JPH0594866A - Heat generating - Google Patents
Heat generatingInfo
- Publication number
- JPH0594866A JPH0594866A JP25624491A JP25624491A JPH0594866A JP H0594866 A JPH0594866 A JP H0594866A JP 25624491 A JP25624491 A JP 25624491A JP 25624491 A JP25624491 A JP 25624491A JP H0594866 A JPH0594866 A JP H0594866A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- heating element
- zeolite
- adsorption layer
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Resistance Heating (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、暖房,給湯,乾燥,調
理用機器および冷蔵庫,空調機器等に利用される発熱体
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element used for heating, hot water supply, drying, cooking equipment and refrigerators, air conditioners and the like.
【0002】[0002]
【従来の技術】従来の発熱体は、ニクロム線やカンタル
線などの金属線をコイル状にしたものや、これらを金属
管あるいは石英管,セラミック管等に内蔵したもの、さ
らに前記管状体にコ−ジライト,粘土,ガラスあるい酸
化ニッケル,酸化鉄等の遠赤外線高輻射材料を被覆した
もの、あるいは電気抵抗体をセラミック焼結体に内蔵さ
せたセラミックヒータなどの構成であった。暖房・給湯
・乾燥用機器では上記発熱体で直接加熱したり、発熱体
にファンから強制的に空気を送り温風を発生させたり、
発熱体の後方に反射板を設けて輻射加熱を行うなどの、
熱伝導・対流・輻射で、発熱体により被加熱物の加熱を
行っている。2. Description of the Related Art A conventional heating element is one in which a metal wire such as a nichrome wire or a kanthal wire is formed into a coil, a metal tube, a quartz tube, a ceramic tube, or the like, which is built into the tubular body. The structure is such that it is coated with far-infrared radiation material such as gillite, clay, glass or nickel oxide, iron oxide, or a ceramic heater in which an electric resistor is built in a ceramic sintered body. In heating, hot water supply and drying equipment, the heating element directly heats, or the fan is forced to send air from the heating element to generate hot air.
For example, by providing a reflector behind the heating element to perform radiant heating,
The object to be heated is heated by a heating element by heat conduction, convection, and radiation.
【0003】このような従来の発熱体には、以下に示す
ような課題があった。たとえば電気ストーブで暖房する
場合、発熱体は室内の空気を加熱するとともに、室内に
漂っているタバコの煙や室内の臭気なども加熱すること
になる。一般に、臭気物質は温度が高いほど、人間の鼻
には強く感じるものであり、また室内に一度吸着した臭
気成分も加熱されることにより再び気化して室内雰囲気
に漂うことになる。Such a conventional heating element has the following problems. For example, when heating with an electric stove, the heating element heats not only indoor air but also smoke of cigarettes floating in the room and indoor odor. Generally, the higher the temperature of an odor substance, the more strongly the human nose feels it, and the odor component once adsorbed in the room is also vaporized again and floats in the room atmosphere.
【0004】[0004]
【発明が解決しようとする課題】ここにおいて従来の発
熱体は臭気成分の浄化能を持たないため、電気ストーブ
を使用すると、電気ストーブを使用しないときに比べて
臭気がきつくなるという現象がしばしば生じ問題であっ
た。Here, since the conventional heating element does not have the ability to purify odorous components, when the electric stove is used, the odor often becomes more intense than when the electric stove is not used. It was a problem.
【0005】本発明は上記従来技術の課題を解決するた
めになされたものであり、簡単な構成で臭気や有害ガス
を除去する発熱体を提供するものである。The present invention has been made to solve the above-mentioned problems of the prior art, and provides a heating element for removing odors and harmful gases with a simple structure.
【0006】[0006]
【課題を解決するための手段】本発明は、発熱体を、金
属管状体と、金属管状体表面に形成したホ−ロ層と、ホ
−ロ層表面に形成した少なくともゼオライトおよび/あ
るいは珪酸マグネシウムと、無機質バインダ−からなる
吸着層と、前記金属管状体に内蔵した電気抵抗体と、前
記電気抵抗体と金属管状体との電気絶縁性を確保するた
めに設置した電気絶縁体とより構成することを特徴とす
る。DISCLOSURE OF THE INVENTION In the present invention, a heating element is a metal tubular body, a hollow layer formed on the surface of the metallic tubular body, and at least zeolite and / or magnesium silicate formed on the surface of the hollow layer. And an adsorption layer made of an inorganic binder, an electric resistor built in the metal tubular body, and an electric insulator installed to ensure electric insulation between the electric resistor and the metal tubular body. It is characterized by
【0007】[0007]
【作用】発熱体表面に吸着層を設けてあるために、発熱
体に通電されていないときは、発熱体が置かれている周
囲の臭気成分を、発熱体表面に形成した吸着層中のゼオ
ライトあるいは珪酸マグネシウムにより吸着脱臭するこ
とができる。また前記ゼオライトあるいは珪酸マグネシ
ウムが、その吸着能力限界まで臭気成分を吸着する前
に、発熱体中の電気抵抗体に通電して発熱させ、前記吸
着層を加熱することにより、吸着層中のゼオライトある
いは珪酸マグネシウムに吸着した臭気成分や有害成分
を、脱離させ塗膜の吸着能力を回復させることができ、
加熱手段による加熱を停止後に、臭気成分の吸着を再び
行うことができる。従来の吸着剤として一般的な活性炭
は、その吸着性能に臭気物質種によるバラツキがあるの
に対し、本発明のゼオライトあるいは珪酸マグネシウム
は吸着性能にバラツキがなく、室内の種々の臭気成分を
吸着,脱臭することができる。Since the adsorption layer is provided on the surface of the heating element, when the heating element is not energized, the odorous components around the heating element are mixed with the zeolite in the adsorption layer formed on the surface of the heating element. Alternatively, it can be adsorbed and deodorized with magnesium silicate. Further, the zeolite or magnesium silicate, before adsorbing the odorous component up to its adsorption capacity limit, the electric resistor in the heating element is energized to generate heat, and the adsorption layer is heated, whereby the zeolite in the adsorption layer or The odorous and harmful components adsorbed on magnesium silicate can be desorbed to restore the adsorption capacity of the coating film,
After stopping the heating by the heating means, the odorous components can be adsorbed again. While conventional activated carbon generally used as an adsorbent has variations in its adsorption performance due to odorant species, the zeolite or magnesium silicate of the present invention does not have variations in adsorption performance and adsorbs various odorous components in the room. Can be deodorized.
【0008】[0008]
【実施例】本発明の具体的1実施例を図1に示す。FIG. 1 shows a concrete example of the present invention.
【0009】図1において、1は金属管状体、2はホ−
ロ層、3はホ−ロ層表面に形成した吸着層、4は金属管
状体に内蔵した電気抵抗体、5は電気絶縁体であり、電
気抵抗体4は、金属管状体1と電気絶縁体5によって電
気絶縁されている。7は電気絶縁体5を金属管状体1内
に封入するための封口部であり、通常ガラスを用いる。In FIG. 1, 1 is a metal tubular body, 2 is a hose.
B layer, 3 is an adsorption layer formed on the surface of the hollow layer, 4 is an electric resistor built in a metal tubular body, 5 is an electrical insulator, and the electrical resistor 4 is the metal tubular body 1 and the electrical insulator. It is electrically insulated by 5. Reference numeral 7 denotes a sealing portion for sealing the electric insulator 5 in the metal tubular body 1, and usually glass is used.
【0010】本発明の金属管状体1としては、ホ−ロ用
鋼、アルミナイズド鋼、SUS430等のステンレス鋼
を用いることが出来る。その形状も目的に応じて直管
状、曲管状と種々の形状で用いることが出来る。As the metal tubular body 1 of the present invention, stainless steel such as hollow steel, aluminized steel and SUS430 can be used. The shape thereof can also be used in various shapes such as a straight tube shape and a curved tube shape depending on the purpose.
【0011】本発明におけるホ−ロ層2の形成材料とし
ては、珪酸ガラス、硼硅酸ガラス、結晶化ガラス等を用
いることができる。本発明のホ−ロ層2を金属管状体1
と吸着層3との間に形成することにより吸着層3の密着
性を向上することができる。As the material for forming the hollow layer 2 in the present invention, silicate glass, borosilicate glass, crystallized glass or the like can be used. The hollow layer 2 of the present invention is provided with the metal tubular body 1
The adhesion between the adsorption layer 3 and the adsorption layer 3 can be improved by forming it between the adsorption layer 3 and the adsorption layer 3.
【0012】電気抵抗体4としては、ステンレス、ニク
ロム、SiC、タングステン等があり、直線であるいはコ
イル状等で用いることができる。As the electric resistor 4, there are stainless steel, nichrome, SiC, tungsten and the like, which can be used in a straight line or in a coil shape.
【0013】発熱体表面に吸着層3を設けてあるため
に、電気抵抗体4に通電されていないときは、発熱体が
置かれている周囲の臭気成分を、発熱体表面に形成した
吸着層3中のゼオライトあるいは珪酸マグネシウムによ
り吸着脱臭することができる。また前記ゼオライトある
いは珪酸マグネシウムが、その吸着能力限界まで臭気成
分を吸着する前に、電気抵抗体4に通電すると、電気抵
抗体4が発熱し、前記電気抵抗体4の熱が電気絶縁体5
を介して、金属管状体1に伝達される。金属管状体1に
伝達された熱は、金属管状体1表面に形成したホ−ロ層
2を加熱し、同時にホ−ロ層2表面に形成した吸着層3
も速やかに加熱する。加熱された吸着層3中のゼオライ
トあるいは珪酸マグネシウムは、吸着した臭気成分や有
害成分を脱離し、吸着層3はその吸着能力を回復し,再
生される。電気抵抗体4に通電による加熱を停止後は、
吸着層3は臭気成分の吸着を再び行うことができる。Since the adsorption layer 3 is provided on the surface of the heating element, when the electric resistor 4 is not energized, the odor component around the heating element is formed on the surface of the heating element. It can be adsorbed and deodorized by the zeolite or magnesium silicate in 3. Further, if the electric resistance 4 is energized before the zeolite or magnesium silicate adsorbs the odorous component up to its adsorption capacity limit, the electric resistance 4 generates heat and the heat of the electric resistance 4 changes to the electric insulator 5.
Is transmitted to the metal tubular body 1 via. The heat transferred to the metallic tubular body 1 heats the hollow layer 2 formed on the surface of the metallic tubular body 1, and at the same time, the adsorption layer 3 formed on the surface of the hollow layer 2
Also heat quickly. The zeolite or magnesium silicate in the heated adsorption layer 3 desorbs the adsorbed odorous components and harmful components, and the adsorption layer 3 recovers its adsorption ability and is regenerated. After stopping the heating by energizing the electric resistor 4,
The adsorption layer 3 can again adsorb odorous components.
【0014】ここにおいて、吸着層3中の珪酸マグネシ
ウムは、オルト珪酸マグネシウム、メタ珪酸マグネシウ
ム、タルク、四珪酸マグネシウム、三珪酸マグネシウム
等酸化マグネシウムと二酸化珪素と水が種々の割合で結
合した組成物である。Here, the magnesium silicate in the adsorption layer 3 is a composition in which magnesium oxide, silicon dioxide and water are bonded at various ratios such as magnesium orthosilicate, magnesium metasilicate, talc, magnesium tetrasilicate and magnesium trisilicate. is there.
【0015】またゼオライトはA型、X型、Y型、ZS
M型等の種々のゼオライトを用いることができる。その
中で、特に銅イオン交換ゼオライトが最も臭気吸着能力
に優れ、望ましい。Zeolites are A type, X type, Y type, ZS
Various zeolites such as M type can be used. Among them, copper ion-exchanged zeolite is particularly preferable because it has the best odor adsorption capacity.
【0016】無機質バインダ−は、水酸化アルミニウ
ム、ガラス粉末、水ガラス、粘土、シリカ等の種々のも
のを用いることができる。その中で、特にシリカが臭気
吸着能力と塗膜硬度の総合的評価において最も優れ、望
ましい。無機質バインダ−の含有量は吸着層中に10〜
40wt%であることが望ましい。無機質バインダ−の含
有量が40wt%を超えると吸着層に亀裂が入りやすくな
り密着性低下を招きやすい。また10wt%未満では無機
質バインダ−の充分な密着特性が得られない。As the inorganic binder, various materials such as aluminum hydroxide, glass powder, water glass, clay and silica can be used. Among them, silica is the most excellent and desirable in the comprehensive evaluation of odor adsorption capacity and coating film hardness. The content of the inorganic binder is 10 to 10 in the adsorption layer.
It is preferably 40 wt%. If the content of the inorganic binder exceeds 40 wt%, the adsorption layer is likely to be cracked and the adhesiveness tends to be deteriorated. On the other hand, if it is less than 10 wt%, sufficient adhesion characteristics of the inorganic binder cannot be obtained.
【0017】また吸着層に貴金属塩を含むことが望まし
い。貴金属塩は加熱により熱分解して貴金属触媒物質と
なる。この貴金属触媒物質は電気抵抗体に通電し加熱す
ることにより活性化し、吸着層中のゼオライトあるいは
珪酸マグネシウムに吸着した臭気成分および吸着層近傍
の臭気成分を、その触媒作用により酸化分解して、無臭
成分とする。前記加熱手段により加熱されたゼオライト
あるいは珪酸マグネシウムは、吸着した臭気成分が除去
されるため、再び吸着能力を回復し、加熱手段による加
熱を停止後に、臭気成分の吸着を再び行うことができ
る。このように、非加熱時のゼオライトあるいは珪酸マ
グネシウムによる臭気成分の吸着と、加熱時のゼオライ
トあるいは珪酸マグネシウムの加熱再生および臭気成分
の触媒分解を、交互に繰り返すことにより、長期間に渡
って悪臭を連続的に除去することができる。白金族金属
としては白金、パラジウム、ロジウム等があり、この塩
化物、硝酸塩やアンミン錯体等の、加熱により分解して
貴金属となる貴金属塩を用いる。It is also desirable that the adsorption layer contains a noble metal salt. The noble metal salt is thermally decomposed by heating and becomes a noble metal catalyst substance. This noble metal catalyst substance is activated by applying electricity to an electric resistor and heating it to oxidize and decompose the odorous components adsorbed by zeolite or magnesium silicate in the adsorption layer and the odorous components in the vicinity of the adsorption layer by its catalytic action, resulting in no odor. As an ingredient. Since the adsorbed odorous components are removed from the zeolite or magnesium silicate heated by the heating means, the adsorption ability is restored again, and the odorous components can be adsorbed again after the heating by the heating means is stopped. In this way, the adsorption of odorous components by zeolite or magnesium silicate when not heated, and the heating regeneration of zeolite or magnesium silicate when heated and the catalytic decomposition of odorous components are alternately repeated to produce a bad odor over a long period of time. It can be removed continuously. Platinum group metals include platinum, palladium, rhodium, and the like, and a noble metal salt such as a chloride, nitrate, or ammine complex that decomposes by heating to become a noble metal is used.
【0018】(実施例1)銅イオン交換型ゼオライト
800g、無機質バインダ−として、シリカを20wt
%含むコロイダルシリカ水溶液1000g、 水500
g、を加え、ボールミルを用いて充分に混合して、スラ
リ−Aを調製した。このスラリ−Aを、外径10mm、
内径9.6mm、長さ330mmで、外表面に硼硅酸ガ
ラスで200μmの厚さのホ−ロ層を形成したステンレ
ス管のホ−ロ表面に、その中心部分280mmをスプレ
−法で塗装した後、室温で乾燥し、続いて500℃で1
時間焼成して吸着層Aを有するステンレス管とし、これ
と電気抵抗体としてニクロム線、電気絶縁体として酸化
マグネシウムとを用いて図1と同様の発熱体Aを作製し
た。なおステンレス管の両端部は低融点ガラスと耐熱性
樹脂で封口した。吸着体被覆量は0.6gであった。(Example 1) Copper ion exchange type zeolite
800 g, 20 wt% silica as an inorganic binder
% Colloidal silica aqueous solution containing 1000%, water 500
g, and thoroughly mixed using a ball mill to prepare slurry-A. This slurry-A has an outer diameter of 10 mm,
The inner surface of the hollow portion of a stainless steel tube having an inner diameter of 9.6 mm, a length of 330 mm, and a hollow layer of 200 μm thick formed of borosilicate glass on the outer surface was coated with a central portion of 280 mm by a spray method. Then dried at room temperature, followed by 1 at 500 ° C.
A stainless tube having an adsorption layer A was fired for a period of time, a nichrome wire was used as an electric resistor, and magnesium oxide was used as an electric insulator to prepare a heating element A similar to that shown in FIG. Both ends of the stainless tube were sealed with low melting glass and heat resistant resin. The adsorbent coverage was 0.6 g.
【0019】スラリ−Aと同様の組成で、銅イオン交換
型ゼオライトの代わりに、同量の珪酸マグネシウムとし
てタルクを用いてスラリ−Bを調製した。このスラリ−
Bを用いて、塗膜Aと同様にして前記ステンレス管表面
に吸着層Bを形成した発熱体Bを作成した。Slurry B was prepared with the same composition as slurry A, using talc as the same amount of magnesium silicate instead of the copper ion exchange type zeolite. This slurry
Using B, in the same manner as the coating film A, a heating element B having an adsorption layer B formed on the surface of the stainless steel tube was prepared.
【0020】さらに比較のためにスラリ−Aと同様の組
成で、銅イオン交換型ゼオライトの代わりに、同量の活
性炭粉末を用いて比較スラリ−1と、同量の鉄−アスコ
ルビン酸粉末を用いて比較スラリ−2を調製した。これ
らの比較スラリ−を用いて、吸着層Aと同様にして前記
ステンレス管表面に比較吸着層1,2を形成した比較発
熱体1,2を作成した。Further, for comparison, the same composition as Slurry A was used, but the same amount of activated carbon powder was used instead of the copper ion exchange type zeolite, and the same amount of iron-ascorbic acid powder was used as Comparative Slurry-1. Comparative Slurry-2 was prepared. These comparative slurries were used to prepare comparative heating elements 1 and 2 in which the comparative adsorption layers 1 and 2 were formed on the surface of the stainless steel tube in the same manner as the adsorption layer A.
【0021】次に各発熱体の臭気物質吸着能を、代表的
な臭気物質であるメチルメルカプタンを用いて試験し
た。試験方法は、上記種々のスラリ−を、フッソ樹脂で
内壁面を被覆した容積0.3m3の密閉ボックスに入
れ、ボックス内の空気希釈した10ppmの濃度のメチ
ルメルカプタンを吸着させ、発熱体(未通電)を入れた
直後から30分後の残存メチルメルカプタン量を測定
し、メチルメルカプタン吸着能とした。なお、ボックス
内の空気は、ファンにより実験中は撹はんした。結果を
(表1)に示した。Next, the odor substance adsorbing ability of each heating element was tested using methyl mercaptan, which is a typical odor substance. The test method was as follows. The various slurries described above were placed in a closed box having a volume of 0.3 m 3 whose inner wall surface was covered with a fluorine resin, and the air-diluted methyl mercaptan having a concentration of 10 ppm was adsorbed to the heating element (not The amount of residual methyl mercaptan was measured 30 minutes after the power was turned on and determined as the methyl mercaptan adsorption capacity. The air in the box was stirred by the fan during the experiment. The results are shown in (Table 1).
【0022】(表1)より明らかなように、従来の吸着
剤である活性炭および鉄−アスコルビン酸を用いて形成
した比較発熱体1,2に比べ、本発明のゼオライトを含
む発熱体Aおよび珪酸マグネシウムを含む発熱体Bはメ
チルメルカプタン吸着能に優れていた。またタルク以外
の珪酸マグネシウム、オルト珪酸マグネシウム、メタ珪
酸マグネシウム、四珪酸マグネシウム、三珪酸マグネシ
ウムを用いたスラリ−で形成した吸着層のメチルメルカ
プタン吸着能は、それぞれ28,27,29,29%と
良好な値が得られた。As is clear from Table 1, the heating element A containing the zeolite of the present invention and the silicic acid were compared with the comparative heating elements 1 and 2 formed by using the conventional adsorbent such as activated carbon and iron-ascorbic acid. The heating element B containing magnesium was excellent in the methyl mercaptan adsorption capacity. In addition, the adsorption capacity of methyl mercaptan of the adsorption layer formed by the slurry using magnesium silicate other than talc, magnesium orthosilicate, magnesium metasilicate, magnesium tetrasilicate, magnesium trisilicate is 28, 27, 29, 29%, respectively. A value was obtained.
【0023】なお本実施例では、ゼオライトと珪酸マグ
ネシウムをそれぞれスラリ−中に単独で添加したが、こ
れらを混合して用いてもよい。In this embodiment, zeolite and magnesium silicate were individually added to the slurry, but they may be mixed and used.
【0024】[0024]
【表1】 [Table 1]
【0025】(実施例2)実施例1で作成したスラリ−
Aにおいて、スラリ−中の銅ゼオライトを他のイオン交
換ゼオライトに置き換えたスラリ−を作成した。これら
のスラリ−を用いて実施例1の発熱体Aと同様の発熱体
形成法を用いてステンレス管上に形成した発熱体につい
て、実施例1で示したメチルメルカプタンを用いた臭気
物質吸着能試験を行った。結果を(表2)に示した。
(表2)より明らかなように、臭気物質吸着能は銅イオ
ン交換ゼオライトが最も優れており望ましい。(Example 2) The slurry prepared in Example 1
In A, a slurry was prepared in which the copper zeolite in the slurry was replaced with another ion-exchanged zeolite. With respect to the heating element formed on the stainless steel tube by using the same heating element forming method as the heating element A of Example 1 using these slurries, the odorous substance adsorption capacity test using methyl mercaptan shown in Example 1 I went. The results are shown in (Table 2).
As is clear from (Table 2), copper ion-exchanged zeolite is the most preferable in terms of its ability to adsorb odorous substances, which is desirable.
【0026】[0026]
【表2】 [Table 2]
【0027】(実施例3)実施例1で作成したスラリ−
Aにおいて、スラリ−中のコロイドダルシリカ水溶液
を、最終固形分中に含まれる無機質バインダーの量が同
じになるように、種々の無機質バインダーに置き換えた
スラリ−を調製し、実施例1と同様にステンレス管上に
吸着層を有する発熱体を作成した。これらの発熱体の膜
硬度について調べるために、JISG−3320の鉛筆
硬度試験を行った。また、それぞれの発熱体について、
実施例1と同様に、メチルメルカプタン吸着試験を行っ
た。結果を(表3)に示した。(Example 3) The slurry prepared in Example 1
In A, a slurry was prepared in which the aqueous colloidal silica solution in the slurry was replaced with various inorganic binders so that the amount of the inorganic binder contained in the final solid content was the same, and the slurry was prepared in the same manner as in Example 1. A heating element having an adsorption layer on a stainless steel tube was prepared. In order to examine the film hardness of these heating elements, a pencil hardness test of JIS G-3320 was conducted. Also, for each heating element,
A methyl mercaptan adsorption test was conducted in the same manner as in Example 1. The results are shown in (Table 3).
【0028】(表3)に示すように、アルミナゾルやベ
ントナイトを用いると発熱体硬度が低下し、Liシリケー
トや水ガラスを用いると被膜硬度は向上するものの、発
熱体が多孔質とならず臭気吸着特性が低下する。従っ
て、無機バインダーとしてコロイダルシリカを用いるこ
とが最も望ましい。As shown in (Table 3), when alumina sol or bentonite is used, the hardness of the heating element is lowered, and when Li silicate or water glass is used, the coating hardness is improved, but the heating element does not become porous and odor is absorbed. The characteristics deteriorate. Therefore, it is most desirable to use colloidal silica as the inorganic binder.
【0029】[0029]
【表3】 [Table 3]
【0030】(実施例4)実施例1で作成したスラリ−
Aにおいて、スラリ−A中の全固形成分に対して、無機
質バインダ−として、焼成によりシリカとなるコロイダ
ルシリカの含有量を0wt%〜60wt%の間の種々の
含有量とし、コロイダルシリカ増加分は銅ゼオライト量
を減じた本発明のスラリ−を作成した。これらのスラリ
−を用いて実施例1の発熱体Aと同様の発熱体形成法を
用いてステンレス管上に吸着層を形成した発熱体につい
て熱衝撃試験を行い、その密着性を調べた。熱衝撃試験
は、温度を25℃毎に設定した電気炉中に、発熱体形成
した石英ガラス板を入れ、その温度で10分間保持した
後、室温水中に投下して発熱体の剥離の有無を調べ、剥
離を起こさない最大温度を耐熱衝撃温度とした。結果を
(表4)に示す。(Example 4) The slurry prepared in Example 1
In A, with respect to all the solid components in slurry A, as an inorganic binder, the content of colloidal silica that becomes silica by firing is set to various contents between 0 wt% and 60 wt%, and the increment of colloidal silica is A slurry of the present invention having a reduced amount of copper zeolite was prepared. Using these slurries, a heat shock test was performed on a heating element in which an adsorption layer was formed on a stainless steel tube by the same heating element forming method as the heating element A of Example 1, and the adhesion was examined. In the thermal shock test, a quartz glass plate on which a heating element is formed is placed in an electric furnace set at a temperature of 25 ° C., held at that temperature for 10 minutes, and then dropped in room temperature water to check for the exfoliation of the heating element. The maximum temperature at which peeling did not occur was taken as the thermal shock resistance temperature. The results are shown in (Table 4).
【0031】(表4)より明らかなように、無機質バイ
ンダ−のシリカの含有量が40wt%を超えると発熱体の
吸着層に亀裂が入りやすくなり密着性低下を招き、また
10wt%未満ではシリカの充分な密着特性が得られな
い。したがってのシリカ含有量は吸着層の10〜40wt
%であることが望ましい。As is clear from (Table 4), if the silica content of the inorganic binder exceeds 40 wt%, the adsorption layer of the heating element is likely to crack, leading to a decrease in adhesion. Cannot obtain sufficient adhesion characteristics. Therefore, the silica content is 10-40 wt% of the adsorption layer.
It is desirable to be%.
【0032】[0032]
【表4】 [Table 4]
【0033】(実施例5)銅イオン交換型ゼオライト
800g、無機質バインダ−としてシリカを20wt%
含むコロイダルシリカ水溶液1000g、 水 500
g、塩化白金酸をPtとして6g,塩化パラジウムをP
dとして3gを加え、ボールミルを用いて充分に混合し
て、スラリ−Cを調製した。このスラリ−Cを実施例1
と同様のステンレス管表面ににスプレ−法で塗布した
後、100℃で2時間乾燥し、続いて500℃で1時間
焼成し、発熱体Cを形成した。吸着層重量は実施例1と
同量とした。(Example 5) Copper ion exchange type zeolite
800 g, 20 wt% silica as an inorganic binder
Colloidal silica aqueous solution containing 1000 g, water 500
g, chloroplatinic acid as Pt and 6 g, palladium chloride as P
Slurry-C was prepared by adding 3 g as d and thoroughly mixing with a ball mill. This slurry-C was used in Example 1.
The same stainless steel tube surface was coated by a spray method, dried at 100 ° C. for 2 hours, and then baked at 500 ° C. for 1 hour to form a heating element C. The weight of the adsorption layer was the same as in Example 1.
【0034】この発熱体Cと実施例1の発熱体Aについ
てアンモニア触媒酸化脱臭性能を調べた。触媒酸化脱臭
性能試験は、フッソ樹脂で内壁面を被覆した容積0.5
m3の密閉ボックスに発熱体を入れ、発熱体の電気抵抗
体に100V電圧で通電することによって発熱体の温度
を400℃とする。次にボックス内アンモニア濃度が1
0ppmとなる量のアンモニアを入れ、活性化した発熱
体中の白金属触媒により酸化分解させ、30分後のボッ
クス内アンモニアの酸化分解率(%)を測定した。結果
を(表5)に示した。(表5)より明らかなように、発
熱体Aに比べ貴金属触媒を含む発熱体Cに触媒酸化脱臭
性能が得られ望ましい。The ammonia-catalyzed oxidative deodorization performance of the heating element C and the heating element A of Example 1 was examined. The catalytic oxidative deodorization performance test was conducted with a volume of 0.5 on which the inner wall surface was coated with fluorine resin
The heating element is placed in a closed box of m 3 and the temperature of the heating element is set to 400 ° C. by energizing the electric resistor of the heating element with a voltage of 100V. Next, the ammonia concentration in the box is 1
An amount of 0 ppm of ammonia was added, and the white metal catalyst in the activated heating element was used for oxidative decomposition, and after 30 minutes, the oxidative decomposition rate (%) of ammonia in the box was measured. The results are shown in (Table 5). As is clear from (Table 5), the heating element C containing a noble metal catalyst is more desirable than the heating element A because the catalytic oxidative deodorizing performance can be obtained.
【0035】[0035]
【表5】 [Table 5]
【0036】(実施例6)実施例1のスラリ−Aを、外
径10mm、内径9.6mm、長さ330mmで、外表
面にホ−ロ層のないステンレス管表面に、その中心部分
280mmをスプレ−法で塗装した後、室温で乾燥し、
続いて500℃で1時間焼成して吸着層Aを有するステ
ンレス管とし、これと電気抵抗体としてニクロム線、電
気絶縁体として酸化マグネシウムとを用いて発熱体Aと
同様の比較発熱体3を作製した。(Embodiment 6) The slurry A of Embodiment 1 has an outer diameter of 10 mm, an inner diameter of 9.6 mm, a length of 330 mm, and a central portion of 280 mm on the surface of a stainless steel tube having no hollow layer on the outer surface. After painting by spray method, dry at room temperature,
Successively, a stainless tube having an adsorption layer A was fired at 500 ° C. for 1 hour, a nichrome wire was used as an electric resistor, and magnesium oxide was used as an electric insulator to prepare a comparative heating element 3 similar to the heating element A. did.
【0037】この発熱体Aと比較発熱体3について実施
例4と同様の熱衝撃試験を行い、その密着性を調べた。
結果を(表6)に示した。(表6)より明らかなよう
に、金属管上にホ−ロ層を設けることにより吸着層の良
好な密着性(耐熱衝撃性)が得られ望ましい。The same heat shock test as in Example 4 was conducted on the heating element A and the comparative heating element 3 to examine the adhesion.
The results are shown in (Table 6). As is clear from (Table 6), it is desirable to provide a hollow layer on the metal tube so that good adhesion (heat shock resistance) of the adsorption layer can be obtained.
【0038】[0038]
【表6】 [Table 6]
【0039】[0039]
【発明の効果】以上のように本発明においては、発熱体
が置かれている雰囲気の臭気やタバコの煙等の有害ガス
は、発熱体表面に形成した吸着層により吸着、除去され
る。このため発熱体を使用する際に、快適な加熱環境を
提供することができる。As described above, in the present invention, the odor of the atmosphere in which the heating element is placed and harmful gases such as cigarette smoke are adsorbed and removed by the adsorption layer formed on the surface of the heating element. Therefore, a comfortable heating environment can be provided when the heating element is used.
【図1】本発明の一実施例の発熱体の構成図FIG. 1 is a configuration diagram of a heating element according to an embodiment of the present invention.
1 金属管状体 2 ホ−ロ層 3 吸着層 4 電気抵抗体 5 電気絶縁体 6 空気流 7 封口部 1 Metal Tubular Body 2 Hollow Layer 3 Adsorption Layer 4 Electrical Resistor 5 Electrical Insulator 6 Air Flow 7 Sealing Portion
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山出 恭枝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyoe Yamade 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (3)
したホ−ロ層と、前記ホ−ロ層表面に形成したゼオライ
トあるいは珪酸マグネシウムの少なくとも一種と、無機
質バインダ−からなる吸着層と、前記金属管状体に内蔵
した電気抵抗体を具備する発熱体。1. A metal tubular body, a hollow layer formed on the surface of the metallic tubular body, an adsorption layer made of at least one of zeolite or magnesium silicate formed on the surface of the hollow layer, and an inorganic binder. A heating element comprising an electric resistor incorporated in the metal tubular body.
項1記載の発熱体。2. The heating element according to claim 1, wherein the zeolite is a copper-containing zeolite.
または2記載の発熱体。3. The platinum group metal catalyst is contained in the adsorption layer.
Or the heating element described in 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25624491A JPH0594866A (en) | 1991-10-03 | 1991-10-03 | Heat generating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25624491A JPH0594866A (en) | 1991-10-03 | 1991-10-03 | Heat generating |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0594866A true JPH0594866A (en) | 1993-04-16 |
Family
ID=17289943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25624491A Pending JPH0594866A (en) | 1991-10-03 | 1991-10-03 | Heat generating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0594866A (en) |
-
1991
- 1991-10-03 JP JP25624491A patent/JPH0594866A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0130128B1 (en) | Heating element for deodorization | |
KR960007587B1 (en) | Catalytic bodies and the process for producing the same | |
KR950008544B1 (en) | Catalytic heat generator | |
JPH0594866A (en) | Heat generating | |
JPH0598185A (en) | Coating material | |
JP2932456B2 (en) | Heating element | |
JPH05146683A (en) | Catalyst and production thereof | |
TW443073B (en) | Adsorption, decomposition and deodorization element | |
JPH0596178A (en) | Heating element | |
JPH0598184A (en) | Coating material | |
JPH07313842A (en) | Deodorizing device | |
JPH05133530A (en) | Heating cooker | |
JPH10246512A (en) | Hot air heater with deodorizing function | |
JPH0924272A (en) | Self-regeneration type adsorbent | |
JPH09306644A (en) | Heating element | |
JP3521091B2 (en) | Deodorant | |
JPH0521137A (en) | Heating element | |
JPH0521143A (en) | Heating element | |
JP2529480B2 (en) | Method for producing deodorizing heating element | |
JPH0838584A (en) | Deodorizing apparatus | |
JPH02213080A (en) | Heating device and manufacture thereof | |
JPH0657172A (en) | Coating material | |
JP2532722B2 (en) | Decompressor | |
JPH05137940A (en) | Dryer | |
JPH04281177A (en) | Refrigerator |