JPH08119749A - Method for defatting and sintering ceramic molded product or metal molded product - Google Patents

Method for defatting and sintering ceramic molded product or metal molded product

Info

Publication number
JPH08119749A
JPH08119749A JP6287431A JP28743194A JPH08119749A JP H08119749 A JPH08119749 A JP H08119749A JP 6287431 A JP6287431 A JP 6287431A JP 28743194 A JP28743194 A JP 28743194A JP H08119749 A JPH08119749 A JP H08119749A
Authority
JP
Japan
Prior art keywords
molded body
metal
sintering
ceramic
degreasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6287431A
Other languages
Japanese (ja)
Inventor
Akira Matsumoto
彰 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6287431A priority Critical patent/JPH08119749A/en
Publication of JPH08119749A publication Critical patent/JPH08119749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To obtain a method for defatting and sintering the ceramic molded product or metal molded product, giving the ceramic sintered compact or metal sintered compact excellent in dimension and accuracy, high in homogeneity, and little in the deterioration of various characteristics and irregularity. CONSTITUTION: The mixture of ceramic powder or metal power with a binder consisting mainly of a polymeric compound is injection-molded or extrusion- molded, and the molded product is defatted. Therein, the columnar molded products 1 are inserted into aluminum pipes 2, and the aluminum pipes 2 are rotatably sealed in a SiC pipe 3. While the SiC pipe 3 is rotated in a continuous oven having a continuous temperature gradient, the molded products 1 are defatted, and the warpage and deformation of the molded products are prevented by the sizing of the rotation. The stress deformation of the molded products by the thermal treatment is removed due to the continuous temperature gradient, and the uniformity of the amount of residual carbon due to the always changes in the surface contacting with a floor plate is removed. The molded product is sintered by the same method as the defatting method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、時計の精密小型部品、
複雑形状の小型部品、及びアルミナ製品等の電子部品と
して用いられるセラミックス粉末または金属粉末と高分
子化合物を主成分とするバインダーとの混和物より成る
成形体の脱脂、焼結方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to precision small parts for watches,
The present invention relates to a degreasing and sintering method for a compact formed of a mixture of a compact component having a complicated shape and a ceramic powder or a metal powder used as an electronic component such as an alumina product and a binder containing a polymer compound as a main component.

【0002】[0002]

【従来の技術】セラミックスまたは金属の焼結製品を粉
末冶金法によって製造する工程において、焼結前の圧粉
成形体はプレス機械等により圧縮成形して得る方法が広
く行われている。
2. Description of the Related Art In the process of manufacturing a sintered product of ceramics or metal by a powder metallurgy method, a method of obtaining a green compact before sintering by compression molding with a press machine or the like is widely used.

【0003】これは、通常、上下方向からパンチにより
粉末を加圧して成形する方法なので、単位時間当りの生
産効率は後で述べる押し出し成形方法と比較すると低下
する。
Since this is a method in which powder is usually pressed by a punch from the up and down direction, the production efficiency per unit time is lower than that of the extrusion molding method described later.

【0004】一方、いわゆるエンジニアリングセラミッ
クス等を中心とした窯業製品の分野においては、原料粉
末に5〜20重量%の有機バインダーを加え、混合、混
練した後、押し出し成形することにより、比較的複雑な
形状の成形体でも効率良く製造できるので、押し出し成
形方法が工業的に行われている。
On the other hand, in the field of ceramic products centering on so-called engineering ceramics and the like, by adding 5 to 20% by weight of an organic binder to raw material powder, mixing and kneading, and then extrusion molding, a relatively complicated process is performed. Extrusion molding methods are used industrially because even shaped products can be produced efficiently.

【0005】さらに、この技術は、混合、混練技術、押
し出し成形技術の発展に伴い金属粉末等にも適用されて
いる。
Further, this technique has been applied to metal powders and the like with the development of mixing, kneading and extrusion molding techniques.

【0006】[0006]

【発明が解決しようとする課題】しかし、使用するバイ
ンダーは、熱可塑性であるため、ダイより押し出された
直後の成形体は、変形を起こし易い。つまり、金型の流
路壁との摩擦抵抗の大きさがその断面形状の各部で異な
るため、流速に不均一が生じ、押し出し成形された成形
体の押し出し方向、即ち長手方向にそりを生じるという
問題がある。
However, since the binder used is thermoplastic, the molded body immediately after being extruded from the die is likely to be deformed. That is, since the magnitude of the frictional resistance with the flow path wall of the mold is different in each part of the cross-sectional shape, the flow velocity becomes non-uniform, and a warpage occurs in the extrusion direction of the extrusion-molded body, that is, the longitudinal direction. There's a problem.

【0007】また、冷却固化する前に矯正すると成形ひ
ずみが残存し、焼結製品の場合にはそのひずみの影響に
より、焼結体にそり、および変形が生じたり、諸特性が
劣化する等の問題があった。
Further, if it is rectified before being cooled and solidified, a molding strain remains, and in the case of a sintered product, due to the influence of the strain, the sintered body is warped and deformed, and various characteristics are deteriorated. There was a problem.

【0008】また、脱脂する際に敷板接触面と上面との
間で、バインダーより入る残存炭素量に分布のかたより
が生じ、敷板接触面に前記残存炭素量が多くなる。その
ため、その後の焼結工程において、焼結体の不均質性、
焼結密度低下等が生じ、これらが諸特性劣化の原因にも
なっていた。
Further, when degreasing, the residual carbon amount entering from the binder is distributed between the contact surface and the upper surface of the floor plate, and the residual carbon amount increases on the contact surface of the floor plate. Therefore, in the subsequent sintering process, non-uniformity of the sintered body,
A decrease in sintering density and the like occurred, which also caused deterioration of various characteristics.

【0009】本発明の目的は、上述の問題を解消するた
め、そりや変形が少なく、寸法精度が優れ、高い均質性
を有し、諸特性劣化が少ないセラミックス焼結体または
金属焼結体が得られるセラミックス成形体または金属成
形体の脱脂および焼結方法を提供することにある。
In order to solve the above-mentioned problems, an object of the present invention is to provide a ceramic sintered body or a metal sintered body which has less warpage and deformation, excellent dimensional accuracy, high homogeneity, and less deterioration in various characteristics. It is an object of the present invention to provide a degreasing and sintering method for the obtained ceramic molded body or metal molded body.

【0010】[0010]

【課題を解決するための手段】セラミックス粉末または
金属粉末と、高分子化合物を主成分とするバインダーの
混和物を用いて、射出成形または押し出し成形により成
形体を作製した後、該成形体を脱脂する際、円筒状のケ
ースに挿入し、温度勾配を連続的に持たせた炉中を回転
させながら脱脂を行う。この時生じる回転によるサイジ
ングにより、そり、変形をなくす。また、連続的な温度
勾配による熱処理により成形時の応力ひずみを取り除
き、さらに敷板との接触面が常時変化するため残存炭素
量の分布をなくすことができる。
Means for Solving the Problems A mixture of ceramic powder or metal powder and a binder containing a polymer compound as a main component is used to prepare a molded body by injection molding or extrusion molding, and then the molded body is degreased. At the time of degreasing, it is inserted into a cylindrical case and degreased while rotating in a furnace having a continuous temperature gradient. Sizing due to rotation that occurs at this time eliminates warpage and deformation. Further, the stress-strain at the time of molding is removed by the heat treatment with a continuous temperature gradient, and the contact surface with the floor plate is constantly changed, so that the distribution of the residual carbon amount can be eliminated.

【0011】同様の方法で焼結することにより、寸法精
度の優れた、均質性の高い焼結体が提供できる。
By sintering in the same manner, it is possible to provide a sintered body having excellent dimensional accuracy and high homogeneity.

【0012】即ち本発明は、セラミックス粉末または
金属粉末と、高分子化合物を主成分とするバインダーと
を、混合混練して得られたペレット状混和物を、押し出
し成形法または射出成形法により、円筒または円柱状の
成形体を作製した後、前記成形体を挿入した小円筒を円
筒状のケースに挿入し、前記ケースを回転させ、前記成
形体自体を回転させながら脱脂することを特徴とするセ
ラミックス成形体または金属成形体の脱脂方法であり、
セラミックス粉末または金属粉末と、高分子化合物を
主成分とするバインダーとを、混合混練して得られたペ
レット状混和物を、押し出し成形法または射出成形法に
より、円筒または円柱状の成形体を作製した後、前記成
形体を挿入した小円筒を円筒状のケースに挿入し、前記
ケースを回転させ、前記成形体自体を回転させながら連
続的に焼結することを特徴とするセラミックス成形体ま
たは金属成形体の焼結方法であり、上記および記
載のセラミックス成形体または金属成形体の脱脂および
焼結方法において、円筒内に成形体を挿入した小円筒を
複数個積載した前記円筒状のケースを回転させ、前記成
形体を回転させながら脱脂および焼結を行うことを特徴
とするセラミックス成形体または金属成形体の脱脂およ
び焼結方法であり、上記記載の円筒状のケースを回
転させる際に、円筒内に成形体を挿入した小円筒を複数
個積載した前記円筒状のケースの上に、前記ケースに回
転力を与え、かつ移動させるための板を順次送り出すこ
とにより、前記ケースを連続的に回転させ、前記成形体
を回転させながら脱脂および焼結を行うことを特徴とす
るセラミックス成形体または金属成形体の脱脂および焼
結方法である。
That is, according to the present invention, a pellet-like mixture obtained by mixing and kneading a ceramic powder or a metal powder and a binder containing a polymer compound as a main component is formed into a cylinder by an extrusion molding method or an injection molding method. Alternatively, after producing a cylindrical molded body, a small cylinder in which the molded body is inserted is inserted into a cylindrical case, the case is rotated, and the molded body itself is degreased while rotating. A degreasing method for a molded body or a metal molded body,
A pellet or a mixture obtained by mixing and kneading ceramic powder or metal powder with a binder containing a polymer compound as a main component is formed into a cylindrical or cylindrical molded body by an extrusion molding method or an injection molding method. After that, a small cylinder into which the molded body is inserted is inserted into a cylindrical case, the case is rotated, and the molded body itself is continuously sintered while being rotated, or a ceramic molded body or metal. A method for sintering a molded body, comprising the steps of degreasing and sintering a ceramic molded body or a metal molded body as described above and rotating the cylindrical case in which a plurality of small cylinders each having a molded body inserted in a cylinder are stacked. And degreasing and sintering while rotating the molded body, which is a method for degreasing and sintering a ceramic molded body or a metal molded body. When rotating the cylindrical case of, a plate for applying a rotational force to the case and moving it is placed on the cylindrical case in which a plurality of small cylinders each having a molded body inserted therein are stacked. A method for degreasing and sintering a ceramic molded body or a metal molded body, characterized in that the case is continuously rotated by sequentially sending out, and the molded body is degreased and sintered while being rotated.

【0013】[0013]

【作用】従来、押し出し成形によってそりが発生し、さ
らに成形ひずみが残存し、それが焼結体の寸法精度、諸
特性に悪影響を及ぼしていた。また成形体を脱脂する
際、炉中の加熱により成形体の上面からはバインダーが
蒸発しやすいので、バインダーの蒸発と同時にバインダ
ーの炭素もバインダーと一緒に蒸発してしまい、バイン
ダーから入る焼成体の残存炭素量は少なくなる。敷板接
触面が定位置となり、焼成体との接触面が固定される
と、バインダーは焼成体から蒸発できず抜けがたくな
り、したがって炭素も抜けず、残存炭素量が多くなる。
そのため、脱脂の際に焼成体の敷板接触面と上面との間
で、残存炭素量の分布に不均一な箇所が生じ、焼結体の
不均質、諸特性劣化の大きな原因になっていた。
In the past, warping was generated by extrusion molding, and molding strain remained, which adversely affected the dimensional accuracy and various characteristics of the sintered body. Further, when degreasing the molded body, the binder is likely to evaporate from the upper surface of the molded body due to heating in the furnace, so the carbon of the binder also evaporates together with the binder at the same time as the binder evaporates, and The amount of residual carbon decreases. When the floor plate contact surface is in a fixed position and the contact surface with the fired body is fixed, the binder cannot evaporate from the fired body and is difficult to escape, so that carbon does not escape and the amount of residual carbon increases.
Therefore, during degreasing, a non-uniform distribution of residual carbon amount was generated between the contact surface and the top surface of the fired body, which was a major cause of non-uniformity of the sintered body and deterioration of various characteristics.

【0014】図1に示すように、円柱状の製品となる成
形体は、両端を封じて、その封じ部に穴をあけたアルミ
ナ管2に複数挿入され、SiC管3に回転できるように
積載される。前記SiC管3の両端は、前記アルミナ管
2同様複数の小穴を開け、成形体及びアルミナ管2が飛
び出さないように閉じられている。
As shown in FIG. 1, a cylindrical product, which is a cylindrical product, is sealed at both ends and is inserted into a plurality of alumina tubes 2 each having a hole in the sealing portion, and is loaded on a SiC tube 3 so as to be rotatable. To be done. Similar to the alumina tube 2, a plurality of small holes are formed at both ends of the SiC tube 3 and are closed so that the molded body and the alumina tube 2 do not pop out.

【0015】図2に示すように、本発明は、連続的温度
勾配を設けた連続炉4を用意し、送り板押し込み体7を
駆動し、成形体を挿入したアルミナ管2を封じたSiC
管3の上面に送り板6を移動させて、SiC管3を強制
的に回転させながら前記連続炉4の中に移送する。前記
SiC管3は、矢印方向17に回転し、前進移動するの
で製品の成形体は回転しながらバインダーを蒸発し、脱
脂される。また同時に、連続的な温度勾配による加熱で
成形ひずみが除去され、成形体自体の回転により、バイ
ンダーの蒸発はかたよることなく行われ、成形体は上述
のような脱脂、焼成工程を経て処理されるので、焼成さ
れると均質性がきわめて高い焼成体が得られる。かつ、
また残存炭素量の不均一がなくなり、かつ成形体のそ
り、変形が矯正されるものである。
As shown in FIG. 2, according to the present invention, a continuous furnace 4 provided with a continuous temperature gradient is prepared, a feed plate pushing body 7 is driven, and an alumina tube 2 in which a molded body is inserted is sealed with SiC.
The feed plate 6 is moved to the upper surface of the pipe 3, and the SiC pipe 3 is forcibly rotated and transferred into the continuous furnace 4. Since the SiC tube 3 rotates in the direction of the arrow 17 and moves forward, the molded product of the product is degreased by evaporating the binder while rotating. At the same time, the molding strain is removed by heating with a continuous temperature gradient, the rotation of the molded body itself causes the evaporation of the binder without warping, and the molded body is processed through the degreasing and firing steps as described above. Therefore, when fired, a fired body with extremely high homogeneity is obtained. And,
Further, the residual carbon amount is not uneven, and the warp and deformation of the molded body are corrected.

【0016】[0016]

【実施例】本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0017】(実施例1)原料粉末としてFe50wt
%−Co50wt%なる組成の合金をアルゴンガス雰囲
気中で高周波加熱により溶製し、水アトマイズ法により
平均粒径10μmに作製した粉末を使用し、その合金粉
末91wt%、エチレン・酢酸ビニル共重合体(酢酸ビ
ニル含有量20wt%)5wt%、融点60℃のパラフ
ィンワックス3wt%、ジオクチルフタレート1wt%
を加圧ニーダーにより130℃で30分混練した後、直
径2mm、長さ約4mmのペレットを作製した。
(Example 1) Fe50 wt as raw material powder
% -Co 50 wt% alloy is melted by high frequency heating in an argon gas atmosphere, and powder produced to have an average particle size of 10 μm by a water atomization method is used. 91 wt% of the alloy powder, ethylene / vinyl acetate copolymer (Vinyl acetate content 20 wt%) 5 wt%, paraffin wax with a melting point of 60 ° C. 3 wt%, dioctyl phthalate 1 wt%
After being kneaded for 30 minutes at 130 ° C. by a pressure kneader, pellets having a diameter of 2 mm and a length of about 4 mm were prepared.

【0018】この原料をスクリュー径30mm、L/D
22、シリンダー温度130℃、成形体の送り速度0.
5m/分の条件で、押し出し成形機により直径5mm×
長さ150mmの形状に成形を行った。
This raw material was fed with a screw diameter of 30 mm and L / D
22, a cylinder temperature of 130 ° C., a feed rate of the molded body of 0.
5 mm diameter by extrusion machine at 5 m / min
Molding was performed into a shape having a length of 150 mm.

【0019】この成形体の挿入状態を図1に示す。すな
わち、内径15mm×長さ200mmの両端を封じ、両
端を封じた蓋には小穴を有するアルミナ管2の中に製品
1を入れ、前後のずれを防止するスペーサを入れ、さら
にそのアルミナ管2の数十本をSiC管3の中に入れ、
両端に蓋を嵌め、この蓋に小穴を設けて両端を封じて固
定した。
The inserted state of this molded body is shown in FIG. That is, both ends having an inner diameter of 15 mm and a length of 200 mm are sealed, and the both ends are sealed. The lid is sealed with the product 1 in an alumina tube 2 having a small hole, and a spacer for preventing back and forth displacement is inserted. Put dozens into the SiC tube 3,
The both ends were fitted with lids, and small holes were provided in this lid to seal and fix both ends.

【0020】これを、図2に示す連続炉4を用い、温度
勾配を設けた炉内5に装入する。以上述べたようにSi
C管3の中にアルミナ管と一緒に封じ込まれた成形体
は、送り板押し込み体7を駆動することにより、円筒回
転用の送り板6が、SiC管の上を移動するので、板と
管の摩擦力で回転する。すなわち、このような方法で製
品を回転させながら脱脂を行った。
This is charged into a furnace 5 having a temperature gradient using the continuous furnace 4 shown in FIG. As described above, Si
The molded body enclosed in the C tube 3 together with the alumina tube is driven by the feed plate pushing body 7 so that the feed plate 6 for cylindrical rotation moves on the SiC pipe. Rotate due to the frictional force of the tube. That is, degreasing was performed while rotating the product by such a method.

【0021】また、円筒回転用送り板6とSiC管3の
分離は、図2に示すように、炉床に傾斜を設け、その上
に分離板8を設置することにより行う。
Further, as shown in FIG. 2, the cylindrical rotary feed plate 6 and the SiC pipe 3 are separated from each other by providing the furnace floor with an inclination and installing the separation plate 8 thereon.

【0022】尚、回転速度は約3分/回、昇温速度は約
10℃/hで500℃まで昇温し、Arガス雰囲気中で
行った。
The rotation speed was about 3 minutes / time, and the heating rate was about 10 ° C./h, the temperature was raised to 500 ° C., and the heating was performed in an Ar gas atmosphere.

【0023】比較例として、アルミナ敷板上に従来のよ
うに製品を設置し、前記条件によりArガス雰囲気中で
脱脂を行った。
As a comparative example, the product was placed on an alumina plate as in the conventional case, and degreasing was performed in an Ar gas atmosphere under the above conditions.

【0024】その後、本発明及び比較例の製品となるそ
れぞれの脱脂体を同一炉に設置し、水素雰囲気中120
0℃×3時間の条件で焼結を行った。
Then, the respective degreased bodies which are the products of the present invention and the comparative example are placed in the same furnace, and 120
Sintering was performed under the conditions of 0 ° C. × 3 hours.

【0025】次に、それらの製品である各々の焼結体を
図3に示す方法でそりの測定を行った。円柱又は円筒状
の製品のそり9は、そりの中心から左右に60mmの位
置、すなわち120mmの位置で製品を長手方向に固定
させて測った。
Next, the warpage of each of the sintered products, which are the products, was measured by the method shown in FIG. The warpage 9 of a columnar or cylindrical product was measured by fixing the product in the longitudinal direction at a position 60 mm to the left and right from the center of the sled, that is, at a position 120 mm.

【0026】その結果を表1に示す。この場合、そりの
量は、そり/120mmとした。なお、表1に残存炭素
量及び磁気特性(B100、Hc35)を併せて示した。
The results are shown in Table 1. In this case, the amount of warpage was warped / 120 mm. Table 1 also shows the residual carbon amount and magnetic properties (B 100 , H c35 ).

【0027】 [0027]

【0028】この結果から明らかなように、残存炭素量
が1/10に減少し、そり、変形が少なくなり、寸法精
度がすぐれた均質性の高い金属焼結体が得られ、それに
従って諸特性も良好となる。本発明の実施例を用いるこ
とで、従来法と比較して明らかに寸法精度及び磁気特性
の優れた金属焼結体が作製できることがわかった。
As is apparent from these results, the residual carbon content was reduced to 1/10, warpage and deformation were reduced, and a highly uniform metal sintered body with excellent dimensional accuracy was obtained, and various characteristics were obtained accordingly. Will also be good. It was found that by using the examples of the present invention, it is possible to produce a metal sintered body having excellent dimensional accuracy and magnetic properties as compared with the conventional method.

【0029】(実施例2)成形用の原料となる混和物
は、平均粒径0.5μmのPb(Mn1/3Sb2/3)O3
を第3成分とするPZT系仮焼粉と実施例1に示したバ
インダー組成にて、上記実施例1と同様の条件で作製し
た。
(Example 2) The mixture used as a raw material for molding was Pb (Mn 1/3 Sb 2/3 ) O 3 having an average particle size of 0.5 μm.
Was prepared with the same conditions as in Example 1 above, using the PZT-based calcined powder containing as a third component and the binder composition shown in Example 1.

【0030】それを用いて、上記実施例1に示した同一
条件で押し出し成形機により、直径3mm×長さ150
mmの形状に成形を行った。
Using the same, an extrusion molding machine was used under the same conditions as shown in Example 1 above to obtain a diameter of 3 mm and a length of 150.
It was molded into a shape of mm.

【0031】その成形体を本発明による図2に示した装
置により、回転速度約3分/回、昇温速度約20℃/h
で500℃まで昇温し脱脂を行った。
Using the apparatus shown in FIG. 2 according to the present invention, the molded body was rotated at a rotation speed of about 3 minutes / cycle and the temperature rising rate was about 20 ° C./h.
The temperature was raised to 500 ° C. and degreasing was performed.

【0032】その脱脂体を図2に示した方法で3分/
回、100℃/hで1250℃×2hの条件で焼結体を
作製した。
The degreased body was subjected to the method shown in FIG. 2 for 3 minutes /
Once, a sintered body was produced under the condition of 100 ° C./h and 1250 ° C. × 2 h.

【0033】尚、焼結時の製品挿入用アルミナ管2は、
試料挿入後PbOの蒸発を防ぐため両側にふたをし、密
閉状態とした。
The alumina tube 2 for product insertion during sintering is
After inserting the sample, both sides were covered with a lid to prevent evaporation of PbO, and the sample was sealed.

【0034】従来技術の比較例2として、同様の大きさ
の成形体をアルミナ敷板上に設置し、昇温速度約20℃
/hで500℃まで昇温し脱脂を行い、その後密閉性の
良いふたつきのアルミナ容器に設置し、1250℃×2
hの条件で焼結を行った。
As Comparative Example 2 of the prior art, a compact of the same size was placed on an alumina floor plate, and the heating rate was about 20 ° C.
Degreasing is carried out by raising the temperature to 500 ° C at 1 / h, and then installing in a well-sealed alumina container with a tight seal, 1250 ° C x 2
Sintering was performed under the condition of h.

【0035】比較例3として、本発明による脱脂方法を
用いて作製した脱脂体を用い、比較例2と同様の方法で
焼結を行い、試料を作製した。
As Comparative Example 3, a degreased body produced by the degreasing method according to the present invention was used, and sintering was performed in the same manner as in Comparative Example 2 to produce a sample.

【0036】次に、これらの焼結体を長さ20mmに切
断し、均質性を評価するために図4に示すパターンの帯
状電極焼結体を形成した。
Next, these sintered bodies were cut to a length of 20 mm to form strip electrode sintered bodies having a pattern shown in FIG. 4 in order to evaluate homogeneity.

【0037】図4に示すように、圧電セラミック円柱1
0の外周面上の円周を6等分する位置に、長さ方向と平
行な6本の帯状電極11,12,13,14,15,1
6を形成し、この帯状電極を互いに一つおきに接続し
て、2端子として分極処理を施し、分極処理後11,1
3,15は共通アース用電極とし、残りの帯状電極1
2,14,16の個々の共振周波数をインピーダンス測
定機により測定し、最大値と最小値の差をΔfrとし、
焼結体の均質性の評価を行った。
As shown in FIG. 4, the piezoelectric ceramic cylinder 1
Six strip-shaped electrodes 11, 12, 13, 14, 15, 1 parallel to the length direction are arranged at positions that divide the circumference on the outer peripheral surface of 0 into 6 equal parts.
6 are formed, the strip electrodes are connected to each other, and polarization treatment is performed as two terminals.
3 and 15 are electrodes for common ground, and the remaining strip electrodes 1
The individual resonance frequencies of 2, 14 and 16 are measured by an impedance measuring machine, and the difference between the maximum value and the minimum value is Δfr,
The homogeneity of the sintered body was evaluated.

【0038】その結果を表2に示した。The results are shown in Table 2.

【0039】 [0039]

【0040】この結果から脱脂、焼結の際、本発明によ
る方法を用いると、共振周波数特性のばらつきも少なく
なり、均質性に優れた焼結体が作製できることが明らか
である。
From these results, it is clear that when the method according to the present invention is used during degreasing and sintering, variations in resonance frequency characteristics are reduced and a sintered body having excellent homogeneity can be produced.

【0041】[0041]

【発明の効果】以上、詳細に述べた様に、セラミックス
粉末または金属粉末と高分子化合物を主成分とするバイ
ンダーの混和物を用いて、射出成形または押し出し成形
により成形体を作製した後、該成形体を脱脂する際、円
筒状のケースに挿入し、温度勾配を連続的に持たせた炉
中を回転させながら脱脂を行うことで、回転によるサイ
ジングにより、そり、変形を矯正し、また連続的な温度
勾配による熱処理により成形時の応力ひずみを取り除
き、さらに敷板との接触面が常時変化するため、残存炭
素量の分布をなくすことができ、その脱脂体を焼結する
と、均質性に優れかつそり、変形のほとんどない寸法精
度の高く、諸特性が向上し、かつ諸特性の劣化及びばら
つきが少ない焼結体が作製できる。さらに焼結雰囲気に
敏感な、たとえばPbO等の蒸発を伴うような材料を回
転させながら同様な方法で焼結を行うことにより、接地
面等の影響がなくなり、均質な焼結体が作製できる。
As described above in detail, a mixture of ceramic powder or metal powder and a binder containing a polymer compound as a main component is used to prepare a molded body by injection molding or extrusion molding, When degreasing the molded body, insert it into a cylindrical case and perform degreasing while rotating in a furnace that has a continuous temperature gradient to correct warpage and deformation by sizing due to rotation, and to continue. The stress-strain at the time of molding is removed by heat treatment with a general temperature gradient, and since the contact surface with the floor plate constantly changes, it is possible to eliminate the distribution of the residual carbon amount, and when the degreased body is sintered, excellent homogeneity is achieved. Moreover, it is possible to manufacture a sintered body having high dimensional accuracy with almost no warpage and deformation, improved various characteristics, and little deterioration or variation in various characteristics. Further, by performing sintering in the same manner while rotating a material that is sensitive to the sintering atmosphere, such as PbO, which accompanies evaporation, the influence of the ground plane, etc. is eliminated and a homogeneous sintered body can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱脂、焼結を行うための容器の断面
図。
FIG. 1 is a sectional view of a container for degreasing and sintering according to the present invention.

【図2】脱脂、焼結用炉の概略構成図。FIG. 2 is a schematic configuration diagram of a degreasing and sintering furnace.

【図3】焼結体のそりの量の測定方法を示す説明図。FIG. 3 is an explanatory diagram showing a method for measuring the amount of warpage of a sintered body.

【図4】圧電セラミック円柱の外観図、図4(a)は圧
電セラミック円柱の外観斜視図、図4(b)は(a)の
AA断面図。
FIG. 4 is an external view of a piezoelectric ceramic column, FIG. 4A is an external perspective view of the piezoelectric ceramic column, and FIG. 4B is a sectional view taken along line AA of FIG.

【符号の説明】[Explanation of symbols]

1 成形体(製品) 2 アルミナ管 3 SiC管 4 連続炉 5 炉内 6 送り板 7 送り板押し込み体 8 分離板 9 そり 10 圧電セラミック円柱 11,13,15 (共通アース用)帯状電極 12,14,16 帯状電極 17 矢印方向 1 Molded Product (Product) 2 Alumina Tube 3 SiC Tube 4 Continuous Furnace 5 In-furnace 6 Feed Plate 7 Feed Plate Pushing Body 8 Separation Plate 9 Sled 10 Piezoelectric Ceramic Cylinder 11, 13, 15 (for Common Earth) Strip Electrode 12, 14 , 16 Strip electrode 17 Arrow direction

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/64 J Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area C04B 35/64 J

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス粉末または金属粉末と、高
分子化合物を主成分とするバインダーとを、混合混練し
て得られたペレット状混和物を、押し出し成形法または
射出成形法により、円筒または円柱状の成形体を作製し
た後、前記成形体を挿入した小円筒を円筒状のケースに
挿入し、前記ケースを回転させ、前記成形体自体を回転
させながら脱脂することを特徴とするセラミックス成形
体または金属成形体の脱脂方法。
1. A pellet-shaped mixture obtained by mixing and kneading a ceramic powder or a metal powder and a binder containing a polymer compound as a main component is formed into a cylinder or a column by an extrusion molding method or an injection molding method. After producing the molded body of, the small cylinder into which the molded body is inserted is inserted into a cylindrical case, the case is rotated, and the molded body itself is degreased while rotating, or a ceramic molded body, A method for degreasing a metal molded body.
【請求項2】 セラミックス粉末または金属粉末と、高
分子化合物を主成分とするバインダーとを、混合混練し
て得られたペレット状混和物を、押し出し成形法または
射出成形法により、円筒または円柱状の成形体を作製し
た後、前記成形体を挿入した小円筒を円筒状のケースに
挿入し、前記ケースを回転させ、前記成形体自体を回転
させながら連続的に焼結することを特徴とするセラミッ
クス成形体または金属成形体の焼結方法。
2. A pellet-shaped mixture obtained by mixing and kneading a ceramic powder or a metal powder and a binder containing a polymer compound as a main component is formed into a cylinder or a cylinder by an extrusion molding method or an injection molding method. After producing the molded body, the small cylinder into which the molded body is inserted is inserted into a cylindrical case, the case is rotated, and the molded body itself is continuously sintered while being rotated. A method for sintering a ceramic compact or a metal compact.
【請求項3】 請求項1または2記載のセラミックス成
形体または金属成形体の脱脂および焼結方法において、
円筒内に成形体を挿入した小円筒を複数個積載した前記
円筒状のケースを回転させ、前記成形体を回転させなが
ら脱脂および焼結を行うことを特徴とするセラミックス
成形体または金属成形体の脱脂および焼結方法。
3. A method for degreasing and sintering a ceramic molded body or a metal molded body according to claim 1,
A ceramic molded body or a metal molded body, characterized in that the cylindrical case, in which a plurality of small cylinders each having a molded body inserted therein are stacked, is rotated, and degreasing and sintering are performed while rotating the molded body. Degreasing and sintering methods.
【請求項4】 請求項3記載の円筒状のケースを回転さ
せる際に、円筒内に成形体を挿入した小円筒を複数個積
載した前記円筒状のケースの上に、前記ケースに回転力
を与え、かつ移動させるための板を順次送り出すことに
より、前記ケースを連続的に回転させ、前記成形体を回
転させながら脱脂および焼結を行うことを特徴とするセ
ラミックス成形体または金属成形体の脱脂および焼結方
法。
4. When rotating the cylindrical case according to claim 3, a rotational force is applied to the case on the cylindrical case on which a plurality of small cylinders each having a molded body inserted therein are stacked. Degreasing of a ceramic molded body or a metal molded body, characterized in that the case is continuously rotated by sequentially feeding out a plate for giving and moving it, and degreasing and sintering are performed while rotating the molded body. And sintering method.
JP6287431A 1994-10-26 1994-10-26 Method for defatting and sintering ceramic molded product or metal molded product Pending JPH08119749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6287431A JPH08119749A (en) 1994-10-26 1994-10-26 Method for defatting and sintering ceramic molded product or metal molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6287431A JPH08119749A (en) 1994-10-26 1994-10-26 Method for defatting and sintering ceramic molded product or metal molded product

Publications (1)

Publication Number Publication Date
JPH08119749A true JPH08119749A (en) 1996-05-14

Family

ID=17717235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6287431A Pending JPH08119749A (en) 1994-10-26 1994-10-26 Method for defatting and sintering ceramic molded product or metal molded product

Country Status (1)

Country Link
JP (1) JPH08119749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519969A (en) * 1998-02-11 2001-10-23 ゼネラル・エレクトリック・カンパニイ Monolithic seal for sapphire CMH lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519969A (en) * 1998-02-11 2001-10-23 ゼネラル・エレクトリック・カンパニイ Monolithic seal for sapphire CMH lamp

Similar Documents

Publication Publication Date Title
KR20140069146A (en) Ceramic cylindrical sputtering target and method for producing same
AU2020203209A1 (en) Oxide ore smelting method
JPH08119749A (en) Method for defatting and sintering ceramic molded product or metal molded product
JP5218032B2 (en) Method for producing sintered body for transparent conductive film
JP3409345B2 (en) Method for producing ceramic target
JPS591743B2 (en) Composition for injection molding or extrusion molding
JPS5895640A (en) Manufacture of ceramic product
JPH0521059B2 (en)
JPH0158126B2 (en)
JPH0543905A (en) Powder molding method
JPH04124203A (en) Binder for powder metallurgy and method for degreasing green compact
JPS60151271A (en) Manufacture of ceramic product
JPH03103363A (en) Method for sintering ceramic compact and sintering jig
JPH06263538A (en) Production of silicon carbide member
JP2556091B2 (en) Method for producing long ribbed electrode for fuel cell
JPH07146286A (en) Method for evaluating self-sintering carbon raw material powder rapidly and densely
JPH04186803A (en) Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body
SU767022A1 (en) Method of moulding carbon billets
JPH10275944A (en) Method for manufacturing thermoelectric transducer
JPH04331108A (en) Manufacture of sheet of sintered object
JP2010248049A (en) Method for producing sintered compact for transparent electroconductive film
JPH10203875A (en) Production of ceramic sintered compact
JPS61124565A (en) Manufacture of tellurium or tellurium alloy target material
JPH11147754A (en) Production of ceramic
JPS6138148B2 (en)