JPH09303940A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH09303940A JPH09303940A JP11722196A JP11722196A JPH09303940A JP H09303940 A JPH09303940 A JP H09303940A JP 11722196 A JP11722196 A JP 11722196A JP 11722196 A JP11722196 A JP 11722196A JP H09303940 A JPH09303940 A JP H09303940A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- honeycomb
- coating layer
- heat exchanger
- catalyst coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Defrosting Systems (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱交換器の霜取り
と庫内に存在する臭気成分の除去を長期間に渡り行うこ
とができる脱臭機能付きの冷蔵庫に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator having a deodorizing function capable of defrosting a heat exchanger and removing odorous components existing in a refrigerator for a long period of time.
【0002】[0002]
【従来の技術】一般に冷蔵庫内には、様々な悪臭が存在
する。これらの悪臭成分は、おもにメルカプタン、アミ
ンなどであり、食品に起因するものである。2. Description of the Related Art Generally, various odors are present in a refrigerator. These malodorous components are mainly mercaptans, amines, etc., and are derived from foods.
【0003】従来このような庫内の臭気の脱臭手段とし
ては、活性炭を庫内に配置して臭気成分ガスを吸着して
脱臭するという手段が主に用いられてきた。また、最
近、オゾン発生機能を持たせた機器を室内に配置して悪
臭成分をオゾンガスによって酸化分解するという手段も
用いられている。Conventionally, as a means for deodorizing the odor in such a refrigerator, a means of arranging activated carbon in the refrigerator and adsorbing an odor component gas to deodorize has been mainly used. Further, recently, a means has been used in which a device having an ozone generating function is arranged in a room to oxidize and decompose a malodorous component by ozone gas.
【0004】また特開平4-281177には霜取り用の石英管
ヒータおよび/あるいは水滴保護板への触媒被覆層形成
による脱臭構成が記述されている。Further, Japanese Patent Laid-Open No. 4-281177 describes a deodorizing constitution by forming a catalyst coating layer on a quartz tube heater for defrosting and / or a water drop protection plate.
【0005】[0005]
【発明が解決しようとする課題】このような従来の活性
炭による吸着手段ではその吸着能力に限界があるため、
定期的に活性炭を交換する必要があった。また、雰囲気
中の水分がガス吸着の妨げになるなどの問題があった。
一方オゾンによって臭気を分解する手段では、分解脱臭
に最適の濃度のオゾン発生を制御するために特別な装置
が必要なことや、分解が困難な成分があること、また、
オゾン発生器に寿命があることなどの問題があった。ま
た、霜取り用の石英管ヒータおよび/あるいは水滴保護
板への触媒被覆層形成による脱臭構成では、冷蔵室と熱
交換器との循環空気に含まれる臭気成分の一部が触媒被
覆層に接触せずに通過するため目的とする臭気低減量を
達成するために空気循環量を多量に必要とした。Since the conventional adsorption means using activated carbon has a limited adsorption capacity,
It was necessary to change the activated carbon regularly. There is also a problem that moisture in the atmosphere hinders gas adsorption.
On the other hand, in the means for decomposing odors by ozone, a special device is required to control the generation of ozone at the optimum concentration for decomposition and deodorization, and there are components that are difficult to decompose.
There was a problem such as the life of the ozone generator. Further, in the deodorizing configuration by forming the catalyst coating layer on the quartz tube heater for defrosting and / or the water drop protection plate, a part of the odorous components contained in the circulating air between the refrigerating compartment and the heat exchanger is brought into contact with the catalyst coating layer. Since it passes without passing through, it requires a large amount of air circulation to achieve the target odor reduction amount.
【0006】本発明は上記課題を解決するもので、簡単
な構成で熱交換器に付着した霜を除くとともに庫内の臭
気や有害ガスを高効率かつ長寿命で除去することができ
る冷蔵庫を提供することを目的としている。The present invention solves the above problems and provides a refrigerator capable of removing frost adhering to a heat exchanger with a simple structure and removing odors and harmful gases in a refrigerator with high efficiency and long life. The purpose is to do.
【0007】[0007]
【課題を解決するための手段】本発明は、上記目的を達
成するために少なくとも冷蔵室と、ファンと、熱交換器
と、前記熱交換器の実質上下方に設けたハニカム状セラ
ミック発熱体と、前記発熱体の上方に近接して設けた水
滴保護部材を備え、前記ファンにより発生する前記冷蔵
室と前記熱交換器とを循環する空気流のほぼ全量が前記
ハニカム状セラミック発熱体を通過するよう構成され、
かつ前記発熱体が触媒被覆層を有して構成したものであ
る。To achieve the above object, the present invention provides at least a refrigerating chamber, a fan, a heat exchanger, and a honeycomb-shaped ceramic heating element provided substantially below the heat exchanger. A water droplet protection member provided in proximity to and above the heat generating element, and substantially the entire amount of air flow generated by the fan circulating in the refrigerating chamber and the heat exchanger passes through the honeycomb ceramic heat generating element. Is configured as
In addition, the heating element has a catalyst coating layer.
【0008】上記ハニカム状セラミック発熱体は、ハニ
カム状セラミック抵抗体とハニカム状セラミック抵抗体
表面に設けてある触媒被覆層からなる。The honeycomb-shaped ceramic heating element comprises a honeycomb-shaped ceramic resistor and a catalyst coating layer provided on the surface of the honeycomb-shaped ceramic resistor.
【0009】ハニカム状セラミック発熱体に用いるセラ
ミック抵抗体はSiC、PTCセラミックを用いることが
できる。このうちPTCセラミックはその素材が固有す
るキュリー温度で制御されるため、送風などのヒータの
冷却手段を用いなければヒータにほとんど電流が流れ
ず、ヒータから出力できる熱量が非常に少なくなるのに
対し、NTC特性を有するSiC製ハニカム状抵抗体は印加す
る電力を変化させることにより、冷却手段の有無に関わ
らず発熱体からの熱量出力を変化させることができるこ
とから望ましい。The ceramic resistor used in the honeycomb-shaped ceramic heating element may be SiC or PTC ceramic. Of these, PTC ceramics are controlled by the Curie temperature that is unique to the material, so if a heater cooling means such as air blowing is not used, almost no current flows through the heater, and the amount of heat that can be output from the heater is extremely small. A honeycomb resistor made of SiC having NTC characteristics is desirable because the amount of heat output from the heating element can be changed by changing the applied power regardless of the presence of cooling means.
【0010】本発明の電極材料としてはアルミニウム、
ニッケル、銅、真鍮、銀−Pt、銀−Pd、Ptを用い
ることができ、目的に応じてこれらのうち複数の電極材
料を合わせて用いてもよい。また、電極形成方法も種々
の方法を用いることができる。例えば、電極材料のペー
ストを塗布後焼き付けたり、直接金属のスパッタ、蒸着
や溶射により塗布してもよい。このうち溶射によって電
極を形成することが最も電極とセラミック抵抗体との接
触抵抗を少なくできることから望ましい。Aluminum is used as the electrode material of the present invention,
Nickel, copper, brass, silver-Pt, silver-Pd, and Pt can be used, and a plurality of electrode materials among them may be used together depending on the purpose. Moreover, various methods can be used as the electrode forming method. For example, the electrode material paste may be applied and then baked, or may be directly applied by metal sputtering, vapor deposition, or thermal spraying. Of these, it is preferable to form the electrode by thermal spraying because the contact resistance between the electrode and the ceramic resistor can be minimized.
【0011】さらに、本発明では、導電極が電極形成壁
面の両側面にはみ出して構成されることが望ましい。こ
れは、ハニカム状発熱体側面の温度低下を防止でき、均
一な発熱温度分布を実現できるからである。電極形成壁
面の両側面にはみ出して形成された導電極部は端面より
1mm以上5mm以下であることが望ましい。これは前
記はみ出し電極の範囲においてハニカム状発熱体の非常
に均一な温度分布が得られるためである。Further, in the present invention, it is desirable that the conductive electrode is formed so as to protrude to both side surfaces of the wall surface on which the electrode is formed. This is because it is possible to prevent a temperature decrease on the side surface of the honeycomb heating element and realize a uniform heat generation temperature distribution. It is desirable that the conductive electrode portion formed on both side surfaces of the electrode forming wall surface is 1 mm or more and 5 mm or less from the end surface. This is because a very uniform temperature distribution of the honeycomb heating element can be obtained in the range of the protruding electrode.
【0012】本発明のセラミック抵抗体表面に形成する
触媒被覆層は、少なくとも活性アルミナとゼオライトと
白金族金属を含み、これらを無機バインダーで結合させ
て用いるのが望ましい。活性アルミナとゼオライトと白
金族金属を同時に用いることにより、活性アルミナやゼ
オライトを単独で用いるよりも酸性の臭気成分に対する
吸着特性を向上させる相乗効果を得ることができる。The catalyst coating layer formed on the surface of the ceramic resistor of the present invention preferably contains at least activated alumina, zeolite and a platinum group metal, and these are preferably combined with an inorganic binder for use. By using activated alumina, zeolite and platinum group metal at the same time, it is possible to obtain a synergistic effect of improving the adsorption characteristics for acidic odor components as compared with the case of using activated alumina or zeolite alone.
【0013】金属抵抗体を用いた場合被覆した触媒被覆
層の触媒酸化作用により金属腐食が進行するのに対し、
本発明のセラミック抵抗体では通常起こらない。しかし
高温では触媒被覆層によるセラミック抵抗体の酸化反応
が進行し始め、抵抗値が変化するため、触媒被覆層とハ
ニカム状発熱体との間に触媒被覆層とハニカム状発熱体
との反応を防止する酸化反応防止層を設けることが望ま
しい。また、導電極は金属であるため触媒被覆層と直接
接触するのは前記腐食の問題から好ましくない。本発明
では、触媒被覆層を導電極とを隔絶して形成するか、触
媒被覆層が導電極のの上にまで設ける場合は、触媒被覆
層と導電極の間に酸化反応防止層を設けることが望まし
い。Where a metal resistor is used, metal corrosion proceeds due to the catalytic oxidation of the coated catalyst coating layer.
This does not normally occur with the ceramic resistor of the present invention. However, at high temperatures, the oxidation reaction of the ceramic resistor by the catalyst coating layer begins to proceed and the resistance value changes, so the reaction between the catalyst coating layer and the honeycomb heating element is prevented between the catalyst coating layer and the honeycomb heating element. It is desirable to provide an oxidation reaction preventive layer. Further, since the conductive electrode is made of metal, it is not preferable to directly contact with the catalyst coating layer because of the problem of corrosion. In the present invention, the catalyst coating layer is formed so as to be separated from the conductive electrode, or when the catalyst coating layer is provided even on the conductive electrode, an oxidation reaction preventive layer is provided between the catalyst coating layer and the conductive electrode. Is desirable.
【0014】酸化反応防止層に用いる材料としては、ガ
ラス、シリカ、アルミナ、チタニア、チタノカーボシラ
ン、ペルヒドロポリシラザンがあり、これらの1種以上
を単層であるいは複層で用いる。これらの材料のうち酸
化反応防止層とセラミック抵抗体および触媒被覆層との
密着性の観点から、シリカおよび、チタノカーボシラン
が優れており望ましい。Materials used for the oxidation reaction preventive layer include glass, silica, alumina, titania, titanocarbosilane, and perhydropolysilazane, and one or more of these may be used in a single layer or multiple layers. Among these materials, silica and titanocarbosilane are excellent and desirable from the viewpoint of adhesion between the oxidation reaction preventing layer and the ceramic resistor and the catalyst coating layer.
【0015】本発明の触媒被覆層に用いるアルミナは、
β−,γ−,δ−,θ−,η−,ρ−,χ−アルミナな
どの準安定アルミナである。なお、アルミナ表面に希土
類酸化物などの助触媒を担持させることにより、さらに
活性の上昇が期待できる。The alumina used in the catalyst coating layer of the present invention is
It is a metastable alumina such as β-, γ-, δ-, θ-, η-, ρ-, and χ-alumina. Further, by supporting a promoter such as a rare earth oxide on the surface of alumina, further increase in activity can be expected.
【0016】さらに、無機バインダーとして、シリカが
最も結合剤として優れており、触媒特性を低下させるこ
となく、セラミック抵抗体表面に触媒被覆層を形成した
ときに抵抗体から剥離しにくい被膜を形成することがで
きる。Further, as the inorganic binder, silica is the most excellent as a binder and forms a film which is not easily peeled off from the resistor when the catalyst coating layer is formed on the surface of the ceramic resistor without deteriorating the catalytic properties. be able to.
【0017】本発明のシリカの含有量は触媒被覆層中に
10〜40wt%であることが望ましい。シリカの含有
量が40wt%を超えると触媒被覆層中に亀裂が入りや
すくなり密着性低下を招き易い。また10wt%未満で
はシリカの十分な密着性向上効果が得られない。The silica content of the present invention is preferably 10 to 40 wt% in the catalyst coating layer. When the content of silica exceeds 40 wt%, cracks are likely to be formed in the catalyst coating layer and the adhesion is likely to be deteriorated. On the other hand, if it is less than 10 wt%, a sufficient effect of improving adhesion of silica cannot be obtained.
【0018】本発明に用いる貴金属としては、Pt,P
d,Rh,Ruがある。これらのうち他の貴金属に比べ
Ptは臭気吸着能力が優れることから望ましく、また臭
気の酸化分解能力からはPtとPdの両方を用いること
がさらに望ましい。これは、PtやPdの酸化分解力が
RhやIrに比べて高く、PtとPdの両方を用いるこ
とによりさらに高活性となるためである。さらに、Ru
を用いた場合、高温での使用により、Ruが揮散し有害
物質となる。As the noble metal used in the present invention, Pt, P
There are d, Rh, and Ru. Of these, Pt is preferable because it has an excellent odor adsorption capacity as compared with other noble metals, and it is more preferable to use both Pt and Pd because of the oxidative decomposition ability of odor. This is because the oxidative decomposition power of Pt or Pd is higher than that of Rh or Ir, and the use of both Pt and Pd further enhances the activity. In addition, Ru
When used at high temperatures, Ru is volatilized and becomes a harmful substance.
【0019】本発明の触媒被覆層に酸化銅を含むことが
望ましい。これは酸化銅を触媒被覆層中で白金族金属と
共存させることにより白金族金属の臭気吸着性能が高温
で低下するのを防止できるからである。特に酸化銅を、
貴金属と酸化銅を担持した活性アルミナの状態で用いる
のが最も効果的である。It is desirable that the catalyst coating layer of the present invention contains copper oxide. This is because coexistence of copper oxide with the platinum group metal in the catalyst coating layer can prevent deterioration of the odor adsorption performance of the platinum group metal at high temperatures. Especially copper oxide,
It is most effective to use it in the state of activated alumina carrying a noble metal and copper oxide.
【0020】ゼオライトが少なくともペンタシル型ゼオ
ライトを含むことが望ましい。これはアルデヒドやジメ
チルジスルフィドなどの難吸着臭気の吸着性能の向上が
はかれるからである。 ペンタシル型ゼオライトのうち
特にH−ZSM5,およびNa−ZSM5は前記難吸着
臭気の吸着性能が特に高く望ましい。It is desirable that the zeolite include at least a pentasil-type zeolite. This is because the adsorption performance of odors that are difficult to adsorb such as aldehyde and dimethyl disulfide can be improved. Of the pentasil-type zeolites, H-ZSM5 and Na-ZSM5 are particularly preferable because they have a particularly high adsorption performance for the hardly adsorbed odor.
【0021】また本発明のゼオライトが少なくともモル
デナイトあるいはY型ゼオライトを含むことが望まし
い。これはモルデナイトあるいはY型ゼオライトを含む
ことにより、触媒被覆層のアミン類の臭気に対する吸着
容量を向上することができるからである。Further, it is desirable that the zeolite of the present invention contains at least mordenite or Y-type zeolite. This is because the adsorption capacity for the odor of amines in the catalyst coating layer can be improved by including mordenite or Y-type zeolite.
【0022】ゼオライトが少なくとも銅イオン交換ゼオ
ライトあるいは鉄イオン交換ゼオライトを含むことが望
ましい。これは吸着したアミン類の臭気を触媒酸化分解
するときに触媒被覆層中に銅イオン交換ゼオライトある
いは鉄イオン交換ゼオライトを含むことにより窒素酸化
物生成を抑え、安全な窒素への高い変換性能が得られる
からである。It is desirable that the zeolite contains at least copper ion exchanged zeolite or iron ion exchanged zeolite. This is because when the catalytic oxidative decomposition of odors of the adsorbed amines is carried out, the catalyst coating layer contains copper ion-exchanged zeolite or iron ion-exchanged zeolite to suppress the production of nitrogen oxides and to obtain a high level of safe conversion to nitrogen. Because it will be done.
【0023】本発明の触媒被覆層中に酸化セリウムを含
むことが望ましい。酸化セリウムを触媒被覆層中に含む
ことにより、炭化水素化合物に対する触媒酸化分解活性
を向上することができる。It is desirable to include cerium oxide in the catalyst coating layer of the present invention. By including cerium oxide in the catalyst coating layer, the catalytic oxidative decomposition activity for hydrocarbon compounds can be improved.
【0024】本発明の酸化セリウム含有量は触媒被覆層
中に2〜15wt%であることが望ましい。酸化セリウ
ムの含有量が15wt%を超えると触媒の前記酸化分解
特性が低下し始め、また2wt%未満では酸化セリウム
の十分な添加効果が得られない。The cerium oxide content of the present invention is preferably 2 to 15 wt% in the catalyst coating layer. When the content of cerium oxide exceeds 15 wt%, the oxidative decomposition characteristics of the catalyst begin to decrease, and when the content is less than 2 wt%, a sufficient effect of adding cerium oxide cannot be obtained.
【0025】本発明の触媒被覆層中に酸化バリウムを含
むことが望ましい。酸化バリウムを触媒被覆層中に含む
ことにより、触媒の酸化分解特性を向上することができ
る。It is desirable to include barium oxide in the catalyst coating layer of the present invention. By including barium oxide in the catalyst coating layer, the oxidative decomposition characteristics of the catalyst can be improved.
【0026】本発明の酸化バリウムの含有量は触媒被覆
層中に0.5〜5wt%であることが望ましい。酸化バ
リウムの含有量が5wt%を超えると触媒被覆層の密着
性が低下し、また0.5wt%未満では酸化バリウムの
十分な添加効果が得られない。The content of barium oxide of the present invention is preferably 0.5 to 5 wt% in the catalyst coating layer. If the content of barium oxide exceeds 5 wt%, the adhesion of the catalyst coating layer will deteriorate, and if it is less than 0.5 wt%, a sufficient effect of adding barium oxide cannot be obtained.
【0027】また本発明の酸化バリウムの替わりに炭酸
バリウムを用いても同様の添加効果が得られる。望まし
い炭酸バリウムの添加量は、酸化バリウム量に換算して
0.5〜5wt%である。Similar effect can be obtained by using barium carbonate instead of barium oxide of the present invention. The desirable addition amount of barium carbonate is 0.5 to 5 wt% in terms of barium oxide amount.
【0028】本発明の触媒被覆層形成方法は種々の方法
を用いることができる。例えば、スプレー塗装、ディッ
プ塗装、静電塗装法などがある。Various methods can be used for the catalyst coating layer forming method of the present invention. For example, there are spray coating, dip coating, electrostatic coating method and the like.
【0029】次に、本発明の動作を説明する。Next, the operation of the present invention will be described.
【0030】本発明は上記構成により、通常は、ファン
により庫内の空気をハニカム状セラミック発熱体の下か
ら上へ循環させ、庫内の臭気成分を、ハニカム状セラミ
ック発熱体に被覆されたゼオライトを吸着剤として含む
触媒層により吸着脱臭するとともに、熱交換器により庫
内の冷却を行う。熱交換器に霜が付き、ある一定能力ま
で冷却能力が落ちた時点で、ファンを停止しハニカム状
セラミック発熱体に通電することによりハニカム状セラ
ミック発熱体に被覆された触媒被覆層中の触媒物質を活
性化させ、触媒被覆層中に吸着した臭気成分を化学作用
により酸化分解して無臭化する。また同時にハニカム状
セラミック発熱体により熱せられた空気は上昇して熱交
換器に付着した霜を除去する。熱せられた霜は水滴とな
って落下するが、水滴保護板によりハニカム状セラミッ
ク発熱体への落下は防止される。According to the present invention having the above-mentioned structure, normally, the air in the chamber is circulated from the bottom to the top of the honeycomb ceramic heating element by a fan, and the odor component in the chamber is coated with the honeycomb ceramic heating element. The catalyst layer containing as an adsorbent adsorbs and deodorizes, and the inside of the refrigerator is cooled by a heat exchanger. When the heat exchanger is frosted and the cooling capacity drops to a certain level, the fan is stopped and the honeycomb ceramic heating element is energized so that the catalyst substance in the catalyst coating layer coated on the honeycomb ceramic heating element Is activated, and the odorous components adsorbed in the catalyst coating layer are oxidized and decomposed by a chemical action to make them odorless. At the same time, the air heated by the honeycomb ceramic heating element rises to remove the frost adhering to the heat exchanger. The heated frost drops as water drops, but the water drop protection plate prevents the drops from falling onto the honeycomb ceramic heating element.
【0031】ハニカム状セラミック発熱体からの加熱に
より熱交換器に付着した霜が除かれ、また触媒被覆層の
吸着能力が再び回復された後にハニカム状セラミック発
熱体への通電を停止し、再び触媒被覆層による臭気成分
の吸着を行う。After the frost adhering to the heat exchanger is removed by the heating from the honeycomb ceramic heating element and the adsorption capacity of the catalyst coating layer is restored again, the electricity supply to the honeycomb ceramic heating element is stopped and the catalyst is reactivated. Adsorption of odorous components by the coating layer.
【0032】このように、触媒被覆層による臭気の吸着
とハニカム状セラミック発熱体通電による臭気成分の酸
化分解を交互に繰り返すことにより、長期間に渡って庫
内の悪臭を除去することができる。As described above, by alternately repeating the adsorption of odor by the catalyst coating layer and the oxidative decomposition of the odor component by energizing the honeycomb ceramic heating element, it is possible to remove the malodor in the chamber for a long period of time.
【0033】[0033]
【発明の実施の形態】以下、本発明の一実施の形態につ
いて図1を参照しながら説明する。図1で1はファン、
2はハニカム状セラミック発熱体、3はハニカム状セラ
ミック発熱体2に被覆した触媒層、4は水滴保護板、5
は熱交換器、6は冷凍室、7は冷蔵室、8は開閉扉、9
は空気吸入口、10は空気排出口である。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG. In Figure 1, 1 is a fan,
Reference numeral 2 denotes a honeycomb-shaped ceramic heating element, 3 denotes a catalyst layer covering the honeycomb-shaped ceramic heating element 2, 4 denotes a water droplet protection plate, 5
Is a heat exchanger, 6 is a freezing room, 7 is a refrigerating room, 8 is an opening / closing door, 9
Is an air inlet, and 10 is an air outlet.
【0034】冷蔵庫のスイッチ(図示せず)を入れる
と、庫内の冷却が始まり、起動したファン1により空気
吸入口9より吸入された冷蔵室7内の空気は、矢印で示
すようにハニカム状セラミック発熱体2と水滴保護板4
に送られる。When a switch (not shown) of the refrigerator is turned on, cooling of the inside of the refrigerator starts, and the air in the refrigerating chamber 7 sucked from the air suction port 9 by the activated fan 1 has a honeycomb shape as shown by an arrow. Ceramic heating element 2 and water drop protection plate 4
Sent to
【0035】ここで、ハニカム状セラミック発熱体2は
未通電であるため低温で高い吸着能力を有するCuイオ
ン交換A型ゼオライトを含むハニカム状セラミック発熱
体2と水滴保護板4の触媒被覆層3により空気中の臭気
成分は吸着され、除去される。浄化された空気は熱交換
器5によって冷風となり冷蔵室7内に再び送られ、この空
気循環が繰り返される。Here, since the honeycomb ceramic heating element 2 is not energized, the honeycomb ceramic heating element 2 containing Cu ion-exchanged A-type zeolite having a high adsorption ability at a low temperature and the catalyst coating layer 3 of the water droplet protection plate 4 are used. Odor components in the air are adsorbed and removed. The purified air becomes cold air by the heat exchanger 5 and is sent again into the refrigerating chamber 7, and this air circulation is repeated.
【0036】熱交換器5に霜が付き、ある一定能力まで
冷却能力が落ちた時点で、タイマーあるいは温度センサ
ー(図示せず)からの信号によりファン1が止められ、
ハニカム状セラミック発熱体2に通電されて熱交換器5
についた霜が除去される。同時に、ハニカム状セラミッ
ク発熱体2は表面に被覆された触媒被覆層3を加熱し、
触媒金属を活性化させ、触媒被覆層3に吸着された臭気
成分を酸化分解して触媒被覆層3の再生を行う。When the heat exchanger 5 is frosted and the cooling capacity drops to a certain level, the fan 1 is stopped by a signal from a timer or a temperature sensor (not shown),
The honeycomb ceramic heating element 2 is energized and the heat exchanger 5
The frost attached to is removed. At the same time, the honeycomb-shaped ceramic heating element 2 heats the catalyst coating layer 3 coated on the surface,
The catalyst metal is activated, and the odorous components adsorbed on the catalyst coating layer 3 are oxidized and decomposed to regenerate the catalyst coating layer 3.
【0037】なお、水滴保護板4は熱交換器5の除霜時
に霜の融解により生成する水滴がハニカム状セラミック
発熱体2の表面に直接落下するのを防止するために設け
られている。熱交換器5に付着した霜が除かれ、また触
媒被覆層3の吸着能力が再び回復された後、ハニカム状
セラミック発熱体2の通電を停止し、再び触媒層3によ
る臭気成分の吸着を行う。The water droplet protection plate 4 is provided to prevent water droplets generated by melting of frost when the heat exchanger 5 is defrosted from directly falling on the surface of the honeycomb ceramic heating element 2. After the frost adhering to the heat exchanger 5 is removed and the adsorption capacity of the catalyst coating layer 3 is restored again, the energization of the honeycomb ceramic heating element 2 is stopped and the odorous components are adsorbed by the catalyst layer 3 again. .
【0038】このように、本発明の実施の形態の冷蔵庫
によれば、冷蔵庫の運転中に触媒被覆層3による臭気の
吸着と吸着した臭気成分の酸化分解を交互に繰り返すこ
とにより、長期間に渡って庫内の悪臭除去と除霜をする
ことができるという効果がある。As described above, according to the refrigerator of the embodiment of the present invention, by alternately repeating the adsorption of the odor by the catalyst coating layer 3 and the oxidative decomposition of the adsorbed odor component during the operation of the refrigerator, a long period of time can be obtained. There is an effect that it is possible to remove the foul odor and defrost inside the refrigerator.
【0039】また、本発明の他の実施の形態を図2に示
した。 図2において、11はファンA、12はハニカ
ム状セラミック発熱体、13はハニカム状セラミック発
熱体12に被覆した触媒層、14は水滴保護板、15は
熱交換器、16は冷凍室、17は冷蔵室、18は開閉
扉、19は空気吸入口、20は空気排出口、21はファ
ンB、22は流量制御弁A、23は流量制御弁Bであ
る。Another embodiment of the present invention is shown in FIG. In FIG. 2, 11 is a fan A, 12 is a honeycomb ceramic heating element, 13 is a catalyst layer coated on the honeycomb ceramic heating element 12, 14 is a water droplet protection plate, 15 is a heat exchanger, 16 is a freezing chamber, and 17 is Refrigerator, 18 is an opening / closing door, 19 is an air inlet, 20 is an air outlet, 21 is a fan B, 22 is a flow control valve A, and 23 is a flow control valve B.
【0040】冷蔵庫のスイッチ(図示せず)を入れる
と、庫内の冷却が始まり、起動したファン11により空
気吸入口19より吸入された冷蔵室17内の空気は、矢
印で示すようにハニカム状セラミック発熱体12と水滴
保護板14に送られる。When a switch (not shown) of the refrigerator is turned on, cooling of the inside of the refrigerator starts, and the air in the refrigerating chamber 17 sucked from the air suction port 19 by the activated fan 11 has a honeycomb shape as shown by an arrow. It is sent to the ceramic heating element 12 and the water drop protection plate 14.
【0041】ここで、ハニカム状セラミック発熱体12
は未通電であるため低温で高い吸着能力を有するハニカ
ム状セラミック発熱体12の触媒被覆層13により空気
中の臭気成分は吸着され、除去される。浄化された空気
は熱交換器15によって冷風となり冷凍室16から冷蔵
室17内に再び送られ、この空気循環が繰り返される。Here, the honeycomb-shaped ceramic heating element 12
Is not energized, the odorous component in the air is adsorbed and removed by the catalyst coating layer 13 of the honeycomb-shaped ceramic heating element 12 having a high adsorption ability at a low temperature. The purified air becomes cold air by the heat exchanger 15 and is sent again from the freezing compartment 16 into the refrigerating compartment 17, and this air circulation is repeated.
【0042】熱交換器15に霜が付き、ある一定能力ま
で冷却能力が落ちた時点で、タイマーあるいは温度セン
サー(図示せず)からの信号によりファンA11が止め
られ、ハニカム状セラミック発熱体12に通電されて熱
交換器15についた霜が除去される。同時に、ハニカム
状セラミック発熱体12は表面に被覆された触媒被覆層
13を加熱し、触媒金属を活性化させ、触媒被覆層13
に吸着された臭気成分を酸化分解して触媒被覆層13の
再生を行う。熱交換器15に付着した霜が除かれ、また
触媒被覆層13の吸着能力が再び回復された後、ハニカ
ム状セラミック発熱体12の通電を停止し、再び触媒層
13による臭気成分の吸着を行う。When the heat exchanger 15 is frosted and the cooling capacity drops to a certain level, the fan A11 is stopped by a signal from a timer or a temperature sensor (not shown), and the honeycomb ceramic heating element 12 is The frost attached to the heat exchanger 15 is removed by being energized. At the same time, the honeycomb-shaped ceramic heating element 12 heats the catalyst coating layer 13 coated on the surface to activate the catalyst metal, and the catalyst coating layer 13 is activated.
The catalyst coating layer 13 is regenerated by oxidatively decomposing the odorous components adsorbed on the. After the frost adhering to the heat exchanger 15 is removed and the adsorption ability of the catalyst coating layer 13 is restored again, the energization of the honeycomb ceramic heating element 12 is stopped and the odorous component is adsorbed by the catalyst layer 13 again. .
【0043】上記通常の冷蔵運転状態に於いて、流量制
御弁A22を用いて冷凍室16より冷蔵室17への冷気
の流れを適当な温度センサーやタイマーなどの信号によ
り制御することにより冷蔵室の冷え過ぎや省エネルギー
化を図ることが出来る。またファンB21を用いて、熱
交換器15の冷気を直接冷蔵室17に供給することによ
り、夏期に開閉扉18の開閉が頻繁に冷蔵室17の冷蔵
性能低下を防止できる。また22、23の流量制御弁
A,Bを連動して用いれば最適な冷蔵性能が得られるだ
けでなく、脱臭性能の向上も図ることが出来る。例えば
冷凍室16から冷蔵室17への流量制御弁Aを閉じ、流
量制御弁Bを開いて、熱交換器15の温度を冷蔵室17
の温度があまり低温化しない程度にあげ、冷気を冷凍室
16を経由しないで循環することにより、省エネルギー
と脱臭性能の向上を行うことが出来る。このような冷気
循環は霜取り時にも行うことが出来る。In the normal refrigerating operation state, the flow rate control valve A22 is used to control the flow of cold air from the freezing compartment 16 to the refrigerating compartment 17 by a signal such as an appropriate temperature sensor or timer. It is possible to achieve too cold and energy saving. Further, by using the fan B21 to directly supply the cool air of the heat exchanger 15 to the refrigerating compartment 17, it is possible to prevent the opening / closing door 18 from being frequently opened and closed during the summer and to prevent the refrigerating performance of the refrigerating compartment 17 from being degraded. Further, if the flow control valves A and B of 22 and 23 are used together, not only the optimum refrigerating performance can be obtained, but also the deodorizing performance can be improved. For example, the flow control valve A from the freezer compartment 16 to the refrigerating compartment 17 is closed, the flow control valve B is opened, and the temperature of the heat exchanger 15 is adjusted to the refrigerating compartment 17.
By increasing the temperature so that the temperature does not drop too much and circulating the cool air without passing through the freezer compartment 16, energy saving and deodorizing performance can be improved. Such cold air circulation can be performed even during defrosting.
【0044】通常、冷蔵庫内の臭気は主に冷蔵室内に貯
蔵される食品より発生する。これは冷凍室内は低温であ
るため食品中の臭気成分の蒸気圧が非常に低いためであ
る。この冷蔵室17内の臭気発生は常時行われているた
め、冷蔵室17からハニカム状セラミック発熱体12、
熱交換器15、流量制御弁Bを経由した冷気の循環を効
率よく行うことにより、冷蔵室17内に臭気が滞留し食
品どうしで起こる臭い移りや庫内壁への付着を防止で
き、脱臭性能が向上される。Usually, the odor in the refrigerator is mainly generated from the food stored in the refrigerator compartment. This is because the vapor pressure of the odorous components in the food is very low due to the low temperature in the freezing compartment. Since the odor is constantly generated in the refrigerating chamber 17, the honeycomb-shaped ceramic heating element 12,
By efficiently circulating the cold air via the heat exchanger 15 and the flow control valve B, it is possible to prevent odors from accumulating in the refrigerating chamber 17 and preventing the odor transfer between foods and adhesion to the inner wall of the refrigerator, thereby improving the deodorizing performance. Be improved.
【0045】なお、水滴保護板14は熱交換器15の除
霜時に霜の融解により生成する水滴がハニカム状セラミ
ック発熱体12の表面に直接落下するのを防止するため
に設けられている。The water drop protection plate 14 is provided to prevent water drops generated by melting of frost when the heat exchanger 15 is defrosted from directly falling on the surface of the honeycomb ceramic heating element 12.
【0046】このように、本発明の実施の形態の冷蔵庫
によれば、冷蔵庫の運転中に触媒被覆層13による臭気
の吸着と吸着した臭気成分の酸化分解を交互に繰り返す
ことにより、長期間に渡って庫内の悪臭除去と除霜をす
ることができるという効果がある。As described above, according to the refrigerator of the embodiment of the present invention, the adsorption of the odor by the catalyst coating layer 13 and the oxidative decomposition of the adsorbed odor component are alternately repeated during the operation of the refrigerator, so that the refrigerator can be used for a long period of time. There is an effect that it is possible to remove the foul odor and defrost inside the refrigerator.
【0047】本発明のハニカム状セラミック発熱体につ
いてさらに具体的な実施の形態を示す。本発明のハニカ
ム状セラミック発熱体の一実施の形態を図に示した。図
3で24はセラミックハニカム状抵抗体としてのSiCハ
ニカム、25は導電極、26は触媒被覆層、27は酸化
反応防止層、28は空気流を示している。A more specific embodiment of the honeycomb-shaped ceramic heating element of the present invention will be described. An embodiment of the honeycomb-shaped ceramic heating element of the present invention is shown in the drawings. In FIG. 3, 24 is a SiC honeycomb as a ceramic honeycomb resistor, 25 is a conductive electrode, 26 is a catalyst coating layer, 27 is an oxidation reaction prevention layer, and 28 is an air flow.
【0048】導電極25に通電すると、SiCハニカム2
4が発熱し印加電力に相当する温度で安定化する。印加
電力量を上げてSiCハニカム24を高温化させてもSiCハ
ニカム24の表面には酸化反応防止層27が設けてある
ため抵抗値変化が抑制される。 SiCハニカム24に未
通電時には、室内の臭気成分を、通常は触媒被覆層26
中のゼオライトおよび貴金属により吸着脱臭する。そし
て、触媒被覆層26の臭気吸着能力の限界まで臭気成分
を吸着する前に、SiCハニカム24に通電すると、SiCハ
ニカム24から外周を覆うように設置してある触媒被覆
層26に熱が伝達され、加熱が効率よく行われ、触媒
は、その活性化温度まで短時間で加熱することができ
る。触媒被覆層26に吸着した臭気成分は、この活性化
した触媒により酸化浄化される。When the conductive electrode 25 is energized, the SiC honeycomb 2
4 heats up and stabilizes at a temperature corresponding to the applied power. Even if the amount of applied power is increased to raise the temperature of the SiC honeycomb 24, the resistance change is suppressed because the oxidation reaction prevention layer 27 is provided on the surface of the SiC honeycomb 24. When the SiC honeycomb 24 is not energized, the odor components in the room are usually separated by the catalyst coating layer 26.
It is adsorbed and deodorized by the zeolite and precious metal contained therein. Then, when the SiC honeycomb 24 is energized before the odor component is adsorbed to the limit of the odor adsorption capacity of the catalyst coating layer 26, heat is transferred from the SiC honeycomb 24 to the catalyst coating layer 26 installed so as to cover the outer periphery. The heating is performed efficiently, and the catalyst can be heated to its activation temperature in a short time. The odorous components adsorbed on the catalyst coating layer 26 are oxidized and purified by the activated catalyst.
【0049】さらに、発熱体は近傍の空気も加熱するた
めに発熱体近傍に対流として空気流28が生じる。そし
て、この空気流28が加熱により活性化温度まで加熱さ
れた触媒被覆層26に接触、あるいは被覆層内に拡散す
る際に、空気流28に含まれる臭気や有害成分、例え
ば、一酸化炭素(以下COと記す)やアンモニアが、触
媒作用により浄化される。Furthermore, since the heating element also heats the air in the vicinity thereof, an air flow 28 is generated as convection near the heating element. When the air stream 28 comes into contact with the catalyst coating layer 26 heated to the activation temperature by heating or diffuses into the coating layer, odors and harmful components contained in the air stream 28, such as carbon monoxide ( (Hereinafter referred to as CO) and ammonia are purified by the catalytic action.
【0050】[0050]
【実施例】次に、本発明の詳しい実施例を説明する。 <実施例1>縦60mm、横150mm、厚さ10mmのSiCハニカ
ム状抵抗体を用い、これに図3に示すような構成で、導
電極として銅電極を溶射により形成した。次にシリカゾ
ルを用いて抵抗体に銅電極部分を除いて厚さ約60μm
のシリカ質の酸化反応防止層を形成した本発明の抵抗体
Aと、酸化反応防止層を形成してない抵抗体Bを調製し
た。EXAMPLES Next, detailed examples of the present invention will be described. Example 1 A SiC honeycomb resistor having a length of 60 mm, a width of 150 mm, and a thickness of 10 mm was used, and a copper electrode was formed as a conductive electrode by thermal spraying with the configuration shown in FIG. Next, using silica sol, the thickness of the resistor is about 60 μm except for the copper electrode part.
The resistor A of the present invention having the siliceous oxidation preventing layer and the resistor B having no oxidation preventing layer were prepared.
【0051】γ−アルミナ400gと、無機バインダ−
としてアルミナ含有率10wt%のコロイダルアルミナ1000
g、銅イオン交換A型ゼオライト 500g、水 15
00g、塩化白金酸をPtとして30g,塩化パラジウ
ムをPdとして15gおよび適量の塩酸を加え、ボール
ミルを用いて充分に混合して、スラリーAを調製した。
このスラリーAを抵抗体A,抵抗体Bにそれぞれ塗布
し触媒被覆層を形成した発熱体Aと発熱体Bを調製し
た。触媒被覆量はどちらも5.0gであった。400 g of γ-alumina and an inorganic binder
As colloidal alumina 1000 with an alumina content of 10 wt%
g, copper ion exchanged A-type zeolite 500 g, water 15
A slurry A was prepared by adding 00 g, 30 g of chloroplatinic acid as Pt, 30 g of palladium chloride as Pd and 15 g and an appropriate amount of hydrochloric acid, and thoroughly mixing with a ball mill.
The heating element A and the heating element B were prepared by applying the slurry A to the resistor A and the resistor B, respectively, to form a catalyst coating layer. The catalyst coating amounts were both 5.0 g.
【0052】さらに電気抵抗体としてニクロム線、およ
び碍子を有する外径10mm、内径9mm、長さ15c
mの石英管5本1組と、縦100mm、横100mm,
厚さ10mmでセル密度100セル/in2のハニカム状SU
S430抵抗体に、スラリーAを用いそれぞれ5.0gの触
媒被覆層を形成した比較発熱体A,Bを作成した。Further, a nichrome wire as an electric resistor, and an insulator having an outer diameter of 10 mm, an inner diameter of 9 mm and a length of 15 c.
One set of 5 m quartz tubes, length 100 mm, width 100 mm,
Honeycomb SU with a thickness of 10 mm and a cell density of 100 cells / in 2
Comparative heating elements A and B in which 5.0 g of the catalyst coating layer was formed on each of the S430 resistors using the slurry A were prepared.
【0053】これらの発熱体についてメルカプタン酸化
浄化試験および耐久試験を行った。メチルメルカプタン
酸化浄化試験は、0.5m3の立方体のフッソ樹脂製の
容器の中に発熱体を置き、ファンで50l/minの流
量の容器内空気を発熱体に送風しながら、発熱体の中心
の外表面の温度が450℃となるよう通電したところ
へ、濃度が10ppmになるようにメチルメルカプタン
を容器に注入し、通電20分後の容器内メチルメルカプ
タン濃度の変化を調べることにより行った。メチルメル
カプタン濃度の経時変化はガスクロマトグラフにより調
べた。耐久試験は、の40℃空気中で、発熱体の中心の
外表面の温度が450℃となるよう通電し、その温度を
10分保った後、通電をやめ20分冷却した後、再び通
電するという通電サイクルを1000回繰り返した後の
触媒被覆層の異常の有無を調べた。結果を(表1)に示
した。A mercaptan oxidation purification test and a durability test were performed on these heating elements. In the methyl mercaptan oxidation purification test, the heating element is placed in a cubic resin container made of fluorine resin of 0.5 m 3 and the center of the heating element is blown by blowing air inside the container at a flow rate of 50 l / min to the heating element. It was carried out by injecting methyl mercaptan into the container so that the concentration became 10 ppm to the place where electricity was applied so that the temperature of the outer surface of was about 450 ° C., and checking the change in the concentration of methyl mercaptan in the container after 20 minutes of electricity application. The change with time of the methyl mercaptan concentration was examined by gas chromatography. The endurance test is conducted by energizing the temperature of the outer surface of the center of the heating element to 450 ° C. in 40 ° C. air, maintaining the temperature for 10 minutes, stopping energizing, cooling for 20 minutes, and then energizing again. After repeating the energization cycle of 1000 times, the presence or absence of abnormality in the catalyst coating layer was examined. The results are shown in (Table 1).
【0054】[0054]
【表1】 [Table 1]
【0055】(表1)より明らかなように、 石英管発
熱体である比較発熱体Aや金属発熱体である比較発熱体
Bに対し、本発明の発熱体A、Bはメルカプタン酸化浄
化性および耐久性に優れていた。さらに相対湿度90%
の空気中での前記耐久試験と同様の試験では、発熱体
あ、B,比較発熱体Aが異常が見られなかったのに対
し、金属発熱体である比較発熱体Bには触媒被覆層剥離
だけでなく、著しい発錆が見られた。As is clear from Table 1, the heating elements A and B of the present invention have a mercaptan oxidation purification property and a comparative heating element A which is a quartz tube heating element and a comparative heating element B which is a metal heating element. It had excellent durability. 90% relative humidity
In the same test as the above durability test in air, no abnormalities were found in the heating elements A and B and the comparative heating element A, whereas the catalyst coating layer peeled off on the comparative heating element B which is a metal heating element. Not only that, remarkable rusting was observed.
【0056】次に発熱体A,Bを、ファンで50l/m
inの流量の容器内空気を発熱体に送風しながら、フッ
ソ樹脂で内壁面を被覆した容積0.5m3の密閉ボック
スに入れ、ボックス内の空気希釈した10ppmの濃度
のメチルメルカプタンを未通電状態で吸着させ、発熱体
を入れた直後から30分後の残存メチルメルカプタン量
を測定した。残存メチルメルカプタン量はどちらも7%
となり、脱臭が速やかに行われた。 <実施例2>実施例1で調製した発熱体Aと発熱体Bに
通電し発熱体温度が500℃となる電力負荷をかけ、連
続通電1000h後の抵抗値変化を測定した。結果を
(表2)にしめす。Next, the heating elements A and B are heated to 50 l / m by a fan.
While blowing the air in the container at a flow rate of in to the heating element, it was placed in a closed box with a volume of 0.5 m 3 whose inner wall surface was covered with fluorine resin, and the air-diluted methyl mercaptan at a concentration of 10 ppm was not energized. And the amount of residual methyl mercaptan was measured 30 minutes after the heating element was put in and the amount of residual methyl mercaptan was measured. The amount of residual methyl mercaptan is 7% for both
The deodorization was promptly performed. <Example 2> The heating element A and the heating element B prepared in Example 1 were energized to apply a power load such that the temperature of the heating element reached 500 ° C, and the change in resistance after 1000 hours of continuous energization was measured. The results are shown in (Table 2).
【0057】[0057]
【表2】 [Table 2]
【0058】(表2)より明らかなように、酸化防止層
のある発熱体Aは抵抗値は変化しないが、酸化防止層の
ない発熱体Bでは抵抗値変化が見られた。この結果か
ら、触媒被覆層を形成する場合、触媒被覆層とハニカム
状発熱体との間に触媒被覆層とハニカム状発熱体との反
応を防止する酸化反応防止層を設けることが望ましい。As is clear from (Table 2), the resistance value of the heating element A having the antioxidant layer did not change, but the resistance value of the heating element B having no oxidation layer was found to change. From this result, when forming the catalyst coating layer, it is desirable to provide an oxidation reaction prevention layer between the catalyst coating layer and the honeycomb heating element to prevent the reaction between the catalyst coating layer and the honeycomb heating element.
【0059】また発熱体Bに通電し発熱体温度が300
℃となる電力負荷をかけ、連続通電1000h後の抵抗
値変化は全く見られず、比較的低い温度では酸化反応防
止層は不要となる。 <実施例3>発熱体Aと同様の構成で、導電極の材質を
(表3)のように種々変化させて発熱体を調製した。各
発熱体の初期抵抗値はすべて5.0Ωであった。つぎに
各発熱体に通電し発熱体温度が700℃となる電力負荷
をかけ、連続通電1000h後の抵抗値を測定した。結
果を(表3)に示した。When the heating element B is energized and the heating element temperature is 300
No change in resistance value is observed after 1000 hours of continuous energization under a power load of 0 ° C., and the oxidation reaction preventive layer is not necessary at a relatively low temperature. <Example 3> A heating element having the same structure as that of the heating element A was prepared by variously changing the material of the conductive electrode as shown in (Table 3). The initial resistance value of each heating element was 5.0 Ω. Next, each heating element was energized and an electric load was applied so that the temperature of the heating element reached 700 ° C., and the resistance value after 1000 hours of continuous energization was measured. The results are shown in (Table 3).
【0060】[0060]
【表3】 [Table 3]
【0061】(表3)より明らかなようにニッケル、
銅、真鍮、銀-Pt、銀-Pd、Ptが抵抗値変化が少な
く望ましい。特に銀-Pd/真鍮、銀-Pt/真鍮は抵抗値
変化がなく導電極を2層構成とすることが望ましい。 <実施例4>発熱体Aと同様の構成で、酸化防止層の材
質を(表4)のように種々変化させて発熱体を調製し
た。これらの発熱体について熱衝撃試験を行い、触媒被
覆層の密着性を調べた。熱衝撃試験は、発熱体に通電
し、触媒被覆層の温度を25℃毎に設定し、その温度で
10分間保持した後、室温水中に投下して触媒被覆層の
剥離の有無を調べ、剥離を起こさない最大温度を耐熱衝
撃温度とした。結果を(表4)に示した。As is clear from Table 3, nickel,
Copper, brass, silver-Pt, silver-Pd, and Pt are desirable because they have little resistance change. In particular, silver-Pd / brass and silver-Pt / brass do not change in resistance value, and it is desirable that the conductive electrode has a two-layer structure. <Example 4> A heating element having the same structure as that of the heating element A was prepared by changing the material of the antioxidant layer as shown in Table 4 below. A thermal shock test was performed on these heating elements to examine the adhesion of the catalyst coating layer. In the thermal shock test, the heating element is energized, the temperature of the catalyst coating layer is set at every 25 ° C., the temperature is maintained for 10 minutes, and then the temperature is dropped in room temperature water to check whether the catalyst coating layer is peeled off. The maximum temperature that does not cause the heat resistance was defined as the thermal shock resistance temperature. The results are shown in (Table 4).
【0062】[0062]
【表4】 [Table 4]
【0063】(表4)より明らかなようにシリカ、チタ
ノカーボシランが耐熱衝撃温度高く望ましい。また上層
にシリカ、下層にチタノカーボシランを形成した2層構
造の酸化防止層をもうけた場合、耐熱衝撃温度が750
℃となり良好な結果を得た。チタノカーボシランは(表
4)に示す酸化防止層材料のうち耐湿性が最も優れてお
り、このような2層化により耐湿性と、触媒被覆層の密
着性の両方に優れた酸化防止層が得られ望ましい。 <実施例5>発熱体Aと同様の構成で、導電極の形成方
法を(表5)のように種々変化させて発熱体を調製し
た。各発熱体の初期抵抗値を(表5)に示した。As is clear from Table 4, silica and titanocarbosilane are desirable because of their high thermal shock resistance temperature. Further, when a two-layered antioxidant layer having silica as the upper layer and titanocarbosilane as the lower layer is provided, the thermal shock resistance temperature is 750.
The temperature was ℃ and good results were obtained. Titanocarbosilane has the most excellent moisture resistance among the antioxidant layer materials shown in (Table 4). Due to such two layers, the antioxidant layer is excellent in both moisture resistance and adhesion of the catalyst coating layer. Is obtained and desirable. <Example 5> A heating element having the same configuration as that of the heating element A was prepared by variously changing the method of forming the conductive electrode as shown in (Table 5). The initial resistance value of each heating element is shown in (Table 5).
【0064】[0064]
【表5】 [Table 5]
【0065】(表5)より明らかなように導電極形成方
法として溶射法が最も抵抗値の低い値が得られ望まし
い。 <実施例6>実施例1のスラリ−Aにおいて、白金族塩
を含有しないスラリー1、白金族塩を含有せず、かつγ
−アルミナをすべて銅イオン交換A型ゼオライトとした
スラリー2、および白金族塩を含有せず、かつ銅イオン
交換A型ゼオライトをすべてγ−アルミナとしたスラリ
ー3を用いて、前記発熱体Aと同様のそれぞれの触媒被
覆層を5.0g有する発熱体C,D,Eを作成した。As is clear from (Table 5), the spraying method is preferable as the method for forming the conductive electrode because the value having the lowest resistance value can be obtained. <Example 6> In the slurry A of Example 1, the slurry 1 containing no platinum group salt, the platinum group salt containing no γ, and γ
-Similar to the heating element A, using a slurry 2 in which alumina is all copper ion-exchanged A-type zeolite and a slurry 3 which does not contain a platinum group salt and in which copper ion-exchanged A-type zeolite is all γ-alumina. Heating elements C, D, and E having 5.0 g of each catalyst coating layer were prepared.
【0066】発熱体C,D,Eについて酢酸吸着試験を
行い測定開始後60分の酢酸残存率を発熱体Aと比較し
た。酢酸吸着試験は、0.5m3の立方体のフッソ樹脂
製の容器の中に発熱体を置き、発熱体を加熱せず、ファ
ンで50l/minの流量の容器内空気を発熱体に送風
しながら、濃度が40ppmになるように酢酸を容器に
注入し濃度の経時変化を調べることにより行った。酢酸
濃度の経時変化はガスクロマトグラフにより調べた。An acetic acid adsorption test was performed on the heating elements C, D, and E, and the acetic acid residual rate 60 minutes after the start of measurement was compared with that of the heating element A. In the acetic acid adsorption test, the heating element was placed in a cubic fluorine resin container of 0.5 m 3 and the heating element was not heated, while the air inside the container at a flow rate of 50 l / min was blown to the heating element. Then, acetic acid was injected into the container so that the concentration became 40 ppm, and the change of the concentration with time was examined. The change with time of the acetic acid concentration was examined by gas chromatography.
【0067】結果を(表6)に示した。(表6)より明
らかなように、酸性臭気成分である酢酸の吸着特性にお
いて本発明の発熱体Aは、発熱体C,D,Eよりも優れ
ていた。従って活性アルミナとゼオライトと白金族金属
を同時に用いることにより、活性アルミナやゼオライト
を単独で用いるよりも酸性の臭気成分に対する吸着特性
を向上させる相乗効果を得ることができる。The results are shown in (Table 6). As is clear from (Table 6), the heating element A of the present invention was superior to the heating elements C, D and E in the adsorption characteristics of acetic acid which is an acidic odor component. Therefore, by using activated alumina, zeolite, and platinum group metal at the same time, it is possible to obtain a synergistic effect of improving the adsorption characteristics for acidic odor components, compared with the case of using activated alumina or zeolite alone.
【0068】[0068]
【表6】 [Table 6]
【0069】<実施例7>γ−アルミナ400gと、無
機バインダ−としてアルミナ含有率10wt%のコロイダル
アルミナ1000g、銅イオン交換A型ゼオライト 450
g、酸化銅50g、水 1500g、塩化白金酸をPt
として30g,塩化パラジウムをPdとして15gおよ
び適量の塩酸を加え、ボールミルを用いて充分に混合し
て、スラリー4を調製した。Example 7 400 g of γ-alumina, 1000 g of colloidal alumina having an alumina content of 10 wt% as an inorganic binder, and copper ion-exchanged A-type zeolite 450
g, copper oxide 50 g, water 1500 g, chloroplatinic acid as Pt
As a slurry 4 was prepared by adding 30 g, palladium chloride as Pd and 15 g and an appropriate amount of hydrochloric acid, and thoroughly mixing using a ball mill.
【0070】またスラリー4と同組成成分で、 塩化白
金酸水溶液と塩化パラジウムと、硝酸銅とアルミナを用
いて予めPt,Pd,CuOが担持したアルミナを用い
て、スラリー4と同様のスラリー5を調製したさらにス
ラリー4で貴金属分をすべて酸化銅としたスラリー6を
調製した。A slurry 5 having the same composition as that of the slurry 4 was prepared in the same manner as the slurry 4 by using an aqueous solution of chloroplatinic acid, palladium chloride, and alumina in which Pt, Pd, and CuO were previously supported using copper nitrate and alumina. Further, the prepared slurry 4 was used to prepare a slurry 6 in which all the noble metal content was copper oxide.
【0071】このスラリー4,5,6を用いて実施例1
と同様の方法および同様のセラミック抵抗体から発熱体
F,G,Hを調製した。Example 1 using these slurries 4, 5 and 6
Heating elements F, G, and H were prepared from the same method and the same ceramic resistor.
【0072】この発熱体F,G,Hを発熱体Aと比較す
るためにメチルメルカプタン浄化試験を行なった。メチ
ルメルカプタン浄化試験は、0.5m3の立方体のフッ
ソ樹脂製の容器の中に発熱体を置き、ファンで50l/
minの流量の容器内空気を発熱体に送風しながら、濃
度が8ppmになるようにメチルメルカプタンを容器に
注入し90分後のメチルメルカプタン濃度を調べること
により行った。なお、発熱体は加熱せず、測定はガスク
ロマトグラフにより調べた。また、吸着試験後、発熱体
を700℃20時間空気中で加熱し、室温まで冷却後再
度メチルメルカプタン浄化試験を行い、脱臭体の耐熱性
を調べた。結果を(表7)に示した。In order to compare the heating elements F, G and H with the heating element A, a methyl mercaptan purification test was conducted. In the methyl mercaptan purification test, the heating element was placed in a cubic container made of fluorine resin of 0.5 m 3 and 50 l /
While blowing air in the container at a flow rate of min to the heating element, methyl mercaptan was injected into the container so that the concentration became 8 ppm, and 90 minutes later, the concentration of methyl mercaptan was examined. The heating element was not heated and the measurement was carried out by gas chromatography. Further, after the adsorption test, the heating element was heated in air at 700 ° C. for 20 hours, cooled to room temperature, and again subjected to a methylmercaptan purification test to examine the heat resistance of the deodorant. The results are shown in (Table 7).
【0073】[0073]
【表7】 [Table 7]
【0074】(表7)に明らかなように、貴金属のみも
しくは酸化銅のみが添加されている発熱体は、700℃
の加熱により脱臭特性が低下するが、酸化銅と貴金属の
両方を添加することにより、脱臭体の耐熱性を向上させ
ることができる。さらに酸化銅と貴金属の両方を予めア
ルミナに担持して用いるとさらに耐熱性が向上し望まし
い。 <実施例8>実施例1のスラリ−Aにおいて、銅イオン
交換型ゼオライトを(表7)に示す種々のゼオライトに
全て置換したスラリーを調製し、発熱体Aと同様の構成
の発熱体を作成した。As is clear from (Table 7), the heating element to which only noble metal or copper oxide is added is 700 ° C.
However, the heat resistance of the deodorant can be improved by adding both copper oxide and a noble metal. Further, it is desirable that both copper oxide and a noble metal are supported on alumina in advance and the heat resistance is further improved. <Example 8> In the slurry-A of Example 1, a slurry in which the copper ion-exchanged zeolite was all replaced with various zeolites shown in (Table 7) was prepared to prepare a heating element having the same configuration as the heating element A. did.
【0075】また、実施例1のスラリ−Aにおいて、貴
金属成分を総量は同じでPtのみ、Pdのみ、Rhの
み、Ruのみとしたスラリーもそれぞれ調製し、発熱体
Aと同様の構成の発熱体を作成した。Further, in the slurry A of Example 1, slurry having the same total amount of noble metal components but Pt only, Pd only, Rh only, and Ru only was prepared, and a heating element having the same structure as the heating element A was prepared. It was created.
【0076】これらの発熱体についてトリメチルアミン
と難吸着臭気のアセトアルデヒドの吸着特性を試験し
た。臭気吸着試験は、0.5m3の立方体のフッソ樹脂
製の容器の中に発熱体を置き、発熱体を加熱せず、ファ
ンで50l/minの流量の容器内空気を発熱体に送風
しながら、トリメチルアミン,アセトアルデヒドとも濃
度が10ppmになるように容器に注入し吸着60分後
の容器内臭気残存率で評価した。容器内臭気濃度はガス
クロマトグラフにより調べた。結果を(表8),(表
9)に示す。The adsorbing properties of trimethylamine and acetaldehyde having a hardly adsorbed odor were tested on these heating elements. In the odor adsorption test, the heating element was placed in a cubic fluorine resin container of 0.5 m 3 and the heating element was not heated, but the air inside the container at a flow rate of 50 l / min was blown to the heating element. , Trimethylamine, and acetaldehyde were injected into the container so that the concentration was 10 ppm, and the odor residual rate in the container after 60 minutes of adsorption was evaluated. The odor concentration in the container was examined by gas chromatography. The results are shown in (Table 8) and (Table 9).
【0077】[0077]
【表8】 [Table 8]
【0078】(表8)より明らかなように、ペンタシル
型ゼオライト、Y型ゼオライト、モルデナイト、Cu−
A型ゼオライトがアセトアルデヒドとトリメチルアミン
の両方の吸着特性に優れていた。さらにゼオライトの内
ペンタシル型ゼオライトのZSM5、シリカライトがア
セトアルデヒドの吸着特性により優れ望ましく、特にH
−ZSM5、Na−ZSM5が最も優れ望ましい。また
トリメチルアミンの吸着特性はY型ゼオライト、モルデ
ナイトが優れ望ましい。脱臭目的とする対象臭気により
ゼオライトは選択される。さらにペンタシル型ゼオライ
トとY型ゼオライトあるいはモルデナイトを混合して用
いることによりアセトアルデヒドとトリメチルアミンの
両方の吸着特性の優れたものが得られ望ましい。As is clear from Table 8, pentasil type zeolite, Y type zeolite, mordenite, Cu-
The A-type zeolite was excellent in the adsorption property of both acetaldehyde and trimethylamine. Further, among the zeolites, pentasil-type zeolite ZSM5 and silicalite are preferable due to their acetaldehyde adsorption property, and particularly H
-ZSM5 and Na-ZSM5 are the most desirable and desirable. Further, Y-type zeolite and mordenite are excellent in the adsorption property of trimethylamine, and are desirable. Zeolites are selected according to the target odor to be deodorized. Further, it is desirable that a mixture of pentasil-type zeolite and Y-type zeolite or mordenite is used because it is possible to obtain one having excellent adsorption properties for both acetaldehyde and trimethylamine.
【0079】[0079]
【表9】 [Table 9]
【0080】(表9)より明らかなように、貴金属の内
Pt-Pd,Ptがアセトアルデヒドの吸着特性に優
れ、貴金属成分としてPtを含むことが望ましい。 <実施例9>(表8)に示したゼオライト種が種々異な
る発熱体を用い、トリメチルアミンの酸化分解性能を測
定した。測定は、トリメチルアミン1000ppm、酸
素21%を含むヘリウム希釈ガスを300℃に通電加熱
した各発熱体にSV5000h-1で流通させ、発熱体に
よるトリメチルアミンの酸化分解時の窒素化率で評価し
た。結果を(表10)に示した。As is clear from Table 9, Pt-Pd and Pt among the noble metals have excellent acetaldehyde adsorption properties, and it is desirable that Pt is contained as the noble metal component. <Example 9> The oxidative decomposition performance of trimethylamine was measured using heating elements having different zeolite species shown in Table 8. In the measurement, a helium dilution gas containing 1000 ppm of trimethylamine and 21% of oxygen was passed through each heating element heated at 300 ° C. at SV 5000 h −1 , and the nitrogenation rate at the time of oxidative decomposition of trimethylamine by the heating element was evaluated. The results are shown in (Table 10).
【0081】[0081]
【表10】 [Table 10]
【0082】(表10)より明らかなように、銅イオン
交換ゼオライトおよび鉄イオン交換ゼオライトが窒素化
率が高く望ましい。臭気として空気中に含まれるトリメ
チルアミン濃度は通常低く、窒素酸化物が生成しても問
題にならないが、窒素酸化物の生成量が多くなる環境で
は銅イオン交換ゼオライトあるいは鉄イオン交換ゼオラ
イト使用が好ましい。また銅イオン交換ゼオライトや鉄
イオン交換ゼオライトは(表8)にも示したようにアセ
トアルデヒドやトリメチルアミンの吸着特性にも優れて
いる。As is clear from (Table 10), copper ion-exchanged zeolite and iron ion-exchanged zeolite are desirable because of their high nitrogenation rate. The concentration of trimethylamine contained in the air as an odor is usually low, and it does not matter if nitrogen oxides are produced, but in an environment where the amount of produced nitrogen oxides is large, it is preferable to use copper ion exchanged zeolite or iron ion exchanged zeolite. Further, the copper ion-exchanged zeolite and the iron ion-exchanged zeolite are also excellent in the adsorption property of acetaldehyde and trimethylamine as shown in (Table 8).
【0083】[0083]
【発明の効果】以上述べたところから明らかなように、
本発明によれば、冷蔵庫の運転中に触媒被覆層による臭
気成分の吸着と吸着した臭気成分の酸化分解を交互に繰
り返して行うので、長期間に渡って脱臭能力を発揮する
ことのできる冷蔵庫を提供することができる。As is apparent from the above description,
According to the present invention, the adsorption of the odorous component by the catalyst coating layer and the oxidative decomposition of the adsorbed odorous component are alternately repeated during the operation of the refrigerator, so that the refrigerator capable of exhibiting the deodorizing ability for a long period of time is provided. Can be provided.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の代表的な一実施の形態を示す図であ
る。FIG. 1 is a diagram showing a typical embodiment of the present invention.
【図2】本発明の他の実施の形態を示す図である。FIG. 2 is a diagram showing another embodiment of the present invention.
【図3】本発明の実施の形態のハニカム状セラミック発
熱体を説明する図である。FIG. 3 is a diagram illustrating a honeycomb-shaped ceramic heating element according to an embodiment of the present invention.
1 ファン 2 ハニカム状セラミック発熱体 3 ハニカム状セラミック発熱体2に被覆した触媒層 4 水滴保護板 5 熱交換器 6 冷凍室 7 冷蔵室 8 開閉扉 9 空気吸入口 10 空気排出口 11 ファンA 12 ハニカム状セラミック発熱体 13 ハニカム状セラミック発熱体2に被覆した触媒層 14 水滴保護板 15 熱交換器 16 冷凍室 17 冷蔵室 18 開閉扉 19 空気吸入口 20 空気排出口 21 ファンB 22 流量制御弁A 23 流量制御弁B 24 SiCハニカム 25 導電極 26 触媒被覆層 27 酸化反応防止層 28 空気流 1 Fan 2 Honeycomb Ceramic Heating Element 3 Catalyst Layer Covering Honeycomb Ceramic Heating Element 4 Water Drop Protection Plate 5 Heat Exchanger 6 Freezing Room 7 Refrigerating Room 8 Opening / Closing Door 9 Air Inlet 10 Air Exhaust 11 Fan A 12 Honeycomb -Shaped ceramic heating element 13 Catalyst layer covering honeycomb-shaped ceramic heating element 2 Water drop protection plate 15 Heat exchanger 16 Freezing room 17 Refrigerating room 18 Opening door 19 Air intake port 20 Air discharge port 21 Fan B 22 Flow control valve A 23 Flow control valve B 24 SiC honeycomb 25 Conductive electrode 26 Catalyst coating layer 27 Oxidation reaction prevention layer 28 Air flow
───────────────────────────────────────────────────── フロントページの続き (72)発明者 本田 公康 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 木村 邦夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kimoyasu Honda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Kunio Kimura, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.
Claims (17)
器と、前記熱交換器の実質上下方に設けられたハニカム
状発熱体と、前記発熱体の実質上上方に近接して設けら
れた水滴保護部材とを備え、前記ファンにより発生する
前記冷蔵室と前記熱交換器とを循環する空気流の実質上
全量が前記ハニカム状セラミック発熱体を通過するよう
構成され、かつ前記発熱体が触媒被覆層を有しているこ
とを特徴とする冷蔵庫。1. A refrigerating chamber, a fan, a heat exchanger, a honeycomb heating element provided substantially below the heat exchanger, and a heating element provided substantially above and above the heating element. A water drop protection member is provided, and substantially the entire amount of the air flow that is circulated in the refrigerating chamber and the heat exchanger generated by the fan is configured to pass through the honeycomb ceramic heating element, and the heating element is a catalyst. A refrigerator having a coating layer.
Aと、ファンBと、熱交換器と、前記熱交換器の実質上
下方に設けたハニカム状セラミック発熱体と、前記発熱
体の実質上上方に近接して設けた水滴保護部材と、前記
ファンAにより発生する、前記冷凍室から前記冷蔵室を
経由して前記熱交換器とを循環する空気流の実質上全量
が前記ハニカム状セラミック発熱体を通過するよう構成
された空気流路Aと、前記ファンBにより発生する前記
冷凍室を経由せず前記冷蔵室から前記発熱体、前記熱交
換器とを循環する空気流の通過する空気流路Bとを備
え、前記ハニカム状セラミック発熱体が触媒被覆層を有
していることを特徴とする冷蔵庫。2. A refrigerating chamber, a refrigerating chamber, a fan A, a fan B, a heat exchanger, a honeycomb-shaped ceramic heating element provided substantially below the heat exchanger, and a substantial heating element. Substantially all of the air flow that is generated by the fan A and that circulates from the freezer compartment to the heat exchanger via the refrigerating compartment is substantially the entire amount of the honeycomb ceramics. Air flow path A configured to pass through a heating element, and air passing through an air flow circulating from the refrigerating chamber to the heating element and the heat exchanger without passing through the freezing chamber generated by the fan B. A refrigerator comprising a flow path B and the honeycomb-shaped ceramic heating element having a catalyst coating layer.
弁を有する請求項2記載の冷蔵庫。3. The refrigerator according to claim 2, further comprising a control valve for controlling an air inflow amount into the fan B.
も、実質上四角柱状あるいは実質上四角板状であるハニ
カム状セラミック抵抗体と、前記ハニカム体の対向する
一対の外周面に形成したアルミニウム、ニッケル、銅、
真鍮、銀-Pd、銀-Pt、Ptより選択される少なくと
も1種よりなる導電極からなり、前記ハニカム状セラミ
ック抵抗体表面を被覆した触媒被覆層を有する請求項1
又は2記載の冷蔵庫。4. A honeycomb ceramic heating element in which the honeycomb ceramic heating element is at least substantially quadrangular prismatic or substantially quadrangular plate-shaped, and aluminum and nickel formed on a pair of outer peripheral surfaces facing each other of the honeycomb element. copper,
2. A catalyst coating layer comprising a conductive electrode made of at least one selected from brass, silver-Pd, silver-Pt, and Pt and coating the surface of the honeycomb-shaped ceramic resistor.
Or the refrigerator according to 2.
とハニカム状セラミック抵抗体および/あるいは導電極
との間に酸化反応防止層が設けられている請求項4記載
の冷蔵庫。5. The refrigerator according to claim 4, wherein an oxidation reaction preventing layer is provided between the catalyst coating layer of the honeycomb ceramic heating element and the honeycomb ceramic resistor and / or the conductive electrode.
は5記載の発熱体。6. The heating element according to claim 4, wherein the conductive electrode is formed by thermal spraying.
ナ、チタニア、チタノカーボシラン、ペルヒドロポリシ
ラザン、より選択される少なくとも1種よりなる請求項
5記載の冷蔵庫。7. The refrigerator according to claim 5, wherein the oxidation reaction preventive layer comprises at least one selected from glass, silica, alumina, titania, titanocarbosilane, and perhydropolysilazane.
請求項4記載の冷蔵庫。8. The refrigerator according to claim 4, wherein the honeycomb-shaped ceramic resistor is SiC.
白金族金属とゼオライトと無機バインダーからなる請求
項1、2、4又は5記載の冷蔵庫。9. The refrigerator according to claim 1, 2, 4 or 5, wherein the catalyst coating layer comprises at least activated alumina, a platinum group metal, zeolite and an inorganic binder.
項1、2、4、5又は9記載の冷蔵庫。10. The refrigerator according to claim 1, wherein the catalyst coating layer contains copper oxide.
た活性アルミナを含んでなる請求項1、2、4、5又は
9記載の冷蔵庫。11. The refrigerator according to claim 1, wherein the catalyst coating layer comprises activated alumina carrying a noble metal and copper oxide.
オライトを含む請求項9記載の冷蔵庫。12. The refrigerator according to claim 9, wherein the zeolite contains at least a pentasil-type zeolite.
るいはY型ゼオライトを含む請求項9記載の冷蔵庫。13. The refrigerator according to claim 9, wherein the zeolite contains at least mordenite or Y-type zeolite.
含む請求項9記載の冷蔵庫。14. The refrigerator according to claim 9, wherein the zeolite contains at least copper zeolite.
5,Na−ZSM5からなる群より選択される少なくと
も1種からなる請求項12記載の冷蔵庫。15. The pentasil-type zeolite is H-ZSM.
The refrigerator according to claim 12, comprising at least one selected from the group consisting of 5, Na-ZSM5.
記載の冷蔵庫。16. The inorganic binder is silica.
The refrigerator as described.
項9記載の冷蔵庫。17. The refrigerator according to claim 9, wherein the platinum group metal contains at least Pt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11722196A JPH09303940A (en) | 1996-05-13 | 1996-05-13 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11722196A JPH09303940A (en) | 1996-05-13 | 1996-05-13 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09303940A true JPH09303940A (en) | 1997-11-28 |
Family
ID=14706401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11722196A Pending JPH09303940A (en) | 1996-05-13 | 1996-05-13 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09303940A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6448539B2 (en) * | 2000-02-01 | 2002-09-10 | E.G.O. Elektro-Geraetebau Gmbh | Electric heating element and method for its production |
JP2003042646A (en) * | 2001-07-31 | 2003-02-13 | Mitsubishi Electric Corp | Refrigerator |
DE102022113956A1 (en) | 2022-05-02 | 2023-11-02 | Liebherr-Hausgeräte Lienz Gmbh | Method for arranging an electrical or electronic component on a refrigerator and/or freezer |
EP4273480A1 (en) * | 2022-05-02 | 2023-11-08 | Liebherr-Hausgeräte Lienz GmbH | Method for arranging an electrical or electronic component on a cooling and/or freezing device |
-
1996
- 1996-05-13 JP JP11722196A patent/JPH09303940A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6448539B2 (en) * | 2000-02-01 | 2002-09-10 | E.G.O. Elektro-Geraetebau Gmbh | Electric heating element and method for its production |
JP2003042646A (en) * | 2001-07-31 | 2003-02-13 | Mitsubishi Electric Corp | Refrigerator |
DE102022113956A1 (en) | 2022-05-02 | 2023-11-02 | Liebherr-Hausgeräte Lienz Gmbh | Method for arranging an electrical or electronic component on a refrigerator and/or freezer |
EP4273480A1 (en) * | 2022-05-02 | 2023-11-08 | Liebherr-Hausgeräte Lienz GmbH | Method for arranging an electrical or electronic component on a cooling and/or freezing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0503500B2 (en) | Catalytic body and process for producing the same | |
EP0527349B1 (en) | Heating element for deodorization | |
JPH09303940A (en) | Refrigerator | |
JPH09306644A (en) | Heating element | |
JPH04281177A (en) | Refrigerator | |
JP2000279493A (en) | Deodorization device and refrigeration device using the same | |
JPH0598185A (en) | Coating material | |
JP4095699B2 (en) | Adsorption decomposition deodorization element | |
JP2001227031A (en) | Toilet deodorizing machine | |
JP3521091B2 (en) | Deodorant | |
JP2658536B2 (en) | Deodorizing device | |
JPH0593580A (en) | Refrigerator | |
JPH05146683A (en) | Catalyst and production thereof | |
JPH0598184A (en) | Coating material | |
JPH09159198A (en) | Deodorizing function equipped air conditioner | |
JPH10246512A (en) | Hot air heater with deodorizing function | |
JPH0924272A (en) | Self-regeneration type adsorbent | |
JP2000121162A (en) | Fan heater with air cleaning function and deodorizing method | |
JP2639196B2 (en) | Shoe dryer | |
JPH07313842A (en) | Deodorizing device | |
JPH067767A (en) | Garbage treatment device | |
JPH0596156A (en) | Deodorizer for refrigerator | |
JP2001227030A (en) | Toilet deodorizing machine | |
JPH08150323A (en) | Deodorizer | |
JPH0596178A (en) | Heating element |