JPH09306644A - Heating element - Google Patents

Heating element

Info

Publication number
JPH09306644A
JPH09306644A JP11722096A JP11722096A JPH09306644A JP H09306644 A JPH09306644 A JP H09306644A JP 11722096 A JP11722096 A JP 11722096A JP 11722096 A JP11722096 A JP 11722096A JP H09306644 A JPH09306644 A JP H09306644A
Authority
JP
Japan
Prior art keywords
heating element
coating layer
catalyst coating
element according
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11722096A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Ono
之良 小野
Hidenobu Wakita
英延 脇田
Yasuhiro Fujii
康浩 藤井
Kimiyasu Honda
公康 本田
Kunio Kimura
邦夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11722096A priority Critical patent/JPH09306644A/en
Publication of JPH09306644A publication Critical patent/JPH09306644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a honeycomb heating element removing harmful, uncomfortable factors and capable of quickly, efficiently removing them. SOLUTION: A heating element comprises at least almost a quadrangular pillar- or plate-shaped SiC honeycomb ceramic resistor 1, a conductive electrode 2 made of at least one selected from aluminum, nickel, copper, brass, and silver, formed on a pair of facing outer wall surfaces of the honeycomb ceramic resistor 1, and a covered catalyst layer 3 formed by covering the surface of the honeycomb ceramic resistor 1, and a calorie output from a heater is varied without use of a cooling means, the removal of harmful, uncomfortable factors is enhanced, and deodorization is quickly, efficiently performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、暖房、給湯、乾
燥、調理、冷蔵、空調、焼却用機器等において加熱およ
び空気浄化、特に脱臭に利用される発熱体に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element used for heating and air purification, especially for deodorization in equipment for heating, hot water supply, drying, cooking, refrigerating, air conditioning, incineration and the like.

【0002】[0002]

【従来の技術】触媒被覆層を形成した発熱体としては、
特開平4-281177に示されるような石英管ヒータへの触媒
被覆層を形成した発熱体や、金属ハニカム抵抗体に触媒
被覆層を形成した発熱体が知られている。
2. Description of the Related Art As a heating element having a catalyst coating layer,
A heating element having a catalyst coating layer formed on a quartz tube heater as shown in JP-A-4-281177 and a heating element having a catalyst coating layer formed on a metal honeycomb resistor are known.

【0003】[0003]

【発明が解決しようとする課題】石英管ヒータへの触媒
被覆層形成による構成では、空気との接触面積が狭いた
め、空気に含まれる有害、不快成分の一部が触媒被覆層
に接触せずに通過することから、有害、不快成分の目的
とする低減量を達成するために比較的長い時間を必要と
した。また内蔵する電気抵抗体が金属であるため、その
腐食による断線の危険性も有している。また金属ハニカ
ム状発熱体は、触媒被覆層の密着性が不十分であり耐久
性に問題があった。
In the structure in which the catalyst coating layer is formed on the quartz tube heater, since the contact area with the air is small, some of harmful and unpleasant components contained in the air do not come into contact with the catalyst coating layer. It took a relatively long time to achieve the desired reduction of harmful and unpleasant ingredients. Further, since the built-in electric resistor is made of metal, there is a risk of disconnection due to its corrosion. Further, the metal honeycomb-shaped heating element has a problem in durability due to insufficient adhesion of the catalyst coating layer.

【0004】本発明は上記課題を解決するもので、有
害、不快成分の除去能が高く、かつ短時間で効率的な除
去ができるハニカム状発熱体を提供することを目的とし
ている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a honeycomb heating element which has a high ability to remove harmful and unpleasant components and which can be efficiently removed in a short time.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、少なくとも、実質上四角柱状あるいは四
角板状かつハニカム状セラミック抵抗体と、前記ハニカ
ム体の対向する一対の外周面に形成した例えばアルミニ
ウム、ニッケル、銅、真鍮、銀より選択される少なくと
も1種よりなる導電極からなり、かつハニカム状セラミ
ック抵抗体表面を被覆した触被覆媒層から構成したもの
である。
In order to achieve the above-mentioned object, the present invention provides at least a substantially rectangular prismatic or square plate-shaped and honeycomb-shaped ceramic resistor, and a pair of opposing outer peripheral surfaces of the honeycomb body. The contact coating medium layer is formed of a conductive electrode made of at least one selected from aluminum, nickel, copper, brass, and silver, and formed on the surface of the honeycomb-shaped ceramic resistor.

【0006】本発明のセラミック抵抗体はSiC、PTC
セラミックを用いることができる。このうちPTCセラ
ミックはその素材が固有するキュリー温度で制御される
ため、送風などのヒータの冷却手段を用いなければヒー
タにほとんど電流が流れず、ヒータから出力できる熱量
が非常に少なくなるのに対し、NTC特性を有するSiC製ハ
ニカム状抵抗体は印加する電力を変化させることによ
り、冷却手段の有無に関わらず発熱体からの熱量出力を
変化させることができることから望ましい。
The ceramic resistor of the present invention is made of SiC or PTC.
Ceramic can be used. Of these, PTC ceramics are controlled by the Curie temperature that is unique to the material, so if a heater cooling means such as air blowing is not used, almost no current flows through the heater, and the amount of heat that can be output from the heater is extremely small. A honeycomb resistor made of SiC having NTC characteristics is desirable because the amount of heat output from the heating element can be changed by changing the applied power regardless of the presence of cooling means.

【0007】本発明の電極材料としてはアルミニウム、
ニッケル、銅、真鍮、銀−Pt、銀−Pd、Ptを用い
ることができ、目的に応じてこれらのうち複数の電極材
料を合わせて用いてもよい。また、電極形成方法も種々
の方法を用いることができる。例えば、電極材料のペー
ストを塗布後焼き付けたり、直接金属のスパッタ、蒸着
や溶射により塗布してもよい。このうち溶射によって電
極を形成することが最も電極とセラミック抵抗体との接
触抵抗を少なくできることから望ましい。
Aluminum is used as the electrode material of the present invention.
Nickel, copper, brass, silver-Pt, silver-Pd, and Pt can be used, and a plurality of electrode materials among them may be used together depending on the purpose. Moreover, various methods can be used as the electrode forming method. For example, the electrode material paste may be applied and then baked, or may be directly applied by metal sputtering, vapor deposition, or thermal spraying. Of these, it is preferable to form the electrode by thermal spraying because the contact resistance between the electrode and the ceramic resistor can be minimized.

【0008】さらに、本発明では、導電極が電極形成壁
面の両側面にはみ出して構成されることが望ましい。こ
れは、ハニカム状発熱体側面の温度低下を防止でき、均
一な発熱温度分布を実現できるからである。電極形成壁
面の両側面にはみ出して形成された導電極部は端面より
1mm以上5mm以下であることが望ましい。これは前
記はみ出し電極の範囲においてハニカム状発熱体の非常
に均一な温度分布が得られるためである。
Further, in the present invention, it is desirable that the conductive electrode is formed so as to protrude on both side surfaces of the wall surface on which the electrode is formed. This is because it is possible to prevent a temperature decrease on the side surface of the honeycomb heating element and realize a uniform heat generation temperature distribution. It is desirable that the conductive electrode portion formed on both side surfaces of the electrode forming wall surface is 1 mm or more and 5 mm or less from the end surface. This is because a very uniform temperature distribution of the honeycomb heating element can be obtained in the range of the protruding electrode.

【0009】本発明の発熱体表面に触媒被覆層を形成す
ることにより、発熱体の使用環境に存在する有害ガス
や、不快ガスの除去が行える。特に非加熱時には臭気を
吸着し、加熱時には酸化分解する機能を有する触媒材料
を用いれば、発熱体の非加熱時にも前記ガス成分除去が
可能となり望ましい。セラミック抵抗体表面に形成する
触媒被覆層は、少なくとも活性アルミナとゼオライトと
白金族金属を含み、これらを無機バインダーで結合させ
て用いるのが望ましい。活性アルミナとゼオライトと白
金族金属を同時に用いることにより、活性アルミナやゼ
オライトを単独で用いるよりも酸性の臭気成分に対する
吸着特性を向上させる相乗効果を得ることができる。
By forming the catalyst coating layer on the surface of the heating element of the present invention, harmful gas and unpleasant gas existing in the environment where the heating element is used can be removed. In particular, it is desirable to use a catalyst material having a function of adsorbing an odor when not heated and oxidizing and decomposing when heated so that the gas component can be removed even when the heating element is not heated. The catalyst coating layer formed on the surface of the ceramic resistor contains at least activated alumina, zeolite and platinum group metal, and it is desirable to use them by binding them with an inorganic binder. By using activated alumina, zeolite and platinum group metal at the same time, it is possible to obtain a synergistic effect of improving the adsorption characteristics for acidic odor components as compared with the case of using activated alumina or zeolite alone.

【0010】金属抵抗体を用いた場合被覆した触媒被覆
層の触媒酸化作用により金属腐食が進行するのに対し、
本発明のセラミック抵抗体では通常起こらない。しかし
高温では触媒被覆層によるセラミック抵抗体の酸化反応
が進行し始め、抵抗値が変化するため、触媒被覆層とハ
ニカム状発熱体との間に触媒被覆層とハニカム状発熱体
との反応を防止する酸化反応防止層を設けることが望ま
しい。また、導電極は金属であるため触媒被覆層と直接
接触するのは前記腐食の問題から好ましくない。本発明
では、触媒被覆層を導電極とを隔絶して形成するか、触
媒被覆層が導電極のの上にまで設ける場合は、触媒被覆
層と導電極の間に酸化反応防止層を設けることが望まし
い。
Where a metal resistor is used, metal corrosion proceeds due to the catalytic oxidation action of the coated catalyst coating layer.
This does not normally occur with the ceramic resistor of the present invention. However, at high temperatures, the oxidation reaction of the ceramic resistor by the catalyst coating layer begins to proceed and the resistance value changes, so the reaction between the catalyst coating layer and the honeycomb heating element is prevented between the catalyst coating layer and the honeycomb heating element. It is desirable to provide an oxidation reaction preventive layer. Further, since the conductive electrode is made of metal, it is not preferable to directly contact with the catalyst coating layer because of the problem of corrosion. In the present invention, the catalyst coating layer is formed so as to be separated from the conductive electrode, or when the catalyst coating layer is provided even on the conductive electrode, an oxidation reaction preventive layer is provided between the catalyst coating layer and the conductive electrode. Is desirable.

【0011】酸化反応防止層に用いる材料としては、ガ
ラス、シリカ、アルミナ、チタニア、チタノカーボシラ
ン、ペルヒドロポリシラザンがあり、これらの1種以上
を単層であるいは複層で用いる。これらの材料のうち酸
化反応防止層とセラミック抵抗体および触媒被覆層との
密着性の観点から、シリカおよび、チタノカーボシラン
が優れており望ましい。
Materials used for the oxidation-preventing layer include glass, silica, alumina, titania, titanocarbosilane, and perhydropolysilazane, and one or more of these may be used in a single layer or multiple layers. Among these materials, silica and titanocarbosilane are excellent and desirable from the viewpoint of adhesion between the oxidation reaction preventing layer and the ceramic resistor and the catalyst coating layer.

【0012】本発明の触媒被覆層に用いるアルミナは、
β−,γ−,δ−,θ−,η−,ρ−,χ−アルミナな
どの準安定アルミナである。なお、アルミナ表面に希土
類酸化物などの助触媒を担持させることにより、さらに
活性の上昇が期待できる。
Alumina used in the catalyst coating layer of the present invention is
It is a metastable alumina such as β-, γ-, δ-, θ-, η-, ρ-, and χ-alumina. Further, by supporting a promoter such as a rare earth oxide on the surface of alumina, further increase in activity can be expected.

【0013】さらに、無機バインダーとして、シリカが
最も結合剤として優れており、触媒特性を低下させるこ
となく、セラミック抵抗体表面に触媒被覆層を形成した
ときに抵抗体から剥離しにくい被膜を形成することがで
きる。
Further, as the inorganic binder, silica is the most excellent as a binder and forms a film which is not easily peeled off from the resistor when the catalyst coating layer is formed on the surface of the ceramic resistor without deteriorating the catalytic properties. be able to.

【0014】本発明のシリカの含有量は触媒被覆層中に
10〜40wt%であることが望ましい。シリカの含有
量が40wt%を超えると触媒被覆層中に亀裂が入りや
すくなり密着性低下を招き易い。また10wt%未満で
はシリカの十分な密着性向上効果が得られない。
The content of silica of the present invention is preferably 10 to 40 wt% in the catalyst coating layer. When the content of silica exceeds 40 wt%, cracks are likely to be formed in the catalyst coating layer and the adhesion is likely to be deteriorated. On the other hand, if it is less than 10 wt%, a sufficient effect of improving adhesion of silica cannot be obtained.

【0015】本発明に用いる貴金属としては、Pt,P
d,Rh,Ruがある。これらのうち他の貴金属に比べ
Ptは臭気吸着能力が優れることから望ましく、また臭
気の酸化分解能力からはPtとPdの両方を用いること
がさらに望ましい。これは、PtやPdの酸化分解力が
RhやIrに比べて高く、PtとPdの両方を用いるこ
とによりさらに高活性となるためである。さらに、Ru
を用いた場合、高温での使用により、Ruが揮散し有害
物質となる。
Noble metals used in the present invention include Pt and P
There are d, Rh, and Ru. Of these, Pt is preferable because it has an excellent odor adsorption capacity as compared with other noble metals, and it is more preferable to use both Pt and Pd because of the oxidative decomposition ability of odor. This is because the oxidative decomposition power of Pt or Pd is higher than that of Rh or Ir, and the use of both Pt and Pd further enhances the activity. In addition, Ru
When used at high temperatures, Ru is volatilized and becomes a harmful substance.

【0016】本発明の触媒被覆層に酸化銅を含むことが
望ましい。これは酸化銅を触媒被覆層中で白金族金属と
共存させることにより白金族金属の臭気吸着性能が高温
で低下するのを防止できるからである。特に酸化銅を、
貴金属と酸化銅を担持した活性アルミナの状態で用いる
のが最も効果的である。
It is desirable that the catalyst coating layer of the present invention contains copper oxide. This is because coexistence of copper oxide with the platinum group metal in the catalyst coating layer can prevent deterioration of the odor adsorption performance of the platinum group metal at high temperatures. Especially copper oxide,
It is most effective to use it in the state of activated alumina carrying a noble metal and copper oxide.

【0017】本発明のゼオライトが少なくともペンタシ
ル型ゼオライトを含むことが望ましい。これはアルデヒ
ドやジメチルジスルフィドなどの難吸着臭気の吸着性能
の向上がはかれるからである。 ペンタシル型ゼオライ
トのうち特にH−ZSM5,およびNa−ZSM5は前
記難吸着臭気の吸着性能が特に高く望ましい。
It is desirable that the zeolite of the present invention contains at least a pentasil-type zeolite. This is because the adsorption performance of odors that are difficult to adsorb such as aldehyde and dimethyl disulfide can be improved. Of the pentasil-type zeolites, H-ZSM5 and Na-ZSM5 are particularly preferable because they have a particularly high adsorption performance for the hardly adsorbed odor.

【0018】また本発明のゼオライトが少なくともモル
デナイトあるいはY型ゼオライトを含むことが望まし
い。これはモルデナイトあるいはY型ゼオライトを含む
ことにより、触媒被覆層のアミン類の臭気に対する吸着
容量を向上することができるからである。
It is desirable that the zeolite of the present invention contains at least mordenite or Y-type zeolite. This is because the adsorption capacity for the odor of amines in the catalyst coating layer can be improved by including mordenite or Y-type zeolite.

【0019】ゼオライトが少なくとも銅イオン交換ゼオ
ライトあるいは鉄イオン交換ゼオライトを含むことが望
ましい。これは吸着したアミン類の臭気を触媒酸化分解
するときに触媒被覆層中に銅イオン交換ゼオライトある
いは鉄イオン交換ゼオライトを含むことにより窒素酸化
物生成を抑え、安全な窒素への高い変換性能が得られる
からである。
It is desirable that the zeolite contains at least copper ion exchanged zeolite or iron ion exchanged zeolite. This is because when the catalytic oxidative decomposition of odors of the adsorbed amines is carried out, the catalyst coating layer contains copper ion-exchanged zeolite or iron ion-exchanged zeolite to suppress the production of nitrogen oxides and to obtain a high level of safe conversion to nitrogen. Because it will be done.

【0020】本発明の触媒被覆層中に酸化セリウムを含
むことが望ましい。酸化セリウムを触媒被覆層中に含む
ことにより、炭化水素化合物に対する触媒酸化分解活性
を向上することができる。
It is desirable to include cerium oxide in the catalyst coating layer of the present invention. By including cerium oxide in the catalyst coating layer, the catalytic oxidative decomposition activity for hydrocarbon compounds can be improved.

【0021】本発明の酸化セリウム含有量は触媒被覆層
中に2〜15wt%であることが望ましい。酸化セリウ
ムの含有量が15wt%を超えると触媒の前記酸化分解
特性が低下し始め、また2wt%未満では酸化セリウム
の十分な添加効果が得られない。
The cerium oxide content of the present invention is preferably 2 to 15 wt% in the catalyst coating layer. When the content of cerium oxide exceeds 15 wt%, the oxidative decomposition characteristics of the catalyst begin to decrease, and when the content is less than 2 wt%, a sufficient effect of adding cerium oxide cannot be obtained.

【0022】本発明の触媒被覆層中に酸化バリウムを含
むことが望ましい。酸化バリウムを触媒被覆層中に含む
ことにより、触媒の酸化分解特性を向上することができ
る。
It is desirable to include barium oxide in the catalyst coating layer of the present invention. By including barium oxide in the catalyst coating layer, the oxidative decomposition characteristics of the catalyst can be improved.

【0023】本発明の酸化バリウムの含有量は触媒被覆
層中に0.5〜5wt%であることが望ましい。酸化バ
リウムの含有量が5wt%を超えると触媒被覆層の密着
性が低下し、また0.5wt%未満では酸化バリウムの
十分な添加効果が得られない。
The content of barium oxide of the present invention is preferably 0.5 to 5 wt% in the catalyst coating layer. If the content of barium oxide exceeds 5 wt%, the adhesion of the catalyst coating layer will deteriorate, and if it is less than 0.5 wt%, a sufficient effect of adding barium oxide cannot be obtained.

【0024】また本発明の酸化バリウムの替わりに炭酸
バリウムを用いても同様の添加効果が得られる。望まし
い炭酸バリウムの添加量は、酸化バリウム量に換算して
0.5〜5wt%である。
The same effect can be obtained by using barium carbonate instead of barium oxide of the present invention. The desirable addition amount of barium carbonate is 0.5 to 5 wt% in terms of barium oxide amount.

【0025】本発明の触媒被覆層形成方法は種々の方法
を用いることができる。例えば、スプレー塗装、ディッ
プ塗装、静電塗装法などがある。
Various methods can be used for the method of forming the catalyst coating layer of the present invention. For example, there are spray coating, dip coating, electrostatic coating method and the like.

【0026】次に、本発明の作用を中心に説明する。Next, the operation of the present invention will be mainly described.

【0027】本発明はハニカム状セラミック抵抗体表面
に触媒被覆層を設けてあるために、ハニカム状セラミッ
ク抵抗体を通電加熱するとともに、人体または被加熱物
だけでなく触媒被覆層も加熱することになる。ここで触
媒被覆層は抵抗体の周囲を覆っているために、抵抗体か
ら伝熱により熱を効率よく吸収し、触媒被覆層は短時間
で触媒の活性化温度まで加熱される。発熱体近傍の空気
が、活性化温度以上に加熱された触媒に接触する際に、
触媒作用により空気中の臭気成分、例えば、アンモニア
や脂肪酸が、触媒作用により酸化、浄化される。
In the present invention, since the catalyst coating layer is provided on the surface of the honeycomb ceramic resistor, the honeycomb ceramic resistor is electrically heated, and at the same time, not only the human body or the object to be heated but also the catalyst coating layer is heated. Become. Here, since the catalyst coating layer covers the periphery of the resistor, heat is efficiently absorbed from the resistor by heat transfer, and the catalyst coating layer is heated to the activation temperature of the catalyst in a short time. When the air near the heating element comes into contact with the catalyst heated above the activation temperature,
Odorous components in the air, such as ammonia and fatty acids, are catalytically oxidized and purified by the catalytic action.

【0028】さらに、触媒被覆層に、吸着特性に優れる
ゼオライトや貴金属を含有させることにより、電気抵抗
体に通電していないとき臭気物質の吸着を行なうことが
可能である。この場合、ゼオライトや貴金属の吸着能力
が、飽和に達した時点で、セラミック抵抗体に通電する
ことにより、吸着された臭気成分の触媒による酸化分解
とゼオライトの再生を行なうことができる。
Furthermore, by incorporating zeolite or a noble metal having excellent adsorption properties into the catalyst coating layer, it is possible to adsorb odorous substances when the electric resistor is not energized. In this case, when the adsorption capacity of zeolite or noble metal reaches saturation, by energizing the ceramic resistor, oxidative decomposition of the adsorbed odorous component by catalyst and regeneration of zeolite can be performed.

【0029】以上のように、通常は室温にて臭気物質を
吸着し、発熱体を間欠的に通電することにより、長期間
にわたり脱臭能力が維持できる。
As described above, the deodorizing ability can be maintained for a long period of time by normally adsorbing the odorous substance at room temperature and intermittently energizing the heating element.

【0030】上記作用は発熱体近傍に生じる自然対流の
場合について説明したが、ファンなどで強制的に発熱体
に空気を供給した場合、より顕著な効果が得られる。
The above operation has been described for the case of natural convection that occurs in the vicinity of the heating element, but a more remarkable effect can be obtained when the air is forcibly supplied to the heating element by a fan or the like.

【0031】[0031]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて図1を参照しながら説明する。図1で1はセラミッ
クハニカム状抵抗体としてのSiCハニカム、2は導電
極、3は触媒被覆層、4は酸化反応防止層、5は空気流
を示している。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, 1 is a SiC honeycomb as a ceramic honeycomb resistor, 2 is a conductive electrode, 3 is a catalyst coating layer, 4 is an oxidation reaction preventing layer, and 5 is an air flow.

【0032】導電極2に通電すると、SiCハニカム1が
発熱し印加電力に相当する温度で安定化する。印加電力
量を上げてSiCハニカム1を高温化させてもSiCハニカム
1の表面には酸化反応防止層4が設けてあるため抵抗値
変化が抑制される。
When the conductive electrode 2 is energized, the SiC honeycomb 1 generates heat and is stabilized at a temperature corresponding to the applied power. Even if the amount of applied electric power is increased to raise the temperature of the SiC honeycomb 1, the resistance change is suppressed because the oxidation reaction preventive layer 4 is provided on the surface of the SiC honeycomb 1.

【0033】SiCハニカム1に未通電時には、室内の臭
気成分を、通常は触媒被覆層3中のゼオライトおよび貴
金属により吸着脱臭する。そして、触媒被覆層3の臭気
吸着能力の限界まで臭気成分を吸着する前に、SiCハニ
カム1に通電すると、SiCハニカム1から外周を覆うよ
うに設置してある触媒被覆層3に熱が伝達され、加熱が
効率よく行われ、触媒は、その活性化温度まで短時間で
加熱することができる。触媒被覆層3に吸着した臭気成
分は、この活性化した触媒により酸化浄化される。 さ
らに、発熱体は近傍の空気も加熱するために発熱体近傍
に対流として空気流5が生じる。そして、この空気流5
が加熱により活性化温度まで加熱された触媒被覆層3に
接触、あるいは被覆層内に拡散する際に、空気流5に含
まれる臭気や有害成分、例えば、一酸化炭素(以下CO
と記す)やアンモニアが、触媒作用により浄化される。
When the SiC honeycomb 1 is not energized, the odorous components in the room are usually adsorbed and deodorized by the zeolite and the noble metal in the catalyst coating layer 3. When the SiC honeycomb 1 is energized before adsorbing the odorous components to the limit of the odor adsorption capacity of the catalyst coating layer 3, heat is transferred from the SiC honeycomb 1 to the catalyst coating layer 3 installed so as to cover the outer periphery. The heating is performed efficiently, and the catalyst can be heated to its activation temperature in a short time. The odorous components adsorbed on the catalyst coating layer 3 are oxidized and purified by the activated catalyst. Further, since the heating element also heats the air in the vicinity thereof, an air flow 5 is generated as convection near the heating element. And this air flow 5
When it comes into contact with the catalyst coating layer 3 heated to the activation temperature by heating or diffuses into the coating layer, odors and harmful components contained in the air stream 5, such as carbon monoxide (hereinafter CO 2
And ammonia are purified by the catalytic action.

【0034】したがって、発熱体が置かれている雰囲気
に臭気やタバコの煙、CO等の有害ガスが漂っていて
も、加熱あるいは使用の際に浄化され、快適な環境をつ
くることができる。
Therefore, even if odors, cigarette smoke, and harmful gases such as CO drift in the atmosphere in which the heating element is placed, they can be purified during heating or use, and a comfortable environment can be created.

【0035】[0035]

【実施例】以下に更に具体的な本発明の実施例を説明す
る。 <実施例1>縦100mm、横100mm,厚さ10m
mでセル密度100セル/in2の、SiCハニカム状抵抗体
を用い、これに図1に示すような構成で、導電極として
銅電極を溶射により形成した。次にシリカゾルを用いて
抵抗体に銅電極部分を除いて厚さ約60μmのシリカ質
の酸化反応防止層を形成した本発明の抵抗体Aと、酸化
反応防止層を形成してない抵抗体Bを調製した。
EXAMPLE A more specific example of the present invention will be described below. <Example 1> Length 100 mm, width 100 mm, thickness 10 m
A SiC honeycomb-shaped resistor having a cell density of 100 cells / in 2 at m was used, and a copper electrode was formed by thermal spraying as a conductive electrode in the configuration as shown in FIG. Next, a resistor A of the present invention in which a siliceous oxidation-preventing layer having a thickness of about 60 μm was formed on the resistor by using silica sol except for the copper electrode portion, and a resistor B in which the oxidation-preventing layer was not formed Was prepared.

【0036】γ−アルミナ400gと、無機バインダ−
としてアルミナ含有率10wt%のコロイダルアルミナ1000
g、銅イオン交換A型ゼオライト 500g、水 15
00g、塩化白金酸をPtとして30g,塩化パラジウ
ムをPdとして15gおよび適量の塩酸を加え、ボール
ミルを用いて充分に混合して、スラリーAを調製した。
このスラリーAを抵抗体A,抵抗体Bにそれぞれ塗布
し触媒被覆層を形成した発熱体Aと発熱体Bを調製し
た。触媒被覆量はどちらも5.0gであった。
400 g of γ-alumina and an inorganic binder
As colloidal alumina 1000 with an alumina content of 10 wt%
g, copper ion exchanged A-type zeolite 500 g, water 15
A slurry A was prepared by adding 00 g, 30 g of chloroplatinic acid as Pt, 30 g of palladium chloride as Pd and 15 g and an appropriate amount of hydrochloric acid, and thoroughly mixing with a ball mill.
The heating element A and the heating element B were prepared by applying the slurry A to the resistor A and the resistor B, respectively, to form a catalyst coating layer. The catalyst coating amounts were both 5.0 g.

【0037】さらに電気抵抗体としてニクロム線、およ
び碍子を有する外径10mm、内径9mm、長さ15c
mの石英管5本1組と、縦100mm、横100mm,
厚さ10mmでセル密度100セル/in2のハニカム状SU
S430抵抗体に、スラリーAを用いそれぞれ5.0gの触
媒被覆層を形成した比較発熱体A,Bを作成した。
Further, a nichrome wire as an electric resistor and an insulator having an outer diameter of 10 mm, an inner diameter of 9 mm and a length of 15 c.
One set of 5 m quartz tubes, length 100 mm, width 100 mm,
Honeycomb SU with a thickness of 10 mm and a cell density of 100 cells / in 2
Comparative heating elements A and B in which 5.0 g of the catalyst coating layer was formed on each of the S430 resistors using the slurry A were prepared.

【0038】これらの発熱体についてメルカプタン酸化
浄化試験および耐久試験を行った。メチルメルカプタン
酸化浄化試験は、0.5m3の立方体のフッソ樹脂製の
容器の中に発熱体を置き、ファンで50l/minの流
量の容器内空気を発熱体に送風しながら、発熱体の中心
の外表面の温度が450℃となるよう通電したところ
へ、濃度が10ppmになるようにメチルメルカプタン
を容器に注入し、通電20分後の容器内メチルメルカプ
タン濃度の変化を調べることにより行った。メチルメル
カプタン濃度の経時変化はガスクロマトグラフにより調
べた。耐久試験は、の40℃空気中で、発熱体の中心の
外表面の温度が450℃となるよう通電し、その温度を
10分保った後、通電をやめ20分冷却した後、再び通
電するという通電サイクルを1000回繰り返した後の
触媒被覆層の異常の有無を調べた。結果を(表1)に示
した。
A mercaptan oxidation purification test and a durability test were performed on these heating elements. In the methyl mercaptan oxidation purification test, the heating element is placed in a cubic resin container made of fluorine resin of 0.5 m 3 and the center of the heating element is blown by blowing air inside the container at a flow rate of 50 l / min to the heating element. It was carried out by injecting methyl mercaptan into the container so that the concentration became 10 ppm to the place where electricity was applied so that the temperature of the outer surface of was about 450 ° C., and checking the change in the concentration of methyl mercaptan in the container after 20 minutes of electricity application. The change with time of the methyl mercaptan concentration was examined by gas chromatography. The endurance test is conducted by energizing the temperature of the outer surface of the center of the heating element to 450 ° C. in 40 ° C. air, maintaining the temperature for 10 minutes, stopping energizing, cooling for 20 minutes, and then energizing again. After repeating the energization cycle of 1000 times, the presence or absence of abnormality in the catalyst coating layer was examined. The results are shown in (Table 1).

【0039】[0039]

【表1】 [Table 1]

【0040】(表1)より明らかなように、 石英管発
熱体である比較発熱体Aや金属発熱体である比較発熱体
Bに対し、本発明の発熱体A、Bはメルカプタン酸化浄
化性および耐久性に優れていた。さらに相対湿度90%
の空気中での前記耐久試験と同様の試験では、発熱体
あ、B,比較発熱体Aが異常が見られなかったのに対
し、金属発熱体である比較発熱体Bには触媒被覆層剥離
だけでなく、著しい発錆が見られた。
As is clear from (Table 1), the heating elements A and B of the present invention have a mercaptan oxidation purification property and a comparative heating element A which is a quartz tube heating element and a comparative heating element B which is a metal heating element. It had excellent durability. 90% relative humidity
In the same test as the above durability test in air, no abnormalities were found in the heating elements A and B and the comparative heating element A, whereas the catalyst coating layer peeled off on the comparative heating element B which is a metal heating element. Not only that, remarkable rusting was observed.

【0041】次に発熱体A,Bを、ファンで50l/m
inの流量の容器内空気を発熱体に送風しながら、フッ
ソ樹脂で内壁面を被覆した容積0.5m3の密閉ボック
スに入れ、ボックス内の空気希釈した10ppmの濃度
のメチルメルカプタンを未通電状態で吸着させ、発熱体
を入れた直後から30分後の残存メチルメルカプタン量
を測定した。残存メチルメルカプタン量はどちらも7%
となり、脱臭が速やかに行われた。 <実施例2>実施例1で調製した発熱体Aと発熱体Bに
通電し発熱体温度が500℃となる電力負荷をかけ、連
続通電1000h後の抵抗値変化を測定した。結果を
(表2)にしめす。
Next, the heating elements A and B are heated to 50 l / m by a fan.
While blowing the air in the container at a flow rate of in to the heating element, it was placed in a closed box with a volume of 0.5 m 3 whose inner wall surface was covered with fluorine resin, and the air-diluted methyl mercaptan at a concentration of 10 ppm was not energized. And the amount of residual methyl mercaptan was measured 30 minutes after the heating element was put in and the amount of residual methyl mercaptan was measured. The amount of residual methyl mercaptan is 7% for both
The deodorization was promptly performed. <Example 2> The heating element A and the heating element B prepared in Example 1 were energized to apply a power load such that the temperature of the heating element reached 500 ° C, and the change in resistance after 1000 hours of continuous energization was measured. The results are shown in (Table 2).

【0042】[0042]

【表2】 [Table 2]

【0043】(表2)より明らかなように、酸化防止層
のある発熱体Aは抵抗値は変化しないが、酸化防止層の
ない発熱体Bでは抵抗値変化が見られた。この結果か
ら、触媒被覆層を形成する場合、触媒被覆層とハニカム
状発熱体との間に触媒被覆層とハニカム状発熱体との反
応を防止する酸化反応防止層を設けることが望ましい。
As is clear from (Table 2), the resistance value of the heating element A having the antioxidant layer did not change, but the resistance value of the heating element B having no oxidation layer changed. From this result, when forming the catalyst coating layer, it is desirable to provide an oxidation reaction prevention layer between the catalyst coating layer and the honeycomb heating element to prevent the reaction between the catalyst coating layer and the honeycomb heating element.

【0044】また発熱体Bに通電し発熱体温度が300
℃となる電力負荷をかけ、連続通電1000h後の抵抗
値変化は全く見られず、比較的低い温度では酸化反応防
止層は不要となる。 <実施例3>発熱体Aと同様の構成で、導電極の材質を
(表3)のように種々変化させて発熱体を調製した。各
発熱体の初期抵抗値はすべて5.0Ωであった。つぎに
各発熱体に通電し発熱体温度が700℃となる電力負荷
をかけ、連続通電1000h後の抵抗値を測定した。結
果を(表3)に示した。
When the heating element B is energized and the heating element temperature is 300
No change in resistance value is observed after 1000 hours of continuous energization under a power load of 0 ° C., and the oxidation reaction preventive layer is not necessary at a relatively low temperature. <Example 3> A heating element having the same structure as that of the heating element A was prepared by variously changing the material of the conductive electrode as shown in (Table 3). The initial resistance value of each heating element was 5.0 Ω. Next, each heating element was energized and an electric load was applied so that the temperature of the heating element reached 700 ° C., and the resistance value after 1000 hours of continuous energization was measured. The results are shown in (Table 3).

【0045】[0045]

【表3】 [Table 3]

【0046】(表3)より明らかなようにニッケル、
銅、真鍮、銀-Pt、銀-Pd、Ptが抵抗値変化が少な
く望ましい。特に銀-Pd/真鍮、銀-Pt/真鍮は抵抗値
変化がなく導電極を2層構成とすることが望ましい。 <実施例4>発熱体Aと同様の構成で、酸化防止層の材
質を(表4)のように種々変化させて発熱体を調製し
た。これらの発熱体について熱衝撃試験を行い、触媒被
覆層の密着性を調べた。熱衝撃試験は、発熱体に通電
し、触媒被覆層の温度を25℃毎に設定し、その温度で
10分間保持した後、室温水中に投下して触媒被覆層の
剥離の有無を調べ、剥離を起こさない最大温度を耐熱衝
撃温度とした。結果を(表4)に示した。
As is clear from (Table 3), nickel,
Copper, brass, silver-Pt, silver-Pd, and Pt are desirable because they have little resistance change. In particular, silver-Pd / brass and silver-Pt / brass do not change in resistance value, and it is desirable that the conductive electrode has a two-layer structure. <Example 4> A heating element having the same structure as that of the heating element A was prepared by changing the material of the antioxidant layer as shown in Table 4 below. A thermal shock test was performed on these heating elements to examine the adhesion of the catalyst coating layer. In the thermal shock test, the heating element is energized, the temperature of the catalyst coating layer is set at every 25 ° C., the temperature is maintained for 10 minutes, and then the temperature is dropped in room temperature water to check whether the catalyst coating layer is peeled off. The maximum temperature that does not cause the heat resistance was defined as the thermal shock resistance temperature. The results are shown in (Table 4).

【0047】[0047]

【表4】 [Table 4]

【0048】(表4)より明らかなようにシリカ、チタ
ノカーボシランが耐熱衝撃温度高く望ましい。また上層
にシリカ、下層にチタノカーボシランを形成した2層構
造の酸化防止層をもうけた場合、耐熱衝撃温度が750
℃となり良好な結果を得た。チタノカーボシランは(表
4)に示す酸化防止層材料のうち耐湿性が最も優れてお
り、このような2層化により耐湿性と、触媒被覆層の密
着性の両方に優れた酸化防止層が得られ望ましい。 <実施例5>発熱体Aと同様の構成で、導電極の形成方
法を(表5)のように種々変化させて発熱体を調製し
た。各発熱体の初期抵抗値を(表5)に示した。
As is clear from Table 4, silica and titanocarbosilane are desirable because of their high thermal shock resistance temperature. Further, when a two-layered antioxidant layer having silica as the upper layer and titanocarbosilane as the lower layer is provided, the thermal shock resistance temperature is 750.
The temperature was ℃ and good results were obtained. Titanocarbosilane has the most excellent moisture resistance among the antioxidant layer materials shown in (Table 4). Due to such two layers, the antioxidant layer is excellent in both moisture resistance and adhesion of the catalyst coating layer. Is obtained and desirable. <Example 5> A heating element having the same configuration as that of the heating element A was prepared by variously changing the method of forming the conductive electrode as shown in (Table 5). The initial resistance value of each heating element is shown in (Table 5).

【0049】[0049]

【表5】 [Table 5]

【0050】(表5)より明らかなように導電極形成方
法として溶射法が最も抵抗値の低い値が得られ望まし
い。 <実施例6>実施例1のスラリ−Aにおいて、白金族塩
を含有しないスラリー1、白金族塩を含有せず、かつγ
−アルミナをすべて銅イオン交換A型ゼオライトとした
スラリー2、および白金族塩を含有せず、かつ銅イオン
交換A型ゼオライトをすべてγ−アルミナとしたスラリ
ー3を用いて、前記発熱体Aと同様のそれぞれの触媒被
覆層を5.0g有する発熱体C,D,Eを作成した。
As is clear from (Table 5), the spraying method is preferable as the method for forming the conductive electrode because it has the lowest resistance value. <Example 6> In the slurry A of Example 1, the slurry 1 containing no platinum group salt, the platinum group salt containing no γ, and γ
-Similar to the heating element A, using a slurry 2 in which alumina is all copper ion-exchanged A-type zeolite and a slurry 3 which does not contain a platinum group salt and in which copper ion-exchanged A-type zeolite is all γ-alumina. Heating elements C, D, and E having 5.0 g of each catalyst coating layer were prepared.

【0051】発熱体C,D,Eについて酢酸吸着試験を
行い測定開始後60分の酢酸残存率を発熱体Aと比較し
た。酢酸吸着試験は、0.5m3の立方体のフッソ樹脂
製の容器の中に発熱体を置き、発熱体を加熱せず、ファ
ンで50l/minの流量の容器内空気を発熱体に送風
しながら、濃度が40ppmになるように酢酸を容器に
注入し濃度の経時変化を調べることにより行った。酢酸
濃度の経時変化はガスクロマトグラフにより調べた。
An acetic acid adsorption test was performed on the heating elements C, D, and E, and the acetic acid residual rate 60 minutes after the start of measurement was compared with that of the heating element A. In the acetic acid adsorption test, the heating element was placed in a cubic fluorine resin container of 0.5 m 3 and the heating element was not heated, while the air inside the container at a flow rate of 50 l / min was blown to the heating element. Then, acetic acid was injected into the container so that the concentration became 40 ppm, and the change of the concentration with time was examined. The change with time of the acetic acid concentration was examined by gas chromatography.

【0052】結果を(表6)に示した。(表6)より明
らかなように、酸性臭気成分である酢酸の吸着特性にお
いて本発明の発熱体Aは、発熱体C,D,Eよりも優れ
ていた。従って活性アルミナとゼオライトと白金族金属
を同時に用いることにより、活性アルミナやゼオライト
を単独で用いるよりも酸性の臭気成分に対する吸着特性
を向上させる相乗効果を得ることができる。
The results are shown in (Table 6). As is clear from (Table 6), the heating element A of the present invention was superior to the heating elements C, D and E in the adsorption characteristics of acetic acid which is an acidic odor component. Therefore, by using activated alumina, zeolite, and platinum group metal at the same time, it is possible to obtain a synergistic effect of improving the adsorption characteristics for acidic odor components, compared with the case of using activated alumina or zeolite alone.

【0053】[0053]

【表6】 [Table 6]

【0054】<実施例7>γ−アルミナ400gと、無
機バインダ−としてアルミナ含有率10wt%のコロイダル
アルミナ1000g、銅イオン交換A型ゼオライト 450
g、酸化銅50g、水 1500g、塩化白金酸をPt
として30g,塩化パラジウムをPdとして15gおよ
び適量の塩酸を加え、ボールミルを用いて充分に混合し
て、スラリー4を調製した。
Example 7 400 g of γ-alumina, 1000 g of colloidal alumina having an alumina content of 10 wt% as an inorganic binder, copper ion-exchanged A-type zeolite 450
g, copper oxide 50 g, water 1500 g, chloroplatinic acid as Pt
As a slurry 4 was prepared by adding 30 g, palladium chloride as Pd and 15 g and an appropriate amount of hydrochloric acid, and thoroughly mixing using a ball mill.

【0055】またスラリー4と同組成成分で、 塩化白
金酸水溶液と塩化パラジウムと、硝酸銅とアルミナを用
いて予めPt,Pd,CuOが担持したアルミナを用い
て、スラリー4と同様のスラリー5を調製した さらにスラリー4で貴金属分をすべて酸化銅としたスラ
リー6を調製した。
A slurry 5 similar to the slurry 4 was prepared by using an aqueous solution of chloroplatinic acid, palladium chloride, and alumina in which Pt, Pd, and CuO were preliminarily carried by using the same composition component as the slurry 4. Further, a slurry 6 was prepared in which the precious metal content of the slurry 4 was changed to copper oxide.

【0056】このスラリー4,5,6を用いて実施例1
と同様の方法および同様のセラミック抵抗体から発熱体
F,G,Hを調製した。
Example 1 using the slurries 4, 5 and 6
Heating elements F, G, and H were prepared from the same method and the same ceramic resistor.

【0057】この発熱体F,G,Hを発熱体Aと比較す
るためにメチルメルカプタン浄化試験を行なった。メチ
ルメルカプタン浄化試験は、0.5m3の立方体のフッ
ソ樹脂製の容器の中に発熱体を置き、ファンで50l/
minの流量の容器内空気を発熱体に送風しながら、濃
度が8ppmになるようにメチルメルカプタンを容器に
注入し90分後のメチルメルカプタン濃度を調べること
により行った。なお、発熱体は加熱せず、測定はガスク
ロマトグラフにより調べた。また、吸着試験後、発熱体
を700℃20時間空気中で加熱し、室温まで冷却後再
度メチルメルカプタン浄化試験を行い、脱臭体の耐熱性
を調べた。結果を(表7)に示した。
In order to compare the heating elements F, G and H with the heating element A, a methyl mercaptan purification test was conducted. In the methyl mercaptan purification test, the heating element was placed in a cubic container made of fluorine resin of 0.5 m 3 and 50 l /
While blowing air in the container at a flow rate of min to the heating element, methyl mercaptan was injected into the container so that the concentration became 8 ppm, and 90 minutes later, the concentration of methyl mercaptan was examined. The heating element was not heated and the measurement was carried out by gas chromatography. Further, after the adsorption test, the heating element was heated in air at 700 ° C. for 20 hours, cooled to room temperature, and again subjected to a methylmercaptan purification test to examine the heat resistance of the deodorant. The results are shown in (Table 7).

【0058】[0058]

【表7】 [Table 7]

【0059】(表7)に明らかなように、貴金属のみも
しくは酸化銅のみが添加されている発熱体は、700℃
の加熱により脱臭特性が低下するが、酸化銅と貴金属の
両方を添加することにより、脱臭体の耐熱性を向上させ
ることができる。さらに酸化銅と貴金属の両方を予めア
ルミナに担持して用いるとさらに耐熱性が向上し望まし
い。 <実施例8>実施例1のスラリ−Aにおいて、銅イオン
交換型ゼオライトを(表7)に示す種々のゼオライトに
全て置換したスラリーを調製し、発熱体Aと同様の構成
の発熱体を作成した。
As is apparent from (Table 7), the heating element to which only the noble metal or only the copper oxide is added is 700 ° C.
However, the heat resistance of the deodorant can be improved by adding both copper oxide and a noble metal. Further, it is desirable that both copper oxide and a noble metal are supported on alumina in advance and the heat resistance is further improved. <Example 8> In the slurry-A of Example 1, a slurry in which the copper ion-exchanged zeolite was all replaced with various zeolites shown in (Table 7) was prepared to prepare a heating element having the same configuration as the heating element A. did.

【0060】また、実施例1のスラリ−Aにおいて、貴
金属成分を総量は同じでPtのみ、Pdのみ、Rhの
み、Ruのみとしたスラリーもそれぞれ調製し、発熱体
Aと同様の構成の発熱体を作成した。
Further, in the slurry A of Example 1, slurry having the same total amount of noble metal components but Pt only, Pd only, Rh only, and Ru only was prepared, and a heating element having the same structure as the heating element A was prepared. It was created.

【0061】これらの発熱体についてトリメチルアミン
と難吸着臭気のアセトアルデヒドの吸着特性を試験し
た。臭気吸着試験は、0.5m3の立方体のフッソ樹脂
製の容器の中に発熱体を置き、発熱体を加熱せず、ファ
ンで50l/minの流量の容器内空気を発熱体に送風
しながら、トリメチルアミン,アセトアルデヒドとも濃
度が10ppmになるように容器に注入し吸着60分後
の容器内臭気残存率で評価した。容器内臭気濃度はガス
クロマトグラフにより調べた。結果を(表8),(表
9)に示す。
The adsorbing properties of trimethylamine and acetaldehyde having a hardly adsorbed odor were tested on these heating elements. In the odor adsorption test, the heating element was placed in a cubic fluorine resin container of 0.5 m 3 and the heating element was not heated, but the air inside the container at a flow rate of 50 l / min was blown to the heating element. , Trimethylamine, and acetaldehyde were injected into the container so that the concentration was 10 ppm, and the odor residual rate in the container after 60 minutes of adsorption was evaluated. The odor concentration in the container was examined by gas chromatography. The results are shown in (Table 8) and (Table 9).

【0062】[0062]

【表8】 [Table 8]

【0063】(表8)より明らかなように、ペンタシル
型ゼオライト、Y型ゼオライト、モルデナイト、Cu−
A型ゼオライトがアセトアルデヒドとトリメチルアミン
の両方の吸着特性に優れていた。さらにゼオライトの内
ペンタシル型ゼオライトのZSM5、シリカライトがア
セトアルデヒドの吸着特性により優れ望ましく、特にH
−ZSM5、Na−ZSM5が最も優れ望ましい。また
トリメチルアミンの吸着特性はY型ゼオライト、モルデ
ナイトが優れ望ましい。脱臭目的とする対象臭気により
ゼオライトは選択される。さらにペンタシル型ゼオライ
トとY型ゼオライトあるいはモルデナイトを混合して用
いることによりアセトアルデヒドとトリメチルアミンの
両方の吸着特性の優れたものが得られ望ましい。
As is clear from Table 8, pentasil type zeolite, Y type zeolite, mordenite, Cu-
The A-type zeolite was excellent in the adsorption property of both acetaldehyde and trimethylamine. Further, among the zeolites, pentasil-type zeolite ZSM5 and silicalite are preferable due to their acetaldehyde adsorption property, and particularly H
-ZSM5 and Na-ZSM5 are the most desirable and desirable. Further, Y-type zeolite and mordenite are excellent in the adsorption property of trimethylamine, and are desirable. Zeolites are selected according to the target odor to be deodorized. Further, it is desirable that a mixture of pentasil-type zeolite and Y-type zeolite or mordenite is used because it is possible to obtain one having excellent adsorption properties for both acetaldehyde and trimethylamine.

【0064】[0064]

【表9】 [Table 9]

【0065】(表9)より明らかなように、貴金属の内
Pt-Pd,Ptがアセトアルデヒドの吸着特性に優
れ、貴金属成分としてPtを含むことが望ましい。 <実施例9>(表8)に示したゼオライト種が種々異な
る発熱体を用い、トリメチルアミンの酸化分解性能を測
定した。測定は、トリメチルアミン1000ppm、酸
素21%を含むヘリウム希釈ガスを300℃に通電加熱
した各発熱体にSV5000h-1で流通させ、発熱体に
よるトリメチルアミンの酸化分解時の窒素化率で評価し
た。結果を(表10)に示した。
As is clear from Table 9, Pt--Pd and Pt among the noble metals have excellent acetaldehyde adsorption properties, and it is desirable that Pt be contained as the noble metal component. <Example 9> The oxidative decomposition performance of trimethylamine was measured using heating elements having different zeolite species shown in Table 8. In the measurement, a helium dilution gas containing 1000 ppm of trimethylamine and 21% of oxygen was passed through each heating element heated at 300 ° C. at SV 5000 h −1 , and the nitrogenation rate at the time of oxidative decomposition of trimethylamine by the heating element was evaluated. The results are shown in (Table 10).

【0066】[0066]

【表10】 [Table 10]

【0067】(表10)より明らかなように、銅イオン
交換ゼオライトおよび鉄イオン交換ゼオライトが窒素化
率が高く望ましい。臭気として空気中に含まれるトリメ
チルアミン濃度は通常低く、窒素酸化物が生成しても問
題にならないが、窒素酸化物の生成量が多くなる環境で
は銅イオン交換ゼオライトあるいは鉄イオン交換ゼオラ
イト使用が好ましい。また銅イオン交換ゼオライトや鉄
イオン交換ゼオライトは(表8)にも示したようにアセ
トアルデヒドやトリメチルアミンの吸着特性にも優れて
いる。
As is clear from Table 10, copper ion-exchanged zeolite and iron ion-exchanged zeolite are desirable because of their high nitrogenation rate. The concentration of trimethylamine contained in the air as an odor is usually low, and it does not matter if nitrogen oxides are produced, but in an environment where the amount of produced nitrogen oxides is large, it is preferable to use copper ion exchanged zeolite or iron ion exchanged zeolite. Further, the copper ion-exchanged zeolite and the iron ion-exchanged zeolite are also excellent in the adsorption property of acetaldehyde and trimethylamine as shown in (Table 8).

【0068】[0068]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、冷却手段なしにヒータからの熱量出力
を増減でき、有害、不快成分の除去能が高く、かつ短時
間で効率的な脱臭が行えるハニカム状発熱体を提供する
ことができる。
As is apparent from the above description,
According to the present invention, it is possible to provide a honeycomb heating element capable of increasing and decreasing the heat output from the heater without a cooling means, having a high ability to remove harmful and unpleasant components, and capable of efficiently deodorizing in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の代表的な1実施例を示す模式図であ
る。
FIG. 1 is a schematic view showing a typical example of the present invention.

【符号の説明】[Explanation of symbols]

1 SiCハニカム状発熱体 2 導電極 3 触媒被覆層 4 酸化反応防止層 5 空気流 1 SiC honeycomb heating element 2 Conductive electrode 3 Catalyst coating layer 4 Oxidation reaction prevention layer 5 Air flow

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本田 公康 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 木村 邦夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kimoyasu Honda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Kunio Kimura, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】少なくとも、実質上四角柱状あるいは実質
上四角板状かつハニカム状セラミック抵抗体と、前記ハ
ニカム体の対向する一対の外周面に形成した導電極と、
前記ハニカム状セラミック抵抗体表面を被覆した触媒被
覆層とを備えたことを特徴とする発熱体。
1. At least a substantially rectangular columnar or substantially square plate-shaped and honeycomb-shaped ceramic resistor, and a conductive electrode formed on a pair of outer peripheral surfaces facing each other of the honeycomb body.
A heating element comprising: a catalyst coating layer covering the surface of the honeycomb-shaped ceramic resistor.
【請求項2】触媒被覆層とハニカム状セラミック抵抗体
および/あるいは導電極との間に酸化反応防止層が設け
てなる請求項1記載の発熱体。
2. The heating element according to claim 1, wherein an oxidation reaction preventing layer is provided between the catalyst coating layer and the honeycomb-shaped ceramic resistor and / or the conductive electrode.
【請求項3】酸化反応防止層がガラス、シリカ、アルミ
ナ、チタニア、チタノカーボシラン、ペルヒドロポリシ
ラザン、より選択される少なくとも1種よりなる請求項
2記載の発熱体。
3. The heating element according to claim 2, wherein the oxidation reaction preventive layer comprises at least one selected from glass, silica, alumina, titania, titanocarbosilane, and perhydropolysilazane.
【請求項4】ハニカム状セラミック抵抗体がSiCである
請求項1記載の発熱体。
4. The heating element according to claim 1, wherein the honeycomb-shaped ceramic resistor is SiC.
【請求項5】触媒被覆層が、少なくとも活性アルミナと
白金族金属とゼオライトと無機バインダーからなる特許
請求項1又は2記載の発熱体。
5. The heating element according to claim 1 or 2, wherein the catalyst coating layer comprises at least activated alumina, a platinum group metal, zeolite and an inorganic binder.
【請求項6】触媒被覆層が、酸化銅を含んでなる特許請
求項1、2又は5記載の発熱体。
6. The heating element according to claim 1, wherein the catalyst coating layer contains copper oxide.
【請求項7】触媒被覆層が、貴金属と酸化銅を担持した
活性アルミナを含んでなる特許請求項1、2又は5記載
の発熱体。
7. The heating element according to claim 1, 2 or 5, wherein the catalyst coating layer contains activated alumina carrying a noble metal and copper oxide.
【請求項8】ゼオライトが少なくともペンタシル型ゼオ
ライトを含む請求項5記載の発熱体。
8. The heating element according to claim 5, wherein the zeolite contains at least a pentasil-type zeolite.
【請求項9】ゼオライトが少なくともモルデナイトある
いはY型ゼオライトを含む請求項5記載の発熱体。
9. The heating element according to claim 5, wherein the zeolite contains at least mordenite or Y-type zeolite.
【請求項10】ゼオライトが少なくとも銅ゼオライトを
含む請求項5記載の発熱体。
10. The heating element according to claim 5, wherein the zeolite contains at least copper zeolite.
【請求項11】ペンタシル型ゼオライトがH−ZSM
5,Na−ZSM5からなる群より選択される少なくと
も1種からなる請求項8記載の発熱体。
11. A pentasil-type zeolite is H-ZSM.
The heating element according to claim 8, comprising at least one selected from the group consisting of 5, Na-ZSM5.
【請求項12】無機バインダーがシリカである請求項5
記載の発熱体。
12. The inorganic binder is silica.
The heating element described.
【請求項13】白金族金属が少なくともPtを含む請求
項5記載の発熱体。
13. The heating element according to claim 5, wherein the platinum group metal contains at least Pt.
【請求項14】導電極はアルミニウム、ニッケル、銅、
真鍮、銀-Pd、銀-Pt、Ptより選択される少なくと
も1種よりなる請求項1〜13のいずれかに記載の発熱
体。
14. The conductive electrode is made of aluminum, nickel, copper,
The heating element according to claim 1, comprising at least one selected from brass, silver-Pd, silver-Pt, and Pt.
JP11722096A 1996-05-13 1996-05-13 Heating element Pending JPH09306644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11722096A JPH09306644A (en) 1996-05-13 1996-05-13 Heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11722096A JPH09306644A (en) 1996-05-13 1996-05-13 Heating element

Publications (1)

Publication Number Publication Date
JPH09306644A true JPH09306644A (en) 1997-11-28

Family

ID=14706377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11722096A Pending JPH09306644A (en) 1996-05-13 1996-05-13 Heating element

Country Status (1)

Country Link
JP (1) JPH09306644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022264886A1 (en) * 2021-06-18 2022-12-22
WO2024090131A1 (en) * 2022-10-28 2024-05-02 日本碍子株式会社 Dehumidification device, heater element for dehumidification device, and vehicular-cabin dehumidification system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022264886A1 (en) * 2021-06-18 2022-12-22
WO2022264886A1 (en) * 2021-06-18 2022-12-22 日本碍子株式会社 Heater element equipped with functional-material-containing layer, heater unit equipped with functional-material-containing layer, vehicle interior cleaning system, and honeycomb structure
WO2022264514A1 (en) * 2021-06-18 2022-12-22 日本碍子株式会社 Heater element with functional material-containing layer, heater unit with functional material-containing layer, vehicle interior purification system, and honeycomb structure
WO2024090131A1 (en) * 2022-10-28 2024-05-02 日本碍子株式会社 Dehumidification device, heater element for dehumidification device, and vehicular-cabin dehumidification system

Similar Documents

Publication Publication Date Title
KR960007587B1 (en) Catalytic bodies and the process for producing the same
US5388177A (en) Heating element for deodorization
JPH09306644A (en) Heating element
JPH09303940A (en) Refrigerator
JP4095699B2 (en) Adsorption decomposition deodorization element
JPH0598185A (en) Coating material
JPH05146683A (en) Catalyst and production thereof
JPH08308917A (en) Deodorizing apparatus
JP3521091B2 (en) Deodorant
JP2001254421A (en) Deodorizor for toilet
JPH0847645A (en) Heat generating body
JPH0924272A (en) Self-regeneration type adsorbent
JPH04281177A (en) Refrigerator
JPH0598184A (en) Coating material
JPH07106318B2 (en) Heating element
JPH09306643A (en) Heating element
JPH0838584A (en) Deodorizing apparatus
JPH0596176A (en) Catalyst body
JP2532722B2 (en) Decompressor
JPH05133530A (en) Heating cooker
JPH067767A (en) Garbage treatment device
JPH05118561A (en) Foot warmer
JPH1157490A (en) Catalyst heater and catalyst device comprising the catalyst heater
JPH0594866A (en) Heat generating
JPH0657172A (en) Coating material