが連結する側はアリーレンを介した方が好ましい。
In the formula (1), an embodiment where a = b = 1 is a compound represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000038
In the compound represented by the formula (1-1), pyridyl or bipyridyl is linked to the 3rd and 9th positions of benzo [a] carbazole directly or via arylene. When the compound of the present invention is used in the electron transport layer or the electron injection layer of the organic EL device, the LUMO level is lowered, and the injection of electrons from the cathode to the electron transport layer or the electron injection layer is likely to occur. It is thought to bring about effects such as lowering. In the embodiment of the present invention, a structure of the formula (1-1) in which pyridyl or bipyridyl is connected to both ends of the molecule is more preferable. Even if arylene is interposed between benzo [a] carbazole and pyridyl or bipyridyl, there is no significant characteristic variation, and c and d in the formula may be 0 or 1. On the other hand, as will be described later, a compound in which bipyridyl is directly linked to benzo [a] carbazole has limitations on the intermediate materials that can be used, and thus the production methods that can be selected are limited. In the case of a compound in which one or both of Py 1 and Py 2 is bipyridyl, from the viewpoint of ease of production, the side to which bipyridyl is linked is preferably via arylene.
式(1)においてa=0かつb=1の態様は、下記式(1-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000039
In the formula (1), an embodiment where a = 0 and b = 1 is a compound represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000039
式(1)においてa=1かつb=0の態様は、下記式(1-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000040
In the formula (1), an embodiment where a = 1 and b = 0 is a compound represented by the following formula (1-3).
Figure JPOXMLDOC01-appb-C000040
式(1-2)で表される化合物は、ベンゾ[a]カルバゾールの9位に、直接またはアリーレンを介して、ピリジルまたはビピリジルが連結している。式(1-3)で表される化合物は、ベンゾ[a]カルバゾールの3位に、直接またはアリーレンを介して、ピリジルまたはビピリジルが連結している。これら分子の片端にピリジルまたはビピリジルが連結している化合物は、電子輸送層や電子注入層に使用する材料として、上記の式(1-1)で表される化合物に次いで好ましい。ピリジル、ビピリジルが連結するベンゾ[a]カルバゾールの位置については、3位であってもよく、9位であってもよい。ベンゾ[a]カルバゾールとピリジルまたはビピリジルの間にアリーレンを介しても特性的には大きな変動はないが、製造の容易さという観点では、前記式(1-1)で表される化合物の説明で述べたのと同じ理由で、ビピリジルが連結する場合においてはアリーレンを介した方が好ましい。 In the compound represented by the formula (1-2), pyridyl or bipyridyl is linked to the 9-position of benzo [a] carbazole directly or via arylene. In the compound represented by the formula (1-3), pyridyl or bipyridyl is linked to the 3-position of benzo [a] carbazole directly or via arylene. A compound having pyridyl or bipyridyl linked to one end of these molecules is preferable next to the compound represented by the above formula (1-1) as a material used for the electron transport layer or the electron injection layer. The position of benzo [a] carbazole to which pyridyl and bipyridyl are linked may be the 3rd position or the 9th position. Even if arylene is interposed between benzo [a] carbazole and pyridyl or bipyridyl, there is no significant variation in characteristics. However, from the viewpoint of ease of production, in the description of the compound represented by formula (1-1), For the same reason as described, in the case where bipyridyl is linked, it is preferable to use arylene.
式(1)において、PyおよびPyは独立してピリジルまたはビピリジルである。ピリジルは、具体的には下記式(Py-1-1)、(Py-1-2)および(Py-1-3)で表される2-ピリジル、3-ピリジルおよび4-ピリジルである。ビピリジルは、具体的には下記式(Py-2-1)~(Py-2-30)で表される基である。
Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043
In formula (1), Py 1 and Py 2 are independently pyridyl or bipyridyl. Specifically, pyridyl is 2-pyridyl, 3-pyridyl and 4-pyridyl represented by the following formulas (Py-1-1), (Py-1-2) and (Py-1-3). Bipyridyl is specifically a group represented by the following formulas (Py-2-1) to (Py-2-30).
Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043
このピリジルまたはビピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~12のヘテロアリールで置き換えられていてもよい。置換基の数は、例えば、最大置換可能な数であり、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個である。 Any hydrogen of this pyridyl or bipyridyl may be replaced by alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 12 carbons . The number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
炭素数1~6のアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチルなどがあげられる。これらの中でも、メチル、エチル、イソプロピル、およびt-ブチルが好ましく、メチルおよびt-ブチルがより好ましく、メチルが特に好ましい。 Examples of the alkyl having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, Examples thereof include 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl and the like. Among these, methyl, ethyl, isopropyl, and t-butyl are preferable, methyl and t-butyl are more preferable, and methyl is particularly preferable.
炭素数3~6のシクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、およびシクロヘキシルがあげられる。これらの中では、原料の入手し易さ、製造の容易さからシクロヘキシルが好ましい。 Examples of the cycloalkyl having 3 to 6 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Among these, cyclohexyl is preferable because of easy availability of raw materials and ease of production.
炭素数6~14のアリールとしては、フェニル、ナフチル、アントリル、フェナントリルなどがあげられる。これらの中では、原料の入手し易さ、製造の容易さからフェニルおよびナフチルが好ましく、フェニルがより好ましい。 Examples of the aryl having 6 to 14 carbon atoms include phenyl, naphthyl, anthryl, phenanthryl and the like. Among these, phenyl and naphthyl are preferable, and phenyl is more preferable because of easy availability of raw materials and ease of production.
炭素数2~12のヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環基などがあげられる。具体的には、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリニル、イソキノリニル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニル、フラザニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、フェノキサチイニル、チアントレニルなどがあげられる。これらの中では、ピリジル、キノリニルおよびイソキノリニルが好ましく、ピリジルがより好ましい。 Examples of the heteroaryl having 2 to 12 carbon atoms include a heterocyclic group containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom. Specifically, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, , Benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolinyl, isoquinolinyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl, pteridinyl, carbazolyl, acridinyl, phenoxazinyl, phenothiazinyl, phenazinyl, furanazinyl, furanazinyl Isobenzofuranyl, benzo [b] thieni , Phenoxathiinyl, etc. thianthrenyl and the like. Among these, pyridyl, quinolinyl and isoquinolinyl are preferable, and pyridyl is more preferable.
a=b=1の態様において、PyおよびPyは同一であっても、異なる基であってもよいが、化合物の製造の容易さという点において同一である方が好ましい。PyおよびPyが同一である場合も、異なる基である場合も、それぞれが(Py-1-1)~(Py-1-3)および(Py-2-1)~(Py-2-18)で表される基の群から選ばれることが好ましく、(Py-1-1)~(Py-1-3)、(Py-2-1)~(Py-2-3)および(Py-2-7)~(Py-2-12)で表される基の群から選ばれることがより好ましい。 In the embodiment where a = b = 1, Py 1 and Py 2 may be the same or different groups, but are preferably the same in terms of ease of production of the compound. Whether Py 1 and Py 2 are the same or different, (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2- 18) is preferably selected from the group of groups represented by (Py-1-1) to (Py-1-3), (Py-2-1) to (Py-2-3) and (Py It is more preferably selected from the group of groups represented by -2-7) to (Py-2-12).
a=1かつb=0の態様およびa=0かつb=1の態様においても、PyまたはPyは(Py-1-1)~(Py-1-3)および(Py-2-1)~(Py-2-18)で表される基の群から選ばれることが好ましく、(Py-1-1)~(Py-1-3)、(Py-2-1)~(Py-2-3)および(Py-2-7)~(Py-2-12)で表される基の群から選ばれることがより好ましい。 Also in the embodiment in which a = 1 and b = 0 and the embodiment in which a = 0 and b = 1, Py 1 or Py 2 is (Py-1-1) to (Py-1-3) and (Py-2-1). ) To (Py-2-18) are preferably selected from the group of groups represented by (Py-1-1) to (Py-1-3), (Py-2-1) to (Py--). It is more preferable that the group is selected from the group of groups represented by 2-3) and (Py-2-7) to (Py-2-12).
式(1)において、ArおよびArは、a=b=1の態様において、炭素数6~20のアリーレンである。a=0かつb=1の態様において、Arは水素または炭素数6~20のアリールであり、炭素数6~20のアリールであることが好ましく、Arは炭素数6~20のアリーレンである。a=1かつb=0の態様において、Arは炭素数6~20のアリーレンであり、Arは水素または炭素数6~20のアリールであり、炭素数6~20のアリールであることが好ましい。 In the formula (1), Ar 1 and Ar 2 are arylene having 6 to 20 carbon atoms in an embodiment where a = b = 1. In an embodiment in which a = 0 and b = 1, Ar 1 is hydrogen or aryl having 6 to 20 carbon atoms, preferably aryl having 6 to 20 carbon atoms, and Ar 2 is arylene having 6 to 20 carbon atoms. is there. In an embodiment in which a = 1 and b = 0, Ar 1 is arylene having 6 to 20 carbon atoms, Ar 2 is hydrogen or aryl having 6 to 20 carbon atoms, and aryl having 6 to 20 carbon atoms preferable.
炭素数6~20のアリールとしては、フェニル、ナフチル、アントリル、フェナントリル、トリフェニレニル、ピレニル、クリセニル、ナフタセニル、ペリレニルなどがあげられる。これらの中では、フェニル、ナフチル、アントリル、およびフェナントリルが好ましく、フェニル、ナフチルおよびアントリルがより好ましい。 Examples of the aryl having 6 to 20 carbon atoms include phenyl, naphthyl, anthryl, phenanthryl, triphenylenyl, pyrenyl, chrycenyl, naphthacenyl, perylenyl and the like. Among these, phenyl, naphthyl, anthryl, and phenanthryl are preferable, and phenyl, naphthyl, and anthryl are more preferable.
炭素数6~20のアリーレンとしては、フェニレン、ナフタレンジイル、アントラセンジイル、フェナントレンジイル、ピレンジイル、クリセンジイル、ナフタセンジイル、ペリレンジイルなどがあげられる。これらの中では、フェニレン、ナフタレンジイル、アントラセンジイルおよびクリセンジイルが好ましく、フェニレン、ナフタレンジイルおよびアントラセンジイルがより好ましい。 Examples of the arylene having 6 to 20 carbon atoms include phenylene, naphthalenediyl, anthracenediyl, phenanthrene diyl, pyrenediyl, chrysenediyl, naphthacene diyl, perylene diyl and the like. Among these, phenylene, naphthalenediyl, anthracenediyl and chrysenediyl are preferable, and phenylene, naphthalenediyl and anthracenediyl are more preferable.
上記のアリールまたはアリーレンの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよい。これらの置換基の具体例は前記のピリジルまたはビピリジルの置換基として例示した基があげられ、メチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、ナフチル、アントリル、およびフェナントリルが好ましく、メチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、およびナフチルがより好ましく、メチル、t-ブチルおよびフェニルがさらに好ましい。置換基の数は、例えば、最大置換可能な数であり、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個である。 Any hydrogen in the above aryl or arylene may be replaced with alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms. Specific examples of these substituents include those exemplified as the above-mentioned pyridyl or bipyridyl substituents, and methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, anthryl and phenanthryl are preferred, and methyl, ethyl , Isopropyl, t-butyl, cyclohexyl, phenyl, and naphthyl are more preferable, and methyl, t-butyl, and phenyl are more preferable. The number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
ArおよびArがアリールである場合は、置換基を有するアリールも含めて、フェニル、1-ナフチル、2-ナフチル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、m-テルフェニル-5’-イル、および9-フェナントリルが好ましく、フェニル、1-ナフチル、2-ナフチル、3-ビフェニリル、およびm-テルフェニル-5’-イルがより好ましい。 When Ar 1 and Ar 2 are aryl, including aryl having a substituent, phenyl, 1-naphthyl, 2-naphthyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5 ′ -Iyl and 9-phenanthryl are preferred, with phenyl, 1-naphthyl, 2-naphthyl, 3-biphenylyl, and m-terphenyl-5'-yl being more preferred.
ArおよびArがアリーレンである場合は、1,4-フェニレン、1,3-フェニレン、1,4-ナフタレンジイル、2,7-ナフタレンジイル、および9,10-アントラセンジイルが好ましく、1,4-フェニレン、1,4-ナフタレンジイルおよび9,10-アントラセンジイルがより好ましい。 When Ar 1 and Ar 2 are arylene, 1,4-phenylene, 1,3-phenylene, 1,4-naphthalenediyl, 2,7-naphthalenediyl, and 9,10-anthracenediyl are preferred, 4-phenylene, 1,4-naphthalenediyl and 9,10-anthracenediyl are more preferred.
式(1)において、Aは炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールで置き換えられていてもよい。炭素数6~20のアリールは上記のArおよびArで例示した基があげられる。置換基である炭素数1~6のアルキル、炭素数3~6のシクロアルキルおよび炭素数6~14のアリールについても、前記のピリジルまたはビピリジルの置換基として例示した基があげられる。 In the formula (1), A is aryl having 6 to 20 carbon atoms, and any hydrogen of the aryl is alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms or aryl having 6 to 14 carbon atoms. It may be replaced. Examples of the aryl having 6 to 20 carbon atoms include the groups exemplified for Ar 1 and Ar 2 above. Examples of the substituents of alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, and aryl having 6 to 14 carbon atoms include the groups exemplified as the substituents for the above-mentioned pyridyl or bipyridyl.
Aは置換基を有するアリールも含めて、フェニル、1-ナフチル、2-ナフチル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、m-テルフェニル-5’-イル、および9-フェナントリルが好ましく、フェニル、1-ナフチル、2-ナフチル、3-ビフェニリル、および4-ビフェニリルがより好ましい。 A is preferably phenyl, 1-naphthyl, 2-naphthyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, and 9-phenanthryl, including aryl having a substituent. More preferred are phenyl, 1-naphthyl, 2-naphthyl, 3-biphenylyl, and 4-biphenylyl.
式(1)において、R~Rは独立して水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~10のヘテロアリールであり、このアリールまたはヘテロアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、および炭素数2~10のヘテロアリールは前記のピリジルまたはビピリジルの置換基として例示した基があげられる。置換基としての炭素数1~6のアルキルおよび炭素数3~6のシクロアルキルについても同様である。 In the formula (1), R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons. Aryl, and any hydrogen of the aryl or heteroaryl may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons. Examples of the alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, aryl having 6 to 14 carbon atoms, and heteroaryl having 2 to 10 carbon atoms include the groups exemplified as the substituents for the above-mentioned pyridyl or bipyridyl. . The same applies to alkyl having 1 to 6 carbon atoms and cycloalkyl having 3 to 6 carbon atoms as a substituent.
~Rは水素、メチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、およびフェニルが好ましく、水素、メチル、t-ブチル、シクロヘキシル、およびフェニルがより好ましく、すべて水素であることがさらに好ましい。 R 1 to R 8 are preferably hydrogen, methyl, ethyl, isopropyl, t-butyl, cyclohexyl and phenyl, more preferably hydrogen, methyl, t-butyl, cyclohexyl and phenyl, and even more preferably all hydrogen.
また、上記式(1)で表される化合物を構成する、ベンゾ[a]カルバゾールにおける水素原子、ベンゾ[a]カルバゾールに置換するPy、Py、Ar、Ar、A、およびR~Rにおける水素原子の全てまたは一部が重水素であってもよい。 Moreover, the hydrogen atom in benzo [a] carbazole and Py 1 , Py 2 , Ar 1 , Ar 2 , A, and R 1 that substitute for benzo [a] carbazole, which constitute the compound represented by the above formula (1). All or some of the hydrogen atoms in ~ R 8 may be deuterium.
<化合物の具体例>
本発明の態様における式(1-1)で表される化合物の具体例は、以下に示す化合物(1-1-1)~(1-1-861)および(1-1-871)~(1-1-1019)である。この中で好ましい化合物は(1-1-1)~(1-1-56)、(1-1-65)~(1-1-67)、(1-1-71)~(1-1-76)、(1-1-86)~(1-1-88)、(1-1-92)~(1-1-97)、(1-1-102)~(1-1-104)、(1-1-108)~(1-1-113)、(1-1-118)、(1-1-119)、(1-1-123)~(1-1-133)、(1-1-137)~(1-1-141)、(1-1-145)~(1-1-150)、(1-1-154)~(1-1-159)、(1-1-163)~(1-1-177)、(1-1-181)~(1-1-183)、(1-1-205)、(1-1-206)、(1-1-208)~(1-1-213)、(1-1-215)~(1-1-220)、(1-1-222)~(1-1-227)、(1-1-230)~(1-1-233)、(1-1-236)~(1-1-239)、(1-1-242)、(1-1-243)、(1-1-262)、(1-1-263)、(1-1-266)~(1-1-269)、(1-1-272)~(1-1-275)、(1-1-278)~(1-1-281)、(1-1-284)~(1-1-287)、(1-1-290)~(1-1-293)、(1-1-296)~(1-1-315)、(1-1-325)~(1-1-351)、(1-1-361)~(1-1-387)、(1-1-397)~(1-1-423)、(1-1-433)~(1-1-621)、(1-1-624)、(1-1-625)、(1-1-630)~(1-1-635)、(1-1-638)~(1-1-641)、(1-1-644)~(1-1-647)、(1-1-650)~(1-1-653)、(1-1-656)~(1-1-659)、(1-1-662)~(1-1-665)、(1-1-668)~(1-1-671)、(1-1-673)~(1-1-678)、(1-1-680)~(1-1-685)、(1-1-687)~(1-1-692)、(1-1-695)~(1-1-698)、(1-1-701)~(1-1-704)、(1-1-707)~(1-1-720)、(1-1-733)~(1-1-780)、(1-1-784)~(1-1-819)、(1-1-871)~(1-1-880)、(1-1-885)~(1-1-888)、(1-1-891)~(1-1-894)、(1-1-897)、(1-1-898)、(1-1-901)~(1-1-940)、および(1-1-945)~(1-1-974)である。
<Specific examples of compounds>
Specific examples of the compound represented by the formula (1-1) in the embodiment of the present invention include the following compounds (1-1-1) to (1-1-861) and (1-1-871) to ( 1-1-1019). Among these, preferred compounds are (1-1-1) to (1-1-56), (1-1-65) to (1-1-67), (1-1-71) to (1-1 -76), (1-1-86) to (1-1-88), (1-1-92) to (1-1-97), (1-1-102) to (1-1-104) ), (1-1-108) to (1-1-113), (1-1-118), (1-1-119), (1-1-123) to (1-1-133), (1-1-137) to (1-1-141), (1-1-145) to (1-1-150), (1-1-154) to (1-1-159), (1 -1-163) to (1-1-177), (1-1-181) to (1-1-183), (1-1-205), (1-1-206), (1-1 -208) to (1-1-213), (1-1-215) to (1 1-220), (1-1-222) to (1-1-227), (1-1-230) to (1-1-233), (1-1-236) to (1-1- 239), (1-1-242), (1-1-243), (1-1-262), (1-1-263), (1-1-266) to (1-1-269) , (1-1-272) to (1-1-275), (1-1-278) to (1-1-281), (1-1-284) to (1-1-287), ( 1-1-290) to (1-1-293), (1-1-296) to (1-1-315), (1-1-325) to (1-1-351), (1- 1-361) to (1-1-387), (1-1-397) to (1-1-423), (1-1-433) to (1-1-621), (1-1) 624), (1-1-625), (1-1- 30) to (1-1-635), (1-1-638) to (1-1-641), (1-1-644) to (1-1-647), (1-1-650) (1-1-653), (1-1-656) to (1-1-659), (1-1-662) to (1-1-665), (1-1-668) to (1-1) 1-1-671), (1-1-673) to (1-1-678), (1-1-680) to (1-1-685), (1-1-687) to (1- 1-692), (1-1-695) to (1-1-698), (1-1-701) to (1-1-704), (1-1-707) to (1-1) 720), (1-1-733) to (1-1-780), (1-1-784) to (1-1-819), (1-1-871) to (1-1-880) , (1-1-885) to (1-1-888) , (1-1-891) to (1-1-894), (1-1-897), (1-1-898), (1-1-901) to (1-1-940), and (1-1-945) to (1-1-974).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
本発明の態様における式(1-2)で表される化合物の具体例は、以下に示す化合物(1-2-1)~(1-2-365)および(1-2-381)~(1-2-656)である。この中で好ましい化合物は(1-2-1)~(1-2-146)、(1-2-149)、(1-2-150)、(1-2-153)~(1-2-157)、(1-2-162)~(1-2-165)、(1-2-169)~(1-2-175)、(1-2-179)~(1-2-182)、(1-2-185)、(1-2-186)、(1-2-189)、(1-2-190)、(1-2-193)~(1-2-195)、(1-2-199)~(1-2-205)、(1-2-209)~(1-2-212)、(1-2-225)~(1-2-365)、(1-2-451)~(1-2-460)、(1-2-485)~(1-2-514)および(1-2-539)~(1-2-636)である。 Specific examples of the compound represented by the formula (1-2) in the embodiment of the present invention include the following compounds (1-2-1) to (1-2-365) and (1-2-381) to ( 1-2-656). Of these, preferred compounds are (1-2-1) to (1-2-146), (1-2-149), (1-2-150), (1-2-153) to (1-2). -157), (1-2-162) to (1-2-165), (1-2-169) to (1-2-175), (1-2-179) to (1-2-182) ), (1-2-185), (1-2-186), (1-2-189), (1-2-190), (1-2-193) to (1-2-195), (1-2-199)-(1-2-205), (1-2-209)-(1-2212), (1-2-225)-(1-2-365), (1 -2-451) to (1-2-460), (1-2-485) to (1-2-514) and (1-2-539) to (1-2-636).
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000179
本発明の態様における式(1-3)で表される化合物の具体例は、以下に示す化合物(1-3-1)~(1-3-352)および(1-3-361)~(1-3-654)である。この中で好ましい化合物は(1-3-1)~(1-3-132)、(1-3-136)~(1-3-141)、(1-3-144)~(1-3-161)、(1-3-165)~(1-3-170)、(1-3-173)、(1-3-174)、(1-3-177)~(1-3-179)、(1-3-183)~(1-3-189)、(1-3-193)~(1-3-198)、(1-3-201)、(1-3-202)、(1-3-205)~(1-3-207)、(1-3-211)~(1-3-214)、(1-3-225)~(1-3-352)、および(1-3-479)~(1-3-620)である。 Specific examples of the compound represented by the formula (1-3) in the embodiment of the present invention include the following compounds (1-3-1) to (1-3-352) and (1-3-361) to ( 1-3-654). Among these, preferred compounds are (1-3-1) to (1-3-132), (1-136) to (1-3-141), (1-3-144) to (1-3 -161), (1-3-165) to (1-3-170), (1-3-173), (1-3-174), (1-3-177) to (1-3-179) ), (1-3-183) to (1-3-189), (1-3-193) to (1-3-198), (1-3-201), (1-3-202), (1-3-205) to (1-3-207), (1-3-211) to (1-3-214), (1-3-225) to (1-3-352), and ( 1-3-479) to (1-3-620).
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000229
<式(1)で表される化合物の製造方法>
式(1)で表される化合物は、既知の合成法を利用して製造することができる。例えば、下記の反応1~8に示す経路をたどって合成することができる。また、下記の反応9~17に示す経路をたどって合成することもできる。
<Method for Producing Compound Represented by Formula (1)>
The compound represented by Formula (1) can be manufactured using a known synthesis method. For example, it can be synthesized by following the routes shown in the following reactions 1 to 8. It can also be synthesized by following the routes shown in the following reactions 9 to 17.
まず、式(1)のベンゾ[a]カルバゾールの3位と9位に同じ基が連結した化合物の合成例として、反応1~8の経路を説明する。
Figure JPOXMLDOC01-appb-C000230
反応1では、パラジウム触媒を用いて、塩基の存在下、2-ニトロ-4-メトキシベンゼンのハロゲン化物またはトリフラートに(6-メトキシナフタレン-2-イル)ボロン酸を鈴木カップリング反応させて、化合物(a-1)を合成する。式中のR~Rは、以降も含めて前記と同じである。
First, as a synthesis example of a compound in which the same group is linked to the 3-position and the 9-position of benzo [a] carbazole of the formula (1), pathways of reactions 1 to 8 will be described.
Figure JPOXMLDOC01-appb-C000230
In the reaction 1, a compound of 6-methoxynaphthalen-2-yl) boronic acid was subjected to a Suzuki coupling reaction with a halide or triflate of 2-nitro-4-methoxybenzene in the presence of a base using a palladium catalyst. Synthesize (a-1). R 1 to R 8 in the formula are the same as described above including the following.
Figure JPOXMLDOC01-appb-C000231
反応2では、トリフェニルホスフィン:PPh或いはトリエトキシホスフィン:P(OEt)により、化合物(a-1)のニトロ基を還元的に環化させて、化合物(a-2)を合成する。
Figure JPOXMLDOC01-appb-C000231
In reaction 2, the nitro group of compound (a-1) is reductively cyclized with triphenylphosphine: PPh 3 or triethoxyphosphine: P (OEt) 3 to synthesize compound (a-2).
Figure JPOXMLDOC01-appb-C000232
反応3では、パラジウム触媒または銅触媒を用いて、塩基および反応促進剤の存在下、化合物(a-2)にAの臭化物またはヨウ化物を反応させて、化合物(a-3)を合成する。式中のAは、以降も含めて前記と同じである。
Figure JPOXMLDOC01-appb-C000232
In Reaction 3, using a palladium catalyst or a copper catalyst, compound (a-2) is reacted with bromide or iodide of A in the presence of a base and a reaction accelerator to synthesize compound (a-3). A in the formula is the same as described above including the following.
Figure JPOXMLDOC01-appb-C000233
反応4では、ピリジン塩酸塩を用いて化合物(a-3)のメトキシ基のメチルを脱離させ、化合物(a-4)を合成する。
Figure JPOXMLDOC01-appb-C000233
In Reaction 4, methyl of the methoxy group of compound (a-3) is eliminated using pyridine hydrochloride to synthesize compound (a-4).
Figure JPOXMLDOC01-appb-C000234
反応5では、塩基の存在下、化合物(a-4)にトリフルオロメタンスルホン酸無水物を反応させて、化合物(a-5)を合成する。
Figure JPOXMLDOC01-appb-C000234
In Reaction 5, compound (a-5) is synthesized by reacting compound (a-4) with trifluoromethanesulfonic anhydride in the presence of a base.
Figure JPOXMLDOC01-appb-C000235
反応6では、パラジウム触媒を用いて、塩基の存在下、化合物(a-5)にビス(ピナコラート)ジボロンを反応させて、化合物(a-6)を合成する。
Figure JPOXMLDOC01-appb-C000235
In reaction 6, compound (a-6) is synthesized by reacting compound (a-5) with bis (pinacolato) diboron in the presence of a base using a palladium catalyst.
Figure JPOXMLDOC01-appb-C000236
反応7は最終工程である。反応6で得た化合物(a-6)に、2倍モルのピリジル、ビピリジルのハライドまたはピリジルアリール(A)のハライドまたはトリフラートを鈴木カップリング反応させて、式(1)で表される化合物を合成する。
Figure JPOXMLDOC01-appb-C000236
Reaction 7 is the final step. Compound (a-6) obtained in Reaction 6 is subjected to Suzuki coupling reaction with 2 moles of pyridyl, bipyridyl halide or pyridylaryl (A 0 ) halide or triflate, and the compound represented by Formula (1) Is synthesized.
Figure JPOXMLDOC01-appb-C000237
また、反応8のように、反応5で得た化合物(a-5)に、パラジウム触媒を用いて、塩基の存在下、2倍モルのピリジル、ビピリジルまたはピリジルアリール(A)のボロン酸またはボロン酸エステルを鈴木カップリング反応させて、式(1)で表される化合物を合成することもできる。ただし、Aが2-ピリジルまたはビピリジルの場合には、反応中間体の安定性を考慮すると、反応7による方が好ましい。
Figure JPOXMLDOC01-appb-C000237
Further, as in Reaction 8, the compound (a-5) obtained in Reaction 5 was added to a boronic acid of 2-fold moles of pyridyl, bipyridyl or pyridylaryl (A 0 ) in the presence of a base using a palladium catalyst or A boronic ester can also be subjected to a Suzuki coupling reaction to synthesize a compound represented by the formula (1). However, when A 0 is 2-pyridyl or bipyridyl, the reaction 7 is preferred in view of the stability of the reaction intermediate.
次に、式(1)のベンゾ[a]カルバゾールの3位と9位に異なる基が連結した化合物の合成例として反応9~17の経路を説明する。
Figure JPOXMLDOC01-appb-C000238
反応9では、パラジウム触媒を用いて、塩基の存在下、ニトロ基を有するベンゼンのジハロ体に(6-メトキシナフタレン-2-イル)ボロン酸を鈴木カップリング反応させて、化合物(b-1)を合成する。このとき、ジハロ体のハロゲンは反応性がX>Yになるように選択する。前記と同様に、R~Rは、以降も含めて前記と同じである。
Next, routes of reactions 9 to 17 will be described as synthesis examples of compounds in which different groups are linked to the 3rd and 9th positions of benzo [a] carbazole of the formula (1).
Figure JPOXMLDOC01-appb-C000238
In Reaction 9, by using a palladium catalyst in the presence of a base, (6-methoxynaphthalen-2-yl) boronic acid was subjected to Suzuki coupling reaction with a dihalo form of benzene having a nitro group to obtain compound (b-1). Is synthesized. At this time, the halogen of the dihalo compound is selected so that the reactivity is X> Y. Similarly to the above, R 1 to R 8 are the same as the above including the following.
Figure JPOXMLDOC01-appb-C000239
反応10では、トリフェニルホスフィン:PPh或いはトリエトキシホスフィン:P(OEt)により、化合物(b-1)のニトロ基を還元的に環化させて、化合物(b-2)を合成する。
Figure JPOXMLDOC01-appb-C000239
In Reaction 10, the nitro group of compound (b-1) is reductively cyclized with triphenylphosphine: PPh 3 or triethoxyphosphine: P (OEt) 3 to synthesize compound (b-2).
Figure JPOXMLDOC01-appb-C000240
反応11では、パラジウム触媒または銅触媒を用いて、塩基および反応促進剤の存在下、化合物(b-2)にAの臭化物またはヨウ化物を反応させて、化合物(b-3)を合成する。式中のAは、以降も含めて前記と同じである。
Figure JPOXMLDOC01-appb-C000240
In Reaction 11, compound (b-3) is synthesized by reacting compound (b-2) with a bromide or iodide of A in the presence of a base and a reaction accelerator using a palladium catalyst or a copper catalyst. A in the formula is the same as described above including the following.
Figure JPOXMLDOC01-appb-C000241
反応12では、パラジウム触媒を用いて、塩基の存在下、化合物(b-3)にピリジルアリールまたはアリール(A02)のボロン酸またはボロン酸エステルを反応させて、化合物(b-4)を合成する。この反応はA02がピリジルまたはビピリジルの場合でも使用できるが、反応中間体の安定性を考慮すると、化合物(b-3)のYをリチオ化するか、グリニャール試薬としてから、定法に従ってボロン酸エステルまたはボロン酸とし、これとピリジルまたはビピリジルのハライドとの鈴木カップリング反応にて化合物(b-4)を得る方が好ましい。
Figure JPOXMLDOC01-appb-C000241
In Reaction 12, using a palladium catalyst, compound (b-3) is reacted with boronic acid or boronic acid ester of pyridylaryl or aryl (A 02 ) in the presence of a base to synthesize compound (b-4). To do. This reaction can be used even when A 02 is pyridyl or bipyridyl. However, in consideration of the stability of the reaction intermediate, Y of compound (b-3) is lithiated or used as a Grignard reagent, and then a boronic ester is used according to a conventional method. Alternatively, it is preferable to obtain a compound (b-4) by a Suzuki coupling reaction between boronic acid and pyridyl or bipyridyl halide.
Figure JPOXMLDOC01-appb-C000242
反応13では、ピリジン塩酸塩を用いて化合物(b-4)のメトキシ基のメチルを脱離させ、化合物(b-5)を合成する。
Figure JPOXMLDOC01-appb-C000242
In reaction 13, methyl of the methoxy group of compound (b-4) is eliminated using pyridine hydrochloride to synthesize compound (b-5).
Figure JPOXMLDOC01-appb-C000243
反応14では、塩基の存在下、化合物(b-5)にトリフルオロメタンスルホン酸無水物を反応させて、化合物(b-6)を合成する。
Figure JPOXMLDOC01-appb-C000243
In Reaction 14, trifluoromethanesulfonic anhydride is reacted with compound (b-5) in the presence of a base to synthesize compound (b-6).
Figure JPOXMLDOC01-appb-C000244
反応15では、パラジウム触媒を用いて、塩基の存在下、化合物(b-6)にビス(ピナコラート)ジボロンを反応させて、化合物(b-7)を合成する。
Figure JPOXMLDOC01-appb-C000244
In Reaction 15, compound (b-7) is synthesized by reacting compound (b-6) with bis (pinacolato) diboron in the presence of a base using a palladium catalyst.
Figure JPOXMLDOC01-appb-C000245
反応16は最終工程である。反応15で得た化合物(b-7)に、ピリジル、ビピリジル、ピリジルアリール、またはアリール(A01)のハライドまたはトリフラートを鈴木カップリング反応させて、式(1)で表される化合物を合成する。
Figure JPOXMLDOC01-appb-C000245
Reaction 16 is the final step. The compound (b-7) obtained in Reaction 15 is subjected to Suzuki coupling reaction with a pyridyl, bipyridyl, pyridylaryl, or aryl (A 01 ) halide or triflate to synthesize a compound represented by Formula (1). .
Figure JPOXMLDOC01-appb-C000246
また、反応14で得た化合物(b-6)に、パラジウム触媒を用いて、塩基の存在下、ピリジルアリールまたはアリール(A01)のボロン酸またはボロン酸エステルを鈴木カップリング反応させて、式(1)で表される化合物を合成することもできる。この反応はA01がピリジルまたはビピリジルの場合でも使用できるが、反応中間体の安定性を考慮すると、反応16による方が好ましい。
Figure JPOXMLDOC01-appb-C000246
Further, the compound (b-6) obtained in the reaction 14 was subjected to a Suzuki coupling reaction with a boronic acid or boronic acid ester of pyridylaryl or aryl (A 01 ) in the presence of a base using a palladium catalyst to obtain a compound of the formula The compound represented by (1) can also be synthesized. This reaction can be used even when A 01 is pyridyl or bipyridyl, but reaction 16 is preferred in view of the stability of the reaction intermediate.
式(1-2)のArが水素である化合物の合成方法について説明する。反応1~8の経路にて合成する場合は、反応1で用いる(6-メトキシナフタレン-2-イル)ボロン酸の代わりに、ナフタレン環の6位が水素であるナフタレン-2-イルボロン酸を使用すればよい。反応9~17の経路にて合成する場合は、反応9で用いる(6-メトキシナフタレン-2-イル)ボロン酸の代わりに、ナフタレン環の6位が水素であるナフタレン-2-イルボロン酸を使用すればよい。 A method for synthesizing a compound in which Ar 1 in formula (1-2) is hydrogen will be described. When synthesizing via the routes of Reactions 1 to 8, instead of (6-methoxynaphthalen-2-yl) boronic acid used in Reaction 1, naphthalen-2-ylboronic acid in which the 6-position of the naphthalene ring is hydrogen is used. do it. When synthesizing via the route of reactions 9 to 17, in place of (6-methoxynaphthalen-2-yl) boronic acid used in reaction 9, naphthalen-2-ylboronic acid in which the 6-position of the naphthalene ring is hydrogen is used. do it.
式(1-3)のArが水素である化合物の合成方法について説明する。反応1~8の経路にて合成する場合は、反応1の2-ニトロ-4-メトキシベンゼンのハライドまたはトリフラートの代わりに、ベンゼン環の4位が水素である化合物を使用すればよい。また、反応9~17の経路にて合成する場合は、反応9の出発物質であるニトロベンゼンのYが水素であるハライドまたはトリフラートを使用すればよい。 A method for synthesizing a compound of formula (1-3) in which Ar 2 is hydrogen will be described. When synthesizing via the routes of Reactions 1 to 8, instead of the 2-nitro-4-methoxybenzene halide or triflate of Reaction 1, a compound in which the 4-position of the benzene ring is hydrogen may be used. In the case of synthesis through the routes of reactions 9 to 17, a halide or triflate in which Y of nitrobenzene, which is the starting material of reaction 9, is hydrogen may be used.
また、上記の経路以外でも、式(1)で表される化合物を合成することができる。予め4位をピリジル、ビピリジル、ピリジルアリール、アリール(A02)などで置換した2-ニトロハロベンゼンまたはトリフラート、および、予め6位をピリジル、ビピリジル、ピリジルアリール、アリール(A01)などで置換したナフタレン-2-イルボロン酸をそれぞれ合成し、それらを定法に従って鈴木カップリング反応させる。その後、PPh或いはP(OEt)を用いて、ニトロ基を還元的に環化させ、11H-ベンゾ[a]カルバゾール誘導体を得る。最後に、パラジウム触媒または銅触媒を用いて、塩基および反応促進剤の存在下、11H-ベンゾ[a]カルバゾール誘導体にAの臭化物またはヨウ化物を反応させることによっても、本発明の式(1)で表される化合物を合成することができる。この反応経路はベンゾ[c]カルバゾールの3位と9位の基が異なる化合物を合成するのに適するが、3位と9位の基が同じ化合物にも適用できる。どちらの場合でも、ベンゾ[c]カルバゾールの9位にピリジルまたはビピリジルが連結した化合物を合成する場合には、この反応経路を経由するのが好ましい。 In addition, the compound represented by the formula (1) can be synthesized by a route other than the above route. 2-nitrohalobenzene or triflate previously substituted at the 4-position with pyridyl, bipyridyl, pyridylaryl, aryl (A 02 ), etc., and the 6-position previously substituted with pyridyl, bipyridyl, pyridylaryl, aryl (A 01 ), etc. Naphthalen-2-ylboronic acid is synthesized, respectively, and subjected to Suzuki coupling reaction according to a conventional method. Thereafter, the nitro group is reductively cyclized using PPh 3 or P (OEt) 3 to obtain an 11H-benzo [a] carbazole derivative. Finally, by reacting 11H-benzo [a] carbazole derivative with bromide or iodide of A using a palladium catalyst or a copper catalyst in the presence of a base and a reaction accelerator, the formula (1) of the present invention Can be synthesized. This reaction route is suitable for synthesizing a compound in which the 3-position and 9-position groups of benzo [c] carbazole are different, but can also be applied to a compound in which the 3-position and 9-position groups are the same. In either case, when a compound in which pyridyl or bipyridyl is linked to the 9-position of benzo [c] carbazole is synthesized, it is preferable to go through this reaction route.
上述した鈴木カップリング反応(反応1、7、8、9、12、16、および17)において用いられるパラジウム触媒は、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)ジクロロパラジウム(II):PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、ビス(トリt-ブチルホスフィノ)パラジウム(0):Pd(P(t-Bu)、または[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリトジクロロメタン錯体(1:1):PdCl(dppf)・CHClなどを例示することができる。 The palladium catalyst used in the above-described Suzuki coupling reaction (reactions 1, 7, 8, 9, 12, 16, and 17) is tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis ( Triphenylphosphine) dichloropalladium (II): PdCl 2 (PPh 3 ) 2 , palladium acetate (II): Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , Tris (Dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (dba) 3 .CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (tri-t-butylphosphino) palladium (0): Pd (P ( t-Bu) 3) 2 or [1,1'-bis (diphenyl Niruhosufino) ferrocene] palladium (II) dichloride lithograph dichloromethane complex (1: 1): and the like can be exemplified PdCl 2 (dppf) · CH 2 Cl 2.
反応促進のため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。ホスフィン化合物の具体例としては、トリ(t-ブチル)ホスフィン:t-BuP、トリシクロヘキシルホスフィン:PCy、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、および2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルが挙げられる。 In order to accelerate the reaction, a phosphine compound may be added to these palladium compounds in some cases. Specific examples of the phosphine compound include tri (t-butyl) phosphine: t-Bu 3 P, tricyclohexylphosphine: PCy 3 , 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino ) Ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1 ′ -Bis (di-t-butylphosphino) ferrocene, 2,2'-bis (di-t-butylphosphino) -1,1'-binaphthyl, 2-methoxy-2 '-(di-t-butylphosphino)- 1,1′-binaphthyl, and 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl.
同反応で用いられる塩基の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、リン酸三カリウム:KPO、およびフッ化カリウムが挙げられる。 Specific examples of bases used in the reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, phosphorus Examples include tripotassium acid: K 3 PO 4 , and potassium fluoride.
同反応において用いられる溶媒としては、ベンゼン、トルエン、キシレン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、イソプロピルアルコール、シクロペンチルメチルエーテルなどが挙げられる。これらの溶媒は、単独で用いてもよく、混合溶媒として用いてもよい。反応は通常50~180℃の温度範囲で実施されるが、より好ましくは70~130℃である。 Solvents used in the reaction include benzene, toluene, xylene, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4-dioxane, methanol, ethanol, Examples thereof include isopropyl alcohol and cyclopentyl methyl ether. These solvents may be used alone or as a mixed solvent. The reaction is usually carried out in the temperature range of 50 to 180 ° C, more preferably 70 to 130 ° C.
反応2および反応10で用いられる反応溶媒としては、トルエン、キシレン、クロロベンゼン、o-ジクロロベンゼン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドンが例示される。溶媒は単独で用いてもよく、混合溶媒として用いてもよい。反応温度は通常100℃~220℃の範囲で実施される。より好ましくは130~190℃である。 Examples of the reaction solvent used in Reaction 2 and Reaction 10 include toluene, xylene, chlorobenzene, o-dichlorobenzene, N, N-dimethylformamide, N, N-dimethylacetamide, and 1-methyl-2-pyrrolidone. A solvent may be used independently and may be used as a mixed solvent. The reaction temperature is usually in the range of 100 ° C to 220 ° C. More preferably, it is 130 to 190 ° C.
反応3および反応11において銅触媒を用いる場合には、銅粉、酸化銅またはハロゲン化銅などが用いられる。同時に使用される塩基は炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水素化ナトリウムなどであり、反応促進剤はクラウンエーテル(例えば、18-クラウン-6-エーテル)、ポリエチレングリコール(PEG)、ポリエチレングリコールジアルキルエーテル(PEGDM)などが挙げられる。そして、反応溶媒にはN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ニトロベンゼン、ジメチルスルホキシド、ジクロロベンゼン、キノリンなどが用いられる。反応温度は160~250℃であるが、基質の反応性が低い場合にはオートクレーブなどを用いてより高温の反応を行ってもよい。 When a copper catalyst is used in Reaction 3 and Reaction 11, copper powder, copper oxide, copper halide, or the like is used. The base used at the same time is potassium carbonate, sodium carbonate, sodium bicarbonate, sodium hydride and the like, and the reaction accelerator is crown ether (for example, 18-crown-6-ether), polyethylene glycol (PEG), polyethylene glycol dialkyl. And ether (PEGDM). As the reaction solvent, N, N-dimethylformamide, N, N-dimethylacetamide, nitrobenzene, dimethyl sulfoxide, dichlorobenzene, quinoline and the like are used. The reaction temperature is 160 to 250 ° C. However, when the reactivity of the substrate is low, a higher temperature reaction may be performed using an autoclave or the like.
反応3および反応11においてパラジウム触媒を用いる場合には、酢酸パラジウム(II):Pd(OAc)、塩化パラジウム:PdCl、臭化パラジウムPdBr、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、ビス(トリt-ブチルホスフィノ)パラジウム(0):Pd(P(t-Bu)、または[1.1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン錯体(1:1):PdCl(dppf)・CHClなどが用いられる。 When a palladium catalyst is used in Reaction 3 and Reaction 11, palladium (II) acetate: Pd (OAc) 2 , palladium chloride: PdCl 2 , palladium bromide PdBr 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (dba) 3 .CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis ( Tri-t-butylphosphino) palladium (0): Pd (P (t-Bu) 3 ) 2 or [1.1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane complex (1: 1 ): PdCl 2 (dppf) · CH 2 Cl 2 or the like is used.
同時に使用される塩基は炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸水素ナトリウム、水素化ナトリウム、アルコキシカリウム(例えば、メトキシカリウム、エトキシカリウム、ノルマルプロポキシカリウム、イソプロポキシカリウム、n-ブトキシカリウムおよびt-ブトキシカリウムなど)、アルコキシナトリウム(例えば、メトキシナトリウム、エトキシナトリウム、ノルマルプロポキシナトリウム、イソプロポキシナトリウム、n-ブトキシナトリウムおよびt-ブトキシナトリウムなど)が挙げられる。 The bases used at the same time are lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydride, alkoxy potassium (for example, methoxy potassium, ethoxy potassium, normal propoxy potassium, isopropoxy potassium, n- Butoxy potassium, etc.), and alkoxy sodium (eg, methoxy sodium, ethoxy sodium, normal propoxy sodium, isopropoxy sodium, n-butoxy sodium, and t-butoxy sodium).
反応促進剤は2,2’-(ジフェニルホスフィノ)-1,1’-ビナフチル、1,1’-(ジフェニルホスフィノ)フェロセン、ジシクロヘキシルホスフィノビフェニル、ジ-t-ブチルホスフィノビフェニル、トリ(t-ブチル)ホスフィン:t-BuP、1-(N,N-ジメチルアミノメチル)-2-(ジ-t-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジ-t-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジ-t-ブチルホスフィノ)フェロセン、1,1’-ビス(ジ-t-ブチルホスフィノ)フェロセン、2,2’-ビス(ジ-t-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジ-t-ブチルホスフィノ)-1,1’-ビナフチル、または2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルなどが使用される。 The reaction accelerator is 2,2 ′-(diphenylphosphino) -1,1′-binaphthyl, 1,1 ′-(diphenylphosphino) ferrocene, dicyclohexylphosphinobiphenyl, di-t-butylphosphinobiphenyl, tri ( t-butyl) phosphine: t-Bu 3 P, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2 -(Di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1'-bis (di-t-butylphosphino) ferrocene, , 2'-bis (di-t-butylphosphino) -1,1'-binaphthyl, 2-methoxy-2 '-(di-t-butylphosphino) -1,1'-binaphthyl, or 2-dicyclo Kishiruhosufino -2 ', 6'-like dimethoxybiphenyl is used.
反応溶媒にはベンゼン、トルエン、キシレン、メシチレンなどの芳香族炭化水素溶媒が用いられる。溶媒は単独で用いてもよく、混合溶媒として用いてもよい。反応温度は通常50~200℃の範囲で実施されるが、より好ましくは80~140℃である。 As the reaction solvent, an aromatic hydrocarbon solvent such as benzene, toluene, xylene, or mesitylene is used. A solvent may be used independently and may be used as a mixed solvent. The reaction temperature is usually 50 to 200 ° C., more preferably 80 to 140 ° C.
反応4および反応13で用いられる反応溶媒としては、1-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、ニトロベンゼン、ジメチルスルホキシド、ジクロロベンゼン、キノリンなどが挙げられる。溶媒は単独で用いてもよく、混合溶媒として用いてもよい。場合によっては、無溶媒で行ってもよい。反応は通常150℃~220℃の温度範囲で実施されるが、より好ましくは180~200℃である。 Examples of the reaction solvent used in Reaction 4 and Reaction 13 include 1-methyl-2-pyrrolidone, N, N-dimethylacetamide, nitrobenzene, dimethyl sulfoxide, dichlorobenzene, quinoline and the like. A solvent may be used independently and may be used as a mixed solvent. In some cases, the reaction may be performed without a solvent. The reaction is usually carried out in a temperature range of 150 to 220 ° C, more preferably 180 to 200 ° C.
反応5および反応14において塩基を用いる場合には、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、酢酸ナトリウム、酢酸カリウム:KOAc、リン酸三カリウム:KPO、フッ化カリウム、フッ化セシウム、トリメチルアミン、トリエチルアミン、ピリジンなどを用いることができる。 When a base is used in Reaction 5 and Reaction 14, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium acetate, potassium acetate: KOAc, tripotassium phosphate : K 3 PO 4 , potassium fluoride, cesium fluoride, trimethylamine, triethylamine, pyridine and the like can be used.
反応5および反応14において用いられる溶媒としては、ピリジン、トルエン、キシレン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、CHCl、CHCl、CHCNなどが挙げられる。これらの溶媒は、単独で用いてもよく、混合溶媒として用いてもよい。反応は通常-10~50℃の温度範囲で実施されるが、より好ましくは0~30℃である。 Examples of the solvent used in Reaction 5 and Reaction 14 include pyridine, toluene, xylene, N, N-dimethylformamide, N, N-dimethylacetamide, CH 2 Cl 2 , CHCl 3 , and CH 3 CN. These solvents may be used alone or as a mixed solvent. The reaction is usually carried out in the temperature range of −10 to 50 ° C., more preferably 0 to 30 ° C.
反応6および反応15において用いられるパラジウム触媒としては、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)ジクロロパラジウム(II):PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、ビス(トリt-ブチルホスフィノ)パラジウム(0):Pd(P(t-Bu)、または[1.1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリトジクロロメタン錯体(1:1):PdCl(dppf)・CHClなどが挙げられる。 As the palladium catalyst used in Reaction 6 and Reaction 15, tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) dichloropalladium (II): PdCl 2 (PPh 3 ) 2 , Palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (dba 3 · CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , bis (tri-t-butylphosphino) palladium (0): Pd (P (t-Bu) 3 ) 2 , or [1.1'-bis (diphenylphosphino) ferrocene] palladium (II) dic Loritodichloromethane complex (1: 1): PdCl 2 (dppf) · CH 2 Cl 2 and the like.
反応促進のため、場合によりこれらのパラジウム化合物にホスィン化合物を加えてもよい。そのホスィン化合物は、トリ(t-ブチル)ホスフィン:t-BuP、トリシクロヘキシルホスフィン:PCy、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルなどが挙げられる。 In order to accelerate the reaction, a phosphine compound may be added to these palladium compounds. The phosphine compound includes tri (t-butyl) phosphine: t-Bu 3 P, tricyclohexylphosphine: PCy 3 , 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis ( Di-t-butylphosphino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,1 Examples include '-binaphthyl and 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl.
反応6および反応15において用いられる塩基は、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、酢酸カリウム:KOAc、リン酸三カリウム:KPO、フッ化カリウムなどである。 The bases used in Reaction 6 and Reaction 15 are sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, potassium acetate. : KOAc, tripotassium phosphate: K 3 PO 4 , potassium fluoride and the like.
反応6および反応15において用いられる溶媒は、ベンゼン、トルエン、キシレン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、イソプロピルアルコール、シクロペンチルメチルエーテルなどである。これらの溶媒は、単独で用いてもよく、混合溶媒として用いてもよい。反応温度は通常50~180℃の範囲で実施されるが、より好ましくは70~130℃である。 Solvents used in Reaction 6 and Reaction 15 are benzene, toluene, xylene, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4-dioxane, methanol, Ethanol, isopropyl alcohol, cyclopentyl methyl ether and the like. These solvents may be used alone or as a mixed solvent. The reaction temperature is usually 50 to 180 ° C, more preferably 70 to 130 ° C.
また、上記ではアリール、ヘテロアリール等の環同士を結合させる工程で鈴木カップリング反応を用いたが、入手できる原料、試薬の種類に応じて、根岸カップリング反応を用いることもできる。 In the above description, the Suzuki coupling reaction is used in the step of bonding rings such as aryl and heteroaryl, but Negishi coupling reaction can be used depending on the types of available raw materials and reagents.
本発明の化合物を、有機EL素子における、電子注入層または電子輸送層に用いた場合、電界印加時において安定である。これらは、本発明の化合物が、電界発光型素子の電子注入材料、または電子輸送材料として優れていることを表す。ここで言う電子注入層とは陰極から有機層へ電子を受け取る層であり、電子輸送層とは注入された電子を発光層へ輸送するための層である。また、電子輸送層が電子注入層を兼ねることも可能である。それぞれの層に用いる材料を、電子注入材料および電子輸送材料という。 When the compound of the present invention is used for an electron injection layer or an electron transport layer in an organic EL device, it is stable when an electric field is applied. These represent that the compound of the present invention is excellent as an electron injecting material or an electron transporting material for an electroluminescent device. The electron injection layer mentioned here is a layer for receiving electrons from the cathode to the organic layer, and the electron transport layer is a layer for transporting the injected electrons to the light emitting layer. The electron transport layer can also serve as the electron injection layer. The material used for each layer is referred to as an electron injection material and an electron transport material.
<有機EL素子の説明>
本願の第2の発明は、電子注入層、または電子輸送層に、本発明の式(1)で表される化合物を含有する有機EL素子である。本発明の有機EL素子は、駆動電圧が低く、駆動時の耐久性が高い。
<Description of organic EL element>
2nd invention of this application is an organic EL element containing the compound represented by Formula (1) of this invention in an electron injection layer or an electron carrying layer. The organic EL element of the present invention has a low driving voltage and high durability during driving.
本発明の有機EL素子の構造は各種の態様があるが、基本的には陽極と陰極との間に少なくとも正孔輸送層、発光層、電子輸送層を挟持した多層構造である。素子の具体的な構成の例は、(1)陽極/正孔輸送層/発光層/電子輸送層/陰極、(2)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極、(3)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、等である。 Although the structure of the organic EL device of the present invention has various modes, it is basically a multilayer structure in which at least a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between an anode and a cathode. Examples of the specific configuration of the device are (1) anode / hole transport layer / light emitting layer / electron transport layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer. / Cathode, (3) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, etc.
本発明の化合物は、高い電子注入性および電子輸送性を持っているので、単体又は他の材料と併用して電子注入層、または電子輸送層に使用できる。本発明の有機EL素子は、本発明の電子輸送材料に他の材料を用いた正孔注入層、正孔輸送層、発光層、などを組み合わせることで、青色、緑色、赤色や白色の発光を得ることもできる。 Since the compound of the present invention has high electron injecting property and electron transporting property, it can be used for an electron injecting layer or an electron transporting layer alone or in combination with other materials. The organic EL device of the present invention emits blue, green, red and white light by combining a hole injection layer, a hole transport layer, a light emitting layer, etc. using other materials with the electron transport material of the present invention. It can also be obtained.
本発明の有機EL素子に使用できる発光材料または発光性ドーパントは、高分子学会編、高分子機能材料シリーズ“光機能材料”、共同出版(1991)、P236に記載されているような昼光蛍光材料、蛍光増白剤、レーザー色素、有機シンチレータ、各種の蛍光分析試薬等の発光材料、城戸淳二監修、“有機EL材料とディスプレイ”シーエムシー社出版(2001)P155~156に記載されているようなドーパント材料、P170~172に記載されているような3重項材料の発光材料等である。 The light-emitting material or light-emitting dopant that can be used in the organic EL device of the present invention is daylight fluorescence as described in the Polymer Society of Japan, Polymer Functional Materials Series “Optical Functional Materials”, Joint Publication (1991), P236. Materials, fluorescent brighteners, laser dyes, organic scintillators, various fluorescent analysis reagents and other luminescent materials, supervised by Koji Koji, “Organic EL materials and displays” published by CMMC (2001) P155-156 And a light emitting material of a triplet material as described in P170 to 172.
発光材料または発光性ドーパントとして使用できる化合物は、多環芳香族化合物、ヘテロ芳香族化合物、有機金属錯体、色素、高分子系発光材料、スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ボラン誘導体、オキサジン誘導体、スピロ環を有する化合物、オキサジアゾール誘導体、フルオレン誘導体等である。多環芳香族化合物の例は、アントラセン誘導体、フェナントレン誘導体、ナフタセン誘導体、ピレン誘導体、クリセン誘導体、ペリレン誘導体、コロネン誘導体、ルブレン誘導体等である。ヘテロ芳香族化合物の例は、ジアルキルアミノ基またはジアリールアミノ基を有するオキサジアゾール誘導体、ピラゾロキノリン誘導体、ピリジン誘導体、ピラン誘導体、フェナントロリン誘導体、シロール誘導体、トリフェニルアミノ基を有するチオフェン誘導体、キナクリドン誘導体等である。有機金属錯体の例は、亜鉛、アルミニウム、ベリリウム、ユーロピウム、テルビウム、ジスプロシウム、イリジウム、白金、オスミウム、金、等と、キノリノール誘導体、ベンゾキサゾ-ル誘導体、ベンゾチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、ピロール誘導体、ピリジン誘導体、フェナントロリン誘導体等との錯体である。色素の例は、キサンテン誘導体、ポリメチン誘導体、ポルフィリン誘導体、クマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、オキソベンズアントラセン誘導体、カルボスチリル誘導体、ペリレン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体等の色素が挙げられる。高分子系発光材料の例は、ポリパラフェニルビニレン誘導体、ポリチオフェン誘導体、ポリビニルカルバゾ-ル誘導体、ポリシラン誘導体、ポリフルオレン誘導体、ポリパラフェニレン誘導体等である。スチリル誘導体の例は、アミン含有スチリル誘導体、スチリルアリーレン誘導体等である。 The compounds that can be used as the light emitting material or the light emitting dopant are polycyclic aromatic compounds, heteroaromatic compounds, organometallic complexes, dyes, polymer light emitting materials, styryl derivatives, aromatic amine derivatives, coumarin derivatives, borane derivatives, oxazines. Derivatives, compounds having a spiro ring, oxadiazole derivatives, fluorene derivatives and the like. Examples of the polycyclic aromatic compound are anthracene derivatives, phenanthrene derivatives, naphthacene derivatives, pyrene derivatives, chrysene derivatives, perylene derivatives, coronene derivatives, rubrene derivatives, and the like. Examples of heteroaromatic compounds are oxadiazole derivatives having a dialkylamino group or diarylamino group, pyrazoloquinoline derivatives, pyridine derivatives, pyran derivatives, phenanthroline derivatives, silole derivatives, thiophene derivatives having a triphenylamino group, quinacridone derivatives Etc. Examples of organometallic complexes are zinc, aluminum, beryllium, europium, terbium, dysprosium, iridium, platinum, osmium, gold, etc., quinolinol derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, A complex with a benzimidazole derivative, a pyrrole derivative, a pyridine derivative, a phenanthroline derivative, or the like. Examples of dyes are xanthene derivatives, polymethine derivatives, porphyrin derivatives, coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, oxobenzanthracene derivatives, carbostyril derivatives, perylene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazoles And pigments such as derivatives. Examples of the polymer light-emitting material are polyparaphenyl vinylene derivatives, polythiophene derivatives, polyvinyl carbazole derivatives, polysilane derivatives, polyfluorene derivatives, polyparaphenylene derivatives, and the like. Examples of styryl derivatives are amine-containing styryl derivatives, styrylarylene derivatives, and the like.
本発明の有機EL素子に使用される他の電子輸送材料は、光導電材料において電子伝達化合物として使用できる化合物、有機EL素子の電子輸送層および電子注入層に使用できる化合物の中から任意に選択して用いることができる。 Other electron transport materials used in the organic EL device of the present invention are arbitrarily selected from compounds that can be used as electron transport compounds in photoconductive materials and compounds that can be used in the electron transport layer and electron injection layer of organic EL devices. Can be used.
このような電子輸送材料の具体例は、キノリノール系金属錯体、2,2’-ビピリジル誘導体、フェナントロリン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体、チオフェン誘導体、トリアゾール誘導体、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パ-フルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体、イミダゾピリジン誘導体、ボラン誘導体等である。 Specific examples of such electron transport materials include quinolinol metal complexes, 2,2′-bipyridyl derivatives, phenanthroline derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives, thiophene derivatives, triazole derivatives, thiadiazole derivatives, oxine derivatives. Metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazole compounds, gallium complexes, pyrazole derivatives, perfluorinated phenylene derivatives, triazine derivatives, pyrazine derivatives, benzoquinoline derivatives, imidazopyridine derivatives, borane derivatives, and the like.
本発明の有機EL素子に使用される正孔注入材料および正孔輸送材料については、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物や、有機EL素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾ-ル誘導体、トリアリールアミン誘導体、フタロシアニン誘導体等である。 Regarding the hole injection material and the hole transport material used in the organic EL device of the present invention, in a photoconductive material, a compound conventionally used as a charge transport material for holes or a hole injection of an organic EL device is used. Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof are carbazole derivatives, triarylamine derivatives, phthalocyanine derivatives and the like.
本発明の有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、スピンコート法またはキャスト法等の方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。なお、発光材料を薄膜化する方法は、均質な膜が得やすく、かつピンホールが生成しにくい等の点から蒸着法を採用するのが好ましい。蒸着法を用いて薄膜化する場合、その蒸着条件は、本発明の発光材料の種類により異なる。蒸着条件は一般的に、ボート加熱温度50~400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚5nm~5μmの範囲で適宜設定することが好ましい。 Each layer constituting the organic EL element of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as a vapor deposition method, a spin coating method, or a casting method. The film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. Note that it is preferable to employ a vapor deposition method as a method of thinning the light emitting material from the standpoint that a homogeneous film can be easily obtained and pinholes are hardly generated. When thinning using the vapor deposition method, the vapor deposition conditions differ depending on the type of the light emitting material of the present invention. Deposition conditions generally include boat heating temperature 50 to 400 ° C., vacuum degree 10 −6 to 10 −3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature −150 to + 300 ° C., film thickness 5 nm to 5 μm. It is preferable to set appropriately within the range.
本発明の有機EL素子は、前記のいずれの構造であっても、基板に支持されていることが好ましい。基板は機械的強度、熱安定性および透明性を有するものであればよく、ガラス、透明プラスチックフィルム等を用いることができる。陽極物質は4eVより大きな仕事関数を有する金属、合金、電気伝導性化合物およびこれらの混合物を用いることができる。その具体例は、Au等の金属、CuI、インジウムチンオキシド(以下、ITOと略記する)、SnO、ZnO等である。 The organic EL device of the present invention is preferably supported by a substrate in any of the structures described above. The substrate only needs to have mechanical strength, thermal stability, and transparency, and glass, a transparent plastic film, and the like can be used. As the anode material, metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO 2 , ZnO, and the like.
陰極物質は4eVより小さな仕事関数の金属、合金、電気伝導性化合物、およびこれらの混合物を使用できる。その具体例は、アルミニウム、カルシウム、マグネシウム、リチウム、マグネシウム合金、アルミニウム合金等である。合金の具体例は、アルミニウム/弗化リチウム、アルミニウム/リチウム、マグネシウム/銀、マグネシウム/インジウム等である。有機EL素子の発光を効率よく取り出すために、電極の少なくとも一方は光透過率を10%以上にすることが望ましい。電極としてのシート抵抗は数百Ω/□以下にすることが好ましい。なお、膜厚は電極材料の性質にもよるが、通常10nm~1μm、好ましくは10~400nmの範囲に設定される。このような電極は、上述の電極物質を使用して、蒸着やスパッタリング等の方法で薄膜を形成させることにより作製することができる。 Cathode materials can use metals, alloys, electrically conductive compounds, and mixtures thereof with work functions of less than 4 eV. Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like. Specific examples of the alloy include aluminum / lithium fluoride, aluminum / lithium, magnesium / silver, and magnesium / indium. In order to efficiently extract light emitted from the organic EL element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more. The sheet resistance as the electrode is preferably several hundred Ω / □ or less. Although the film thickness depends on the properties of the electrode material, it is usually set in the range of 10 nm to 1 μm, preferably 10 to 400 nm. Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.
次に、本発明の発光材料を用いて有機EL素子を作成する方法の一例として、前述の陽極/正孔注入層/正孔輸送層/発光層/本発明の電子輸送材料/陰極からなる有機EL素子の作成法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法により形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上に発光層の薄膜を形成させる。この発光層の上に本発明の電子輸送材料を真空蒸着し、薄膜を形成させ、電子輸送層とする。さらに陰極用物質からなる薄膜を蒸着法により形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 Next, as an example of a method for producing an organic EL device using the light emitting material of the present invention, the organic material comprising the above-mentioned anode / hole injection layer / hole transport layer / light emitting layer / electron transport material of the present invention / cathode A method for creating an EL element will be described. A thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode. A light emitting layer thin film is formed thereon. On this light emitting layer, the electron transport material of this invention is vacuum-deposited, a thin film is formed, and it is set as an electron carrying layer. Furthermore, the target organic EL element is obtained by forming the thin film which consists of a substance for cathodes by a vapor deposition method, and making it a cathode. In the production of the organic EL element described above, the production order can be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明又は半透明の電極側(陽極又は陰極、および両方)より発光が観測できる。また、この有機EL素子は、交流電圧を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both). The organic EL element also emits light when an alternating voltage is applied. The alternating current waveform to be applied may be arbitrary.
以下に、本発明を実施例に基づいて更に詳しく説明する。まず、実施例で用いたベンゾ[a]カルバゾール化合物の合成例について、以下に説明する。 Hereinafter, the present invention will be described in more detail based on examples. First, synthesis examples of the benzo [a] carbazole compounds used in the examples are described below.
[合成例1]化合物(1-1-66)の合成
<2-メトキシ-6-(4-メトキシ-2-ニトロフェニル)ナフタレンの合成>
Figure JPOXMLDOC01-appb-C000247
窒素雰囲気下、1-クロロ-4-メトキシ-2-ニトロベンゼン13.13g、(6-メトキシナフタレン-2-イル)ボロン酸15.56g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)2.43g、リン酸三カリウム29.72g、およびトルエンとエタノールの混合溶媒280ml(トルエン/エタノール=4/1(容量比))をフラスコに入れて5分間攪拌した。次に純水28mlを加え、5時間還流した。加熱終了後、反応液を冷却し、析出した固体を濾別し粗製品1とした。濾液を分液して、有機層を無水硫酸ナトリウムで乾燥した。濾過にて乾燥剤を除去し、溶媒を減圧留去して得られた固体を粗製品2とした。これら粗製品1と2を合わせて、シリカゲルショートカラム(溶媒:トルエン)で精製し、さらに、ヘプタンで再沈殿を行って、中間体の化合物(a-1a):2-メトキシ-6-(4-メトキシ-2-ニトロフェニル)ナフタレン19.52g(収率:91%)を得た。
[Synthesis Example 1] Synthesis of Compound (1-1-66) <Synthesis of 2-methoxy-6- (4-methoxy-2-nitrophenyl) naphthalene>
Figure JPOXMLDOC01-appb-C000247
Under a nitrogen atmosphere, 13.13 g of 1-chloro-4-methoxy-2-nitrobenzene, 15.56 g of (6-methoxynaphthalen-2-yl) boronic acid, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 4 ) 2.43 g, tripotassium phosphate 29.72 g, and 280 ml of a mixed solvent of toluene and ethanol (toluene / ethanol = 4/1 (volume ratio)) were placed in a flask and stirred for 5 minutes. Next, 28 ml of pure water was added and refluxed for 5 hours. After completion of the heating, the reaction solution was cooled, and the precipitated solid was separated by filtration to obtain a crude product 1. The filtrate was separated and the organic layer was dried over anhydrous sodium sulfate. The desiccant was removed by filtration, and the solid obtained by distilling off the solvent under reduced pressure was used as crude product 2. These crude products 1 and 2 were combined, purified with a silica gel short column (solvent: toluene), and reprecipitated with heptane to obtain intermediate compound (a-1a): 2-methoxy-6- (4 19.52 g (yield: 91%) of -methoxy-2-nitrophenyl) naphthalene was obtained.
<3,9-ジメトキシ-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000248
窒素雰囲気下、前記の化合物(a-1a)18.9gとトリフェニルホスフィン40.1gおよび1-メチル-2-ピロリドン120mlをフラスコに入れて攪拌し、7時間還流した。加熱終了後、反応液を冷却し、反応混合液に純水を加えて析出した固体を濾別した。固体を純水、次いでメタノールで洗浄し、粗製品を得た。その粗製品をシリカゲルショートカラム(溶媒:トルエン)精製して、中間体の化合物(a-2a):3,9-ジメトキシ-11H-ベンゾ[a]カルバゾール15.7g(収率:93%)を得た。
<Synthesis of 3,9-dimethoxy-11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000248
Under a nitrogen atmosphere, 18.9 g of the compound (a-1a), 40.1 g of triphenylphosphine and 120 ml of 1-methyl-2-pyrrolidone were placed in a flask and stirred, and the mixture was refluxed for 7 hours. After completion of the heating, the reaction solution was cooled, pure water was added to the reaction mixture, and the precipitated solid was separated by filtration. The solid was washed with pure water and then with methanol to obtain a crude product. The crude product was purified by a silica gel short column (solvent: toluene) to obtain 15.7 g of intermediate compound (a-2a): 3,9-dimethoxy-11H-benzo [a] carbazole (yield: 93%). Obtained.
<3,9-ジメトキシ-11-フェニル-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000249
窒素雰囲気下、化合物(a-2a)15.5g、ブロモベンゼン13.2g、酢酸パラジウム(II)Pd(OAc)0.63g、トリ(t-ブチル)ホスフィンt-BuP1.70g、リン酸三カリウム35.59g、およびキシレン170mlをフラスコに入れて攪拌し、10時間還流した。反応液を冷却し、濾過にて固体を除去した後、溶媒を減圧留去して得られた粗製品をシリカゲルカラム(溶媒:へプタン/トルエン=1/1(容量比))で精製して、中間体の化合物(a-3a):3,9-ジメトキシ-11-フェニル-11H-ベンゾ[a]カルバゾール16.4g(収率:83%)を得た。
<Synthesis of 3,9-dimethoxy-11-phenyl-11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000249
Under a nitrogen atmosphere, 15.5 g of compound (a-2a), 13.2 g of bromobenzene, 0.63 g of palladium (II) acetate Pd (OAc) 2 , 1.70 g of tri (t-butyl) phosphine t-Bu 3 P, phosphorus 35.59 g of tripotassium acid and 170 ml of xylene were placed in a flask and stirred and refluxed for 10 hours. After cooling the reaction solution and removing solids by filtration, the solvent was distilled off under reduced pressure, and the resulting crude product was purified with a silica gel column (solvent: heptane / toluene = 1/1 (volume ratio)). Intermediate compound (a-3a): 3,9-dimethoxy-11-phenyl-11H-benzo [a] carbazole 16.4 g (yield: 83%) was obtained.
<11-フェニル-11H-ベンゾ[a]カルバゾール-3,9-ジオールの合成>
Figure JPOXMLDOC01-appb-C000250
窒素雰囲気下、化合物(a-3a)15.4gおよびピリジン塩酸塩100.7gをフラスコに入れ、200℃で6時間加熱した。加熱終了後反応液を冷却し、純水を100ml加えた。反応混合液を酢酸エチルで抽出し、有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を濾過にて除去し、溶媒を減圧留去して得られた粗製品をシリカゲルショートカラム(溶媒:トルエン/酢酸エチル=6/1(容量比))で精製して、中間体の化合物(a-4a):11-フェニル-11H-ベンゾ[a]カルバゾール-3,9-ジオールを14.2g(収率:100%)得た。
<Synthesis of 11-phenyl-11H-benzo [a] carbazole-3,9-diol>
Figure JPOXMLDOC01-appb-C000250
Under a nitrogen atmosphere, 15.4 g of compound (a-3a) and 100.7 g of pyridine hydrochloride were placed in a flask and heated at 200 ° C. for 6 hours. After the heating, the reaction solution was cooled, and 100 ml of pure water was added. The reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate. The desiccant was removed by filtration, the solvent was distilled off under reduced pressure, and the resulting crude product was purified by a silica gel short column (solvent: toluene / ethyl acetate = 6/1 (volume ratio)) to obtain an intermediate compound. (A-4a): 11.2 g (yield: 100%) of 11-phenyl-11H-benzo [a] carbazole-3,9-diol was obtained.
<11-フェニル-11H-ベンゾ[a]カルバゾール-3,9-ジイル ビス(トリフルオロメタンスルホネ-ト)の合成> 
Figure JPOXMLDOC01-appb-C000251
窒素雰囲気下、化合物(a-4a)14.2gおよびピリジン110mlをフラスコに入れ、0℃まで冷却した後、トリフルオロメタンスルホン酸無水物30.7gをゆっくり滴下した。その後、反応液を0℃で1時間、室温で終夜攪拌した。反応液に純水を加えて析出した固体を濾別した。得られた固体をシリカゲルショートカラム(溶媒:トルエン)で精製して、中間体の化合物(a-5a):11-フェニル-11H-ベンゾ[a]カルバゾール-3,9-ジイルビス(トリフルオロメタンスルホネ-ト)25.5g(収率:99%)を得た。
<Synthesis of 11-phenyl-11H-benzo [a] carbazole-3,9-diyl bis (trifluoromethanesulfonate)>
Figure JPOXMLDOC01-appb-C000251
Under a nitrogen atmosphere, 14.2 g of compound (a-4a) and 110 ml of pyridine were placed in a flask, cooled to 0 ° C., and 30.7 g of trifluoromethanesulfonic anhydride was slowly added dropwise. Thereafter, the reaction solution was stirred at 0 ° C. for 1 hour and at room temperature overnight. Pure water was added to the reaction solution, and the precipitated solid was separated by filtration. The obtained solid was purified with a silica gel short column (solvent: toluene) to obtain an intermediate compound (a-5a): 11-phenyl-11H-benzo [a] carbazole-3,9-diylbis (trifluoromethanesulfonate). -G) 25.5 g (yield: 99%) was obtained.
<11-フェニル-3,9-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-11H-ベンゾ[a]カルバゾールの合成> 
Figure JPOXMLDOC01-appb-C000252
窒素雰囲気下、化合物(a-5a)15g、ビス(ピナコラート)ジボロン14.21g、[1.1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン錯体(1:1)(PdCl(dppf)・CHCl)1.25g、酢酸カリウム14.98g、およびシクロペンチルメチルエーテル127mlをフラスコに入れて攪拌し、4時間還流した。加熱終了後、反応液を冷却し、純水を150ml加えた。反応混合液を酢酸エチルで抽出し、有機層を無水硫酸ナトリウムで乾燥した後、乾燥剤を除去し、溶媒を減圧留去して得られた粗製品をシリカゲルショートカラム(溶媒:トルエン)で精製した。さらに、ヘプタンで再沈殿を行い、中間体の化合物(a-6a):11-フェニル-3,9-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-11H-ベンゾ[a]カルバゾール12g(収率:87%)を得た。
<Synthesis of 11-phenyl-3,9-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000252
Under a nitrogen atmosphere, 15 g of compound (a-5a), 14.21 g of bis (pinacolato) diboron, [1.1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane complex (1: 1) (PdCl 2 (Dppf) · CH 2 Cl 2 ) (1.25 g), potassium acetate (14.98 g), and cyclopentyl methyl ether (127 ml) were placed in a flask and stirred, and refluxed for 4 hours. After the heating, the reaction solution was cooled and 150 ml of pure water was added. The reaction mixture was extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, the desiccant was removed, the solvent was distilled off under reduced pressure, and the resulting crude product was purified with a silica gel short column (solvent: toluene). did. Further, reprecipitation was performed with heptane, and intermediate compound (a-6a): 11-phenyl-3,9-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2- Yl) -11H-benzo [a] carbazole (12 g, yield: 87%) was obtained.
<化合物(1-1-66):3,9-ジ([2,3’-ビピリジン]-6-イル)-11-フェニル-11H-ベンゾ[a]カルバゾールの合成> 
Figure JPOXMLDOC01-appb-C000253
窒素雰囲気下、化合物(a-6a)2.73g、6-ブロム-2,3’-ビピリジン2.47g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)0.29g、リン酸三カリウム4.24gおよびN,N-ジメチルアセトアミド20mlをフラスコに入れて攪拌し、120℃で3時間加熱した。反応終了後、反応液に純水を加え、析出した固体を濾別し、得られた固体をシリカゲルカラム(溶媒:トルエン/酢酸エチル=2/1(容量比))で精製し、さらに、昇華精製をして、目的の化合物(1-1-66):3,9-ジ([2,3’-ビピリジン]-6-イル)-11-フェニル-11H-ベンゾ[a]カルバゾール0.5g(収率:16%)を得た。MSスペクトルおよびNMR測定により化合物(1-1-66)の構造を確認した。
<Compound (1-1-66): Synthesis of 3,9-di ([2,3′-bipyridin] -6-yl) -11-phenyl-11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000253
Under a nitrogen atmosphere, 2.73 g of compound (a-6a), 2.47 g of 6-bromo-2,3′-bipyridine, 0.29 g of tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ), Tripotassium phosphate (4.24 g) and N, N-dimethylacetamide (20 ml) were placed in a flask, stirred, and heated at 120 ° C. for 3 hours. After completion of the reaction, pure water was added to the reaction solution, the precipitated solid was filtered off, and the obtained solid was purified with a silica gel column (solvent: toluene / ethyl acetate = 2/1 (volume ratio)), and further sublimated. The purified compound (1-1-66): 3,9-di ([2,3′-bipyridin] -6-yl) -11-phenyl-11H-benzo [a] carbazole 0.5 g (Yield: 16%) was obtained. The structure of the compound (1-1-66) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ= 9.36(s,1H)、 9.31(s,1H)、  8.76(s,1H)、8.67(t,2H)、 8.51~8.49(m,1H)、 8.44~8.41(m,1H)、 8.31(d,2H)、 8.17(d,1H)、 8.07(d,1H)、 7.95(s,1H)、 7.90~7.65(m,12H)、 7.55(d,1H)、 7.46~7.41(m,2H).
ガラス転移温度(Tg): 115℃
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件: 冷却速度200℃/Min.、昇温速度10℃/Min.]
1 H-NMR (CDCl 3 ): δ = 9.36 (s, 1H), 9.31 (s, 1H), 8.76 (s, 1H), 8.67 (t, 2H), 8.51 To 8.49 (m, 1H), 8.44 to 8.41 (m, 1H), 8.31 (d, 2H), 8.17 (d, 1H), 8.07 (d, 1H), 7.95 (s, 1H), 7.90-7.65 (m, 12H), 7.55 (d, 1H), 7.46-7.41 (m, 2H).
Glass transition temperature (Tg): 115 ° C
[Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: Cooling rate 200 ° C / Min., Temperature rising rate 10 ° C / Min.]
[合成例2]化合物(1-1-758)の合成
<化合物(1-1-758):11-フェニル-3,9-ビス(3-ピリジン-3-イル)フェニル-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000254
窒素雰囲気下、化合物(a-5a)2g、3-(3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン2.01g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)0.20g、リン酸三カリウム2.89g、およびN,N-ジメチルアセトアミド14mlをフラスコに入れて攪拌し、120℃で4時間加熱した。反応終了後、反応液に純水を加え、析出した固体を濾別し、得られた固体をシリカゲルカラム(溶媒:トルエン/酢酸エチル=2/1(容量比))で精製し、さらに、昇華精製をして、目的の化合物(1-1-758):11-フェニル-3,9-ビス(3-ピリジン-3-イル)フェニル-11H-ベンゾ[a]カルバゾール0.53g(収率:25%)を得た。MSスペクトルおよびNMR測定により化合物(1-1-758)の構造を確認した。
Synthesis Example 2 Synthesis of Compound (1-1-758) <Compound (1-1-758): 11-Phenyl-3,9-bis (3-pyridin-3-yl) phenyl-11H-benzo [a Synthesis of carbazole>
Figure JPOXMLDOC01-appb-C000254
Under a nitrogen atmosphere, 2 g of compound (a-5a), 2.01 g of 3- (3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) pyridine, tetrakis ( Triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) 0.20 g, tripotassium phosphate 2.89 g, and N, N-dimethylacetamide 14 ml were stirred in a flask and heated at 120 ° C. for 4 hours. did. After completion of the reaction, pure water was added to the reaction solution, the precipitated solid was filtered off, and the obtained solid was purified with a silica gel column (solvent: toluene / ethyl acetate = 2/1 (volume ratio)), and further sublimated. After purification, 0.53 g of the target compound (1-1-758): 11-phenyl-3,9-bis (3-pyridin-3-yl) phenyl-11H-benzo [a] carbazole (yield: 25%). The structure of the compound (1-1-758) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ=8.93(s,1H)、 8.90(s,1H)、 8.62(t,2H)、 8.30~8.26(m,3H)、 7.96~7.89(m,3H)、 7.83~7.80(m,2H)、 7.75~7.47(m,14H)、 7.40~7.37(m,3H).
ガラス転移温度(Tg): 99.4℃
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件: 冷却速度200℃/Min.、昇温速度10℃/Min.]
1 H-NMR (CDCl 3 ): δ = 8.93 (s, 1H), 8.90 (s, 1H), 8.62 (t, 2H), 8.30 to 8.26 (m, 3H) 7.96-7.89 (m, 3H), 7.83-7.80 (m, 2H), 7.75-7.47 (m, 14H), 7.40-7.37 (m, 3H).
Glass transition temperature (Tg): 99.4 ° C
[Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: Cooling rate 200 ° C / Min., Temperature rising rate 10 ° C / Min.]
[合成例3]化合物(1-2-8)の合成
<3-メトキシ-11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000255
窒素雰囲気下、化合物(b-3a)6.25g、3-ピリジンボロン酸2.58g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba))0.50g、トリシクロヘキシルホスフィン(PCy)0.37g、燐酸カリウム7.42g、およびN,N-ジメチルアセトアミド70mlをフラスコに入れて5分間攪拌し、7時間還流した。反応終了後、反応液に純水を加え、析出した固体(粗製品)を濾取し、得られた固体をNH-DM1020(富士シリシア化学株式会社製)カラム(溶媒:トルエン)で精製して、中間体の化合物(b-1b):3-メトキシ-11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾール6.17g(収率:88%)を得た。
Synthesis Example 3 Synthesis of Compound (1-2-8) <Synthesis of 3-methoxy-11-phenyl-9- (pyridin-3-yl) -11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000255
Under a nitrogen atmosphere, 6.25 g of compound (b-3a), 2.58 g of 3-pyridineboronic acid, 0.50 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tricyclohexylphosphine (PCy 3 ) 0.37 g, potassium phosphate 7.42 g, and N, N-dimethylacetamide 70 ml were placed in a flask and stirred for 5 minutes and refluxed for 7 hours. After completion of the reaction, pure water is added to the reaction solution, the precipitated solid (crude product) is collected by filtration, and the obtained solid is purified by NH-DM1020 (Fuji Silysia Chemical Ltd.) column (solvent: toluene). Intermediate compound (b-1b): 6.17 g (yield: 88%) of 3-methoxy-11-phenyl-9- (pyridin-3-yl) -11H-benzo [a] carbazole was obtained.
<11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾール-3-オルの合成>
Figure JPOXMLDOC01-appb-C000256
窒素雰囲気下、化合物(b-1b)6.17gおよびピリジン塩酸塩26.7gをフラスコに入れ、200℃で7時間加熱した。加熱終了後、反応液を冷却し、純水を100ml添加して析出した固体を濾取し、粗製品を得た。その粗製品をシリカゲルショートカラム(溶媒:トルエン)で精製し、中間体の化合物(b-2b):11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾール-3-オル5.4g(収率:90.8%)を得た。
<Synthesis of 11-phenyl-9- (pyridin-3-yl) -11H-benzo [a] carbazol-3-ol>
Figure JPOXMLDOC01-appb-C000256
Under a nitrogen atmosphere, 6.17 g of compound (b-1b) and 26.7 g of pyridine hydrochloride were placed in a flask and heated at 200 ° C. for 7 hours. After the heating, the reaction solution was cooled, 100 ml of pure water was added, and the precipitated solid was collected by filtration to obtain a crude product. The crude product was purified with a silica gel short column (solvent: toluene), and the intermediate compound (b-2b): 11-phenyl-9- (pyridin-3-yl) -11H-benzo [a] carbazole-3- 5.4 g (yield: 90.8%) of ol was obtained.
<11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾール-3-イル トリフルオロメタンスルホネ-トの合成> 
Figure JPOXMLDOC01-appb-C000257
窒素雰囲気下、化合物(b-2b)5.4gおよびピリジン56mlをフラスコに入れ、0℃まで冷却した後、トリフルオロメタンスルホン酸無水物7.89gをゆっくり滴下した。その後、反応液を0℃で1時間、室温で2時間攪拌した。反応液に純水を加えた後、酢酸エチルで抽出し、有機層を無水硫酸ナトリウムで乾燥した。濾過にて乾燥剤を除去し、溶媒を減圧留去して得られた粗製品をシリカゲルカラム(溶媒:トルエン/酢酸エチル=2/1(容量比))で精製して、中間体の化合物(b-3b):11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾール-3-イル トリフルオロメタンスルホネ-ト6.65g(収率:91.8%)を得た。
<Synthesis of 11-phenyl-9- (pyridin-3-yl) -11H-benzo [a] carbazol-3-yl trifluoromethanesulfonate>
Figure JPOXMLDOC01-appb-C000257
Under a nitrogen atmosphere, 5.4 g of compound (b-2b) and 56 ml of pyridine were placed in a flask, cooled to 0 ° C., and 7.89 g of trifluoromethanesulfonic anhydride was slowly added dropwise. Thereafter, the reaction solution was stirred at 0 ° C. for 1 hour and at room temperature for 2 hours. Pure water was added to the reaction solution, followed by extraction with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate. The desiccant was removed by filtration, the solvent was distilled off under reduced pressure, and the resulting crude product was purified by a silica gel column (solvent: toluene / ethyl acetate = 2/1 (volume ratio)) to obtain an intermediate compound ( b-3b): 11.65 g (yield: 91.8%) of 11-phenyl-9- (pyridin-3-yl) -11H-benzo [a] carbazol-3-yl trifluoromethanesulfonate It was.
<化合物(1-2-8):3-([ナフタレン-2-イル)-11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000258
窒素雰囲気下、化合物(b-3b)2.2g、2-ナフタレンボロン酸0.80g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)0.15g、リン酸三カリウム1.80gおよびトルエンとエタノールとの混合溶媒21ml(トルエン/エタノール=4/1(容量比))をフラスコに入れて5分間攪拌した。その後、純水2mlを加え5時間還流した。加熱終了後に反応液を冷却し、純水を加えて析出した固体を濾取して粗製品1とした。濾液の有機層を分液して、無水硫酸ナトリウムで乾燥した。乾燥剤を濾過にて除去し、溶媒を減圧留去して得られた固体を粗製品2とした。次に、粗製品1と2を合わせて、シリカゲルカラム(溶媒:トルエン/酢酸エチル=10/1(容量比))で精製した。その後、トルエンから再結晶し、さらに、昇華精製をして、目的の化合物(1-2-8):3-([ナフタレン-2-イル)-11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾール0.8g(収率:38%)を得た。MSスペクトルおよびNMR測定により化合物(1-2-8)の構造を確認した。
<Compound (1-2-8): Synthesis of 3-([Naphthalen-2-yl) -11-phenyl-9- (pyridin-3-yl) -11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000258
Under a nitrogen atmosphere, 2.2 g of compound (b-3b), 0.80 g of 2-naphthaleneboronic acid, 0.15 g of tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ), tripotassium phosphate 1 .80 g and 21 ml of a mixed solvent of toluene and ethanol (toluene / ethanol = 4/1 (volume ratio)) were placed in a flask and stirred for 5 minutes. Thereafter, 2 ml of pure water was added and refluxed for 5 hours. The reaction liquid was cooled after completion | finish of a heating, the pure solid was added and the depositing solid was filtered, and it was set as the crude product 1. The organic layer of the filtrate was separated and dried over anhydrous sodium sulfate. The desiccant was removed by filtration, and the solvent was distilled off under reduced pressure to obtain a crude product 2. Next, the crude products 1 and 2 were combined and purified by a silica gel column (solvent: toluene / ethyl acetate = 10/1 (volume ratio)). Thereafter, the product is recrystallized from toluene and further purified by sublimation to obtain the target compound (1-2-8): 3-([naphthalen-2-yl) -11-phenyl-9- (pyridin-3-yl). ) -11H-benzo [a] carbazole 0.8 g (yield: 38%) was obtained. The structure of the compound (1-2-8) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ=8.89(d,1H)、8.57(d,1H)、8.34(s,1H)、8.30~8.28(dd,2H)、8.15(s,1H)、7.95~7.84(m,6H)、7.73~7.48(m,10H)、7.35~7.33(m,2H).
ガラス転移温度(Tg): 98.2℃
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件: 冷却速度200℃/Min.、昇温速度10℃/Min.]
1 H-NMR (CDCl 3 ): δ = 8.89 (d, 1H), 8.57 (d, 1H), 8.34 (s, 1H), 8.30 to 8.28 (dd, 2H) 8.15 (s, 1H), 7.95-7.84 (m, 6H), 7.73-7.48 (m, 10H), 7.35-7.33 (m, 2H).
Glass transition temperature (Tg): 98.2 ° C
[Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: Cooling rate 200 ° C / Min., Temperature rising rate 10 ° C / Min.]
[合成例4]化合物(1-2-28)の合成
<化合物(1-2-28):3-(4-(ナフタレン-2-イル)フェニル)-11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000259
窒素雰囲気下、化合物(b-3b)2.2g、4-(ナフタレン-2-イル)フェニル)ボロン酸1.16g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)0.15g、リン酸三カリウム1.80gおよびトルエンとエタノールとの混合溶媒21ml(トルエン/エタノール=4/1(容量比))をフラスコに入れて5分間攪拌した。その後、純水2mlを加え5時間還流した。加熱終了後、反応液を冷却して純水を加え、析出した固体を濾取し、純水、次いでメタノールで洗浄した後、加熱したトルエンに溶解し、不溶分を熱時濾過にて除去した。さらにシリカゲルカラム(溶媒:トルエン/酢酸エチル=3/1(容量比))で精製した後、熱トルエン溶液にて活性炭処理して脱色した。その後、酢酸エチルで再沈殿を行い、さらに、昇華精製をして、目的の化合物(1-2-28):3-(4-(ナフタレン-2-イル)フェニル)-11-フェニル-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾール1.2g(収率:50%)を得た。MSスペクトルおよびNMR測定により化合物(1-2-28)の構造を確認した。
Synthesis Example 4 Synthesis of Compound (1-228) <Compound (1-228): 3- (4- (Naphthalen-2-yl) phenyl) -11-phenyl-9- (pyridine-3 -Yl) -11H-benzo [a] carbazole synthesis>
Figure JPOXMLDOC01-appb-C000259
Under a nitrogen atmosphere, 2.2 g of compound (b-3b), 1.16 g of 4- (naphthalen-2-yl) phenyl) boronic acid, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) 0 .15 g, 1.80 g of tripotassium phosphate and 21 ml of a mixed solvent of toluene and ethanol (toluene / ethanol = 4/1 (volume ratio)) were placed in a flask and stirred for 5 minutes. Thereafter, 2 ml of pure water was added and refluxed for 5 hours. After completion of the heating, the reaction solution was cooled and pure water was added. The precipitated solid was collected by filtration, washed with pure water and then with methanol, dissolved in heated toluene, and the insoluble matter was removed by hot filtration. . Further, after purification with a silica gel column (solvent: toluene / ethyl acetate = 3/1 (volume ratio)), it was decolorized by treatment with activated carbon in a hot toluene solution. Thereafter, reprecipitation is performed with ethyl acetate, and further purification by sublimation is performed to obtain the target compound (1-2-28): 3- (4- (naphthalen-2-yl) phenyl) -11-phenyl-9- 1.2 g (yield: 50%) of (pyridin-3-yl) -11H-benzo [a] carbazole was obtained. The structure of the compound (1-2-28) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ=8.89(d,1H)、 8.57(dd,1H)、 8.30~8.28(m,3H)、 8.11(s,1H)、 7.95~7.80(m,10H)、 7.74~7.70(m,3H)、 7.64~7.58(m,4H)、 7.54~7.48(m,3H)、 7.36~7.33(m,2H).
ガラス転移温度(Tg)は観察されなかった。
1 H-NMR (CDCl 3 ): δ = 8.89 (d, 1H), 8.57 (dd, 1H), 8.30-8.28 (m, 3H), 8.11 (s, 1H) 7.95 to 7.80 (m, 10H), 7.74 to 7.70 (m, 3H), 7.64 to 7.58 (m, 4H), 7.54 to 7.48 (m, 3H), 7.36-7.33 (m, 2H).
A glass transition temperature (Tg) was not observed.
[合成例5]化合物(1-3-206)の合成
<2-(4-クロロ-2-ニトロフェニル)-6-メトキシナフタレンの合成>
Figure JPOXMLDOC01-appb-C000260
窒素雰囲気下、1-ブロモ-4-クロロ-2-ニトロベンゼン11.35g、(6-メトキシナフタレン-2-イル)ボロン酸9.7g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)1.66g、炭酸ナトリウム10.18g、およびトルエン197mlをフラスコに入れて5分間攪拌した後、純水38mlを加え5時間還流した。加熱終了後、反応液を冷却して析出した固体を濾別し、粗製品1とした。濾液の有機層を分液し、無水硫酸ナトリウムで乾燥した後、乾燥剤を濾過にて除去し、溶媒を減圧留去して得られた固体を粗製品2とした。その後、粗製品1と2を合わせて、シリカゲルショートカラム(溶媒:トルエン)で精製した。さらに、ヘプタンで再沈殿を行い、中間体の化合物(b-1a):2-(4-クロロ-2-ニトロフェニル)-6-メトキシナフタレン12.9g(収率:85.7%)を得た。
Synthesis Example 5 Synthesis of Compound (1-3-206) <Synthesis of 2- (4-Chloro-2-nitrophenyl) -6-methoxynaphthalene>
Figure JPOXMLDOC01-appb-C000260
Under a nitrogen atmosphere, 11.35 g of 1-bromo-4-chloro-2-nitrobenzene, 9.7 g of (6-methoxynaphthalen-2-yl) boronic acid, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 4 ) 1.66 g, 10.18 g of sodium carbonate, and 197 ml of toluene were put in a flask and stirred for 5 minutes, and then 38 ml of pure water was added and refluxed for 5 hours. After completion of the heating, the reaction solution was cooled and the precipitated solid was filtered off to obtain crude product 1. The organic layer of the filtrate was separated and dried over anhydrous sodium sulfate, the desiccant was removed by filtration, and the solvent was distilled off under reduced pressure to obtain the solid product 2. Thereafter, the crude products 1 and 2 were combined and purified with a silica gel short column (solvent: toluene). Further, reprecipitation was performed with heptane to obtain 12.9 g of intermediate compound (b-1a): 2- (4-chloro-2-nitrophenyl) -6-methoxynaphthalene (yield: 85.7%). It was.
<9-クロロ-3-メトキシ-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000261
窒素雰囲気下、前記の化合物(b-1a)12.9g、トリフェニルホスフィン26.96gおよびo-ジクロロベンゼン82mlをフラスコに入れて攪拌し、7.5時間還流した。加熱終了後、反応液を冷却して析出した固体を濾過し、粗製品を得た。その粗製品をシリカゲルカラム(溶媒:トルエン)で精製し、中間体の化合物(b-2a):9-クロロ-3-メトキシ-11H-ベンゾ[a]カルバゾール10.3g(収率:89%)を得た。
<Synthesis of 9-chloro-3-methoxy-11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000261
Under a nitrogen atmosphere, 12.9 g of the compound (b-1a), 26.96 g of triphenylphosphine and 82 ml of o-dichlorobenzene were placed in a flask and stirred, and refluxed for 7.5 hours. After heating, the reaction solution was cooled and the precipitated solid was filtered to obtain a crude product. The crude product was purified by a silica gel column (solvent: toluene), and the intermediate compound (b-2a): 9-chloro-3-methoxy-11H-benzo [a] carbazole 10.3 g (yield: 89%) Got.
<9-クロロ-3-メトキシ-11-フェニル-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000262
窒素雰囲気下、化合物(b-2a)10.25g、ブロモベンゼン8.57g、酢酸パラジウム(II)(Pd(OAc))0.327g、トリ(t-ブチル)ホスフィン(t-BuP)0.88g、リン酸三カリウム30.89g、およびキシレン110mlをフラスコに入れて攪拌し、6時間還流した。反応液を冷却し、濾過して固体を除去した後、濾液を減圧濃縮して得られた粗製品をシリカゲルショートカラム(溶媒:トルエン)で精製して、中間体の化合物(b-3a):9-クロロ-3-メトキシ-11-フェニル-11H-ベンゾ[a]カルバゾール12.2g(収率:93.8%)を得た。
<Synthesis of 9-chloro-3-methoxy-11-phenyl-11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000262
Under a nitrogen atmosphere, compound (b-2a) 10.25 g, bromobenzene 8.57 g, palladium (II) acetate (Pd (OAc) 2 ) 0.327 g, tri (t-butyl) phosphine (t-Bu 3 P) 0.88 g, 30.89 g of tripotassium phosphate, and 110 ml of xylene were placed in a flask and stirred, and refluxed for 6 hours. The reaction mixture was cooled and filtered to remove the solid, and then the filtrate was concentrated under reduced pressure. The resulting crude product was purified by a silica gel short column (solvent: toluene) to obtain an intermediate compound (b-3a): 12.2 g (yield: 93.8%) of 9-chloro-3-methoxy-11-phenyl-11H-benzo [a] carbazole was obtained.
<9-([1,1’-ビフェニル]-3-イル)-3-メトキシ-11-フェニル-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000263
窒素雰囲気下、化合物(b-3a)5.19g、3-ビフェニルボロン酸3.45g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba))0.42g、トリシクロヘキシルホスフィン(PCy)0.30g、リン酸三カリウム6.16g、およびトルエン58mlをフラスコに入れて5分間攪拌した。その後、純水5.8mlを加えて7時間還流した。反応終了後に反応液を冷却し、純水を50ml添加した。反応液をトルエンで抽出し、有機層を無水硫酸ナトリウムで乾燥した後、乾燥剤を濾過にて除去し、溶媒を減圧留去して得られた粗製品をシリカゲルカラム(溶媒:ヘプタン/トルエン=3/1(容量比))で精製して、中間体の化合物(b-4a):9-([1,1’-ビフェニル]-3-イル)-3-メトキシ-11-フェニル-11H-ベンゾ[a]カルバゾール6.66g(収率:97%)を得た。
<Synthesis of 9-([1,1′-biphenyl] -3-yl) -3-methoxy-11-phenyl-11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000263
Under a nitrogen atmosphere, 5.19 g of compound (b-3a), 3.45 g of 3-biphenylboronic acid, 0.42 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tricyclohexylphosphine (PCy 3 ) 0.30 g, tripotassium phosphate 6.16 g, and toluene 58 ml were placed in a flask and stirred for 5 minutes. Thereafter, 5.8 ml of pure water was added and refluxed for 7 hours. After completion of the reaction, the reaction solution was cooled and 50 ml of pure water was added. The reaction solution was extracted with toluene, and the organic layer was dried over anhydrous sodium sulfate. Then, the desiccant was removed by filtration, and the solvent was distilled off under reduced pressure. 3/1 (volume ratio)) to give intermediate compound (b-4a): 9-([1,1′-biphenyl] -3-yl) -3-methoxy-11-phenyl-11H- 6.66 g (yield: 97%) of benzo [a] carbazole was obtained.
<9-([1,1’-ビフェニル]-3-イル)-11-フェニル-11H-ベンゾ[a]カルバゾール-3-オルの合成>
Figure JPOXMLDOC01-appb-C000264
窒素雰囲気下、化合物(b-4a)6.51gおよびピリジン塩酸塩23.7gをフラスコに入れ、200℃で6時間加熱した。加熱終了後、反応液を冷却し、純水を100ml加えて析出した固体を濾取し、粗製品を得た。その粗製品をシリカゲルショートカラム(溶媒:トルエン)で精製し、中間体の化合物(b-5a):9-([1,1’-ビフェニル]-3-イル)-11-フェニル-11H-ベンゾ[a]カルバゾール-3-オル6.32g(収率:100%)を得た。
<Synthesis of 9-([1,1′-biphenyl] -3-yl) -11-phenyl-11H-benzo [a] carbazol-3-ol>
Figure JPOXMLDOC01-appb-C000264
Under a nitrogen atmosphere, 6.51 g of compound (b-4a) and 23.7 g of pyridine hydrochloride were placed in a flask and heated at 200 ° C. for 6 hours. After heating, the reaction solution was cooled, 100 ml of pure water was added, and the precipitated solid was collected by filtration to obtain a crude product. The crude product was purified by a silica gel short column (solvent: toluene), and the intermediate compound (b-5a): 9-([1,1′-biphenyl] -3-yl) -11-phenyl-11H-benzo [A] 6.32 g (yield: 100%) of carbazol-3-ol was obtained.
<9-([1,1’-ビフェニル]-3-イル)-11-フェニル-11H-ベンゾ[a]カルバゾール-3-イル トリフルオロメタンスルホネ-トの合成> 
Figure JPOXMLDOC01-appb-C000265
窒素雰囲気下、化合物(b-5a)6.32gおよびピリジン35mlをフラスコに入れ、0℃まで冷却した後、トリフルオロメタンスルホン酸無水物7.73gをゆっくり滴下した。その後、反応液を0℃で1時間、室温で2時間攪拌した。反応液に純水を加えた後、反応混合液をトルエンで抽出し、有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を濾過にて除去し、溶媒を減圧留去して得られた粗製品をシリカゲルショートカラム(溶媒:トルエン)で精製して、中間体の化合物(b-6a):9-([1,1’-ビフェニル]-3-イル)-11-フェニル-11H-ベンゾ[a]カルバゾール-3-イル トリフルオロメタンスルホネ-ト7.4g(収率:91%)を得た。
<Synthesis of 9-([1,1′-biphenyl] -3-yl) -11-phenyl-11H-benzo [a] carbazol-3-yl trifluoromethanesulfonate>
Figure JPOXMLDOC01-appb-C000265
Under a nitrogen atmosphere, 6.32 g of compound (b-5a) and 35 ml of pyridine were placed in a flask, cooled to 0 ° C., and then 7.73 g of trifluoromethanesulfonic anhydride was slowly added dropwise. Thereafter, the reaction solution was stirred at 0 ° C. for 1 hour and at room temperature for 2 hours. After adding pure water to the reaction solution, the reaction mixture was extracted with toluene, and the organic layer was dried over anhydrous sodium sulfate. The desiccant was removed by filtration, and the crude product obtained by distilling off the solvent under reduced pressure was purified with a silica gel short column (solvent: toluene) to obtain an intermediate compound (b-6a): 9-([1 , 1′-biphenyl] -3-yl) -11-phenyl-11H-benzo [a] carbazol-3-yl trifluoromethanesulfonate (yield: 91%) was obtained.
<9-([1,1’-ビフェニル]-3-イル)-11-フェニル-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-11H-ベンゾ[a]カルバゾールの合成> 
Figure JPOXMLDOC01-appb-C000266
窒素雰囲気下、化合物(b-6a)5.2g、ビス(ピナコラード)ジボラン2.7g、[1.1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリトジクロロメタン錯体(1:1)(PdCl(dppf)・CHCl)0.21g、酢酸カリウム2.58g、およびシクロペンチルメチルエーテル45mlをフラスコに入れて攪拌し、4時間還流した。加熱終了後、反応液を冷却し、純水を150ml添加した。反応混合液を酢酸エチルで抽出し、有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を濾過にて除去し、溶媒を減圧留去して得られた粗製品を活性炭ショートカラム(溶媒:トルエン)で精製し、中間体の化合物(b-7a):9-([1,1’-ビフェニル]-3-イル)-11-フェニル-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-11H-ベンゾ[a]カルバゾール4.53g(収率:90.6%)を得た。
<9-([1,1′-biphenyl] -3-yl) -11-phenyl-3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -11H -Synthesis of Benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000266
Under a nitrogen atmosphere, compound (b-6a) 5.2 g, bis (pinacolado) diborane 2.7 g, [1.1′-bis (diphenylphosphino) ferrocene] palladium (II) dichlorodichloromethane complex (1: 1) 0.21 g of (PdCl 2 (dppf) · CH 2 Cl 2 ), 2.58 g of potassium acetate, and 45 ml of cyclopentyl methyl ether were placed in a flask and stirred, and refluxed for 4 hours. After completion of heating, the reaction solution was cooled and 150 ml of pure water was added. The reaction mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate. The desiccant was removed by filtration, and the crude product obtained by distilling off the solvent under reduced pressure was purified with an activated carbon short column (solvent: toluene) to obtain an intermediate compound (b-7a): 9-([1, 1′-biphenyl] -3-yl) -11-phenyl-3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -11H-benzo [a] carbazole 4 0.53 g (yield: 90.6%) was obtained.
<化合物(1-3-206):9-([1,1’-ビフェニル]-3-イル)-3-([2,3’-ビピリジン]-6-イル)-11-フェニル-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000267
窒素雰囲気下、化合物(b-7a)1.94g、6-ブロム-2,3’-ビピリジン0.88g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)0.16g、リン酸三カリウム1.44g、およびN,N-ジメチルアセトアミド14mlをフラスコに入れて攪拌し、120℃で6時間加熱した。反応終了後、反応液に純水を加え、析出した固体(粗製品)を濾取した。得られた固体をシリカゲルカラム(溶媒:トルエン/酢酸エチル=10/1(容量比))で精製し、さらに、昇華精製をして、目的の化合物(1-3-206):9-([1,1’-ビフェニル]-3-イル)-3-([2,3’-ビピリジン]-6-イル)-11-フェニル-11H-ベンゾ[a]カルバゾール0.89g(収率:44%)を得た。MSスペクトルおよびNMR測定により化合物(1-3-206)の構造を確認した。
<Compound (1-3-206): 9-([1,1′-biphenyl] -3-yl) -3-([2,3′-bipyridin] -6-yl) -11-phenyl-11H- Synthesis of benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000267
Under a nitrogen atmosphere, 1.94 g of compound (b-7a), 0.88 g of 6-bromo-2,3′-bipyridine, 0.16 g of tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ), 1.44 g of tripotassium phosphate and 14 ml of N, N-dimethylacetamide were placed in a flask and stirred and heated at 120 ° C. for 6 hours. After completion of the reaction, pure water was added to the reaction solution, and the precipitated solid (crude product) was collected by filtration. The obtained solid was purified with a silica gel column (solvent: toluene / ethyl acetate = 10/1 (volume ratio)), and further purified by sublimation to obtain the target compound (1-3-206): 9-([ 1,1′-biphenyl] -3-yl) -3-([2,3′-bipyridin] -6-yl) -11-phenyl-11H-benzo [a] carbazole 0.89 g (yield: 44% ) The structure of the compound (1-3-206) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ=9.36(s,1H)、 8.76(s,1H)、 8.69(dd,1H)、 8.50(dt,1H)、 8.31~8.27(q,2H)、 8.07(dd,1H)、 7.90~7.88(m,3H)、 7.83(s,1H)、 7.73~7.35(m,18H).
ガラス転移温度(Tg): 107.4℃
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件: 冷却速度200℃/Min.、昇温速度10℃/Min.]
1 H-NMR (CDCl 3 ): δ = 9.36 (s, 1H), 8.76 (s, 1H), 8.69 (dd, 1H), 8.50 (dt, 1H), 8.31 To 8.27 (q, 2H), 8.07 (dd, 1H), 7.90 to 7.88 (m, 3H), 7.83 (s, 1H), 7.73 to 7.35 (m) , 18H).
Glass transition temperature (Tg): 107.4 ° C
[Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: Cooling rate 200 ° C / Min., Temperature rising rate 10 ° C / Min.]
[合成例6]化合物(1-3-300)の合成
<化合物(1-3-300):9-([1,1’-ビフェニル]-3-イル)-11-フェニル-3-(3-(ピリジン-3-イル)フェニル)-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000268
窒素雰囲気下、化合物(b-6a)2g、3-(3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン0.95g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)0.12g、リン酸三カリウム1.43g、およびN,N-ジメチルアセトアミド15mlをフラスコに入れて攪拌し、120℃で4時間加熱した。反応終了後、反応液に純水を加え、トルエンで抽出し、有機層を無水硫酸ナトリウムで乾燥した。濾過にて乾燥剤を除去し、溶媒を減圧留去して得られた粗製品をシリカゲルカラムで(溶媒:トルエン/酢酸エチル=10/1(容量比))精製し、さらに、昇華精製をして、目的の化合物(1-3-300):9-([1,1’-ビフェニル]-3-イル)-11-フェニル-3-(3-(ピリジン-3-イル)フェニル)-11H-ベンゾ[a]カルバゾール1.29g(収率:64%)を得た。MSスペクトルおよびNMR測定により化合物(1-3-300)の構造を確認した。
[Synthesis Example 6] Synthesis of Compound (1-3-300) <Compound (1-3-300): 9-([1,1′-biphenyl] -3-yl) -11-phenyl-3- (3 Synthesis of — (pyridin-3-yl) phenyl) -11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000268
Under a nitrogen atmosphere, 2 g of compound (b-6a), 0.95 g of 3- (3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) pyridine, tetrakis ( Triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) 0.12 g, tripotassium phosphate 1.43 g, and N, N-dimethylacetamide 15 ml were stirred in a flask and heated at 120 ° C. for 4 hours. did. After completion of the reaction, pure water was added to the reaction solution, extracted with toluene, and the organic layer was dried over anhydrous sodium sulfate. The crude product obtained by removing the desiccant by filtration and distilling off the solvent under reduced pressure was purified with a silica gel column (solvent: toluene / ethyl acetate = 10/1 (volume ratio)), and further purified by sublimation. The target compound (1-3-300): 9-([1,1′-biphenyl] -3-yl) -11-phenyl-3- (3- (pyridin-3-yl) phenyl) -11H -1.29 g (yield: 64%) of benzo [a] carbazole was obtained. The structure of the compound (1-3-300) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ=8.94(s,1H)、 8.64(dd,1H)、 8.31~8.26(m,3H)、 7.95(dt,1H)、 7.90(s,1H)、 7.83~7.82(m,2H)、 7.76~7.39(m,21H).
ガラス転移温度(Tg): 99.6℃
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件: 冷却速度200℃/Min.、昇温速度10℃/Min.]
1 H-NMR (CDCl 3 ): δ = 8.94 (s, 1H), 8.64 (dd, 1H), 8.31 to 8.26 (m, 3H), 7.95 (dt, 1H) 7.90 (s, 1H), 7.83 to 7.82 (m, 2H), 7.76 to 7.39 (m, 21H).
Glass transition temperature (Tg): 99.6 ° C.
[Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: Cooling rate 200 ° C / Min., Temperature rising rate 10 ° C / Min.]
[合成例7]化合物(1-1-2)の合成
<化合物(1-1-2):11-フェニル-3,9-ジ(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000269
窒素雰囲気下、化合物(a-5a)2.95g、3-ピリジンボロン酸1.23g、、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba))0.14g、トリシクロヘキシルホスフィン(PCy)0.11g、リン酸三カリウム4.25g、およびN,N-ジメチルアセトアミド25mlをフラスコに入れて5分間攪拌し、120℃で5時間加熱した。反応終了後、反応液に純水を加え、析出した固体を濾別した。得られた固体をシリカゲルカラム(溶媒:トルエン/酢酸エチル=2/1(容量比))で精製し、さらに、ヘプタンで再沈殿を行った。最後に、昇華精製をして、目的の化合物(1-1-2):11-フェニル-3,9-ジ(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾール0.90g(収率:40%)を得た。MSスペクトルおよびNMR測定により化合物(1-1-2)の構造を確認した。
Synthesis Example 7 Synthesis of Compound (1-1-2) <Compound (1-1-2): 11-Phenyl-3,9-di (pyridin-3-yl) -11H-benzo [a] carbazole Synthesis>
Figure JPOXMLDOC01-appb-C000269
Under nitrogen atmosphere, compound (a-5a) 2.95 g, 3-pyridineboronic acid 1.23 g, bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ) 0.14 g, tricyclohexylphosphine (PCy 3 ) 0.11 g, tripotassium phosphate 4.25 g, and N, N-dimethylacetamide 25 ml were placed in a flask, stirred for 5 minutes, and heated at 120 ° C. for 5 hours. After completion of the reaction, pure water was added to the reaction solution, and the precipitated solid was separated by filtration. The obtained solid was purified with a silica gel column (solvent: toluene / ethyl acetate = 2/1 (volume ratio)), and further reprecipitated with heptane. Finally, purification by sublimation was performed to obtain the target compound (1-1-2): 11-phenyl-3,9-di (pyridin-3-yl) -11H-benzo [a] carbazole 0.90 g (yield) : 40%). The structure of the compound (1-1-2) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ=8.96(s,1H)、 8.88(s,1H)、 8.61(dd,1H)、 8.58(dd,1H)、 8.30(dd,2H)、 8.21(s,1H)、 7.97(dt,1H)、 7.91(dt,1H)、 7.83(d,1H)、 7.74~7.70(m,3H)、 7.62~7.58(m,3H)、 7.52~7.47(m,2H)、 7.40~7.33(m,3H).
ガラス転移温度(Tg): 91.2℃
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件: 冷却速度200℃/Min.、昇温速度10℃/Min.]
1 H-NMR (CDCl 3 ): δ = 8.96 (s, 1H), 8.88 (s, 1H), 8.61 (dd, 1H), 8.58 (dd, 1H), 8.30 (Dd, 2H), 8.21 (s, 1H), 7.97 (dt, 1H), 7.91 (dt, 1H), 7.83 (d, 1H), 7.74-7.70 ( m, 3H), 7.62 to 7.58 (m, 3H), 7.52 to 7.47 (m, 2H), 7.40 to 7.33 (m, 3H).
Glass transition temperature (Tg): 91.2 ° C
[Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: Cooling rate 200 ° C / Min., Temperature rising rate 10 ° C / Min.]
[合成例8]化合物(1-1-765)の合成
<化合物(1-1-765):11-フェニル-3,9-ビス(4-(ピリジン-4-イル)フェニル)-11H-ベンゾ[a]カルバゾールの合成> 
Figure JPOXMLDOC01-appb-C000270
窒素雰囲気下、化合物(a-6a)2.5g、4-(4-ブロモフェニル)ピリジン2.15g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)0.26g、リン酸三カリウム3.89gおよびN,N-ジメチルアセトアミド20mlをフラスコに入れて攪拌し、120℃で6時間加熱した。反応終了後、反応液に純水を加え、析出した固体を濾別した。得られた固体をNH-DM1020(富士シリシア化学株式会社製)カラム(溶媒:トルエン)で精製し、さらに、酢酸エチルで再沈殿を行った。最後に、昇華精製をして、目的の化合物(1-1-765):11-フェニル-3,9-ビス(4-(ピリジン-4-イル)フェニル)-11H-ベンゾ[a]カルバゾール1.4g(収率:49.6%)を得た。MSスペクトルおよびNMR測定により化合物(1-1-765)の構造を確認した。
[Synthesis Example 8] Synthesis of Compound (1-1-765) <Compound (1-1-765): 11-Phenyl-3,9-bis (4- (pyridin-4-yl) phenyl) -11H-benzo [A] Synthesis of carbazole>
Figure JPOXMLDOC01-appb-C000270
Under nitrogen atmosphere, compound (a-6a) 2.5 g, 4- (4-bromophenyl) pyridine 2.15 g, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) 0.26 g, phosphorus 3.89 g of tripotassium acid and 20 ml of N, N-dimethylacetamide were placed in a flask, stirred and heated at 120 ° C. for 6 hours. After completion of the reaction, pure water was added to the reaction solution, and the precipitated solid was separated by filtration. The obtained solid was purified with an NH-DM1020 (Fuji Silysia Chemical Ltd.) column (solvent: toluene), and further reprecipitated with ethyl acetate. Finally, purification by sublimation gave the target compound (1-1-765): 11-phenyl-3,9-bis (4- (pyridin-4-yl) phenyl) -11H-benzo [a] carbazole 1 0.4 g (yield: 49.6%) was obtained. The structure of the compound (1-1-765) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ= 8.69~8.67(m,4H)、 8.31~8.27(m,3H)、 7.84~7.62(m,15H)、 7.58~7.48(m,6H)、 7.41(s,1H). 1 H-NMR (CDCl 3 ): δ = 8.69 to 8.67 (m, 4H), 8.31 to 8.27 (m, 3H), 7.84 to 7.62 (m, 15H), 7.58-7.48 (m, 6H), 7.41 (s, 1H).
[合成例9]化合物(1-1-893)の合成
<化合物(1-1-893):3,9-ビス(5’-メチル-[2,3’-ビピリジン]-6-イル)-11-フェニル-11H-ベンゾ[a]カルバゾールの合成> 
Figure JPOXMLDOC01-appb-C000271
窒素雰囲気下、化合物(a-6a)2.5g、6-ブロモ-5’-メチル-2,3’-ビピリジン2.51g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)0.32g、リン酸三カリウム3.89gおよびN,N-ジメチルアセトアミド25mlをフラスコに入れて攪拌し、120℃で6時間加熱した。反応終了後、反応液に純水を加え、析出した固体を濾別した。得られた固体をNH-DM1020(富士シリシア化学株式会社製)カラム(溶媒:トルエン/酢酸エチル=8/1(容量比))で精製し、さらに、酢酸エチルで再沈殿を行った。最後に、昇華精製をして、目的の化合物(1-1-893):3,9-ビス(5’-メチル-[2,3’-ビピリジン]-6-イル)-11-フェニル-11H-ベンゾ[a]カルバゾール1.6g(収率:56%)を得た。MSスペクトルおよびNMR測定により化合物(1-1-893)の構造を確認した。
Synthesis Example 9 Synthesis of Compound (1-1-893) <Compound (1-1-893): 3,9-bis (5′-methyl- [2,3′-bipyridin] -6-yl)- Synthesis of 11-phenyl-11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000271
In a nitrogen atmosphere, 2.5 g of compound (a-6a), 2.51 g of 6-bromo-5′-methyl-2,3′-bipyridine, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) 0.32 g, tripotassium phosphate 3.89 g and N, N-dimethylacetamide 25 ml were stirred in a flask and heated at 120 ° C. for 6 hours. After completion of the reaction, pure water was added to the reaction solution, and the precipitated solid was separated by filtration. The obtained solid was purified with an NH-DM1020 (Fuji Silysia Chemical Ltd.) column (solvent: toluene / ethyl acetate = 8/1 (volume ratio)), and further reprecipitated with ethyl acetate. Finally, by sublimation purification, the target compound (1-1-893): 3,9-bis (5′-methyl- [2,3′-bipyridin] -6-yl) -11-phenyl-11H -1.6 g (yield: 56%) of benzo [a] carbazole was obtained. The structure of the compound (1-1-893) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ= 8.56(t,2H)、 8.30~8.26(m,3H)、 7.82~7.81(m,3H)、 7.75~7.62(m,11H)、 7.56~7.41(m,4H)、 7.36(dd,2H)、 2.65(s,6H).
ガラス転移温度(Tg): 114.0℃
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件: 冷却速度200℃/Min.、昇温速度10℃/Min.]
1 H-NMR (CDCl 3 ): δ = 8.56 (t, 2H), 8.30 to 8.26 (m, 3H), 7.82 to 7.81 (m, 3H), 7.75 to 7.62 (m, 11H), 7.56 to 7.41 (m, 4H), 7.36 (dd, 2H), 2.65 (s, 6H).
Glass transition temperature (Tg): 114.0 ° C
[Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: Cooling rate 200 ° C / Min., Temperature rising rate 10 ° C / Min.]
[合成例10]化合物(1-1-973)の合成
<化合物(1-1-973):3,9-ビス(4-(2-メチルピリジン-4-イル)フェニル)-11-フェニル-11H-ベンゾ[a]カルバゾールの合成> 
Figure JPOXMLDOC01-appb-C000272
窒素雰囲気下、化合物(a-6a)2.5g、4-(4-クロロフェニル)-2-メチルピリジン2.1g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba))0.16g、トリシクロヘキシルホスフィン(PCy)0.12g、リン酸三カリウム4.0g、1,2,4-トリメチルベンゼン25ml、t-ブチルアルコール2.5mlおよび水2.5mlをフラスコに入れて6時間還流した。反応終了後、反応液に純水を加え、析出した固体を濾別した。得られた固体をNH-DM1020(富士シリシア化学株式会社製)カラム(溶媒:トルエン/酢酸エチル=10/1(容量比))で精製し、さらに、酢酸エチルで再沈殿を行った。最後に、昇華精製をして、目的の化合物(1-1-973):3,9-ビス(4-(2-メチルピリジン-4-イル)フェニル)-11-フェニル-11H-ベンゾ[a]カルバゾール1.8g(収率:60%)を得た。MSスペクトルおよびNMR測定により化合物(1-1-973)の構造を確認した。
[Synthesis Example 10] Synthesis of Compound (1-1-973) <Compound (1-1-973): 3,9-bis (4- (2-methylpyridin-4-yl) phenyl) -11-phenyl- Synthesis of 11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000272
Under a nitrogen atmosphere, compound (a-6a) 2.5 g, 4- (4-chlorophenyl) -2-methylpyridine 2.1 g, bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ) 0.16 g , 0.12 g of tricyclohexylphosphine (PCy 3 ), 4.0 g of tripotassium phosphate, 25 ml of 1,2,4-trimethylbenzene, 2.5 ml of t-butyl alcohol and 2.5 ml of water were refluxed for 6 hours. did. After completion of the reaction, pure water was added to the reaction solution, and the precipitated solid was separated by filtration. The obtained solid was purified with an NH-DM1020 (Fuji Silysia Chemical Ltd.) column (solvent: toluene / ethyl acetate = 10/1 (volume ratio)), and reprecipitated with ethyl acetate. Finally, sublimation purification was performed to obtain the target compound (1-1-973): 3,9-bis (4- (2-methylpyridin-4-yl) phenyl) -11-phenyl-11H-benzo [a Thus, 1.8 g (yield: 60%) of carbazole was obtained. The structure of the compound (1-1-973) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ= 9.14(s,1H)、 9.09(s,1H)、 8.75(s,1H)、 8.51(dd,2H)、 8.32~8.26(m,4H)、 8.15(dd,1H)、 8.07(dd,1H)、 8.01(s,1H)、 7.90~7.66(m,14H)、 7.57(d,1H)、 2.48(s,3H)、 2.45(s,3H).
ガラス転移温度(Tg): 116.2℃
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件: 冷却速度200℃/Min.、昇温速度10℃/Min.]
1 H-NMR (CDCl 3 ): δ = 9.14 (s, 1H), 9.09 (s, 1H), 8.75 (s, 1H), 8.51 (dd, 2H), 8.32 To 8.26 (m, 4H), 8.15 (dd, 1H), 8.07 (dd, 1H), 8.01 (s, 1H), 7.90 to 7.66 (m, 14H), 7.57 (d, 1H), 2.48 (s, 3H), 2.45 (s, 3H).
Glass transition temperature (Tg): 116.2 ° C
[Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: Cooling rate 200 ° C / Min., Temperature rising rate 10 ° C / Min.]
<化合物(1-2-125):11-フェニル-3-(10-フェニルアントラセン-9-イル)-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾールの合成>
Figure JPOXMLDOC01-appb-C000273
窒素雰囲気下、化合物(b-3b)2.2g、10-フェニルアントラセン-9-イル)ボロン酸1.64g、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)0.15g、リン酸三カリウム1.80gおよびトルエンとエタノールとの混合溶媒21ml(トルエン/エタノール=4/1(容量比))をフラスコに入れて5分間攪拌した。その後、純水2mlを加え5時間還流した。加熱終了後に反応液を冷却し、純水を加えて析出した固体を濾取した。得られた固体をシリカゲルカラム(溶媒:トルエン/酢酸エチル=4/1(容量比))で精製しさらに、酢酸エチルで再沈殿を行った。最後に、昇華精製をして、目的の化合物(1-2-125):11-フェニル-3-(10-フェニルアントラセン-9-イル)-9-(ピリジン-3-イル)-11H-ベンゾ[a]カルバゾール0.81g(収率:31%)を得た。MSスペクトルおよびNMR測定により化合物(1-2-125)の構造を確認した。
<Compound (1-2-125): Synthesis of 11-phenyl-3- (10-phenylanthracen-9-yl) -9- (pyridin-3-yl) -11H-benzo [a] carbazole>
Figure JPOXMLDOC01-appb-C000273
Compound (b-3b) 2.2 g, 10-phenylanthracen-9-yl) boronic acid 1.64 g, tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ) 0.15 g under nitrogen atmosphere Then, 1.80 g of tripotassium phosphate and 21 ml of a mixed solvent of toluene and ethanol (toluene / ethanol = 4/1 (volume ratio)) were placed in a flask and stirred for 5 minutes. Thereafter, 2 ml of pure water was added and refluxed for 5 hours. After the heating, the reaction solution was cooled, pure water was added and the precipitated solid was collected by filtration. The obtained solid was purified with a silica gel column (solvent: toluene / ethyl acetate = 4/1 (volume ratio)), and reprecipitated with ethyl acetate. Finally, by sublimation purification, the target compound (1-2-125): 11-phenyl-3- (10-phenylanthracen-9-yl) -9- (pyridin-3-yl) -11H-benzo [A] 0.81 g (yield: 31%) of carbazole was obtained. The structure of the compound (1-2-125) was confirmed by MS spectrum and NMR measurement.
H-NMR(CDCl): δ=8.92(s,1H)、 8.59(dd,1H)、 8.35(d,2H)、 8.13(s,1H)、 7.93(dt,1H)、 7.81(d,1H)、 7.76~7.49(m,16H)、 7.39~7.29(m,7H).
ガラス転移温度(Tg): 179.6℃
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件: 冷却速度200℃/Min.、昇温速度10℃/Min.]
1 H-NMR (CDCl 3 ): δ = 8.92 (s, 1H), 8.59 (dd, 1H), 8.35 (d, 2H), 8.13 (s, 1H), 7.93 (Dt, 1H), 7.81 (d, 1H), 7.76-7.49 (m, 16H), 7.39-7.29 (m, 7H).
Glass transition temperature (Tg): 179.6 ° C.
[Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: Cooling rate 200 ° C / Min., Temperature rising rate 10 ° C / Min.]
原料の化合物を適宜選択することにより、上記の合成例に準じた方法で、本発明の他の化合物を合成することができる。 By appropriately selecting the starting compounds, other compounds of the present invention can be synthesized by a method according to the above synthesis example.
以下、本発明をさらに詳細に説明するために、本発明の化合物を用いた有機EL素子の実施例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, in order to describe the present invention in more detail, examples of the organic EL device using the compound of the present invention are shown, but the present invention is not limited thereto.
実施例1~3および比較例1~3に係る有機EL素子を作製し、それぞれ1000cd/m発光時の特性である電圧(V)の測定、EL発光波長(nm)、外部量子効率(%)の測定し、つぎに2000cd/mの輝度が得られる電流密度で定電流駆動した際の輝度半減時間(時間)を測定した。以下、実施例および比較例について詳細に説明する。 Organic EL devices according to Examples 1 to 3 and Comparative Examples 1 to 3 were prepared, and the voltage (V), which is a characteristic at 1000 cd / m 2 emission, was measured, the EL emission wavelength (nm), the external quantum efficiency (% ), And then the luminance half time (time) when driven at a constant current at a current density at which a luminance of 2000 cd / m 2 was obtained was measured. Hereinafter, examples and comparative examples will be described in detail.
なお、発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示したものが内部量子効率である。一方、この光子が発光素子の外部にまで放出された量に基づいて算出されるものが外部量子効率であり、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりあるいは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。 Note that the quantum efficiency of a light-emitting element includes an internal quantum efficiency and an external quantum efficiency. The ratio of external energy injected as electrons (or holes) into the light-emitting layer of the light-emitting element is converted into photons purely. What is shown is the internal quantum efficiency. On the other hand, the external quantum efficiency is calculated based on the amount of photons emitted to the outside of the light emitting element, and some of the photons generated in the light emitting layer are absorbed inside the light emitting element. The external quantum efficiency is lower than the internal quantum efficiency because it is continuously reflected and is not emitted outside the light emitting element.
外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、素子の輝度が1000cd/mになる電流を印加して素子を発光させた。TOPCON社製分光放射輝度計SR-3ARを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。 The external quantum efficiency is measured as follows. Using a voltage / current generator R6144 manufactured by Advantest, a current was applied so that the luminance of the device was 1000 cd / m 2 , and the device was caused to emit light. Using a spectral radiance meter SR-3AR manufactured by TOPCON, the spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface. Assuming that the light emitting surface is a completely diffusing surface, the value obtained by dividing the measured spectral radiance value of each wavelength component by the wavelength energy and multiplying by π is the number of photons at each wavelength. Next, the number of photons in the entire wavelength region observed was integrated to obtain the total number of photons emitted from the device. The value obtained by dividing the applied current value by the elementary charge is the number of carriers injected into the device, and the number obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device is the external quantum efficiency.
作製した実施例1~3および比較例1~3に係る有機EL素子における、各層の材料構成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000274
Table 1 below shows the material configuration of each layer in the manufactured organic EL elements according to Examples 1 to 3 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000274
表1において、「HI」はN,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、「HT」はN,N,N4’,N4’-テトラ[1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、「BH1」は9-(4-(ナフタレン-1-イル)フェニル)-10-フェニルアントラセン、「BH2」は9-フェニル-10-(4-フェニルナフタレン-1-イル)アントラセン、「BD1」4,4’-((7,7-ジフェニル-7H-ベンゾ[c]フルオレン-5,9-ジイル)ビス(フェニルアザネジイル))ジベンゾニトリル、「BD2」は7,7,-ジメチル-N,N-ジフェニル-N,N-ビス(4-(トリメチルシラニル)フェニル)-7H-ベンゾ[c]フルオレン-5,9-ジアミン、「ET1」は5,9-ジ([ビピリジン]-6-イル)-7-フェニル-7H-ベンゾ[c]カルバゾール、「ET2」は2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾールである。キノリノールリチウム「Liq」と共に以下に化学構造を示す。 In Table 1, “HI” refers to N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine, “HT” is N 4 , N 4 , N 4 ′ , N 4 ′ -tetra [1,1′-biphenyl] -4-yl)-[1,1′-biphenyl] -4,4 '-Diamine, “BH1” is 9- (4- (naphthalen-1-yl) phenyl) -10-phenylanthracene, “BH2” is 9-phenyl-10- (4-phenylnaphthalen-1-yl) anthracene, “BD1” 4,4 ′-((7,7-diphenyl-7H-benzo [c] fluorene-5,9-diyl) bis (phenylazanezyl)) dibenzonitrile, “BD2” is 7,7, − dimethyl -N 5, N 9 - diphenyl -N 5, N 9 - Bis (4- (trimethylsilanyl) phenyl) -7H-benzo [c] fluorene-5,9-diamine, “ET1” is 5,9-di ([bipyridin] -6-yl) -7-phenyl-7H -Benzo [c] carbazole, “ET2” is 2- (4- (9,10-di (naphthalen-2-yl) anthracen-2-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole is there. The chemical structure is shown below together with quinolinol lithium “Liq”.
Figure JPOXMLDOC01-appb-C000275
Figure JPOXMLDOC01-appb-C000275
[実施例1]化合物(1-1-66)を電子輸送層に用いた素子
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、BH1を入れたモリブデン製蒸着用ボート、BD1を入れたモリブデン製蒸着用ボート、本発明の化合物(1-1-66)を入れたモリブデン製蒸着用ボート、キノリノールリチウム(Liq)を入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
[Example 1] A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm by element sputtering using the compound (1-1-66) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HT, and a molybdenum vapor vessel containing BH1. Vapor deposition boat, molybdenum vapor deposition boat containing BD1, molybdenum vapor deposition boat containing compound (1-1-66) of the present invention, molybdenum vapor deposition boat containing quinolinol lithium (Liq), and aluminum A tungsten vapor deposition boat was installed.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、BH1が入った蒸着用ボートとBD1の入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。BH1とBD1の重量比がおよそ95:5になるように蒸着速度を調節した。つぎに、化合物(1-1-66)の入った蒸着用ボートとLiqの入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して電子輸送層を形成した。化合物(1-1-66)とLiqの重量比がおよそ1:1になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber was depressurized to 5 × 10 −4 Pa, first, the vapor deposition boat containing HI was heated to deposit to a film thickness of 40 nm to form a hole injection layer, and then HT entered. The vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer. Next, the vapor deposition boat containing BH1 and the vapor deposition boat containing BD1 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm. The deposition rate was adjusted so that the weight ratio of BH1 to BD1 was approximately 95: 5. Next, an evaporation boat containing the compound (1-1-66) and an evaporation boat containing Liq were simultaneously heated to evaporate to a thickness of 20 nm to form an electron transport layer. The deposition rate was adjusted so that the weight ratio of the compound (1-1-66) and Liq was approximately 1: 1. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
ITO電極を陽極、Liq/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.8V、外部量子効率は4.3%(波長約451nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の77%(1540cd/m)以上の輝度を保持する時間は321時間であった。 Using the ITO electrode as the anode and the Liq / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. It was. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 321 hours.
[比較例1]
電子輸送層の化合物(1-1-66)を化合物(ET1)に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、キノリノールリチウム/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は5.5V、外部量子効率は3.2%(波長約451nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の77%(1540cd/m)以上の輝度を保持する時間は63時間であった。
[Comparative Example 1]
An organic EL device was obtained in the same manner as in Example 1 except that the compound (1-1-66) in the electron transport layer was changed to the compound (ET1). Using the ITO electrode as the anode and the quinolinol lithium / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 5.5 V and the external quantum efficiency was 3.2% (blue emission with a wavelength of about 451 nm). there were. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 63 hours.
[実施例2]化合物(1-1-758)を電子輸送層に用いた素子
発光層のホスト材料である化合物(BH1)を化合物(BH2)に替え,発光層のドーパント材料である化合物(BD1)を化合物(BD2)に替え,また、電子輸送層の電子輸送材料である化合物(1-1-66)を化合物(1-1-758)に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、キノリノールリチウム/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は5.8V、外部量子効率は5.1%(波長約455nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の77%(1540cd/m)以上の輝度を保持する時間は170時間であった。
[Example 2] The compound (BH1), which is the host material of the device light emitting layer using the compound (1-1-758) for the electron transport layer, is replaced with the compound (BH2), and the compound (BD1) which is the dopant material of the light emitting layer ) Was replaced with compound (BD2), and compound (1-1-66), which was an electron transport material for the electron transport layer, was replaced with compound (1-1-758). An organic EL device was obtained. Using the ITO electrode as the anode and the quinolinol lithium / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 5.8 V and the external quantum efficiency was 5.1% (blue emission with a wavelength of about 455 nm). there were. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 170 hours.
[実施例3]化合物(1-1-66)を電子輸送層に用いた素子
実施例1で用いたものと同じ透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、BH1を入れたモリブデン製蒸着用ボート、BD1を入れたモリブデン製蒸着用ボート、本発明の化合物(1-1-66)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
[Example 3] Device using compound (1-1-66) as an electron transport layer The same transparent support substrate as used in Example 1 was used as a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.). Molybdenum deposition boat with HI and fixed, molybdenum deposition boat with HT, molybdenum deposition boat with BH1, molybdenum deposition boat with BD1, compound of the present invention (1- A molybdenum vapor deposition boat containing 1-66), a molybdenum vapor deposition boat containing Liq, and a tungsten vapor deposition boat containing aluminum were mounted.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、ついで、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。つぎに、BH1が入った蒸着用ボートとBD1の入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。BH1とBD1の重量比がおよそ95対5になるように蒸着速度を調節した。つぎに、化合物(1-1-66)の入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber was depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing HI was heated to deposit to a film thickness of 40 nm to form a hole injection layer, and then HT entered. The vapor deposition boat was heated and vapor-deposited to a film thickness of 25 nm to form a hole transport layer. Next, the vapor deposition boat containing BH1 and the vapor deposition boat containing BD1 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm. The deposition rate was adjusted so that the weight ratio of BH1 to BD1 was approximately 95: 5. Next, the vapor deposition boat containing the compound (1-1-66) was heated and vapor-deposited to a film thickness of 20 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
ITO電極を陽極、Liq/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.7V、外部量子効率は4.5%(波長約451nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の77%(1540cd/m)以上の輝度を保持する時間は345時間であった。 Using the ITO electrode as the anode and the Liq / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.7 V and the external quantum efficiency was 4.5% (blue emission with a wavelength of about 451 nm). It was. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 345 hours.
[比較例2]
電子輸送層の電子輸送材料である化合物(1-1-66)を化合物(ET1)に替えた以外は実施例3に準じた方法で有機EL素子を得た。ITO電極を陽極、キノリノールリチウム/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は5.4V、外部量子効率は2.5%(波長約453nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の77%(1540cd/m)以上の輝度を保持する時間は0.5時間であった。
[Comparative Example 2]
An organic EL device was obtained in the same manner as in Example 3, except that the compound (1-1-66), which was the electron transport material for the electron transport layer, was changed to the compound (ET1). Using the ITO electrode as the anode and the quinolinol lithium / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. there were. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 0.5 hours. It was.
[比較例3]
電子輸送層の電子輸送材料である化合物(1-1-66)を化合物(ET2)に替えた以外は実施例3に準じた方法で有機EL素子を得た。ITO電極を陽極、キノリノールリチウム/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は5.4V、外部量子効率は2.2%(波長約453nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の77%(1540cd/m)以上の輝度を保持する時間は22時間であった。
[Comparative Example 3]
An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-1-66), which was the electron transport material for the electron transport layer, was changed to the compound (ET2). Using the ITO electrode as the anode and the quinolinol lithium / aluminum electrode as the cathode, measuring the characteristics at 1000 cd / m 2 emission, the drive voltage is 5.4 V, the external quantum efficiency is 2.2% (blue emission with a wavelength of about 453 nm) there were. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 77% (1540 cd / m 2 ) or more of the initial value was 22 hours.
以上の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000276
The above results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000276
作製した実施例4~8および比較例4~7に係る有機EL素子における、各層の材料構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000277
Table 3 below shows the material configuration of each layer in the manufactured organic EL elements according to Examples 4 to 8 and Comparative Examples 4 to 7.
Figure JPOXMLDOC01-appb-T000277
表3において、「HI2」は1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリル、「ET3」は5,9-ジ([2,3’-ビピリジン]-6-イル)-7-フェニル-7H-ベンゾ[c]カルバゾール、「ET4」は3-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン、「ET5」は2-([1,1’-ビフェニル]-3-イル)-7-([2,3’-ビピリジン]-6-イル)-9-フェニル-9H-カルバゾール、「ET6」は9-フェニル-2,7-ビス(4-(ピリジン-4-イル)ナフタレン-1-イル)-9H-カルバゾールである。以下に化学構造を示す。 In Table 3, “HI2” is 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-hexacarbonitrile, “ET3” is 5,9-di ( [2,3′-bipyridin] -6-yl) -7-phenyl-7H-benzo [c] carbazole, “ET4” is 3- (6- (10-phenylanthracen-9-yl) naphthalen-2-yl ) Pyridine, “ET5” is 2-([1,1′-biphenyl] -3-yl) -7-([2,3′-bipyridin] -6-yl) -9-phenyl-9H-carbazole, “ “ET6” is 9-phenyl-2,7-bis (4- (pyridin-4-yl) naphthalen-1-yl) -9H-carbazole. The chemical structure is shown below.
Figure JPOXMLDOC01-appb-C000278
Figure JPOXMLDOC01-appb-C000278
[実施例4]化合物(1-1-66)を電子輸送層に用いた素子
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HI2を入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、BH2を入れたモリブデン製蒸着用ボート、BD2を入れたモリブデン製蒸着用ボート、本発明の化合物(1-1-66)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
[Example 4] A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm by element sputtering using the compound (1-1-66) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT. Vapor deposition boat, molybdenum vapor deposition boat with BH2, molybdenum vapor deposition boat with BD2, molybdenum vapor deposition boat with compound (1-1-66) of the present invention, molybdenum with Liq A vapor deposition boat and a tungsten vapor deposition boat containing aluminum were mounted.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して1層目の正孔注入層を形成し、さらにHI2が入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して2層目の正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、BH2が入った蒸着用ボートとBD2の入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH2とBD2の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-1-66)の入った蒸着用ボートとLiqの入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して電子輸送層を形成した。化合物(1-1-66)とLiqの重量比がおよそ1:1になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm. The deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5. Next, the vapor deposition boat containing the compound (1-1-66) and the vapor deposition boat containing Liq were heated at the same time so as to have a film thickness of 30 nm to form an electron transport layer. The deposition rate was adjusted so that the weight ratio of the compound (1-1-66) and Liq was approximately 1: 1. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
ITO電極を陽極、Liq/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.8V、外部量子効率は5.1%(波長約454nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は396時間であった。 Using the ITO electrode as the anode and the Liq / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.8 V and the external quantum efficiency was 5.1% (blue emission with a wavelength of about 454 nm). It was. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 396 hours.
[比較例4]
電子輸送層の化合物(1-1-66)を化合物(ET3)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は4.0V、外部量子効率は4.6%(波長約458nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は279時間であった。
[Comparative Example 4]
An organic EL device was obtained in the same manner as in Example 4 except that the compound (1-1-66) in the electron transport layer was changed to the compound (ET3). Using the ITO electrode as the anode and the Liq / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 4.0 V and the external quantum efficiency was 4.6% (blue emission with a wavelength of about 458 nm). It was. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 279 hours.
[実施例5]化合物(1-2-125)を電子輸送層に用いた素子
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HI2を入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、BH2を入れたモリブデン製蒸着用ボート、BD2を入れたモリブデン製蒸着用ボート、本発明の化合物(1-2-125)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデン製蒸着用ボートおよび銀を入れたモリブデン製蒸着用ボートを装着した。
[Example 5] A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm formed by element sputtering using the compound (1-2-125) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT. Vapor deposition boat, molybdenum vapor deposition boat with BH2, molybdenum vapor deposition boat with BD2, molybdenum vapor deposition boat with compound of the present invention (1-225), molybdenum with Liq A vapor deposition boat, a molybdenum vapor deposition boat containing magnesium, and a molybdenum vapor deposition boat containing silver were mounted.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して1層目の正孔注入層を形成し、さらにHI2が入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して2層目の正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、BH2が入った蒸着用ボートとBD2の入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH2とBD2の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-2-125)の入った蒸着用ボートとLiqの入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して電子輸送層を形成した。化合物(1-2-125)とLiqの重量比がおよそ1:1になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm. The deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5. Next, the vapor deposition boat containing the compound (1-2-125) and the vapor deposition boat containing Liq were heated at the same time to be vapor-deposited to a film thickness of 30 nm to form an electron transport layer. The deposition rate was adjusted so that the weight ratio of the compound (1-2-125) and Liq was approximately 1: 1. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。この時、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.01~2nm/秒になるようにして有機EL素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode. At this time, the vapor deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and an organic EL device was obtained so that the vapor deposition rate was 0.01 to 2 nm / second.
ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.8V、外部量子効率は6.0%(波長約458nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は220時間であった。 Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.8 V and the external quantum efficiency was 6.0% (blue emission with a wavelength of about 458 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 220 hours.
[比較例5]
電子輸送層の化合物(1-2-125)を化合物(ET4)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.5V、外部量子効率は5.5%(波長約454nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は170時間であった。
[Comparative Example 5]
An organic EL device was obtained in the same manner as in Example 5 except that the compound (1-2-125) in the electron transport layer was changed to the compound (ET4). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, measuring the characteristics at 1000 cd / m 2 emission, the drive voltage is 3.5 V, the external quantum efficiency is 5.5% (blue emission with a wavelength of about 454 nm) Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 170 hours.
[実施例6]化合物(1-3-206)を電子輸送層に用いた素子
電子輸送層の化合物(1-2-125)を化合物(1-3-206)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.8V、外部量子効率は5.3%(波長約455nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は307時間であった。
[Example 6] Example 5 except that the compound (1-2-125) in the device electron transport layer was changed to the compound (1-3-206) using the compound (1-3-206) in the electron transport layer. An organic EL device was obtained by a method according to the above. Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.8 V and the external quantum efficiency was 5.3% (blue emission with a wavelength of about 455 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 307 hours.
[比較例6]
電子輸送層の化合物(1-2-125)を化合物(ET5)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.9V、外部量子効率は4.4%(波長約456nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は201時間であった。
[Comparative Example 6]
An organic EL device was obtained by the method according to Example 5 except that the compound (1-2-125) in the electron transport layer was changed to the compound (ET5). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.9 V and the external quantum efficiency was 4.4% (blue emission with a wavelength of about 456 nm). Met. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 201 hours.
[実施例7]化合物(1-1-893)を電子輸送層に用いた素子
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HI2を入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、BH2を入れたモリブデン製蒸着用ボート、BD2を入れたモリブデン製蒸着用ボート、本発明の化合物(1-1-893)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデン製蒸着用ボートおよび銀を入れたモリブデン製蒸着用ボートを装着した。
[Example 7] A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm by element sputtering using the compound (1-1-893) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT. Vapor deposition boat, molybdenum vapor deposition boat with BH2, molybdenum vapor deposition boat with BD2, molybdenum vapor deposition boat with compound (1-1-893) of the present invention, molybdenum with Liq A vapor deposition boat, a molybdenum vapor deposition boat containing magnesium, and a molybdenum vapor deposition boat containing silver were mounted.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して1層目の正孔注入層を形成し、さらにHI2が入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して2層目の正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、BH2が入った蒸着用ボートとBD2の入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH2とBD2の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-1-893)が入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm. The deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5. Next, the evaporation boat containing the compound (1-1-893) was heated and evaporated to a thickness of 30 nm to form an electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。この時、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.01~2nm/秒になるようにして有機EL素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode. At this time, the vapor deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and an organic EL device was obtained so that the vapor deposition rate was 0.01 to 2 nm / second.
ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.3V、外部量子効率は3.6%(波長約456nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の90%(1800cd/m)以上の輝度を保持する時間は56時間であった。 Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, measuring the characteristics at 1000 cd / m 2 emission, the drive voltage is 3.3 V, the external quantum efficiency is 3.6% (blue emission with a wavelength of about 456 nm) Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 90% (1800 cd / m 2 ) or more of the initial value was 56 hours.
[実施例8]化合物(1-1-973)を電子輸送層に用いた素子
電子輸送層の化合物(1-1-893)を化合物(1-1-973)に替えた以外は実施例7に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は4.2V、外部量子効率は4.8%(波長約456nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は80時間であった。
[Example 8] Example 7 using compound (1-1-973) in the electron transport layer Example 7 except that compound (1-1-893) in the device electron transport layer was replaced with compound (1-1-973) An organic EL device was obtained by a method according to the above. Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 4.2 V and the external quantum efficiency was 4.8% (blue emission with a wavelength of about 456 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 80 hours.
[比較例7]
電子輸送層の化合物(1-1-893)を化合物(ET6)に替えた以外は実施例7に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は5.6V、外部量子効率は4.8%(波長約455nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は35時間であった。
[Comparative Example 7]
An organic EL device was obtained in the same manner as in Example 7 except that the compound (1-1-893) in the electron transport layer was changed to the compound (ET6). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 5.6 V and the external quantum efficiency was 4.8% (blue emission with a wavelength of about 455 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 35 hours.
以上の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000279
* 輝度が初期輝度の90%以上を保持する時間
The above results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000279
* The time during which the luminance is 90% or more of the initial luminance.
作製した実施例9、10および比較例8、9に係る有機EL素子における、各層の材料構成を下記表5に示す。
Figure JPOXMLDOC01-appb-T000280
Table 5 below shows the material configuration of each layer in the manufactured organic EL elements according to Examples 9 and 10 and Comparative Examples 8 and 9.
Figure JPOXMLDOC01-appb-T000280
 表5において、「ET7」は2-フェニル-9,10-ジ([2,2’-ビピリジン]-5-イル)アントラセン、「ET8」は7-フェニル-5,9-ビス(3-(ピリジン-4-イル)フェニル)-7H-ベンゾ[c]カルバゾール、「ET9」は9-(4’-(ジメシチルボリル)-[1,1’-ビナフタレン]-4-イル)-9H-カルバゾール、「ET10」は4,4’-((2-フェニルアントラセン-9,10-ジイル)ビス(4,1-フェニレン))ジピリジンである。以下に化学構造を示す。 In Table 5, “ET7” is 2-phenyl-9,10-di ([2,2′-bipyridin] -5-yl) anthracene, and “ET8” is 7-phenyl-5,9-bis (3- ( Pyridin-4-yl) phenyl) -7H-benzo [c] carbazole, “ET9” is 9- (4 ′-(dimesitylboryl)-[1,1′-binaphthalene] -4-yl) -9H-carbazole, “ “ET10” is 4,4 ′-((2-phenylanthracene-9,10-diyl) bis (4,1-phenylene)) dipyridine. The chemical structure is shown below.
[実施例9]化合物(1-1-765)を電子輸送層に用いた素子
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HI2を入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、BH2を入れたモリブデン製蒸着用ボート、BD2を入れたモリブデン製蒸着用ボート、本発明の化合物(1-1-765)を入れたモリブデン製蒸着用ボート、ET7を入れたモリブデン製蒸着用ボート、フッ化リチウム(LiF)を入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
[Example 9] A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm by element sputtering using the compound (1-1-765) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT. Vapor deposition boat, molybdenum vapor deposition boat with BH2, molybdenum vapor deposition boat with BD2, molybdenum vapor deposition boat with compound (1-1-765) of the present invention, molybdenum with ET7 A vapor deposition boat, a molybdenum vapor deposition boat containing lithium fluoride (LiF), and a tungsten vapor deposition boat containing aluminum were mounted.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して1層目の正孔注入層を形成し、さらにHI2が入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して2層目の正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、BH2が入った蒸着用ボートとBD2の入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH2とBD2の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-1-765)が入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して1層目の電子輸送層を形成し、さらにET7が入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して2層目の電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm. The deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5. Next, the vapor deposition boat containing the compound (1-1-765) is heated and vapor-deposited to a film thickness of 20 nm to form the first electron transport layer, and further the vapor deposition boat containing ET7 Was heated to a thickness of 10 nm to form a second electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。 Thereafter, the evaporation boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
ITO電極を陽極、LiF/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.8V、外部量子効率は5.3%(波長約456nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は107時間であった。 Using the ITO electrode as the anode and the LiF / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.8 V and the external quantum efficiency was 5.3% (blue emission with a wavelength of about 456 nm). It was. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 107 hours.
[比較例8]
電子輸送層の化合物(1-1-765)を化合物(ET8)に替えた以外は実施例9に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は5.3V、外部量子効率は4.3%(波長約455nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は48時間であった。
[Comparative Example 8]
An organic EL device was obtained in the same manner as in Example 9 except that the compound (1-1-765) in the electron transport layer was changed to the compound (ET8). Using the ITO electrode as the anode and the LiF / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 5.3 V and the external quantum efficiency was 4.3% (blue emission with a wavelength of about 455 nm). It was. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 48 hours.
[実施例10]化合物(1-1-973)を電子輸送層に用いた素子
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HI2を入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、BH2を入れたモリブデン製蒸着用ボート、BD2を入れたモリブデン製蒸着用ボート、ET9を入れたモリブデン製蒸着用ボート、本発明の化合物(1-1-973)を入れたモリブデン製蒸着用ボート、フッ化リチウム(LiF)を入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
[Example 10] A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm formed by element sputtering using the compound (1-1-973) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT. Vapor deposition boat, molybdenum vapor deposition boat containing BH2, molybdenum vapor deposition boat containing BD2, molybdenum vapor deposition boat containing ET9, molybdenum product containing the compound of the present invention (1-1973) A vapor deposition boat, a molybdenum vapor deposition boat containing lithium fluoride (LiF), and a tungsten vapor deposition boat containing aluminum were mounted.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して1層目の正孔注入層を形成し、さらにHI2が入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して2層目の正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、BH2が入った蒸着用ボートとBD2の入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH2とBD2の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(ET9)が入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して1層目の電子輸送層を形成し、さらに化合物(1-1-973)が入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して2層目の電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm. The deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5. Next, the vapor deposition boat containing the compound (ET9) was heated and vapor-deposited to a film thickness of 20 nm to form the first electron transport layer, and the compound (1-1-973) was further contained. A vapor deposition boat was heated and vapor-deposited to a film thickness of 10 nm to form a second electron transport layer. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。 Thereafter, the evaporation boat containing LiF was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
ITO電極を陽極、LiF/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は4.3V、外部量子効率は5.9%(波長約457nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は338時間であった。 Using the ITO electrode as the anode and the LiF / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 4.3 V and the external quantum efficiency was 5.9% (blue emission with a wavelength of about 457 nm). It was. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 338 hours.
[比較例9]
電子輸送層の化合物(1-1-973)を化合物(ET10)に替えた以外は実施例10に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は4.3V、外部量子効率は5.4%(波長約455nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は200時間であった。
[Comparative Example 9]
An organic EL device was obtained by a method according to Example 10 except that the compound (1-1 to 973) in the electron transport layer was changed to the compound (ET10). Using the ITO electrode as the anode and the LiF / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 4.3 V and the external quantum efficiency was 5.4% (blue emission with a wavelength of about 455 nm). It was. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 200 hours.
以上の結果を表6にまとめた。
Figure JPOXMLDOC01-appb-T000282
The above results are summarized in Table 6.
Figure JPOXMLDOC01-appb-T000282
作製した実施例11~15に係る有機EL素子における、各層の材料構成を下記表7に示す。
Figure JPOXMLDOC01-appb-T000283
Table 7 below shows the material structure of each layer in the organic EL elements according to Examples 11 to 15 thus manufactured.
Figure JPOXMLDOC01-appb-T000283
[実施例11]化合物(1-1-765)を電子輸送層に用いた素子
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HI2を入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、BH2を入れたモリブデン製蒸着用ボート、BD2を入れたモリブデン製蒸着用ボート、本発明の化合物(1-1-765)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
[Example 11] A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm formed by element sputtering using the compound (1-1-765) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT. Vapor deposition boat, molybdenum vapor deposition boat with BH2, molybdenum vapor deposition boat with BD2, molybdenum vapor deposition boat with compound (1-1-765) of the present invention, molybdenum with Liq A vapor deposition boat and a tungsten vapor deposition boat containing aluminum were mounted.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して1層目の正孔注入層を形成し、さらにHI2が入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して2層目の正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、BH2が入った蒸着用ボートとBD2の入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH2とBD2の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-1-765)の入った蒸着用ボートとLiqの入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して電子輸送層を形成した。化合物(1-1-765)とLiqの重量比がおよそ1:1になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm. The deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5. Next, the vapor deposition boat containing the compound (1-1-765) and the vapor deposition boat containing Liq were heated at the same time to form a 20 nm-thick film, thereby forming an electron transport layer. The deposition rate was adjusted so that the weight ratio of the compound (1-1-765) and Liq was approximately 1: 1. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~2nm/秒の蒸着速度でアルミニウムを蒸着することにより陰極を形成し、有機EL素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a vapor deposition boat containing aluminum was heated, and aluminum was deposited at a deposition rate of 0.01 to 2 nm / second so as to have a film thickness of 100 nm to form a cathode, thereby obtaining an organic EL device.
ITO電極を陽極、Liq/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.7V、外部量子効率は7.4%(波長約456nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は243時間であった。 Using the ITO electrode as the anode and the Liq / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.7 V and the external quantum efficiency was 7.4% (blue emission with a wavelength of about 456 nm). It was. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 243 hours.
[実施例12]
電子輸送層の化合物(1-1-765)を化合物(1-2-125)に替えた以外は実施例11に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/アルミニウム電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は4.3V、外部量子効率は6.2%(波長約456nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は223時間であった。
[Example 12]
An organic EL device was obtained in the same manner as in Example 11 except that the compound (1-1-765) in the electron transport layer was changed to the compound (1-2-125). Using the ITO electrode as the anode and the Liq / aluminum electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 4.3 V and the external quantum efficiency was 6.2% (blue emission with a wavelength of about 456 nm). It was. In addition, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 223 hours.
[実施例13]化合物(1-1-2)を電子輸送層に用いた素子
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HI2を入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、BH2を入れたモリブデン製蒸着用ボート、BD2を入れたモリブデン製蒸着用ボート、本発明の化合物(1-1-2)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデン製蒸着用ボートおよび銀を入れたモリブデン製蒸着用ボートを装着した。
[Example 13] A glass substrate (26 mm x 28 mm x 0.7 mm) obtained by polishing ITO having a thickness of 180 nm formed by element sputtering using the compound (1-1-2) as an electron transport layer to 150 nm (( Opt Science Co., Ltd.) was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HI2, and a molybdenum vapor containing HT. Vapor deposition boat, molybdenum vapor deposition boat with BH2, molybdenum vapor deposition boat with BD2, molybdenum vapor deposition boat with compound (1-1-2) of the present invention, molybdenum with Liq A vapor deposition boat, a molybdenum vapor deposition boat containing magnesium, and a molybdenum vapor deposition boat containing silver were mounted.
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して1層目の正孔注入層を形成し、さらにHI2が入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して2層目の正孔注入層を形成し、次いで、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着して正孔輸送層を形成した。次に、BH2が入った蒸着用ボートとBD2の入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH2とBD2の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-1-2)の入った蒸着用ボートとLiqの入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して電子輸送層を形成した。化合物(1-1-2)とLiqの重量比がおよそ1:1になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。 The following layers were sequentially formed on the ITO film of the transparent support substrate. The vacuum chamber is depressurized to 5 × 10 −4 Pa, and first, a vapor deposition boat containing HI is heated and vapor-deposited to a film thickness of 40 nm to form a first hole injection layer. Is heated to a thickness of 5 nm to form a second hole injection layer, and then the evaporation boat containing HT is heated to a thickness of 25 nm. Thus, a hole transport layer was formed by vapor deposition. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing BD2 were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 20 nm. The deposition rate was adjusted so that the weight ratio of BH2 to BD2 was approximately 95: 5. Next, the vapor deposition boat containing the compound (1-1-2) and the vapor deposition boat containing Liq were heated at the same time so as to have a film thickness of 20 nm, thereby forming an electron transport layer. The deposition rate was adjusted so that the weight ratio of compound (1-1-2) to Liq was approximately 1: 1. The deposition rate of each layer was 0.01 to 1 nm / second.
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。この時、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.01~2nm/秒になるようにして有機EL素子を得た。 Thereafter, the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm. Next, a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode. At this time, the vapor deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and an organic EL device was obtained so that the vapor deposition rate was 0.01 to 2 nm / second.
ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.9V、外部量子効率は6.2%(波長約458nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は150時間であった。 Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.9 V and the external quantum efficiency was 6.2% (blue emission with a wavelength of about 458 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 150 hours.
[実施例14]
電子輸送層の化合物(1-1-2)を化合物(1-1-765)に替えた以外は実施例13に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.5V、外部量子効率は6.7%(波長約457nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は210時間であった。
[Example 14]
An organic EL device was obtained in the same manner as in Example 13 except that the compound (1-1-2) in the electron transport layer was changed to the compound (1-1-765). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.5 V and the external quantum efficiency was 6.7% (blue emission with a wavelength of about 457 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 210 hours.
[実施例15]
電子輸送層の化合物(1-1-2)を化合物(1-1-973)に替えた以外は実施例13に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウム+銀電極を陰極として、1000cd/m発光時の特性を測定すると、駆動電圧は3.8V、外部量子効率は6.7%(波長約455nmの青色発光)であった。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した結果、初期値の80%(1600cd/m)以上の輝度を保持する時間は170時間であった。
[Example 15]
An organic EL device was obtained by a method according to Example 13 except that the compound (1-1-2) in the electron transport layer was changed to the compound (1-1-973). Using the ITO electrode as the anode and the Liq / magnesium + silver electrode as the cathode, the characteristics at 1000 cd / m 2 emission were measured. The drive voltage was 3.8 V and the external quantum efficiency was 6.7% (blue emission with a wavelength of about 455 nm). Met. Further, as a result of conducting a constant current driving test with a current density for obtaining an initial luminance of 2000 cd / m 2 , the time for maintaining the luminance of 80% (1600 cd / m 2 ) or more of the initial value was 170 hours.
以上の結果を表8にまとめた。
Figure JPOXMLDOC01-appb-T000284
The above results are summarized in Table 8.
Figure JPOXMLDOC01-appb-T000284
本発明の好ましい態様によれば、発光効率および素子寿命が優れた有機電界発光素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。 According to a preferred aspect of the present invention, it is possible to provide an organic electroluminescent element having excellent luminous efficiency and element lifetime, a display device including the same, a lighting device including the display device, and the like.

Claims (25)

  1. 下記式(1)で表されるベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)において、
    a、b、c、およびdは独立して1または0であるが、aおよびbが同時に0であることはなく;
    PyおよびPyは独立してピリジルまたはビピリジルであり、このピリジルまたはビピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~12のヘテロアリールで置き換えられていてもよく;
    Arは、aが0であるとき水素または炭素数6~20のアリールであり、aが1であるとき炭素数6~20のアリーレンであり、Arはbが0であるとき水素または炭素数6~20のアリールであり、bが1であるとき炭素数6~20のアリーレンであり、これらのアリールまたはアリーレンの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
    Aは炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールで置き換えられていてもよく;
    ~Rは独立して水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~10のヘテロアリールであり、このアリールまたはヘテロアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;また、
    式(1)で表される化合物における少なくとも1つの水素が重水素で置き換えられていてもよい。
    A benzo [a] carbazole compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In equation (1),
    a, b, c, and d are independently 1 or 0, but a and b are not 0 at the same time;
    Py 1 and Py 2 are independently pyridyl or bipyridyl, and any hydrogen of the pyridyl or bipyridyl is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or Optionally substituted with heteroaryl having 2 to 12 carbons;
    Ar 1 is hydrogen or aryl having 6 to 20 carbon atoms when a is 0; Ar 1 is arylene having 6 to 20 carbon atoms when a is 1; Ar 2 is hydrogen or carbon when b is 0 An aryl having 6 to 20 carbon atoms and an arylene having 6 to 20 carbon atoms when b is 1, any hydrogen of these aryls or arylenes is an alkyl having 1 to 6 carbon atoms or a cyclohexane having 3 to 6 carbon atoms; Optionally substituted with alkyl or aryl of 6 to 14 carbon atoms;
    A is aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms ;
    R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons, and the aryl Or any hydrogen of heteroaryl may be replaced by alkyl having 1 to 6 carbons or cycloalkyl having 3 to 6 carbons;
    At least one hydrogen in the compound represented by the formula (1) may be replaced with deuterium.
  2. 下記式(1-1)で表される、請求項1に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000002
    式(1-1)において、
    PyおよびPyは独立してピリジルまたはビピリジルであり、このピリジルまたはビピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~12のヘテロアリールで置き換えられていてもよく;
    ArおよびArは独立して炭素数6~20のアリーレンであり、このアリーレンの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
    Aは炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールで置き換えられていてもよく;
    ~Rは独立して水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~10のヘテロアリールであり、このアリールまたはヘテロアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;そして、
    cおよびdは独立して1または0である。
    The benzo [a] carbazole compound according to claim 1, which is represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000002
    In formula (1-1),
    Py 1 and Py 2 are independently pyridyl or bipyridyl, and any hydrogen of the pyridyl or bipyridyl is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or Optionally substituted with heteroaryl having 2 to 12 carbons;
    Ar 1 and Ar 2 are each independently arylene having 6 to 20 carbon atoms, and any hydrogen of the arylene is alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or 6 to 14 carbon atoms Optionally substituted with aryl;
    A is aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms ;
    R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons, and the aryl Or any hydrogen in the heteroaryl may be replaced by alkyl of 1 to 6 carbons or cycloalkyl of 3 to 6 carbons; and
    c and d are each independently 1 or 0.
  3. 下記式(1-2)で表される、請求項1に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000003
    式(1-2)において、
    Pyはピリジルまたはビピリジルであり、このピリジルまたはビピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~12のヘテロアリールで置き換えられていてもよく;
    Arは水素または炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
    Arは炭素数6~20のアリーレンであり、このアリーレンの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
    Aは炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールで置き換えられていてもよく;
    ~Rは独立して水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~10のヘテロアリールであり、このアリールまたはヘテロアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;そして、
    dは1または0である。
    The benzo [a] carbazole compound according to claim 1, which is represented by the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000003
    In formula (1-2),
    Py 2 is pyridyl or bipyridyl, and any hydrogen of the pyridyl or bipyridyl is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or 2 to 12 carbons Optionally substituted with heteroaryl;
    Ar 1 is hydrogen or aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl is replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms May be;
    Ar 2 is aryl having 6 to 20 carbon atoms, and any hydrogen in the arylene is replaced by alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, or aryl having 6 to 14 carbons Well;
    A is aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms ;
    R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons, and the aryl Or any hydrogen in the heteroaryl may be replaced by alkyl of 1 to 6 carbons or cycloalkyl of 3 to 6 carbons; and
    d is 1 or 0.
  4. 下記式(1-3)で表される、請求項1に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000004
    式(1-3)において、
    Pyはピリジルまたはビピリジルであり、このピリジルまたはビピリジルの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~12のヘテロアリールで置き換えられていてもよく;
    Arは炭素数6~20のアリーレンであり、このアリーレンの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
    Arは水素または炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキル、または炭素数6~14のアリールで置き換えられていてもよく;
    Aは炭素数6~20のアリールであり、このアリールの任意の水素は炭素数1~6のアルキル、炭素数3~6のシクロアルキルまたは炭素数6~14のアリールで置き換えられていてもよく;
    ~Rは独立して水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~14のアリール、または炭素数2~10のヘテロアリールであり、このアリールまたはヘテロアリールの任意の水素は炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよく;そして、
    cは1または0である。
    The benzo [a] carbazole compound according to claim 1, which is represented by the following formula (1-3).
    Figure JPOXMLDOC01-appb-C000004
    In formula (1-3),
    Py 1 is pyridyl or bipyridyl, and any hydrogen of the pyridyl or bipyridyl is alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or 2 to 12 carbons Optionally substituted with heteroaryl;
    Ar 1 is an arylene having 6 to 20 carbon atoms, and any hydrogen of the arylene is replaced by an alkyl having 1 to 6 carbons, a cycloalkyl having 3 to 6 carbon atoms, or an aryl having 6 to 14 carbon atoms Well;
    Ar 2 is hydrogen or aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl is replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms May be;
    A is aryl having 6 to 20 carbon atoms, and any hydrogen in the aryl may be replaced by alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, or aryl having 6 to 14 carbon atoms ;
    R 1 to R 8 are independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 14 carbons, or heteroaryl having 2 to 10 carbons, and the aryl Or any hydrogen in the heteroaryl may be replaced by alkyl of 1 to 6 carbons or cycloalkyl of 3 to 6 carbons; and
    c is 1 or 0.
  5. PyおよびPyが独立して下記式(Py-1-1)~(Py-1-3)および(Py-2-1)~(Py-2-18)で表される基の群から選ばれる1つであり、
    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006
    これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
    ArおよびArが独立してフェニレン、ナフタレンジイル、アントラセンジイル、またはクリセンジイルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
    Aがフェニル、ナフチルまたはフェナントリルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
    ~Rが独立して水素、メチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、またはフェニルであり;そして、
    cおよびdが独立して1または0である、請求項2に記載のベンゾ[a]カルバゾール化合物。
    Py 1 and Py 2 are independently selected from the group of groups represented by the following formulas (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2-18) One that is chosen,
    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006
    Any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, or pyridyl;
    Ar 1 and Ar 2 are independently phenylene, naphthalenediyl, anthracenediyl, or chrysenediyl, and any hydrogen in these groups is replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl May be;
    A is phenyl, naphthyl or phenanthryl, and any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
    R 1 to R 8 are independently hydrogen, methyl, ethyl, isopropyl, t-butyl, cyclohexyl, or phenyl; and
    The benzo [a] carbazole compound according to claim 2, wherein c and d are each independently 1 or 0.
  6. Pyが下記式(Py-1-1)~(Py-1-3)および(Py-2-1)~(Py-2-18)で表される基の群から選ばれる1つであり、
    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008
    これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
    Arが水素、フェニル、ナフチル、アントリル、フェナントリル、またはクリセニルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
    Arがフェニレン、ナフタレンジイル、アントラセンジイル、またはクリセンジイルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
    Aがフェニル、ナフチルまたはフェナントリルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
    ~Rが独立して水素、メチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、またはフェニルであり;そして、
    dが1または0である、請求項3に記載のベンゾ[a]カルバゾール化合物。
    Py 2 is one selected from the group of groups represented by the following formulas (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2-18) ,
    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008
    Any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, or pyridyl;
    Ar 1 is hydrogen, phenyl, naphthyl, anthryl, phenanthryl, or chrycenyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
    Ar 2 is phenylene, naphthalenediyl, anthracenediyl, or chrysenediyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
    A is phenyl, naphthyl or phenanthryl, and any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
    R 1 to R 8 are independently hydrogen, methyl, ethyl, isopropyl, t-butyl, cyclohexyl, or phenyl; and
    The benzo [a] carbazole compound according to claim 3, wherein d is 1 or 0.
  7. Pyが下記式(Py-1-1)~(Py-1-3)および(Py-2-1)~(Py-2-18)で表される基の群から選ばれる1つであり、
    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010
    これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
    Arがフェニレン、ナフタレンジイル、アントラセンジイル、またはクリセンジイルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
    Arが水素、フェニル、ナフチル、アントリル、フェナントリル、またはクリセニルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
    Aがフェニル、ナフチルまたはフェナントリルであり、これらの基の任意の水素はメチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、フェニル、またはナフチルで置き換えられていてもよく;
    ~Rが独立して水素、メチル、エチル、イソプロピル、t-ブチル、シクロヘキシル、またはフェニルであり;そして、
    cが1または0である、請求項4に記載のベンゾ[a]カルバゾール化合物。
    Py 1 is one selected from the group of groups represented by the following formulas (Py-1-1) to (Py-1-3) and (Py-2-1) to (Py-2-18) ,
    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010
    Any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, naphthyl, or pyridyl;
    Ar 1 is phenylene, naphthalenediyl, anthracenediyl, or chrysenediyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
    Ar 2 is hydrogen, phenyl, naphthyl, anthryl, phenanthryl, or chrysenyl, and any hydrogen in these groups may be replaced with methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
    A is phenyl, naphthyl or phenanthryl, and any hydrogen in these groups may be replaced by methyl, ethyl, isopropyl, t-butyl, cyclohexyl, phenyl, or naphthyl;
    R 1 to R 8 are independently hydrogen, methyl, ethyl, isopropyl, t-butyl, cyclohexyl, or phenyl; and
    The benzo [a] carbazole compound according to claim 4, wherein c is 1 or 0.
  8. PyおよびPyが独立して式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-1)、(Py-2-2)、(Py-2-3)、(Py-2-7)、(Py-2-8)、(Py-2-9)、(Py-2-10)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり、これらの基の任意の水素はメチル、t-ブチル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
    ArおよびArが独立して1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-1,6-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
    Aがフェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
    ~Rがすべて水素であり;そして、
    cおよびdが独立して1または0である、請求項5に記載のベンゾ[a]カルバゾール化合物。
    Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-1), (Py-2-2), (Py-2-3), (Py-2-7), (Py-2-8), (Py-2-9), (Py-2-10), (Py-2-11), and ( Py-2-12), and any hydrogen of these groups may be replaced by methyl, t-butyl, phenyl, naphthyl, or pyridyl;
    Ar 1 and Ar 2 are independently 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-1,6-diyl, naphthalene-2,6-diyl, naphthalene-2,7 -Diyl, or anthracene-9,10-diyl, any hydrogen of these groups may be replaced by methyl, t-butyl, or phenyl;
    A is phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, or phenyl;
    R 1 to R 8 are all hydrogen; and
    The benzo [a] carbazole compound according to claim 5, wherein c and d are each independently 1 or 0.
  9. Pyが式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-1)、(Py-2-2)、(Py-2-3)、(Py-2-7)、(Py-2-8)、(Py-2-9)、(Py-2-10)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり、これらの基の任意の水素はメチル、t-ブチル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
    Arが水素、フェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
    Arが1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-1,6-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
    Aがフェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
    ~Rがすべて水素であり;そして、
    dが1または0である、請求項6に記載のベンゾ[a]カルバゾール化合物。
    Py 2 is represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-1), (Py-2-2), (Py-2-3). ), (Py-2-7), (Py-2-8), (Py-2-9), (Py-2-10), (Py-2-11), and (Py-2-12) Any hydrogen of these groups may be replaced by methyl, t-butyl, phenyl, naphthyl, or pyridyl;
    Ar 1 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, or phenyl;
    Ar 2 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-1,6-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene- 9,10-diyl, any hydrogen of these groups may be replaced by methyl, t-butyl, or phenyl;
    A is phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, or phenyl;
    R 1 to R 8 are all hydrogen; and
    The benzo [a] carbazole compound according to claim 6, wherein d is 1 or 0.
  10. Pyが式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-1)、(Py-2-2)、(Py-2-3)、(Py-2-7)、(Py-2-8)、(Py-2-9)、(Py-2-10)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり、これらの基の任意の水素はメチル、t-ブチル、フェニル、ナフチル、またはピリジルで置き換えられていてもよく;
    Arが1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-1,6-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
    Arが水素、フェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、シクロヘキシル、またはフェニルで置き換えられていてもよく;
    Aがフェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり、これらの基の任意の水素はメチル、t-ブチル、またはフェニルで置き換えられていてもよく;
    ~Rがすべて水素であり;そして、
    cが1または0である、請求項7に記載のベンゾ[a]カルバゾール化合物。
    Py 1 is represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-1), (Py-2-2), (Py-2-3). ), (Py-2-7), (Py-2-8), (Py-2-9), (Py-2-10), (Py-2-11), and (Py-2-12) Any hydrogen of these groups may be replaced by methyl, t-butyl, phenyl, naphthyl, or pyridyl;
    Ar 1 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-1,6-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene- 9,10-diyl, any hydrogen of these groups may be replaced by methyl, t-butyl, or phenyl;
    Ar 2 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, cyclohexyl, or phenyl;
    A is phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl, and any hydrogen in these groups may be replaced by methyl, t-butyl, or phenyl;
    R 1 to R 8 are all hydrogen; and
    The benzo [a] carbazole compound according to claim 7, wherein c is 1 or 0.
  11. PyおよびPyが独立して式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-2)、(Py-2-3)、(Py-2-8)、(Py-2-9)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり;
    ArおよびArが独立して1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり;
    Aがフェニル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、m-テルフェニル-5’-イル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
    ~Rがすべて水素であり;そして、
    cおよびdが独立して1または0である、請求項5に記載のベンゾ[a]カルバゾール化合物。
    Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-2), (Py-2-3), One selected from the group of groups represented by (Py-2-8), (Py-2-9), (Py-2-11), and (Py-2-12);
    Ar 1 and Ar 2 are independently 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene-9, 10-diyl;
    A is phenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
    R 1 to R 8 are all hydrogen; and
    The benzo [a] carbazole compound according to claim 5, wherein c and d are each independently 1 or 0.
  12. PyおよびPyが独立して式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-2)、(Py-2-3)、(Py-2-8)、(Py-2-9)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり;
    Arが水素、フェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
    Arが1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり;
    Aがフェニル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、m-テルフェニル-5’-イル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
    ~Rがすべて水素であり;そして、
    dが1または0である、請求項6に記載のベンゾ[a]カルバゾール化合物。
    Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-2), (Py-2-3), One selected from the group of groups represented by (Py-2-8), (Py-2-9), (Py-2-11), and (Py-2-12);
    Ar 1 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
    Ar 2 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene-9,10-diyl;
    A is phenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
    R 1 to R 8 are all hydrogen; and
    The benzo [a] carbazole compound according to claim 6, wherein d is 1 or 0.
  13. PyおよびPyが独立して式(Py-1-1)、(Py-1-2)、(Py-1-3)、(Py-2-2)、(Py-2-3)、(Py-2-8)、(Py-2-9)、(Py-2-11)、および(Py-2-12)で表される基の群から選ばれる1つであり;
    Arが1,4-フェニレン、1,3-フェニレン、ナフタレン-1,4-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、またはアントラセン-9,10-ジイルであり;
    Arが水素、フェニル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
    Aがフェニル、2-ビフェニリル、3-ビフェニリル、4-ビフェニリル、m-テルフェニル-5’-イル、1-ナフチル、2-ナフチル、または9-フェナントリルであり;
    ~Rがすべて水素であり;そして、
    cが1または0である、請求項7に記載のベンゾ[a]カルバゾール化合物。
    Py 1 and Py 2 are independently represented by the formulas (Py-1-1), (Py-1-2), (Py-1-3), (Py-2-2), (Py-2-3), One selected from the group of groups represented by (Py-2-8), (Py-2-9), (Py-2-11), and (Py-2-12);
    Ar 1 is 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, or anthracene-9,10-diyl;
    Ar 2 is hydrogen, phenyl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
    A is phenyl, 2-biphenylyl, 3-biphenylyl, 4-biphenylyl, m-terphenyl-5′-yl, 1-naphthyl, 2-naphthyl, or 9-phenanthryl;
    R 1 to R 8 are all hydrogen; and
    The benzo [a] carbazole compound according to claim 7, wherein c is 1 or 0.
  14. 下記式(1-1-66)または(1-1-758)で表される、請求項5に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000011
    The benzo [a] carbazole compound according to claim 5, which is represented by the following formula (1-1-66) or (1-1-758).
    Figure JPOXMLDOC01-appb-C000011
  15. 下記式(1-2-8)または(1-2-28)で表される、請求項6に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000012
    The benzo [a] carbazole compound according to claim 6, represented by the following formula (1-2-8) or (1-2-28).
    Figure JPOXMLDOC01-appb-C000012
  16. 下記式(1-3-206)または(1-3-300)で表される、請求項7に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000013
    The benzo [a] carbazole compound according to claim 7, which is represented by the following formula (1-3-206) or (1-3-300).
    Figure JPOXMLDOC01-appb-C000013
  17. 下記式(1-1-2)で表される、請求項5に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000014
    The benzo [a] carbazole compound according to claim 5, represented by the following formula (1-1-2).
    Figure JPOXMLDOC01-appb-C000014
  18. 下記式(1-1-765)で表される、請求項5に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000015
    The benzo [a] carbazole compound according to claim 5, which is represented by the following formula (1-1-765).
    Figure JPOXMLDOC01-appb-C000015
  19. 下記式(1-1-893)で表される、請求項5に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000016
    The benzo [a] carbazole compound according to claim 5, represented by the following formula (1-1-893).
    Figure JPOXMLDOC01-appb-C000016
  20. 下記式(1-1-973)で表される、請求項5に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000017
    The benzo [a] carbazole compound according to claim 5, which is represented by the following formula (1-1-973).
    Figure JPOXMLDOC01-appb-C000017
  21. 下記式(1-2-125)で表される、請求項6に記載のベンゾ[a]カルバゾール化合物。
    Figure JPOXMLDOC01-appb-C000018
    The benzo [a] carbazole compound according to claim 6, represented by the following formula (1-2-125):
    Figure JPOXMLDOC01-appb-C000018
  22. 請求項1~21のいずれか1項に記載の化合物を含有する電子輸送材料。 An electron transport material comprising the compound according to any one of claims 1 to 21.
  23. 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、請求項22に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。 23. Electron transport containing an electron transport material according to claim 22, disposed between a pair of electrodes composed of an anode and a cathode, a light emitting layer disposed between the pair of electrodes, and the cathode and the light emitting layer. An organic electroluminescent device having a layer and / or an electron injection layer.
  24. 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、請求項23に記載の有機電界発光素子。 24. The organic material according to claim 23, wherein at least one of the electron transport layer and the electron injection layer further contains at least one selected from the group consisting of a quinolinol-based metal complex, a bipyridine derivative, a phenanthroline derivative, and a borane derivative. Electroluminescent device.
  25. 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項23に記載の有機電界発光素子。 At least one of the electron transport layer and the electron injection layer is further made of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth metal. The material contains at least one selected from the group consisting of halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes. 24. The organic electroluminescent device according to 23.
PCT/JP2013/066978 2012-06-28 2013-06-20 Electron transport material and organic electroluminescent element using same WO2014002871A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147030758A KR102022437B1 (en) 2012-06-28 2013-06-20 Electron transport material and organic electroluminescent element using same
CN201380032113.3A CN104379572B (en) 2012-06-28 2013-06-20 Benzo [a] carbazole compound, electron transport materials and use its organic electric-field light-emitting element
JP2014522579A JP6183363B2 (en) 2012-06-28 2013-06-20 Electron transport material and organic electroluminescent device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012145166 2012-06-28
JP2012-145166 2012-06-28

Publications (1)

Publication Number Publication Date
WO2014002871A1 true WO2014002871A1 (en) 2014-01-03

Family

ID=49783029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066978 WO2014002871A1 (en) 2012-06-28 2013-06-20 Electron transport material and organic electroluminescent element using same

Country Status (5)

Country Link
JP (1) JP6183363B2 (en)
KR (1) KR102022437B1 (en)
CN (1) CN104379572B (en)
TW (1) TWI541238B (en)
WO (1) WO2014002871A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189722A (en) * 2014-03-28 2015-11-02 出光興産株式会社 Novel anthracene compound and organic electroluminescent element prepared using the same
JP2017088614A (en) * 2015-01-20 2017-05-25 エスエフシー カンパニー リミテッド Novel heterocyclic compounds and organic light-emitting element including the same
US10461262B2 (en) 2015-12-22 2019-10-29 Samsung Display Co., Ltd. Condensed cyclic compound and an organic light-emitting device including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632140B (en) * 2013-08-07 2018-08-11 捷恩智股份有限公司 Compound for electron transport materials,electron transport materials and organic electroluminescent elements using the same
EP3279194A1 (en) 2016-08-04 2018-02-07 Cynora Gmbh Organic molecules for use in organic optoelectronic devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029696A1 (en) * 2005-09-05 2007-03-15 Chisso Corporation Electron transporting material and organic electroluminescent device using the same
JP2007291092A (en) * 2006-03-30 2007-11-08 Chisso Corp New bipyridine derivative and organic electroluminescence element containing the same
JP2008214307A (en) * 2007-03-07 2008-09-18 Chisso Corp Electron transport material and organic electroluminescent element using the same
JP2011136989A (en) * 2009-12-03 2011-07-14 Jnc Corp Benzo[c]carbazole compound having substituent bearing pyridine ring, and organic electroluminescent element
WO2011152466A1 (en) * 2010-06-02 2011-12-08 Jnc株式会社 Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element
JP2012500789A (en) * 2008-08-22 2012-01-12 エルジー・ケム・リミテッド Organic electronic device material and organic electronic device using the same
JP2012054227A (en) * 2010-08-06 2012-03-15 Ricoh Co Ltd Light emitting element and display device
KR20120036560A (en) * 2010-10-08 2012-04-18 엘지디스플레이 주식회사 Red color phosphorescent host material and organic electroluminescent display device using the same
WO2012073541A1 (en) * 2010-12-03 2012-06-07 Jnc株式会社 BENZO[c]CARBAZOLE COMPOUND HAVING PYRIDINE-CONTAINING SUBSTITUENT AND ORGANIC ELECTROLUMINESCENT ELEMENT

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60100187T2 (en) 2000-09-07 2004-04-01 Chisso Corp. Organic electroluminescent device with a dipyridylthiophene derivative
JP4172172B2 (en) 2001-10-10 2008-10-29 コニカミノルタホールディングス株式会社 Organic electroluminescence device
JP4725959B2 (en) 2005-09-22 2011-07-13 京セラミタ株式会社 Electrophotographic image forming apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029696A1 (en) * 2005-09-05 2007-03-15 Chisso Corporation Electron transporting material and organic electroluminescent device using the same
JP2007291092A (en) * 2006-03-30 2007-11-08 Chisso Corp New bipyridine derivative and organic electroluminescence element containing the same
JP2008214307A (en) * 2007-03-07 2008-09-18 Chisso Corp Electron transport material and organic electroluminescent element using the same
JP2012500789A (en) * 2008-08-22 2012-01-12 エルジー・ケム・リミテッド Organic electronic device material and organic electronic device using the same
JP2011136989A (en) * 2009-12-03 2011-07-14 Jnc Corp Benzo[c]carbazole compound having substituent bearing pyridine ring, and organic electroluminescent element
WO2011152466A1 (en) * 2010-06-02 2011-12-08 Jnc株式会社 Carbazole compound having substituent group including electron-accepting nitrogen-containing heteroaryl, and organic electroluminescent element
JP2012054227A (en) * 2010-08-06 2012-03-15 Ricoh Co Ltd Light emitting element and display device
KR20120036560A (en) * 2010-10-08 2012-04-18 엘지디스플레이 주식회사 Red color phosphorescent host material and organic electroluminescent display device using the same
WO2012073541A1 (en) * 2010-12-03 2012-06-07 Jnc株式会社 BENZO[c]CARBAZOLE COMPOUND HAVING PYRIDINE-CONTAINING SUBSTITUENT AND ORGANIC ELECTROLUMINESCENT ELEMENT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189722A (en) * 2014-03-28 2015-11-02 出光興産株式会社 Novel anthracene compound and organic electroluminescent element prepared using the same
JP2017088614A (en) * 2015-01-20 2017-05-25 エスエフシー カンパニー リミテッド Novel heterocyclic compounds and organic light-emitting element including the same
US10461262B2 (en) 2015-12-22 2019-10-29 Samsung Display Co., Ltd. Condensed cyclic compound and an organic light-emitting device including the same

Also Published As

Publication number Publication date
KR20150024811A (en) 2015-03-09
CN104379572B (en) 2016-09-21
CN104379572A (en) 2015-02-25
JPWO2014002871A1 (en) 2016-05-30
TW201406746A (en) 2014-02-16
KR102022437B1 (en) 2019-09-18
TWI541238B (en) 2016-07-11
JP6183363B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
KR101964435B1 (en) Hetero-cyclic compound and organic light emitting device comprising the same
EP3032606B1 (en) Organic optoelectric device and display device
JP6393657B2 (en) Organic electroluminescent element material, organic electroluminescent element, display device, and illumination device
KR102040226B1 (en) Organic light emitting device
EP3272833B1 (en) Composition for organic photoelectronic element, organic photoelectronic element, and display apparatus
TW201926760A (en) Material for organic device and organic electroluminescent element using same
KR20140009393A (en) Bis-carbazole derivative and organic electroluminescent element using same
CN109952357B (en) Organic photoelectric device and display device
TWI669376B (en) Organic light emitting device
KR20180098130A (en) Novel compound and organic light emitting device comprising the same
JP5699581B2 (en) Fused pyrrole polycyclic compound, material for light emitting layer, and organic electroluminescent device using the same
CN111095586A (en) Organic photoelectric device and display device
JP5799772B2 (en) Electron transport material and organic electroluminescent device using the same
JP6183363B2 (en) Electron transport material and organic electroluminescent device using the same
JP6058531B2 (en) Organic electroluminescence device
JP6464985B2 (en) Polycyclic aromatic compound capable of self-assembly and organic EL device using the same
JP5783173B2 (en) Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices
CN110800122A (en) Organic electroluminescent device
JP7383299B2 (en) Heterocyclic compounds and organic light-emitting devices containing them
EP3269789B1 (en) Light emitting material and organic electroluminescent element
JP6349902B2 (en) Anthracene derivatives and organic EL devices
JP6136311B2 (en) Electron transport material and organic electroluminescent device using the same
JP2016081972A (en) Organic electroluminescent element, electronic apparatus, and composition
JP5920432B2 (en) Fused pyrrole polycyclic compound, material for light emitting layer, and organic electroluminescent device using the same
JP5949354B2 (en) Carbazole compounds having substituents containing electron-accepting nitrogen-containing heteroaryl and organic electroluminescent devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522579

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147030758

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810580

Country of ref document: EP

Kind code of ref document: A1