JPH0811787B2 - Paint - Google Patents

Paint

Info

Publication number
JPH0811787B2
JPH0811787B2 JP3256245A JP25624591A JPH0811787B2 JP H0811787 B2 JPH0811787 B2 JP H0811787B2 JP 3256245 A JP3256245 A JP 3256245A JP 25624591 A JP25624591 A JP 25624591A JP H0811787 B2 JPH0811787 B2 JP H0811787B2
Authority
JP
Japan
Prior art keywords
coating film
paint
coating
zeolite
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3256245A
Other languages
Japanese (ja)
Other versions
JPH0598184A (en
Inventor
之良 小野
邦夫 木村
英延 脇田
恭枝 山出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3256245A priority Critical patent/JPH0811787B2/en
Publication of JPH0598184A publication Critical patent/JPH0598184A/en
Publication of JPH0811787B2 publication Critical patent/JPH0811787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱臭用に用いる塗料に関
し、暖房、給湯、乾燥、調理、冷蔵、空調用機器等に塗
膜に形成して用いるものであり、室内,トイレ,冷蔵
庫、調理器内等に存在する臭気成分の除去機能を有する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paint used for deodorization, which is formed into a coating film for heating, hot water supply, drying, cooking, refrigerating, air conditioning equipment, etc., and is used for indoor, toilet, refrigerator, cooking. It has a function of removing odorous components existing in the container and the like.

【0002】[0002]

【従来の技術】従来、活性炭等の吸着剤を室内に配置し
て、ガス状の悪臭物質を吸着して脱臭する方法が、おも
に用いられてきた。また最近、オゾン発生機能を持たせ
た機器を室内に配置して悪臭成分をオゾンガスによって
酸化分解する方法もとられてきている。
2. Description of the Related Art Conventionally, a method of arranging an adsorbent such as activated carbon in a room to adsorb gaseous malodorous substances and deodorize them has been mainly used. Further, recently, a method has been taken in which a device having an ozone generating function is arranged in a room and odorous components are oxidatively decomposed by ozone gas.

【0003】これらの悪臭物質は、おもにアンモニア、
脂肪酸、不飽和炭化水素類、メルカプタンなどの含硫黄
有機化合物、含窒素有機化合物などで、生活する人間の
汗等の生理作用や、食品類の分解によって発生するもの
である。
These malodorous substances are mainly ammonia,
Fatty acids, unsaturated hydrocarbons, sulfur-containing organic compounds such as mercaptans, nitrogen-containing organic compounds and the like are generated by physiological actions such as sweat of living humans and decomposition of foods.

【0004】[0004]

【発明が解決しようとする課題】従来の活性炭による吸
着では、臭気成分種によって吸着能力にバラツキがある
こと、および吸着能力に限界があり、また雰囲気中の水
分が悪臭ガス吸着の妨げになったりするために定期的に
活性炭を交換する必要があること等の問題点がある。ま
たオゾンによる臭気分解方法は、分解脱臭に最適なオゾ
ン発生濃度を制御するために、特別な装置を備えなけれ
ばならないことや、オゾンによって分解が困難な臭気成
分種があること、オゾン発生器に寿命があることなどが
問題点としてある。
In the conventional adsorption using activated carbon, the adsorption capacity varies depending on the odor component species, and the adsorption capacity is limited, and the moisture in the atmosphere hinders the adsorption of malodorous gas. In order to do so, there is a problem that it is necessary to regularly replace the activated carbon. In addition, the odor decomposition method using ozone requires that a special device be provided to control the optimum ozone generation concentration for decomposition and deodorization, that there are odor component species that are difficult to decompose by ozone, and that the ozone generator The problem is that it has a lifetime.

【0005】本発明は上記従来技術の課題を解決するた
めになされたものであり、簡単な塗布方法により形成し
た塗膜により、室内の臭気や有害ガスを長寿命で除去す
る機能を提供するものである。
The present invention has been made to solve the above-mentioned problems of the prior art, and provides a function of removing odors and harmful gases in a room with a long life by a coating film formed by a simple coating method. Is.

【0006】[0006]

【課題を解決するための手段】本発明は、塗料を、活性
アルミナと、ゼオライトおよび/あるいは珪酸マグネシ
ウムと、白金族金属塩と、無機質バインダ−と、分散媒
からなる塗料である。また、白金族金属塩の代わりに活
性アルミナに白金族触媒を担持させたものである。
DISCLOSURE OF THE INVENTION The present invention is a coating material comprising activated alumina, zeolite and / or magnesium silicate, a platinum group metal salt, an inorganic binder and a dispersion medium. In addition, a platinum group catalyst is supported on activated alumina instead of the platinum group metal salt.

【0007】[0007]

【作用】本発明の塗料を用いて形成した塗膜は、次のよ
うな塗膜機能を有する。室内の臭気成分を、通常は塗膜
中のゼオライトあるいは珪酸マグネシウムと、活性アル
ミナにより吸着脱臭する。次にゼオライトあるいは珪酸
マグネシウムと、活性アルミナが、その吸着能力限界ま
で臭気成分を吸着する前に、本発明の塗膜を発熱体や温
風等の加熱手段により加熱することにより、塗膜中の触
媒物質を活性化し、塗膜中のゼオライトあるいは珪酸マ
グネシウムと、活性アルミナに吸着した臭気成分および
塗膜近傍の臭気成分を、ゼオライトあるいは珪酸マグネ
シウムと、活性アルミナと共存する前記活性化した触媒
物質の触媒作用により、酸化分解して、無臭成分とす
る。前記加熱手段により加熱されたゼオライトあるいは
珪酸マグネシウムと、活性アルミナは、吸着した臭気成
分が除去されるため、再び吸着能力を回復し、加熱手段
による加熱を停止後に、臭気成分の吸着を再び行うこと
ができる。このように、非加熱時のゼオライトあるいは
珪酸マグネシウムと、アルミナによる臭気成分の吸着
と、加熱時のゼオライトあるいは珪酸マグネシウムと、
活性アルミナの加熱再生および臭気成分の触媒分解を、
交互に繰り返すことにより、長期間に渡って悪臭を連続
的に除去することができる。
The coating film formed using the coating material of the present invention has the following coating film functions. The odorous components in the room are usually adsorbed and deodorized with zeolite or magnesium silicate in the coating film and activated alumina. Next, zeolite or magnesium silicate and activated alumina are heated in the coating film of the present invention by a heating means such as a heating element or warm air before adsorbing odorous components up to the adsorption capacity limit thereof. The catalytic substance is activated, and the zeolite or magnesium silicate in the coating film, the odor component adsorbed on the activated alumina and the odor component in the vicinity of the coating film of the activated catalyst substance coexisting with the zeolite or magnesium silicate and the activated alumina. It is oxidatively decomposed into a odorless component by the catalytic action. Zeolite or magnesium silicate heated by the heating means and activated alumina remove the adsorbed odorous components, so the adsorption ability is restored again, and after the heating by the heating means is stopped, the odorous components are adsorbed again. You can Thus, zeolite or magnesium silicate when not heated, adsorption of odorous components by alumina, and zeolite or magnesium silicate when heated,
Heat regeneration of activated alumina and catalytic decomposition of odorous components,
By repeating alternately, the malodor can be continuously removed over a long period of time.

【0008】従来の吸着剤として一般的な活性炭や遷移
金属−アスコルビン酸錯塩は、その吸着性能に臭気物質
種によるバラツキがあるのに対し、本発明のゼオライト
等の吸着剤は吸着性能にバラツキがなく、室内の種々の
臭気成分を吸着,脱臭することができる。
Conventional activated carbon and transition metal-ascorbic acid complex salts, which are generally used as adsorbents, have variations in their adsorption performance depending on odorant species, whereas the adsorbents such as the zeolite of the present invention have variations in adsorption performance. It is possible to adsorb and deodorize various odor components indoors.

【0009】[0009]

【実施例】本発明の構成要素である珪酸マグネシウム
は、オルト珪酸マグネシウム、メタ珪酸マグネシウム、
タルク、四珪酸マグネシウム、三珪酸マグネシウム等酸
化マグネシウムと二酸化珪素と水が種々の割合で結合し
た組成物である。
EXAMPLES Magnesium silicate, which is a constituent element of the present invention, is magnesium orthosilicate, magnesium metasilicate,
It is a composition in which magnesium oxide such as talc, magnesium tetrasilicate, and magnesium trisilicate, silicon dioxide, and water are bonded in various proportions.

【0010】また、ゼオライトはA型、X型、Y型、1
0員環型等の種々のゼオライトを用いることができる。
その中で、特に銅イオン交換ゼオライトが最も臭気吸着
能力に優れ望ましい。塗料中固形分のうち、ゼオライト
の含有量が10〜70wt%であることが望ましい。
Zeolites are A type, X type, Y type, 1
Various zeolites such as 0-membered ring type can be used.
Among them, copper ion-exchanged zeolite is particularly preferable because it has the best odor adsorption capacity. It is desirable that the content of zeolite is 10 to 70 wt% of the solid content in the paint.

【0011】ゼオライトの含有量が10wt%より少な
い場合、本発明の塗料により形成した塗膜の充分な前記
臭気物質の吸着性がえられにくく、また70wt%を超
えると前記塗膜の触媒特性が低下する。
When the content of zeolite is less than 10 wt%, it is difficult to obtain sufficient adsorbability of the odorous substance in the coating film formed by the coating material of the present invention, and when it exceeds 70 wt%, the catalytic properties of the coating film are high. descend.

【0012】無機質バインダ−は、水酸化アルミニウ
ム、ガラス粉末、水ガラス、粘土、コロイダルシリカ等
の種々のものを用いることができる。その中で、特にコ
ロイダルシリカが臭気吸着能力と塗膜硬度の総合的評価
において最も優れ、望ましい。無機質バインダ−の含有
量は塗料中固形分の10〜40wt%であることが望まし
い。無機質バインダ−の含有量が40wt%を超えると塗
膜に亀裂が入りやすくなり密着性低下を招きやすい。ま
た10wt%未満では無機質バインダ−の充分な密着特性
が得られない。
As the inorganic binder, various ones such as aluminum hydroxide, glass powder, water glass, clay and colloidal silica can be used. Among them, colloidal silica is the most excellent and desirable in the comprehensive evaluation of odor adsorption capacity and coating film hardness. The content of the inorganic binder is preferably 10 to 40 wt% of the solid content in the paint. If the content of the inorganic binder exceeds 40% by weight, the coating film is likely to be cracked and the adhesiveness tends to be deteriorated. On the other hand, if it is less than 10 wt%, sufficient adhesion characteristics of the inorganic binder cannot be obtained.

【0013】分散媒は、塗料を塗布後、乾燥あるいは焼
き付けにより塗膜を形成する過程で蒸散する物質、例え
ば水、アルコ−ル等の有機溶剤を用いることができる。
As the dispersion medium, a substance that evaporates in the process of forming a coating film by drying or baking after coating the coating material, for example, organic solvent such as water or alcohol can be used.

【0014】また塗料中の固形分の分散安定化のための
添加剤を添加しても良い。なお、本発明の塗料を塗布す
る基材としては、金属、セラミック、ガラス等種々の材
料を用いることができる。板状、ハニカム状、多孔質
体、棒状、管状等種々の形状に対応できる。このうちシ
リカ、アルミナ、ムライト、コ−ジライトやシリカガラ
ス、リチウムシリケ−トガラスが塗膜の基材との密着性
がよく望ましい。
Further, an additive for stabilizing the dispersion of the solid content in the paint may be added. Various materials such as metals, ceramics, and glass can be used as the base material to which the coating material of the present invention is applied. It can be used in various shapes such as a plate shape, a honeycomb shape, a porous body, a rod shape, and a tubular shape. Of these, silica, alumina, mullite, cordierite, silica glass, and lithium silicate glass are desirable because of their good adhesion to the substrate of the coating film.

【0015】さらに、本発明の塗料を用いる対象として
は、冷蔵庫,調理器等の庫内壁,空調器,暖房器の空気
流路や発熱体表面あるいは発熱体近傍の壁面、さらに室
内壁等がある。
Further, the objects to which the coating material of the present invention is applied include interior walls of refrigerators, cookers and the like, air passages of air conditioners and heaters, surfaces of heating elements or surfaces near heating elements, and indoor walls. .

【0016】白金族金属塩は加熱により熱分解し貴金属
となり、臭気物質をその触媒酸化作用により化学的に分
解し、無臭化する触媒物質となる。したがって塗料中に
前記白金族金属塩を含有させることにより、形成した塗
膜に臭気物質分解機能を付加することができる。白金族
金属としては白金、パラジウム、ロジウム等があり、こ
の硝酸塩やアンミン錯塩等の加熱により分解して貴金属
となる貴金属塩を用いる。
The platinum group metal salt is thermally decomposed by heating to become a noble metal, and the odorous substance is chemically decomposed by its catalytic oxidation action to become a deodorizing catalyst substance. Therefore, by including the platinum group metal salt in the paint, it is possible to add an odor substance decomposition function to the formed coating film. Examples of the platinum group metal include platinum, palladium, rhodium, etc., and a noble metal salt such as a nitrate or an ammine complex salt which decomposes into a noble metal by heating is used.

【0017】また活性アルミナは、前記貴金属を高分散
させることに寄与し、前記触媒酸化作用を充分なものに
する働きがある。本発明の塗料を、活性アルミナと、ゼ
オライトと、白金族金属塩と、無機質バインダ−と、分
散媒から構成してもよいが、より望ましくは予め白金族
触媒を担持した活性アルミナと、ゼオライトと、無機質
バインダ−と、分散媒から構成することがよい。これは
後者の塗料の方が前記白金族触媒による臭気物質の酸化
分解性能の優れた塗膜が得られるからである。
Further, the activated alumina contributes to highly disperse the noble metal and has a function of making the catalytic oxidation action sufficient. The coating composition of the present invention may be composed of activated alumina, zeolite, platinum group metal salt, inorganic binder, and dispersion medium, but more preferably, activated alumina carrying platinum group catalyst in advance and zeolite. It is preferable to be composed of an inorganic binder and a dispersion medium. This is because the latter coating material gives a coating film having excellent oxidative decomposition performance of odorous substances by the platinum group catalyst.

【0018】活性アルミナは、β−,γ−,δ−,θ
−,η−,ρ−,χ−アルミナ等の高比表面積の準安定
アルミナである。また本発明の塗料では加熱により熱分
解して活性アルミナとなる水酸化アルミニウムを活性ア
ルミナのかわりに用いてもよい。
Activated alumina includes β-, γ-, δ-, θ
It is a metastable alumina having a high specific surface area such as −, η−, ρ−, χ− alumina. Further, in the coating material of the present invention, aluminum hydroxide which is thermally decomposed into an activated alumina by heating may be used instead of the activated alumina.

【0019】本発明の塗料中に加熱により熱分解して酸
化セリウムとなるセリウムの金属塩、例えば硝酸塩,酢
酸塩,水酸化物等を含む、あるいは酸化セリウムを含む
ことが望ましい。酸化セリウムを本発明の塗料により形
成した塗膜に含むことにより、炭化水素化合物に対する
触媒物質の酸化分解活性を向上することが出来る。
It is desirable that the coating material of the present invention contains a metal salt of cerium, such as nitrate, acetate, hydroxide, etc., which is thermally decomposed to cerium oxide by heating, or contains cerium oxide. By including cerium oxide in the coating film formed from the coating material of the present invention, the oxidative decomposition activity of the catalyst substance for hydrocarbon compounds can be improved.

【0020】前記セリウム化合物の酸化セリウムとして
の換算量での含有量は、塗料中固形分の2〜15wt%で
あることが望ましい。酸化セリウムの含有量が15wt%
を超えると触媒物質の前記酸化分解特性が低下しはじ
め、また2wt%未満では酸化セリウムの充分な添加効果
が得られない。
The content of the cerium compound in terms of cerium oxide is preferably 2 to 15 wt% of the solid content in the coating material. The content of cerium oxide is 15wt%
When it exceeds the above range, the oxidative decomposition property of the catalyst substance begins to deteriorate, and when it is less than 2 wt%, a sufficient addition effect of cerium oxide cannot be obtained.

【0021】酸化バリウムを塗料に含むことにより、触
媒の酸化分解特性を向上することができる。酸化バリウ
ムの含有量は塗料中固形分の0.5〜5wt%であること
が望ましい。酸化バリウムの含有量が5wt%を超えると
触媒被覆層の密着特性が低下し、また0.5wt%未満で
は酸化バリウムの充分な添加効果が得られない。
By including barium oxide in the paint, the oxidative decomposition characteristics of the catalyst can be improved. The content of barium oxide is preferably 0.5 to 5 wt% of the solid content in the paint. When the content of barium oxide exceeds 5 wt%, the adhesion property of the catalyst coating layer deteriorates, and when it is less than 0.5 wt%, sufficient addition effect of barium oxide cannot be obtained.

【0022】また酸化バリウムの替わりに炭酸バリウム
を用いても同様の添加効果が得られる。望ましい炭酸バ
リウムの添加量は、酸化バリウム量に換算して0.5〜
5wt%である。
The same effect can be obtained by using barium carbonate instead of barium oxide. The desirable addition amount of barium carbonate is 0.5 to 50 in terms of barium oxide amount.
It is 5 wt%.

【0023】酸化チタンを塗料に含むことにより、アン
モニア等の窒素化合物に対する触媒酸化活性を向上する
ことが出来る。酸化チタンの含有量は塗料中固形分の3
〜15wt%であることが望ましい。酸化チタンの含有量
が15wt%を超えると塗料を用いて形成した塗膜と基材
との密着特性が低下し、また3wt%未満では酸化チタン
の充分な添加効果が得られない。
By including titanium oxide in the paint, the catalytic oxidation activity for nitrogen compounds such as ammonia can be improved. Titanium oxide content is 3% of solid content in paint
It is desirable that the content be ˜15 wt%. When the content of titanium oxide exceeds 15 wt%, the adhesion property between the coating film formed by using the coating material and the base material deteriorates, and when it is less than 3 wt%, the sufficient effect of adding titanium oxide cannot be obtained.

【0024】また、塗膜を形成するとき、基材表面を粗
面化した後、塗膜を設けるか、基材表面を十分に脱脂し
た後、塗膜を設けることが望ましい。この製造方法によ
り、塗膜と基材との密着性を向上することができる。
When forming a coating film, it is desirable to roughen the surface of the base material and then apply the coating film, or to sufficiently degrease the surface of the base material and then apply the coating film. By this manufacturing method, the adhesion between the coating film and the substrate can be improved.

【0025】塗膜の形成方法は種々の方法を用いること
ができる。例えば、スプレ−塗装,ディップ塗装、静電
塗装、ロ−ルコ−ト法、スクリ−ン印刷法等がある。
Various methods can be used for forming the coating film. For example, there are spray coating, dip coating, electrostatic coating, roll coating method, screen printing method and the like.

【0026】塗料中の粒子の中心粒径は、1μm以上,
9μm以下であることが望ましい。9μmを超えると塗
膜がやわらかくなり、また1μmよりも細かくなると、
塗膜に亀裂が入りやすくなる。
The central particle diameter of the particles in the paint is 1 μm or more,
It is preferably 9 μm or less. When it exceeds 9 μm, the coating becomes soft, and when it becomes finer than 1 μm,
The coating film tends to crack.

【0027】以下、本発明の具体的実施例を説明する。 (実施例1)γ−アルミナ300g、銅イオン交換型ゼ
オライト 500g、無機質バインダ−としてシリカを
20wt%含むコロイダルシリカ水溶液1000g、水
500g、塩化白金酸をPtとして6g,塩化パラジ
ウムをPdとして3gを、ボールミルを用いて充分に混
合して、塗料Aを調製した。この塗料Aを縦100m
m、横100mm、厚さ1mmの石英ガラス板表面にに
スプレ−法で塗布した後、100℃で2時間乾燥し、続
いて500℃で1時間焼成し、白金族金属塩を熱分解し
て、白金族触媒として含む塗膜Aを形成した。塗膜量は
1.0gであった。
Specific examples of the present invention will be described below. (Example 1) 300 g of γ-alumina, 500 g of copper ion exchange type zeolite, 1000 g of an aqueous colloidal silica solution containing 20 wt% of silica as an inorganic binder, 500 g of water, 6 g of chloroplatinic acid as Pt and 3 g of palladium chloride as Pd, Coating A was prepared by thoroughly mixing with a ball mill. This paint A is 100m long
m, width 100 mm, thickness 1 mm, applied to the surface of a quartz glass plate by a spray method, dried at 100 ° C. for 2 hours, and subsequently baked at 500 ° C. for 1 hour to thermally decompose the platinum group metal salt. A coating film A containing a platinum group catalyst was formed. The amount of coating film was 1.0 g.

【0028】塗料Aと同様の組成で、銅イオン交換型ゼ
オライトの代わりに、同量の珪酸マグネシウムとしてタ
ルクを用いて塗料Bを調製した。この塗料Bを用いて、
塗膜Aと同様にして前記石英ガラス板表面に塗膜Bを形
成した。
A paint B having the same composition as the paint A was prepared by using talc as the same amount of magnesium silicate instead of the copper ion exchange type zeolite. Using this paint B,
A coating film B was formed on the surface of the quartz glass plate in the same manner as the coating film A.

【0029】さらに比較のために塗料Aと同様の組成
で、銅イオン交換型ゼオライトの代わりに、同量の活性
炭粉末を用いて比較塗料1と、同量の鉄−アスコルビン
酸粉末を用いて比較塗料2を調製した。これらの比較塗
料を用いて、塗膜Aと同様にして前記石英ガラス板表面
に比較塗膜1,2を形成した。
Further, for comparison, the same composition as Paint A was used, but the same amount of activated carbon powder was used instead of the copper ion exchange type zeolite, and comparison paint 1 was used and the same amount of iron-ascorbic acid powder was used for comparison. Paint 2 was prepared. Using these comparative paints, comparative paints 1 and 2 were formed on the surface of the quartz glass plate in the same manner as the paint A.

【0030】次に各塗膜の臭気物質吸着能を、代表的な
臭気物質であるメチルメルカプタンを用いて試験した。
試験方法は、上記種々の塗料を、フッソ樹脂で内壁面を
被覆した容積0.5m3の密閉ボックスに入れ、ボック
ス内の空気希釈した10ppmの濃度のメチルメルカプ
タンを吸着させ、塗膜を形成した石英ガラス板を入れた
直後から30分後の残存メチルメルカプタン量を測定
し、メチルメルカプタン吸着能とした。なお、ボックス
内の空気は、ファンにより実験中は撹はんした。結果を
(表1)に示した。
Next, the odor substance adsorption capacity of each coating film was tested using methyl mercaptan, which is a typical odor substance.
The test method was as follows. The above various paints were placed in a closed box having a volume of 0.5 m 3 whose inner wall surface was covered with a fluorine resin, and air-diluted methyl mercaptan having a concentration of 10 ppm was adsorbed in the box to form a coating film. The amount of residual methyl mercaptan was measured 30 minutes after the quartz glass plate was put, and the result was taken as the methyl mercaptan adsorption capacity. The air in the box was stirred by the fan during the experiment. The results are shown in (Table 1).

【0031】(表1)より明らかなように、従来の吸着
剤である活性炭および鉄−アスコルビン酸を用いて形成
した比較塗料1,2に比べ、本発明のゼオライトを含む
塗料Aおよび珪酸マグネシウムを含む塗料Bを用いた塗
膜Aおよび塗膜Bはメチルメルカプタン吸着能に優れて
いた。またタルク以外の珪酸マグネシウム、オルト珪酸
マグネシウム、メタ珪酸マグネシウム、四珪酸マグネシ
ウム、三珪酸マグネシウムを用いた塗料で形成した塗膜
のメチルメルカプタン吸着能は、それぞれ40,40,
41,40%と良好な値が得られた。
As is clear from Table 1, as compared with Comparative Paints 1 and 2 which were formed by using the conventional adsorbents such as activated carbon and iron-ascorbic acid, the paint A containing the zeolite of the present invention and the magnesium silicate were compared. The coating film A and the coating film B using the coating material B containing were excellent in the methyl mercaptan adsorption capacity. In addition, the adsorption ability of methyl mercaptan of the coating film formed by the coating material using magnesium silicate other than talc, magnesium orthosilicate, magnesium metasilicate, magnesium tetrasilicate, magnesium trisilicate is 40, 40, respectively.
Good values of 41, 40% were obtained.

【0032】なお本実施例では、ゼオライトと珪酸マグ
ネシウムをそれぞれ塗料中に単独で添加したが、これら
を混合して用いてもよい。
In this embodiment, zeolite and magnesium silicate are individually added to the paint, but they may be mixed and used.

【0033】[0033]

【表1】 [Table 1]

【0034】(実施例2)実施例1で作成した塗料Aに
おいて、塗料中の全固形成分に対して、銅イオン交換型
ゼオライト(以下銅ゼオライトと記す)の含有量を5w
t%〜80wt%の間の種々の含有量とし、銅ゼオライ
ト増加分は活性アルミナ量を減じた塗料を作成した。こ
の塗料を実施例1と同様に縦100mm、横100m
m、厚さ1mmの石英ガラス板表面ににスプレ−法で塗
布した後、100℃で2時間乾燥し、続いて500℃で
1時間焼成し、白金族金属塩を熱分解して、白金族触媒
として含む塗膜を形成した。塗膜量は1.0gと一定と
した。
(Example 2) In the coating material A prepared in Example 1, the content of copper ion exchange type zeolite (hereinafter referred to as copper zeolite) was 5 w based on all solid components in the coating material.
Various contents between t% and 80% by weight were prepared, and the copper zeolite increased amount was used to prepare a paint in which the amount of activated alumina was reduced. This paint is 100 mm long and 100 m wide as in Example 1.
m, the thickness of 1 mm is applied to the surface of a quartz glass plate by a spray method, dried at 100 ° C. for 2 hours, and then baked at 500 ° C. for 1 hour to thermally decompose the platinum group metal salt to obtain a platinum group metal. A coating film containing as a catalyst was formed. The amount of coating film was constant at 1.0 g.

【0035】これらの塗料について実施例1で示したメ
チルメルカプタン吸着能と、アンモニア触媒酸化脱臭性
能を調べた。 触媒酸化脱臭性能試験は、フッソ樹脂で
内壁面を被覆した容積0.5m3の密閉ボックスに塗膜
を設けた石英ガラス板を入れ、石英ガラス板に密着させ
た電気抵抗体に100V電圧で通電することによって塗
膜の温度を400℃とする。次にボックス内アンモニア
濃度が10ppmとなる量のアンモニアを入れ、活性化
した塗膜中の白金属触媒により酸化分解させ、ボックス
内アンモニアの80%が酸化分解するまでに必要な通電
時間を測定した。結果を(表2)に示した。
With respect to these paints, the methyl mercaptan adsorption capacity and the ammonia-catalyzed oxidative deodorization performance shown in Example 1 were examined. The catalytic oxidative deodorization performance test was conducted by putting a quartz glass plate with a coating film in a closed box with a volume of 0.5 m 3 whose inner wall surface was covered with fluorine resin, and energizing the electrical resistance of the quartz glass plate with 100 V voltage. By doing so, the temperature of the coating film is set to 400. Next, ammonia was added in an amount such that the ammonia concentration in the box was 10 ppm, and oxidative decomposition was performed by the white metal catalyst in the activated coating film, and the energization time required until 80% of the ammonia in the box was oxidatively decomposed was measured. . The results are shown in (Table 2).

【0036】(表2)より明らかなように、銅ゼオライ
トの含有量が10wt%より少ないとメチルメルカプタ
ン吸着特性が低下し、70wt%を超えると、ボックス内
アンモニアの80%が酸化分解するまでに必要な通電時
間が長くかかるようになり、触媒酸化脱臭性能が低下す
る。従って銅ゼオライトの含有量が10wt%以上70
wt%以下で最も良好な触媒酸化脱臭性能および臭気物質
吸着能が得られ望ましい。
As is clear from (Table 2), when the content of copper zeolite is less than 10 wt%, the methyl mercaptan adsorption property deteriorates, and when it exceeds 70 wt%, 80% of the ammonia in the box is oxidized and decomposed. The required energization time becomes longer, and the catalytic oxidative deodorization performance deteriorates. Therefore, the content of copper zeolite is 10 wt% or more 70
When it is less than wt%, the best catalytic oxidative deodorization performance and odor substance adsorption ability are obtained, which is desirable.

【0037】[0037]

【表2】 [Table 2]

【0038】(実施例3)実施例1で作成した塗料Aに
おいて、塗料中の銅ゼオライトを他のイオン交換ゼオラ
イトに置き換えた塗料を作成した。これらの塗料を用い
て実施例1の塗膜Aと同様の塗膜形成法を用いて前記石
英ガラス板上に形成した塗膜について、実施例1で示し
たメチルメルカプタンを用いた臭気物質吸着能試験を行
った。結果を(表3)に示した。
Example 3 A coating material was prepared by replacing the copper zeolite in the coating material prepared in Example 1 with another ion-exchanged zeolite. With respect to the coating film formed on the quartz glass plate by using the same coating film forming method as in the coating film A of Example 1 using these coating materials, the odorous substance adsorption ability using the methyl mercaptan shown in Example 1 The test was conducted. The results are shown in (Table 3).

【0039】(表3)より明らかなように、臭気物質吸
着能は銅イオン交換ゼオライトが最も優れており望まし
い。
As is clear from (Table 3), copper ion-exchanged zeolite is the most preferable in terms of its ability to adsorb odorous substances, which is desirable.

【0040】[0040]

【表3】 [Table 3]

【0041】(実施例4)実施例1で作成した塗料Aに
おいて、塗料中のコロイドダルシリカ水溶液を、最終固
形分中に含まれる無機バインダーの量が同じになるよう
に、種々の無機バインダーに置き換えた塗料を調製し、
同様に石英ガラス板上に塗膜を作成した。これらの塗膜
の膜硬度について調べるために、JISG−3320の
鉛筆硬度試験を行った。また、それぞれの塗膜につい
て、実施例1と同様に、メチルメルカプタン吸着試験を
行った。結果を(表4)に示した。
(Example 4) In the paint A prepared in Example 1, the colloidal dull silica aqueous solution in the paint was changed to various inorganic binders so that the amount of the inorganic binder contained in the final solid content was the same. Prepare the replaced paint,
Similarly, a coating film was formed on a quartz glass plate. In order to examine the film hardness of these coating films, a JISG-3320 pencil hardness test was conducted. Further, each coating film was subjected to a methyl mercaptan adsorption test in the same manner as in Example 1. The results are shown in (Table 4).

【0042】(表4)に示すように、アルミナゾルやベ
ントナイトを用いると塗膜硬度が低下し、Liシリケート
や水ガラスを用いると被膜硬度は向上するものの、塗膜
が多孔質とならず臭気吸着特性が低下する。従って、無
機バインダーとしてコロイダルシリカを用いることが最
も望ましい。
As shown in (Table 4), when alumina sol or bentonite is used, the coating film hardness is lowered, and when Li silicate or water glass is used, the coating film hardness is improved, but the coating film does not become porous and odor is absorbed. The characteristics deteriorate. Therefore, it is most desirable to use colloidal silica as the inorganic binder.

【0043】[0043]

【表4】 [Table 4]

【0044】(実施例5)実施例1で作成した塗料Aに
おいて、塗料A中の全固形成分に対して、無機質バイン
ダ−としてのコロイダルシリカの含有量を0wt%〜6
0wt%の間の種々の含有量とし、コロイダルシリカ増
加分は銅ゼオライト量を減じた本発明の塗料を作成し
た。これらの塗料を用いて実施例1の塗膜Aと同様の塗
膜形成法を用いて前記石英ガラス板上に形成した塗膜に
ついて熱衝撃試験を行い、その密着性を調べた。熱衝撃
試験は、温度を25℃毎に設定した電気炉中に、塗膜形
成した石英ガラス板を入れ、その温度で10分間保持し
た後、室温水中に投下して塗膜の剥離の有無を調べ、剥
離を起こさない最大温度を耐熱衝撃温度とした。結果を
(表5)に示す。
(Example 5) In the coating material A prepared in Example 1, the content of colloidal silica as an inorganic binder was 0 wt% to 6 with respect to all solid components in the coating material A.
A coating material of the present invention was prepared in which the content was varied between 0 wt% and the increased amount of colloidal silica decreased the amount of copper zeolite. A thermal shock test was conducted on the coating film formed on the quartz glass plate using these coating materials by the same coating film forming method as the coating film A of Example 1 to examine the adhesion. In the thermal shock test, the quartz glass plate on which the coating film was formed was placed in an electric furnace whose temperature was set at every 25 ° C., held at that temperature for 10 minutes, and then dropped in room temperature water to check for peeling of the coating film. The maximum temperature at which peeling did not occur was taken as the thermal shock resistance temperature. The results are shown in (Table 5).

【0045】(表5)より明らかなように、無機質バイ
ンダ−のコロイダルシリカの含有量が40wt%を超える
と塗膜に亀裂が入りやすくなり密着性低下を招き、また
10wt%未満ではコロイダルシリカの充分な密着特性が
得られない。
As is clear from (Table 5), when the content of the colloidal silica as the inorganic binder exceeds 40 wt%, the coating film is likely to be cracked and the adhesiveness is deteriorated. Sufficient adhesion characteristics cannot be obtained.

【0046】したがってのコロイダルシリカ含有量は塗
料中固形分の10〜40wt%であることが望ましい。
Therefore, the content of colloidal silica is preferably 10 to 40 wt% of the solid content in the coating material.

【0047】[0047]

【表5】 [Table 5]

【0048】(実施例6)γ−アルミナ200g、水
500g、塩化白金酸をPtとして6g,塩化パラジウ
ムをPdとして3gを、ボールミルを用いて充分に混合
した後、100℃で2時間乾燥し、続いて500℃で1
時間焼成し、白金族金属塩を熱分解して、白金族触媒を
担持したγ−アルミナを調製した。次にこのγ−アルミ
ナ209gと、銅イオン交換型ゼオライト 500g、
無機質バインダ−としてシリカを20wt%含むコロイ
ダルシリカ水溶液1500g、水 500gを、ボール
ミルを用いて充分に混合して、塗料Cを調製した。この
塗料Cを縦100mm、横100mm、厚さ1mmの石
英ガラス板表面ににスプレ−法で塗布した後、100℃
で2時間乾燥し、続いて500℃で1時間焼成し、白金
族金属塩を熱分解して、白金族触媒として含む塗膜Cを
形成した。塗膜量は1.0gであった。
(Example 6) 200 g of γ-alumina, water
500 g, 6 g of chloroplatinic acid as Pt and 3 g of palladium chloride as Pd were thoroughly mixed using a ball mill and dried at 100 ° C. for 2 hours, then at 500 ° C. for 1 hour.
The platinum group metal salt was pyrolyzed by firing for a period of time to prepare γ-alumina carrying a platinum group catalyst. Next, 209 g of this γ-alumina and 500 g of copper ion exchange type zeolite,
Coating material C was prepared by thoroughly mixing 1500 g of an aqueous colloidal silica solution containing 20 wt% of silica as an inorganic binder and 500 g of water with a ball mill. This coating material C is applied to a surface of a quartz glass plate having a length of 100 mm, a width of 100 mm and a thickness of 1 mm by a spray method, and then 100 ° C.
At 500 ° C. for 1 hour to thermally decompose the platinum group metal salt to form a coating film C containing a platinum group catalyst. The amount of coating film was 1.0 g.

【0049】この塗膜Cと実施例1で作成した塗膜Aに
ついて、実施例2と同様のアンモニア触媒酸化脱臭性能
を調べた。結果を(表6)に示した。
With respect to this coating film C and the coating film A prepared in Example 1, the same ammonia-catalyzed oxidative deodorization performance as in Example 2 was examined. The results are shown in (Table 6).

【0050】(表6)より明らかなように、活性アルミ
ナと、、白金族金属塩とを含む塗料Aを用いて形成した
塗膜Aよりも、予め白金族触媒を担持した活性アルミナ
を用いた塗料Cで形成した塗膜Cの方が白金族触媒によ
る臭気物質の酸化分解性能の優れた塗膜が得られ望まし
い。
As is clear from (Table 6), the activated alumina on which the platinum group catalyst was previously supported was used rather than the coating film A formed by using the coating material A containing the activated alumina and the platinum group metal salt. The coating film C formed of the coating material C is preferable because a coating film having excellent oxidative decomposition performance of odorous substances by the platinum group catalyst can be obtained.

【0051】[0051]

【表6】 [Table 6]

【0052】(実施例7)実施例1の塗料Aの調製時
に、ボールミルでのミル引き時間を変化させて、中心粒
径が0.8μm〜15μmの種々異なる本発明の塗料を
調製した。
(Example 7) At the time of preparation of the coating material A of Example 1, the milling time in the ball mill was changed to prepare various coating materials of the present invention having a central particle diameter of 0.8 µm to 15 µm.

【0053】これらのスラリ−を用いて、実施例1と同
様にして脱脂洗浄した石英ガラス板表面に1.0gの塗
膜を作製した。
Using these slurries, 1.0 g of a coating film was prepared on the surface of a quartz glass plate that had been degreased and washed in the same manner as in Example 1.

【0054】つぎに形成した塗膜の膜硬度をJISG−
3320のエンピツ硬度試験を行った。結果を(表7)
に示した。
Next, the film hardness of the coating film formed was measured according to JISG-
A 3320 pencil hardness test was performed. The results (Table 7)
It was shown to.

【0055】[0055]

【表7】 [Table 7]

【0056】(表7)より明らかなように、9μmを超
えると塗膜がやわらかくなり、また1μmよりも細かく
なると、塗膜に亀裂が入りやすくなる。
As is clear from (Table 7), if the thickness exceeds 9 μm, the coating becomes soft, and if it is smaller than 1 μm, the coating tends to crack.

【0057】従って、本発明の塗料中の粒子の中心粒径
は、1μm以上,9μm以下であることが望ましい。
Therefore, the median particle diameter of the particles in the coating material of the present invention is preferably 1 μm or more and 9 μm or less.

【0058】(実施例8)実施例1の塗料Aに、種々の
量比の硝酸セリウム6水塩を添加し、実施例1と同様の
方法により、石英ガラス板表面に塗料Aと同量の塗膜を
形成した。塗料中の硝酸セリウム量は、その熱分解によ
って生ずる酸化セリウム量に換算して、(表8)のよう
に硝酸セリウム添加量の異なる塗料を用いた塗膜を形成
した。なお塗料中の硝酸セリウム増加分は、アルミナ量
を減じて調製した。
Example 8 Cerium nitrate hexahydrate in various amounts was added to the coating material A of Example 1, and the same amount of coating material A as that of coating material A was applied to the surface of the quartz glass plate in the same manner as in Example 1. A coating film was formed. The amount of cerium nitrate in the paint was converted into the amount of cerium oxide produced by its thermal decomposition, and a coating film was formed using paints with different amounts of cerium nitrate added as shown in (Table 8). The increase in cerium nitrate in the paint was prepared by reducing the amount of alumina.

【0059】これらの塗膜について実施例2と同様のア
ンモニア触媒酸化脱臭性能試験を行った。
For these coating films, the same ammonia-catalyzed oxidative deodorization performance test as in Example 2 was conducted.

【0060】結果を(表8)に示す。(表8)に示すよ
うに、酸化セリウムを塗膜に含むことにより、アンモニ
アに対する触媒酸化活性を向上することが出来る。
The results are shown in (Table 8). As shown in (Table 8), by including cerium oxide in the coating film, the catalytic oxidation activity for ammonia can be improved.

【0061】酸化セリウムの含有量が15wt%を超える
と触媒の酸化分解特性が低下しはじめ、また2wt%未満
では酸化セリウムの充分な添加効果が得られないことか
ら、酸化セリウムの望ましい含有量は塗料中固形分(塗
膜)の2〜15wt%である。
When the content of cerium oxide exceeds 15 wt%, the oxidative decomposition characteristics of the catalyst begin to deteriorate, and when it is less than 2 wt%, a sufficient addition effect of cerium oxide cannot be obtained. Therefore, the desirable content of cerium oxide is It is 2 to 15 wt% of the solid content (coating film) in the paint.

【0062】[0062]

【表8】 [Table 8]

【0063】(実施例9)実施例1の塗料Aに、種々の
量比の酸化バリウムを添加し、石英ガラス板表面に塗料
Aと同量の塗膜量で、塗料中固形分の内、酸化バリウム
の含有量が(表9)のように異なる塗膜を、実施例1と
同様の方法により形成した。なお塗料中酸化バリウム増
加分は、アルミナ量を減じて調製した。
(Example 9) Barium oxide in various amounts was added to the coating material A of Example 1, and the same amount of coating film as the coating material A was applied to the surface of the quartz glass plate. Coating films having different barium oxide contents as shown in Table 9 were formed in the same manner as in Example 1. The increase in barium oxide in the paint was prepared by reducing the amount of alumina.

【0064】これらの塗膜について、アンモニア触媒酸
化脱臭性能試験を実施例8と同様に行った。また密着性
試験は実施例5と同様に行った。なお本発明の酸化バリ
ウム源としては、酸化物以外に、水酸化物、硝酸塩、炭
酸塩等加熱により熱分解して酸化バリウムとなる化合物
を用いることができる。結果を(表9)に示す。
An ammonia-catalyzed oxidative deodorization performance test was performed on these coating films in the same manner as in Example 8. The adhesion test was performed in the same manner as in Example 5. As the barium oxide source of the present invention, in addition to oxides, hydroxides, nitrates, carbonates and other compounds that thermally decompose into barium oxide by heating can be used. The results are shown in (Table 9).

【0065】(表9)に示すように、酸化バリウムを塗
料に含むことにより、アンモニアに対する触媒酸化活性
を向上することが出来る。
As shown in (Table 9), by including barium oxide in the paint, the catalytic oxidation activity for ammonia can be improved.

【0066】酸化バリウムの含有量が5wt%を超えると
塗膜の密着特性が低下しはじめ、また0.5wt%未満で
は酸化バリウムの充分な添加効果が得られないことか
ら、酸化バリウムの望ましい含有量は、塗料中固形分の
0.5〜5wt%である。
When the content of barium oxide exceeds 5% by weight, the adhesion property of the coating film begins to deteriorate, and when it is less than 0.5% by weight, a sufficient addition effect of barium oxide cannot be obtained. The amount is 0.5 to 5 wt% of the solid content in the paint.

【0067】[0067]

【表9】 [Table 9]

【0068】(実施例10)実施例1の塗料Aに、種々
の量比の酸化チタンを添加し、実施例1と同様の方法に
より、石英ガラス板表面に塗膜Aと同量の塗膜量で、塗
料中固形分の酸化チタン含有量が、(表10)のように
異なる塗料を用いた塗膜を形成した。なお塗料中の酸化
チタン増加分は、アルミナ量を減じて調製した。
(Example 10) Titanium oxide in various proportions was added to the coating material A of Example 1, and the same amount of coating film A as the coating film A was formed on the surface of the quartz glass plate in the same manner as in Example 1. The amount of solid titanium oxide contained in the paint was varied as shown in Table 10 to form coating films. The increased amount of titanium oxide in the paint was prepared by reducing the amount of alumina.

【0069】これらの塗膜について臭気物質としてアン
モニアを選択し、このアンモニア浄化試験を実施例6と
同様に行った。また密着性試験は実施例2と同様に行っ
た。
Ammonia was selected as an odorant for these coating films, and this ammonia purification test was conducted in the same manner as in Example 6. The adhesion test was performed in the same manner as in Example 2.

【0070】結果を(表10)に示す。(表10)に示
すように、酸化チタンを塗料に含むことにより、形成し
た塗膜のアンモニアに対する触媒酸化活性を向上するこ
とが出来る。
The results are shown in (Table 10). As shown in (Table 10), by including titanium oxide in the paint, the catalytic oxidation activity of the formed coating film with respect to ammonia can be improved.

【0071】酸化チタンの含有量が15wt%を超えると
塗膜の密着特性が低下しはじめ、また3wt%未満では酸
化チタンの充分な添加効果が得られないことから、酸化
チタンの望ましい含有量は塗料中固形分の3〜15wt%
である。
When the content of titanium oxide exceeds 15 wt%, the adhesion property of the coating film begins to deteriorate, and when it is less than 3 wt%, a sufficient addition effect of titanium oxide cannot be obtained. Therefore, the desirable content of titanium oxide is 3 to 15 wt% of solid content in paint
Is.

【0072】[0072]

【表10】 [Table 10]

【0073】(実施例11)実施例1で作成した塗料A
において、塗料中の塩化白金酸と塩化パラジウムを、単
独の貴金属塩を塩化白金酸をPtとして9g含む塗料
D,塩化パラジウムをPdとして9g含む塗料E,硝酸
ロジウムをRhとして9g含む塗料F,硝酸ルテニウム
をRuとして9g含む塗料Gを作成した。これらの塗料
を用いて実施例1の塗膜Aと同様の塗膜形成法を用いて
前記石英ガラス板上に形成した塗膜D,E,F,Gおよ
び塗膜Aについて、実施例2で示したアンモニア触媒酸
化脱臭性能を調べた。結果を(表11)に示した。
(Example 11) Paint A prepared in Example 1
In the paint, chloroplatinic acid and palladium chloride in the paint are used as a paint D containing 9 g of a single noble metal salt of chloroplatinic acid as Pt, a paint E containing 9 g of palladium chloride as Pd and a paint F containing 9 g of rhodium nitrate as Rh, and nitric acid. A coating material G containing 9 g of ruthenium as Ru was prepared. With respect to the coating films D, E, F, G and the coating film A formed on the quartz glass plate by using the coating film forming method similar to the coating film A of Example 1 using these paints, The indicated ammonia catalyst oxidative deodorization performance was investigated. The results are shown in (Table 11).

【0074】(表11)より明らかなように、貴金属と
してPt,Pdを含むことが望ましく、さらに望ましく
は、PtとPdを混合して用いる塗料Aが最も望まし
い。
As is clear from (Table 11), it is desirable that Pt and Pd are contained as the noble metal, and more desirably, the coating material A in which Pt and Pd are mixed is most desirable.

【0075】[0075]

【表11】 [Table 11]

【0076】[0076]

【発明の効果】以上のように本発明の塗料ににより形成
した塗膜により、前記塗膜が置かれている雰囲気の臭気
やタバコの煙等の有害ガスは、前記塗膜の吸着作用およ
び触媒酸化分解作用により脱臭される。このため種々の
機器および室内の壁面に前記塗膜を形成することによっ
て、臭気物質の少ない、快適な環境を提供することがで
きる。
As described above, the coating film formed from the coating composition of the present invention prevents the odor of the atmosphere in which the coating film is placed and harmful gases such as cigarette smoke from adsorbing the catalyst and the catalyst. Deodorized by oxidative decomposition. Therefore, by forming the coating film on various equipments and the wall surface in the room, it is possible to provide a comfortable environment with less odorous substances.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09D 5/00 PSD // C01B 39/02 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area C09D 5/00 PSD // C01B 39/02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ゼオライトおよび珪酸マグネシウムの少な
くとも一種と、活性アルミナと、白金族金属塩と、無機
質バインダ−と、分散媒からなる塗料。
1. A paint comprising at least one of zeolite and magnesium silicate, activated alumina, a platinum group metal salt, an inorganic binder, and a dispersion medium.
【請求項2】ゼオライトが銅含有ゼオライトである請求
項1記載の塗料。
2. The paint according to claim 1, wherein the zeolite is a copper-containing zeolite.
【請求項3】無機質バインダ−がコロイダルシリカであ
り、その含有量が塗料中固形分の10〜40wt%である
請求項1記載の塗料
3. The paint according to claim 1, wherein the inorganic binder is colloidal silica, and the content thereof is 10 to 40 wt% of the solid content in the paint.
【請求項4】ゼオライトおよび珪酸マグネシウムの少な
くとも一種と、白金族触媒を担持した活性アルミナと、
無機質バインダ−と、分散媒からなる塗料。
4. At least one of zeolite and magnesium silicate, and activated alumina carrying a platinum group catalyst,
A paint composed of an inorganic binder and a dispersion medium.
JP3256245A 1991-10-03 1991-10-03 Paint Expired - Lifetime JPH0811787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3256245A JPH0811787B2 (en) 1991-10-03 1991-10-03 Paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3256245A JPH0811787B2 (en) 1991-10-03 1991-10-03 Paint

Publications (2)

Publication Number Publication Date
JPH0598184A JPH0598184A (en) 1993-04-20
JPH0811787B2 true JPH0811787B2 (en) 1996-02-07

Family

ID=17289956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3256245A Expired - Lifetime JPH0811787B2 (en) 1991-10-03 1991-10-03 Paint

Country Status (1)

Country Link
JP (1) JPH0811787B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879941B1 (en) * 2007-02-15 2009-01-22 이복희 Natural inorganic photocatalyst coating liquid and the fabrication method thereof, photocatalyst coating film using the same
KR101499028B1 (en) * 2013-09-27 2015-03-09 한국생산기술연구원 Adsorbent coating solution containing two binder and a method of manufacturing the same
CN114644845B (en) * 2022-04-08 2023-05-05 中国科学院过程工程研究所 Heat-conducting catalyst coating and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0598184A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
KR960007587B1 (en) Catalytic bodies and the process for producing the same
EP0527349B1 (en) Heating element for deodorization
JPH0598185A (en) Coating material
JPH0811787B2 (en) Paint
JPH0956799A (en) Self-regenerative adsorbent
JP2932456B2 (en) Heating element
JPH05146683A (en) Catalyst and production thereof
JPH0924272A (en) Self-regeneration type adsorbent
JPH08308917A (en) Deodorizing apparatus
JPH0657172A (en) Coating material
JP3521091B2 (en) Deodorant
JP2722891B2 (en) Catalyst for deodorization
JPH06154616A (en) Production of catalytic body
JPH09303940A (en) Refrigerator
JP4095699B2 (en) Adsorption decomposition deodorization element
JPH07104102B2 (en) refrigerator
JPH09306644A (en) Heating element
JPH05133530A (en) Heating cooker
JPH07284670A (en) Oxidation decomposition type deodorization catalyst
JPH07106318B2 (en) Heating element
JPH10165808A (en) Improved deodorant
JPH0838584A (en) Deodorizing apparatus
JP2000121162A (en) Fan heater with air cleaning function and deodorizing method
JPH0594866A (en) Heat generating
JP2001070417A (en) Deodorizing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 16