JPH10203875A - Production of ceramic sintered compact - Google Patents

Production of ceramic sintered compact

Info

Publication number
JPH10203875A
JPH10203875A JP9007686A JP768697A JPH10203875A JP H10203875 A JPH10203875 A JP H10203875A JP 9007686 A JP9007686 A JP 9007686A JP 768697 A JP768697 A JP 768697A JP H10203875 A JPH10203875 A JP H10203875A
Authority
JP
Japan
Prior art keywords
producing
ceramic sintered
sintered body
body according
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9007686A
Other languages
Japanese (ja)
Inventor
Kentaro Uchiumi
健太郎 内海
Tsutomu Takahata
努 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9007686A priority Critical patent/JPH10203875A/en
Publication of JPH10203875A publication Critical patent/JPH10203875A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic sintered compact in a high yield by making an R-processing of a specified length or longer on the edges of a ceramic powder compact followed by sintering the compact so as not to develop any cracks on the edges of the (un)sintered compact. SOLUTION: This ceramic sintered compact is essentially composed, for example, of zinc, aluminum and oxygen, or strontium, titanium and oxygen, and obtained by making an R-processing of 0.2-3mm long on the edges of a ceramic powder compact followed by sintering the compact. For a sintered compact essentially composed of indium, tin and oxygen (ITO), the amount of tin oxide is set at 5-15wt.% so as to decrease the resistivity of an ITO thin film formed by sputtering. Specifically, this ceramic sintered compact is obtained by the following process: mixed powder or solid solution powder of desired ceramic stock powder is ground and subjected to compaction, as necessary, pressed into a mold together with water and a binder to form a compact, the respective edges of which are subjected to R-processing >=0.2mm in length followed by conducting a sintering operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリングタ
ーゲットに好適なセラミックス焼結体の製造方法に関す
るものである。
The present invention relates to a method for producing a ceramic sintered body suitable for a sputtering target.

【0002】[0002]

【従来の技術】種々の分野で薄膜を形成するために、セ
ラミックス焼結体からなるスパッタリングターゲットが
利用されている。例えば、ITO(Indium Ti
n Oxide)の薄膜は、高導電性、高透過率といっ
た特徴を有し、更に微細加工も容易に行えることから、
フラットパネルディスプレイ用表示電極、太陽電池用窓
材、帯電防止膜等の広範囲な分野に渡って用いられてい
る。特に液晶表示装置を始めとしたフラットパネルディ
スプレイ分野では大型化および高精細化が進んでおり、
その表示用電極であるITO薄膜に対する需要もまた急
速に高まっている。
2. Description of the Related Art Sputtering targets made of ceramic sintered bodies have been used to form thin films in various fields. For example, ITO (Indium Ti
n Oxide) thin film has features such as high conductivity and high transmittance, and can be easily micro-processed.
It is used in a wide range of fields such as display electrodes for flat panel displays, window materials for solar cells, and antistatic films. In particular, in the field of flat panel displays such as liquid crystal display devices, the size and definition are increasing,
The demand for an ITO thin film as the display electrode is also rapidly increasing.

【0003】しかしながら、ITOをはじめとするセラ
ミックス焼結体の製品価格は比較的高価であり、その応
用範囲が拡大するにつれて、市場からは低価格化の要求
が高まってきている。
[0003] However, the price of ceramics sintered products such as ITO is relatively high, and as the range of application expands, demands for lower prices are increasing from the market.

【0004】低価格化を達成するための一つの方法とし
て、セラミックス焼結体の製造歩留りを向上することが
考えられる。今日まで、歩留りを低下させる要因として
は、製造工程中に発生する、成形体エッジ部または焼結
体エッジ部の割れやクラックが知られている。
[0004] As one method for achieving a reduction in cost, it is conceivable to improve the production yield of ceramic sintered bodies. To date, cracks and cracks at the edge of the compact or the edge of the sintered compact, which occur during the manufacturing process, are known as factors that reduce the yield.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、製造
歩留りの高いセラミックス焼結体の製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a ceramic sintered body having a high production yield.

【0006】[0006]

【課題を解決するための手段】本発明者らは、焼結体エ
ッジ部からのクラックの発生原因について解析を行った
結果、(1)成形体のエッジ部には成形時の離型の際に
生じた微少なクラックが存在している、(2)このよう
な微少なクラックを有する成形体を焼結すると焼結時の
収縮によりクラックが拡大し、場合によっては焼結体に
割れが生じる、(3)成形体のエッジ部は焼結時に上方
及び測方より熱を受けるため他の部分よりも収縮が速く
進行し、微少なクラックが拡大しやすい、等の知見を得
た。
The inventors of the present invention have analyzed the causes of cracks generated from the edges of the sintered body. (2) When a compact having such small cracks is sintered, the cracks expand due to shrinkage during sintering, and in some cases, cracks occur in the sintered body. (3) It has been found that the edge portion of the molded body receives heat from above and from the measurement during sintering, so that it shrinks faster than other portions and micro cracks are easily expanded.

【0007】そこで以上の知見を元に成形体のエッジ部
の形状、加工方法に着目して更に実験を行った結果、あ
る条件を満たす形状に成形体を加工すると、焼結時に発
生するクラックの発生率が著しく減少し、セラミックス
焼結体の製造歩留りが向上することを見いだし、本発明
を完成した。
Therefore, based on the above findings, further experiments were conducted by focusing on the shape of the edge portion of the molded body and the processing method. As a result, when the molded body was processed into a shape satisfying certain conditions, cracks generated during sintering were observed. The inventors have found that the occurrence rate is remarkably reduced and the production yield of the ceramic sintered body is improved, and the present invention has been completed.

【0008】即ち本発明は、セラミックス粉末を成形し
た成形体のエッジ部に、0.2mm以上のR加工を施し
た後、焼結することを特徴とするセラミックス焼結体の
製造方法に関するものである。
That is, the present invention relates to a method for producing a ceramic sintered body, which comprises subjecting an edge portion of a molded body formed of ceramic powder to a rounding process of 0.2 mm or more, followed by sintering. is there.

【0009】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0010】本発明のセラミックス焼結体とは、特に限
定することはできないが、例えば、実質的に亜鉛、アル
ミニウムおよび酸素からなる焼結体(ZAO)、実質的
にストロンチウム、チタンおよび酸素からなる焼結体
(STO)、実質的にストロンチウム、バリウム、チタ
ンおよび酸素からなる焼結体(BST)、実質的にイン
ジウム、スズおよび酸素からなる焼結体(ITO)、実
質的にビスマス、タンタル、ストロンチウムおよび酸素
からなる焼結体(SBT)等をあげることができる。
Although the ceramic sintered body of the present invention is not particularly limited, for example, a sintered body (ZAO) substantially consisting of zinc, aluminum and oxygen, and substantially consisting of strontium, titanium and oxygen Sintered body (STO), sintered body substantially composed of strontium, barium, titanium and oxygen (BST), sintered body substantially composed of indium, tin and oxygen (ITO), substantially bismuth, tantalum, A sintered body (SBT) made of strontium and oxygen can be used.

【0011】本発明のセラミックス焼結体は、特定のエ
ッジ部を有する、セラミックス成形体を焼結することに
より得られる。ITOの場合、酸化スズの量は、スパッ
タリングにより得られるITO薄膜の比抵抗値が低下す
るように、5〜15wt.%とすることが望ましい。
The ceramic sintered body of the present invention is obtained by sintering a ceramic molded body having a specific edge portion. In the case of ITO, the amount of tin oxide is 5 to 15 wt.% So that the specific resistance value of the ITO thin film obtained by sputtering decreases. % Is desirable.

【0012】本発明における成形体は、例えば、所望す
るセラミックス焼結体の原料粉末(酸化物粉末)の混合
粉末、または固溶体粉末等を成形することにより得るこ
とができる。
The compact in the present invention can be obtained, for example, by molding a mixed powder of a raw material powder (oxide powder) of a desired ceramic sintered body or a solid solution powder.

【0013】例えば、ZAOを得るための成形体は、酸
化亜鉛および酸化アルミニウムの混合粉末より、STO
を得るための成形体は、炭酸ストロンチウムおよび酸化
チタンの混合粉末より、BSTを得るための成形体は、
炭酸ストロンチウム、炭酸バリウムおよび酸化チタンの
混合粉末より、ITOを得るための成形体は、酸化イン
ジウムおよび酸化スズの混合粉末または酸化インジウム
酸化スズ固溶体粉末より、SBTを得るための成形体
は、酸化ビスマス、酸化タンタル、炭酸ストロンチウム
からなる混合粉末より成形することができる。
For example, a compact for obtaining ZAO is made from a mixed powder of zinc oxide and aluminum oxide by STO.
The molded body for obtaining BST was obtained from a mixed powder of strontium carbonate and titanium oxide.
A compact for obtaining ITO from a mixed powder of strontium carbonate, barium carbonate and titanium oxide is made of bismuth oxide, and a compact for obtaining SBT is made of a mixed powder of indium oxide and tin oxide or a solid solution powder of indium oxide and tin oxide. And a mixed powder of tantalum oxide and strontium carbonate.

【0014】さらに具体的には、これら原料粉末に対し
て、必要に応じて粉砕あるいは圧密処理を施した後、プ
レス法あるいは鋳込み法等の成形方法により成形して成
形体を作製する。
More specifically, these raw material powders are subjected to pulverization or consolidation treatment as necessary, and then molded by a molding method such as a press method or a casting method to produce a molded body.

【0015】プレス成形により成形体を製造する場合に
は、所定の大きさの金型に前記粉末を充填した後、プレ
ス機を用いて100〜1000kg/cm2の圧力でプ
レスを行い成形体とする。この際、原料粉末に必要に応
じてポリビニルアルコール、パラフィン等のバインダー
を添加してもよい。
In the case of producing a molded article by press molding, after filling the above-mentioned powder into a mold of a predetermined size, the molded article is pressed with a press at a pressure of 100 to 1000 kg / cm 2. I do. At this time, a binder such as polyvinyl alcohol and paraffin may be added to the raw material powder as needed.

【0016】一方、鋳込み成形により成形体を製造する
場合には、粉末を水、バインダーおよび分散材と共に混
合してスラリー化し、こうして得られた50〜5000
センチポイズの粘度を持つスラリーを鋳込み成形用の型
の中へ、1〜50kg/cm2の圧力で注入して成形体
を作製する。
On the other hand, in the case of producing a molded article by casting, the powder is mixed with water, a binder and a dispersing agent to form a slurry, and the thus obtained powder is mixed with 50 to 5,000.
A slurry having a viscosity of centipoise is poured into a casting mold at a pressure of 1 to 50 kg / cm 2 to produce a molded body.

【0017】このようにして得られたセラミックス成形
体の各エッジ部に対して、焼結後の割れやクラックを防
止するために0.2mm以上、好ましくは、0.2〜3
mmのR加工を施し、エッジの面取りを行う。
In order to prevent cracks and cracks after sintering, each edge of the ceramic molded body thus obtained is 0.2 mm or more, preferably 0.2 to 3 mm.
The edge is chamfered by performing an R process of mm.

【0018】さらに、R加工した成形体に対して、必要
に応じて冷間等方圧プレス(CIP)による圧密化処理
を行ってもよい。この際CIPの圧力は十分な圧密効果
を得るため2ton/cm2以上であることが望まし
い。成形を鋳込み法により行った場合には、CIP後の
成形体中に残存する水分およびバインダーなどの有機物
を除去するため300〜500℃の温度で5〜20時間
程度の乾燥処理および脱バインダー処理を施すことが好
ましい。また、成形をプレス法により行った場合でも、
成形時にバインダーを使用したときには、同様の脱バイ
ンダー処理を行うことが望ましい。
Further, the R-processed compact may be subjected to a consolidation treatment by a cold isostatic press (CIP), if necessary. At this time, the pressure of the CIP is preferably 2 ton / cm 2 or more in order to obtain a sufficient consolidation effect. When the molding is performed by the casting method, a drying treatment and a debinding treatment are performed at a temperature of 300 to 500 ° C. for about 5 to 20 hours to remove moisture and organic substances such as a binder remaining in the molded body after the CIP. It is preferable to apply. Also, even when molding is performed by the press method,
When a binder is used at the time of molding, it is desirable to perform the same binder removal treatment.

【0019】このようにして得られた成形体に対して焼
結炉内で焼結を行う。焼結雰囲気は特に限定されるもの
ではなく、例えば、大気中または酸化雰囲気中を例示す
ることができる。焼結温度および時間は、充分な密度上
昇効果を得るよう、当業者が適宜設定することができる
が、例えば、ITOを得るためには、1400℃以上、
3時間以上とすることが望ましく、ZAO、STO、B
STを得るためには、1300〜1500℃で3時間以
上とすることが望ましく、SBTを得るためには、90
0〜1400℃で3時間以上とすることが望ましい。
The thus obtained compact is sintered in a sintering furnace. The sintering atmosphere is not particularly limited, and may be, for example, in the air or in an oxidizing atmosphere. The sintering temperature and time can be appropriately set by those skilled in the art to obtain a sufficient density increasing effect. For example, in order to obtain ITO, 1400 ° C. or more,
3 hours or more, ZAO, STO, B
In order to obtain ST, the temperature is preferably set to 1300 to 1500 ° C. for 3 hours or more.
It is desirable to set the temperature at 0 to 1400 ° C. for 3 hours or more.

【0020】以上の方法により作製された焼結体のクラ
ック発生率は低下し、製造歩留りが向上する。
The crack generation rate of the sintered body manufactured by the above method is reduced, and the production yield is improved.

【0021】[0021]

【実施例】以下、本発明を実施例をもって更に詳細に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

【0022】実施例1 SnO2を10wt.%含有した、酸化インジウムと酸
化スズとの混合粉末を、直径200mmの金型に入れ、
250kg/cm2の圧力でプレスして成形体20枚を
作製した。これらの成形体に3ton/cm2の圧力で
CIP処理を施した後、成形体のエッジ部に対して、
0.2mmのR加工を施した。次にこれら20枚の成形
体を純酸素雰囲気焼結炉内に設置して焼結した。
[0022] 10wt Example 1 SnO 2. % Of the mixed powder of indium oxide and tin oxide was placed in a mold having a diameter of 200 mm.
Pressing was performed at a pressure of 250 kg / cm 2 to produce 20 molded bodies. After subjecting these compacts to CIP treatment at a pressure of 3 ton / cm 2 ,
A 0.2 mm round process was performed. Next, these 20 compacts were placed in a pure oxygen atmosphere sintering furnace and sintered.

【0023】得られた焼結体のいずれにも、エッジ部か
らのクラックや割れは発生せず、歩留りは20/20=
100%であった。
No cracks or cracks occurred from the edges in any of the obtained sintered bodies, and the yield was 20/20 =
100%.

【0024】比較例1 成形体のエッジ部に対してR加工を実施しなかったこと
以外は、実施例1と同様の方法で、焼結体20枚を作製
した。焼結後の5枚の焼結体にエッジ部からの割れが観
察され、製造歩留りは15/20=75%であった。
Comparative Example 1 Twenty sintered bodies were produced in the same manner as in Example 1 except that the R processing was not performed on the edge portion of the molded body. Cracks from the edges were observed in the five sintered bodies after sintering, and the production yield was 15/20 = 75%.

【0025】実施例2 BaCO3を39.1wt.%、SrCO3を29.2w
t.%およびTiO2を31.7wt.%の割合で混合
した混合粉末を原料粉末として用いた。この混合粉末
を、直径200mmの金型に入れ、200kg/cm2
の圧力でプレスして成形体20枚を作製した。これらの
成形体に3ton/cm2の圧力でCIP処理を施した
後、成形体のエッジ部に対して、0.2mmのR加工を
施した。次にこれら20枚の成形体を純酸素雰囲気焼結
炉内に設置して焼結した。
Example 2 BaCO 3 was added in an amount of 39.1 wt. %, SrCO 3 29.2w
t. % And TiO 2 are 31.7 wt. % Mixed powder was used as a raw material powder. The resultant powder mixture was placed in a mold having a diameter of 200 mm, 200 kg / cm 2
And pressed to produce 20 molded bodies. After subjecting these compacts to CIP treatment at a pressure of 3 ton / cm 2 , the edges of the compacts were subjected to a 0.2 mm rounding process. Next, these 20 compacts were placed in a pure oxygen atmosphere sintering furnace and sintered.

【0026】得られた焼結体のいずれにも、エッジ部か
らのクラックや割れは発生せず、歩留りは20/20=
100%であった。
No cracks or cracks were generated from the edges of any of the obtained sintered bodies, and the yield was 20/20 =
100%.

【0027】比較例2 成形体のエッジ部に対してR加工を実施しなかったこと
以外は、実施例1と同様の方法で、焼結体20枚を作製
した。焼結後の8枚の焼結体にエッジ部からの割れが観
察され、製造歩留りは12/20=60%であった。
Comparative Example 2 Twenty sintered bodies were produced in the same manner as in Example 1 except that the R processing was not performed on the edge portion of the molded body. Cracking from the edge portion was observed in the eight sintered bodies after sintering, and the production yield was 12/20 = 60%.

【0028】[0028]

【発明の効果】本発明の方法によりセラミックス焼結体
を製造することにより、焼結後の焼結体にエッジ部から
のクラックや割れが発生せず、製造歩留りを大幅に向上
させることができる。
By producing a ceramic sintered body by the method of the present invention, cracks and cracks from the edges do not occur in the sintered body after sintering, and the production yield can be greatly improved. .

【0029】[0029]

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス粉末を成形した成形体のエ
ッジ部に、0.2mm以上のR加工を施した後、焼結す
ることを特徴とするセラミックス焼結体の製造方法。
1. A method for producing a ceramic sintered body, comprising: subjecting an edge portion of a molded body formed of ceramic powder to a rounding process of 0.2 mm or more, followed by sintering.
【請求項2】 0.2〜3mmのR加工を施す、請求項
1に記載のセラミックス焼結体の製造方法。
2. The method for producing a ceramic sintered body according to claim 1, wherein an R process of 0.2 to 3 mm is performed.
【請求項3】 成形体が、実質的に亜鉛、アルミニウム
および酸素からなる、請求項1または請求項2に記載の
セラミックス焼結体の製造方法。
3. The method for producing a ceramic sintered body according to claim 1, wherein the molded body is substantially made of zinc, aluminum and oxygen.
【請求項4】 焼結を大気中または酸化雰囲気中で行
う、請求項3に記載のセラミックス焼結体の製造方法。
4. The method for producing a ceramic sintered body according to claim 3, wherein the sintering is performed in the air or in an oxidizing atmosphere.
【請求項5】 焼結を1300〜1500℃で3時間以
上行う、請求項3または請求項4に記載のセラミックス
焼結体の製造方法。
5. The method for producing a ceramic sintered body according to claim 3, wherein the sintering is performed at 1300 to 1500 ° C. for 3 hours or more.
【請求項6】 成形体が、実質的にストロンチウム、チ
タンおよび酸素からなる、請求項1または請求項2に記
載のセラミックス焼結体の製造方法。
6. The method for producing a ceramic sintered body according to claim 1, wherein the molded body substantially consists of strontium, titanium, and oxygen.
【請求項7】 焼結を大気中または酸化雰囲気中で行
う、請求項6に記載のセラミックス焼結体の製造方法。
7. The method for producing a ceramic sintered body according to claim 6, wherein the sintering is performed in the air or in an oxidizing atmosphere.
【請求項8】 焼結を1300〜1500℃で3時間以
上行う、請求項6または請求項7に記載のセラミックス
焼結体の製造方法。
8. The method for producing a ceramic sintered body according to claim 6, wherein the sintering is performed at 1300 to 1500 ° C. for 3 hours or more.
【請求項9】 成形体が、実質的にストロンチウム、バ
リウム、チタンおよび酸素からなる、請求項1または請
求項2に記載のセラミックス焼結体の製造方法。
9. The method for producing a ceramic sintered body according to claim 1, wherein the molded body is substantially composed of strontium, barium, titanium, and oxygen.
【請求項10】 焼結を大気中または酸化雰囲気中で行
う、請求項9に記載のセラミックス焼結体の製造方法。
10. The method for producing a ceramic sintered body according to claim 9, wherein the sintering is performed in the air or in an oxidizing atmosphere.
【請求項11】 焼結を1300〜1500℃で3時間
以上行う、請求項9または請求項10に記載のセラミッ
クス焼結体の製造方法。
11. The method for producing a ceramic sintered body according to claim 9, wherein the sintering is performed at 1300 to 1500 ° C. for 3 hours or more.
【請求項12】 成形体が、実質的にビスマス、タンタ
ル、ストロンチウムおよび酸素からなる、請求項1また
は請求項2に記載のセラミックス焼結体の製造方法。
12. The method for producing a ceramic sintered body according to claim 1, wherein the molded body is substantially composed of bismuth, tantalum, strontium and oxygen.
【請求項13】 焼結を大気中または酸化雰囲気中で行
う、請求項12に記載のセラミックス焼結体の製造方
法。
13. The method for producing a ceramic sintered body according to claim 12, wherein the sintering is performed in the air or in an oxidizing atmosphere.
【請求項14】 焼結を900〜1400℃で3時間以
上行う、請求項12または請求項13に記載のセラミッ
クス焼結体の製造方法。
14. The method for producing a ceramic sintered body according to claim 12, wherein the sintering is performed at 900 to 1400 ° C. for 3 hours or more.
【請求項15】 成形体が、実質的にインジウム、スズ
および酸素からなる、請求項1または請求項2に記載の
セラミックス焼結体の製造方法。
15. The method for producing a ceramic sintered body according to claim 1, wherein the molded body is substantially composed of indium, tin and oxygen.
【請求項16】 成形体が、酸化インジウム粉末および
酸化スズ粉末の混合粉を成形したものである、請求項1
5に記載のセラミックス焼結体の製造方法。
16. The molded product obtained by molding a mixed powder of an indium oxide powder and a tin oxide powder.
6. The method for producing a ceramic sintered body according to 5.
【請求項17】 成形体が、酸化インジウム酸化スズ固
溶体粉末を成形したものである、請求項15に記載のセ
ラミックス焼結体の製造方法。
17. The method for producing a ceramic sintered body according to claim 15, wherein the molded body is formed by molding indium tin oxide solid solution powder.
【請求項18】 成形体中の酸化スズ量が、5〜15w
t.%である、請求項15〜17のいずれか1項に記載
のセラミックス焼結体の製造方法。
18. The amount of tin oxide in the compact is 5 to 15 watts.
t. The method for producing a ceramic sintered body according to any one of claims 15 to 17, wherein the percentage is%.
【請求項19】 成形体が、プレス成形で得られたもの
である、請求項15〜18のいずれか1項に記載のセラ
ミックス焼結体の製造方法。
19. The method for producing a ceramic sintered body according to claim 15, wherein the molded body is obtained by press molding.
【請求項20】 プレス成形を100〜1000kg/
cm2の圧力で行う、請求項19に記載のセラミックス
焼結体の製造方法。
20. Press molding is performed at 100 to 1000 kg /
The method for producing a ceramic sintered body according to claim 19, wherein the method is performed at a pressure of cm 2 .
【請求項21】 成形体が、鋳込み成形で得られたもの
である、請求項15〜18のいずれか1項に記載のセラ
ミックス焼結体の製造方法。
21. The method for producing a ceramic sintered body according to claim 15, wherein the molded body is obtained by cast molding.
【請求項22】 鋳込み成形を1〜50kg/cm2
圧力で行う、請求項21に記載のセラミックス焼結体の
製造方法。
22. The method for producing a ceramic sintered body according to claim 21, wherein the casting is performed at a pressure of 1 to 50 kg / cm 2 .
【請求項23】 焼結工程の前に、R加工を行った成形
体に対して更に冷間等方圧プレス(CIP)を施す、請
求項15〜22のいずれか1項に記載のセラミックス焼
結体の製造方法。
23. The ceramic sintering method according to claim 15, wherein a cold isostatic pressing (CIP) is further performed on the R-processed compact before the sintering step. The method of manufacturing the aggregate.
【請求項24】 CIPを1ton/cm2以上の圧力
で行う、請求項23に記載のセラミックス焼結体の製造
方法。
24. The method for producing a ceramic sintered body according to claim 23, wherein the CIP is performed at a pressure of 1 ton / cm 2 or more.
【請求項25】 CIP後の成形体をさらに300〜5
00℃、5〜20時間処理することよりなる、請求項2
3または請求項24に記載のセラミックス焼結体の製造
方法。
25. The molded product after the CIP is further subjected to 300 to 5
The method according to claim 2, wherein the treatment is performed at 00C for 5 to 20 hours.
The method for producing a ceramic sintered body according to claim 3 or 24.
【請求項26】 焼結を大気中または酸化雰囲気中で行
う、請求項15〜25のいずれか1項に記載のセラミッ
クス焼結体の製造方法。
26. The method for producing a ceramic sintered body according to claim 15, wherein the sintering is performed in the air or in an oxidizing atmosphere.
【請求項27】 焼結を1400℃以上で3時間以上行
う、請求項15〜26のいずれか1項に記載のセラミッ
クス焼結体の製造方法。
27. The method according to claim 15, wherein the sintering is performed at 1400 ° C. or more for 3 hours or more.
JP9007686A 1997-01-20 1997-01-20 Production of ceramic sintered compact Pending JPH10203875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9007686A JPH10203875A (en) 1997-01-20 1997-01-20 Production of ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9007686A JPH10203875A (en) 1997-01-20 1997-01-20 Production of ceramic sintered compact

Publications (1)

Publication Number Publication Date
JPH10203875A true JPH10203875A (en) 1998-08-04

Family

ID=11672680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9007686A Pending JPH10203875A (en) 1997-01-20 1997-01-20 Production of ceramic sintered compact

Country Status (1)

Country Link
JP (1) JPH10203875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179055A (en) * 2010-02-26 2011-09-15 Taiheiyo Cement Corp Sputtering target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179055A (en) * 2010-02-26 2011-09-15 Taiheiyo Cement Corp Sputtering target

Similar Documents

Publication Publication Date Title
EP0342537B1 (en) Process for the manufacture of a sputtering target for producing electroconductive transparent films
US20130206590A1 (en) Manufacture of High Density Indium Tin Oxide (ITO) Sputtering Target
JP3827334B2 (en) ITO sintered body and sputtering target
JP2006022373A (en) Method for manufacturing sputtering target for preparing transparent conductive thin film
JP3632524B2 (en) Mg-containing ITO sputtering target and method for producing Mg-containing ITO vapor deposition material
JP2008260660A (en) Method for manufacturing high concentration tin oxide ito sintered article
JP4508079B2 (en) Manufacturing method of sputtering target
JPH10330169A (en) Production of ceramic sintered compact
JPH10203875A (en) Production of ceramic sintered compact
JP2002274956A (en) Method for manufacturing ceramic sintered compact
JP4904645B2 (en) Method for producing Mg-containing ITO sputtering target
KR102272222B1 (en) Manufacturing method of high purity ITO target
JPH11100660A (en) Ito pellet for vapor deposition and its production
JP2003160861A (en) METHOD FOR MANUFACTURING Mg-CONTAINING ITO SPUTTERING TARGET
JPH09111444A (en) Production of indium oxide-zinc oxide based sintered body target
JP2007231381A (en) Ito sputtering target and production method therefor
JPH11228219A (en) Production of high-density ito sintered compact utilizing ito recycled powder
JP2003002749A (en) Indium oxide powder and method for manufacturing ito sputtering target
JP3496239B2 (en) ITO sintered body and sputtering target
JPH04293769A (en) Ito sputtering target for forming film at low temperature
JP3917671B2 (en) ITO sintered body and sputtering target
JP2002179469A (en) Production process of sintered compact for target
JP5115249B2 (en) Vapor deposition material and method for forming a vapor deposition film using the vapor deposition material
JP2612807B2 (en) Method for manufacturing ITO sputtering target
JP2011032102A (en) Method for producing oxide sintered compact tablet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912