JPH0543905A - Powder molding method - Google Patents

Powder molding method

Info

Publication number
JPH0543905A
JPH0543905A JP20091691A JP20091691A JPH0543905A JP H0543905 A JPH0543905 A JP H0543905A JP 20091691 A JP20091691 A JP 20091691A JP 20091691 A JP20091691 A JP 20091691A JP H0543905 A JPH0543905 A JP H0543905A
Authority
JP
Japan
Prior art keywords
degreasing
sintering
green
filter body
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20091691A
Other languages
Japanese (ja)
Inventor
Yasumasa Kato
靖正 加藤
Tsuyoshi Kato
剛志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP20091691A priority Critical patent/JPH0543905A/en
Publication of JPH0543905A publication Critical patent/JPH0543905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To reduce a change of shape in degreasing and sintering and to equalize sintered goods by performing degreasing and sintering of the extruded parts of kneaded material of metal or alloy powder in a ceramic filter body. CONSTITUTION:Kneaded material 1 which metal or alloy powder is kneaded with an organic binder, etc., to prepare is extruded from a nozzle and the green 2 or relatively long size thus obtained is as it is and immediately inserted into the opening of a ceramic filter body 3 so that the whole circumference of the green 2 except both the ends may be enclosed by the filter body 3, and under these conditions, degreasing and sintering are performed. Thereby, since radiation heat on degreasing and sintering is not directly radiated to the green 2, the heating of the green 2 is made much more uniform compared with the conventional method. Besides, the whole circumference of the green 2 except both the ends is protected by the filter body 3, muffle effect is obtained. And the degreasing process is made uniform by filter effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、粉末成形方法に関す
るものである。さらに詳しくは、この発明は、焼結品の
品質が均一で、かつ脱脂、焼結時の形状変化の少ない、
改良された、金属または合金粉末混練物からの押出しに
よる粉末成形法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder molding method. More specifically, the present invention has a uniform quality of the sintered product, and a small change in shape during degreasing and sintering,
The present invention relates to an improved powder molding method by extrusion from a metal or alloy powder kneaded material.

【0002】[0002]

【従来の技術とその課題】近年、金属または合金の粉末
を有機バインダー等と混練し、これを押出し、または射
出成形し、さらに脱脂および高温焼結する粉末成形方法
が注目されている。この方法は、成形効率に優れ、生産
性が良好であるばかりでなく、押出し成形においては、
長尺材、線材等の成形が容易であり、また、射出成形に
おいては、複雑形状で、切削等の機械加工の難しい製品
であってもその成形が容易であるという特徴を有してい
る。
2. Description of the Related Art In recent years, a powder molding method in which a metal or alloy powder is kneaded with an organic binder or the like, extruded or injection-molded, and then degreased and sintered at high temperature has been attracting attention. This method is not only excellent in molding efficiency and good in productivity, but also in extrusion molding,
It is characterized in that it is easy to mold a long material, a wire, and the like, and in injection molding, even a product having a complicated shape and difficult to machine such as cutting can be easily molded.

【0003】このように優れた特徴と利点のある粉末成
形法ではあるが、有機バインダーを使用し、これを除去
して焼結する脱脂および焼結工程が欠かせないため、こ
の工程での品質の均一化と、所定寸法の確保が重要な課
題になっていた。特に、押出し成形においては、比較的
長尺の成形体を脱脂および焼結することから、この課題
は重要なものとなっていた。
Although the powder molding method has such excellent characteristics and advantages as described above, the degreasing and sintering steps of using an organic binder and removing and sintering the organic binder are indispensable. It has been an important issue to make uniform and secure a predetermined size. Particularly, in extrusion molding, this problem is important because a relatively long molded body is degreased and sintered.

【0004】たとえば、押出し成形においては、図1に
例示したように、ノズル(ア)より、金属または合金の
粉末と有機バインダー等との混練物(イ)を押出して、
所定の形状と長さの成形体(グリーン)(ウ)とし、こ
れをセラミックプレート(エ)等の上に置き、加熱して
脱脂および焼結している。この脱脂工程においては、H
2 ガス雰囲気や不活性ガス雰囲気が採用され、また焼結
工程は、真空あるいは不活性ガス雰囲気で実施されてい
る。
For example, in extrusion molding, as illustrated in FIG. 1, a kneaded material (a) of a metal or alloy powder and an organic binder or the like is extruded from a nozzle (a),
A formed body (green) (c) having a predetermined shape and length is formed, placed on a ceramic plate (d) or the like, heated, degreased and sintered. In this degreasing process, H
2 Gas atmosphere or inert gas atmosphere is adopted, and the sintering process is carried out in vacuum or inert gas atmosphere.

【0005】このような従来の生産工程においては、セ
ラミックプレート(エ)等の設置の時に、混練物の成形
体(グリーン)(ウ)が折損しやすく、このため、どう
しても有機バインダーの含有量が多くなるという問題が
ある。それというのも、多量のバインダーの存在は、脱
脂工程の負荷をより大きなものとし、脱脂および焼結後
の寸法変化が大きくなるという欠点が避けられないため
である。
In such a conventional production process, the molded product (green) (c) of the kneaded product is easily broken when the ceramic plate (d) or the like is installed, and therefore the content of the organic binder is inevitable. There is a problem that it will increase. This is because the presence of a large amount of binder makes the load of the degreasing process larger and the dimensional change after degreasing and sintering becomes large, which is unavoidable.

【0006】また、従来の工程においては、脱脂および
焼結工程時に、成形体(ウ)が直接加熱源からの熱放射
にさらされるため、脱脂および焼結の進行が不均一にな
って、焼結品の品質の均一性が確保されにくく、強度も
不均一になるという欠点があった。このため、焼結品の
物理化学的特性の信頼性の確保が難しく、また寸法変化
も予測しがたいものとなっていた。
Further, in the conventional process, since the molded body (c) is directly exposed to the heat radiation from the heating source during the degreasing and sintering process, the progress of degreasing and sintering becomes non-uniform and the firing It is difficult to ensure the uniformity of the quality of the product and the strength is not uniform. Therefore, it is difficult to secure the reliability of the physicochemical properties of the sintered product, and it is difficult to predict the dimensional change.

【0007】この発明は、以上の通りの市場に鑑みてな
されたものであり、従来の押出し成形による粉末成形方
法の欠点を解消し、焼結品の品質の均一化を確保し、ま
た、寸法変化もより小さなものとすることのできる改善
された粉末成形方法を提供することを目的としている。
The present invention has been made in view of the market as described above, eliminates the drawbacks of the conventional powder molding method by extrusion molding, ensures the uniform quality of the sintered product, and has a size. The aim is to provide an improved powder compaction process, which can be less variable.

【0008】[0008]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、金属または合金粉末の混練物を
押出し成形し、次いで成形体をセラミックフィルター体
内で脱脂および焼結することを特徴とする粉末成形方法
を提供する。すなわち、この発明の方法においては、た
とえば図2に例示したように、金属または合金の粉末を
有機バインダー等と混練して調整した混練物(1)をノ
ズルから押出し成形し、得られた比較的長尺の成形体
(グリーン)(2)を、そのまま直ちにセラミックフィ
ルター体(3)の開孔(4)内に挿入し、両端部を除い
て、成形体(2)の全周囲がこのセラミックフィルター
体(3)によって囲まれた状態とする。そして、この状
態において、脱脂および焼結を行う。
In order to solve the above problems, the present invention is characterized in that a kneaded material of metal or alloy powder is extruded and molded, and then the molded body is degreased and sintered in a ceramic filter body. A powder molding method is provided. That is, in the method of the present invention, for example, as illustrated in FIG. 2, a kneaded material (1) prepared by kneading a metal or alloy powder with an organic binder or the like is extruded from a nozzle to obtain a comparatively obtained product. The long shaped body (green) (2) is immediately inserted as it is into the opening (4) of the ceramic filter body (3), and the entire circumference of the shaped body (2) is the same except for both ends. Surrounded by the body (3). Then, in this state, degreasing and sintering are performed.

【0009】このような工程から明らかなように、この
発明の方法においては、脱脂および焼結時の放射熱が成
形体(2)に直接当たらないため、成形体(2)の加熱
が従来法に比べてはるかに均一となる。また、成形体
(2)の両端を除いてその全周面がセラミックフィルタ
ー体(3)によって囲まれて保護されているため、マッ
フル効果が得られる。しかも、フィルター効果によって
脱バインダーの脱脂工程の均質化が図られる。この脱脂
時に、H2 ガス、N2 ガス等を使用する場合には、開放
されているセラミックフィルター体(3)の端部よりこ
れらのガスが流入し、また、バインダーガスの排出を円
滑に促すことになる。
As is clear from the above steps, in the method of the present invention, the radiant heat at the time of degreasing and sintering does not directly impinge on the molded body (2), so that the molded body (2) is heated by the conventional method. Much more uniform than. Further, since the entire peripheral surface of the molded body (2) except for both ends thereof is surrounded and protected by the ceramic filter body (3), a muffle effect can be obtained. Moreover, the debinding process of the debinding process is homogenized by the filter effect. When H 2 gas, N 2 gas, etc. are used during this degreasing, these gases flow in from the end of the open ceramic filter body (3) and the discharge of binder gas is smoothly promoted. It will be.

【0010】このため、脱脂および焼結は、均質に進行
し、しかもより効率的に進むことになる。また、この発
明においては、図2に示したようにセラミックフィルタ
ー体(3)を積み重ねて焼結できるため、一工程で処理
できる成形体は、従来法に比べて大幅に増大する。この
ため、実際、この発明の方法によって処理量は単位時間
当り従来の10倍以上にもなる。
Therefore, degreasing and sintering proceed uniformly and more efficiently. Further, in the present invention, as shown in FIG. 2, since the ceramic filter bodies (3) can be stacked and sintered, the number of moldings that can be processed in one step is significantly increased as compared with the conventional method. For this reason, the throughput of the method of the present invention is, in fact, more than 10 times that of the conventional one per unit time.

【0011】そして、成形体(2)は、直接、セラミッ
クフィルター体(3)内に受け入れることができるた
め、従来のように、折損が大きくはない。このため、有
機バインダーの含有量を減少させることができる。この
ことが、脱脂および焼結の均一化と、寸法変化の極小化
に大きく貢献する。しかも、真空雰囲気で行う場合に
は、有機バインダーのガス発生量が少くなるため、真空
ポンプ系の負荷を軽減することができる。
Since the molded body (2) can be directly received in the ceramic filter body (3), the breakage is not so large as in the conventional case. Therefore, the content of the organic binder can be reduced. This greatly contributes to uniform degreasing and sintering and minimization of dimensional change. Moreover, when the process is performed in a vacuum atmosphere, the amount of gas generated by the organic binder is small, so that the load on the vacuum pump system can be reduced.

【0012】このような特徴、作用効果を有するこの発
明の方法においては、従来と同様の各種の金属または合
金を対象とすることができ、たとえばステライト系合金
の粉末等が使用される。そしてこれらの金属、合金の粉
末の大きさも適宜とすることができ、通常は、5〜15
μm径程度のものが好適に使用される。これらの粉末
は、有機バインダー等と混練するが、この場合の有機バ
インダーにも熱可塑性ポリマー、あるいはそれらのオリ
ゴマー等が、可塑剤等の適宜な添加成分とともに使用さ
れる。
In the method of the present invention having the above characteristics and effects, various kinds of metals or alloys similar to the conventional ones can be used. For example, powder of stellite alloy is used. The size of the powder of these metals or alloys can be set appropriately, and usually 5 to 15
Those having a diameter of about μm are preferably used. These powders are kneaded with an organic binder or the like, and in this case, the organic binder is also a thermoplastic polymer, or an oligomer thereof, together with an appropriate additive component such as a plasticizer.

【0013】これらの混練物の調整は、従来法に沿って
行うことができる。押出しについても同様である。押出
し後の成形品を挿入する前記のセラミツクフィルター体
(3)については、もちろんその形状、大きさ等に特段
の限定はない。また、素材についても、アルミナ系、ジ
ルコニア系等の酸化物、あるいは窒化物等の適宜なもの
が使用される。
Adjustment of these kneaded materials can be carried out in accordance with a conventional method. The same applies to extrusion. The shape and size of the ceramic filter body (3) into which the molded article after extrusion is inserted is not particularly limited. Further, as the material, an appropriate material such as an alumina-based or zirconia-based oxide or a nitride is used.

【0014】このセラミックフィルター体(3)は、多
孔質のもので、その気孔率も、たとえば20〜40%程
度の適宜なものとすることができる。しかしながら、焼
結時の加熱温度に耐えることのできる高耐熱性のセラミ
ックがこの発明のフィルター体として使用される。
The ceramic filter body (3) is porous, and the porosity thereof can be appropriately set to, for example, about 20 to 40%. However, a high heat resistant ceramic that can withstand the heating temperature during sintering is used as the filter body of the present invention.

【0015】[0015]

【実施例】平均粒径12μmのステライト−6の粉末
を、6%の添加量の熱可塑性ポリマーからなる有機バイ
ンダーと混合し、加圧・加熱ニーダーを用いて混練し
た。この混練物を、5mm径×1200mm長さ、25mm径
×1200mm長さの2種の線材に押出成形した。
EXAMPLE A powder of Stellite-6 having an average particle diameter of 12 μm was mixed with an organic binder made of a thermoplastic polymer in an amount of 6%, and kneaded using a pressure / heating kneader. This kneaded product was extruded into two types of wire rods having a diameter of 5 mm × 1200 mm and a diameter of 25 mm × 1200 mm.

【0016】この各々について、次の特徴を有するセラ
ミックフィルター体の開孔に挿入した。 ・アルミナ含有量 99% ・カサ比重 2.6 ・身かけの気孔率 35% ・吸水率 14% ・耐熱温度 1400℃ 470℃の温度においてH2 雰囲気下に1時間加熱して
脱脂を行った。昇温速度は30℃/Hrとした。
Each of these was inserted into an opening of a ceramic filter body having the following characteristics. -Alumina content 99% -Bass specific gravity 2.6-Body porosity 35% -Water absorption 14% -Heat-resistant temperature 1400 ° C Degreasing was performed by heating in an H 2 atmosphere for 1 hour at a temperature of 470 ° C. The temperature rising rate was 30 ° C./Hr.

【0017】次いで、1250℃の温度において、真空
雰囲気下に、10時間焼結を行った。この時の昇温速度
は200℃/Hrとした。そしてN2 雰囲気に冷却し
た。5mm径成形体より、2mm径×830mm長の焼結品を
得た。また、25mm径成形体より12mm径×870mm長
の焼結品を得た。いずれの場合にも、フィルター体を複
数積み重ねて脱脂および焼結することにより、ワンバッ
チで、従来法の200本から、2280本までの処理が
行われた。
Next, sintering was performed at a temperature of 1250 ° C. in a vacuum atmosphere for 10 hours. The heating rate at this time was 200 ° C./Hr. And cooled to an N 2 atmosphere. A sintered product having a diameter of 2 mm and a length of 830 mm was obtained from the molded body having a diameter of 5 mm. In addition, a sintered product having a diameter of 12 mm and a length of 870 mm was obtained from the molded product having a diameter of 25 mm. In each case, by stacking a plurality of filter bodies and degreasing and sintering, the processes from the conventional method of 200 to 2280 were performed in one batch.

【0018】成形品の品質、強度は均一で、折損もほと
んど認められなかった。一方、従来法においては、焼結
後のクランクの発生や脱ガス後の微小孔の生成が避けら
れなかった。なお、以上の方法において、有機バインダ
ーの使用量は、5%以下にまで低減可能であった。これ
に比べて、従来法においては、10%以下とすることは
困難であった。しかも、従来法の場合には、5mm径×1
200mm長の成形体からは、1.2mm 径×760mm長とい
う極めて大きな寸法変化のあるものしか得られなかっ
た。
The quality and strength of the molded product were uniform and almost no breakage was observed. On the other hand, in the conventional method, generation of cranks after sintering and generation of micropores after degassing were unavoidable. In the above method, the amount of organic binder used could be reduced to 5% or less. On the other hand, in the conventional method, it was difficult to reduce the amount to 10% or less. Moreover, in the case of the conventional method, 5 mm diameter x 1
From the 200 mm long molding, only 1.2 mm diameter x 760 mm length, which was a very large dimensional change, could be obtained.

【0019】[0019]

【発明の効果】この発明によって、以上詳しく説明した
ように、焼結品の品質、強度が均一で、信頼性の高い製
品が得られる。しかも、焼結後の寸法変化も小さなもの
とすることができる。
As described in detail above, according to the present invention, it is possible to obtain a highly reliable product having uniform quality and strength of the sintered product. Moreover, the dimensional change after sintering can be small.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来法の工程を例示した斜視図である。FIG. 1 is a perspective view illustrating the steps of a conventional method.

【図2】セミックフィルター体を使用するこの発明の工
程を例示した要部斜視図である。
FIG. 2 is a perspective view of a main part illustrating the process of the present invention using a semi-filter body.

【符号の説明】[Explanation of symbols]

ア ノズル イ 混練物 ウ 成形体(グリーン) エ セラミックプレート 1 混練物 2 成形体(グリーン) 3 セラミックフィルター体 A Nozzle Kneaded product C Molded product (green) D Ceramic plate 1 Kneaded product 2 Molded product (green) 3 Ceramic filter body

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年9月17日[Submission date] September 17, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】次いで、1250℃の温度において、真空
雰囲気下に、1時間焼結を行った。この時の昇温速度は
200℃/Hrとした。そしてN2 雰囲気に冷却した。
5mm径成形体より、4.5mm 径×830mm長の焼結品を得
た。また、2.5mm 径成形体より2.2mm 径×870mm 長の焼
結品を得た。いずれの場合にも、フィルター体を複数積
み重ねて脱脂および焼結することにより、ワンバッチ
で、従来法の200本から、2280本までの処理が行
われた。
Then, sintering was performed at a temperature of 1250 ° C. in a vacuum atmosphere for 1 hour. The heating rate at this time was 200 ° C./Hr. And cooled to an N 2 atmosphere.
A sintered product having a diameter of 4.5 mm and a length of 830 mm was obtained from the molded body having a diameter of 5 mm. In addition, a sintered product having a diameter of 2.2 mm and a length of 870 mm was obtained from the molded body having a diameter of 2.5 mm. In each case, by stacking a plurality of filter bodies and degreasing and sintering, the processes from the conventional method of 200 to 2280 were performed in one batch.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】成形品の品質、強度は均一で、折損もほと
んど認められなかった。一方、従来法においては、焼結
後のクラックの発生や脱ガス後の微小孔の生成が避けら
れなかった。なお、以上の方法において、有機バインダ
ーの使用量は、5%以下にまで低減可能であった。これ
に比べて、従来法においては、10%以下とすることは
困難であった。しかも、従来法の場合には、5mm径×12
00mm長の成形体からは、4.0径×880mm 長という極めて
大きな寸法変化のあるものしか得られなかった。
The quality and strength of the molded product were uniform and almost no breakage was observed. On the other hand, in the conventional method, generation of cracks after sintering and generation of micropores after degassing were unavoidable. In the above method, the amount of organic binder used could be reduced to 5% or less. On the other hand, in the conventional method, it was difficult to reduce the amount to 10% or less. Moreover, in the case of the conventional method, 5 mm diameter x 12
From the 00 mm long molded body, only the one with a very large dimensional change of 4.0 diameter × 880 mm length could be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属または合金粉末の混練物を押出し成
形し、次いで成形体をセラミックフィルター体内で脱脂
および焼結することを特徴とする粉末成形方法。
1. A powder molding method characterized by extruding a kneaded material of metal or alloy powder, and then degreasing and sintering the molded body in a ceramic filter body.
JP20091691A 1991-08-09 1991-08-09 Powder molding method Pending JPH0543905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20091691A JPH0543905A (en) 1991-08-09 1991-08-09 Powder molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20091691A JPH0543905A (en) 1991-08-09 1991-08-09 Powder molding method

Publications (1)

Publication Number Publication Date
JPH0543905A true JPH0543905A (en) 1993-02-23

Family

ID=16432411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20091691A Pending JPH0543905A (en) 1991-08-09 1991-08-09 Powder molding method

Country Status (1)

Country Link
JP (1) JPH0543905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157810A (en) * 1993-12-06 1995-06-20 Sumitomo Metal Mining Co Ltd Debindering device
JP2003041304A (en) * 2001-07-30 2003-02-13 Nachi Fujikoshi Corp Method for manufacturing sintered compact of hard alloy
CN103464747A (en) * 2013-08-26 2013-12-25 苏州米莫金属科技有限公司 Novel degreasing furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157810A (en) * 1993-12-06 1995-06-20 Sumitomo Metal Mining Co Ltd Debindering device
JP2003041304A (en) * 2001-07-30 2003-02-13 Nachi Fujikoshi Corp Method for manufacturing sintered compact of hard alloy
JP4582749B2 (en) * 2001-07-30 2010-11-17 株式会社不二越 Manufacturing method of cemented carbide sintered body
CN103464747A (en) * 2013-08-26 2013-12-25 苏州米莫金属科技有限公司 Novel degreasing furnace

Similar Documents

Publication Publication Date Title
WO2010135859A1 (en) Accurate shaping method for metal ceramic material
JPH0543905A (en) Powder molding method
EP0523651B1 (en) Method for making high strength injection molded ferrous material
JPH07116487B2 (en) Method for degreasing metal powder injection molded body
JPS6129907B2 (en)
JPH0770610A (en) Method for sintering injection-molded product
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JP2017036170A (en) Production method of sintered body of boron carbide
US12109617B2 (en) Method for manufacturing composite material for thermal shields, and composite material for thermal shields manufactured thereby
JP2006269871A (en) Method of manufacturing thermoelectric material
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JP4292599B2 (en) Composition for injection molding of inorganic powder and method for producing inorganic sintered body
JPH0525509A (en) Production of metallic wire by extrusion
JP2001348602A (en) Composition as powder material for sintering and method for producing the sintered product
JPH0641601B2 (en) Molding composition
JPS61201673A (en) Method of dewaxing injection formed body of ceramic powder or metal powder
JP2721535B2 (en) Method for producing high thermal conductivity AlN sintered body
JPH08183661A (en) Production of silicon carbide sintered compact
JPH06287055A (en) Production of sintered article of ceramic
JPH01208404A (en) Method for working powder
JPH06263547A (en) Method for degreasing ceramic injection molded body
JPH055105A (en) Method for extruding alloy powder and production of sintered product of alloy powder
JPH05195009A (en) Production of kneaded body for powder molding
JPH108104A (en) Method for degreasing injection molding
JPH08119749A (en) Method for defatting and sintering ceramic molded product or metal molded product