JPH08115723A - Carbonaceous material for secondary battery electrode - Google Patents

Carbonaceous material for secondary battery electrode

Info

Publication number
JPH08115723A
JPH08115723A JP7235910A JP23591095A JPH08115723A JP H08115723 A JPH08115723 A JP H08115723A JP 7235910 A JP7235910 A JP 7235910A JP 23591095 A JP23591095 A JP 23591095A JP H08115723 A JPH08115723 A JP H08115723A
Authority
JP
Japan
Prior art keywords
carbonaceous material
pitch
secondary battery
additive
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7235910A
Other languages
Japanese (ja)
Other versions
JP3496901B2 (en
Inventor
Naohiro Sonobe
直弘 園部
Jiro Masuko
二朗 増子
Takao Iwasaki
隆夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP23591095A priority Critical patent/JP3496901B2/en
Publication of JPH08115723A publication Critical patent/JPH08115723A/en
Application granted granted Critical
Publication of JP3496901B2 publication Critical patent/JP3496901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a nonaqueous solvent secondary battery with high charge/ discharge capacity, long charge/discharge cycle life, and low irreversible capacity by specifying a mean spacing of planes (002) and density. CONSTITUTION: A carbonaceous material for use has a mean spacing of planes (002) 0.365nm or more, preferably 0.370-0.395nm, by an X-ray diffraction method. In addition, a ratio ξH/ξB of density ξH to ξB as measured by using butanol and helium gas as a replacing medium of 1.5 or more, and an atomic ratio of H/C of preferably 0.1 or less. At least one aromatic compound with 2-3 rings having a boiling point of 200 deg.C or higher is added to petroleum or coal pitch, the mixture is melted, then molded. The additive is extracted and removed by a solvent to which the solubility of the pitch is low but the solubility of the additive is high, and the pitch is oxidized, then baked in a reducing atmosphere of 10kPa or less at 900-1500 deg.C to produce the carbonaceous material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池電極用炭
素質材料に関するものであり、更に詳しくは電池活物質
のドープ容量が大きく、高エネルギー密度の非水溶媒系
二次電池の電極材料として好適な炭素質材料及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonaceous material for a secondary battery electrode, and more specifically to a high energy density non-aqueous solvent secondary battery electrode material having a large doping capacity of a battery active material. And a method for producing the same.

【0002】[0002]

【従来の技術】高エネルギー密度の二次電池として、炭
素質材料を負極として用いる非水溶媒系リチウム二次電
池が提案されている(例えば、特開昭57−20807
9号公報、特開昭62−90863号公報、特開昭62
−122066号公報、特開平2−66856号公報参
照)。これは、リチウムの炭素層間化合物が電気化学的
に容易に形成できることを利用したものであり、この電
池を充電すると、例えばLiCoO2 等のカルコゲン化
合物からなる正極中のリチウムは電気化学的に負極炭素
の層間にドープされる。そして、リチウムをドープした
炭素は、リチウム電極として作用し、放電に伴ってリチ
ウムは炭素層間から脱ドープされ、正極中に戻る。
2. Description of the Related Art As a high energy density secondary battery, a non-aqueous solvent type lithium secondary battery using a carbonaceous material as a negative electrode has been proposed (for example, JP-A-57-20807).
No. 9, JP-A-62-90863, JP-A-62.
-122066, Japanese Patent Laid-Open No. 2-66856). This utilizes the fact that a carbon intercalation compound of lithium can be easily formed electrochemically, and when this battery is charged, lithium in a positive electrode made of a chalcogen compound such as LiCoO 2 is electrochemically converted into a negative electrode carbon. Is doped between the layers. Then, the carbon doped with lithium acts as a lithium electrode, and lithium is dedoped from the carbon layer and returns into the positive electrode with discharge.

【0003】このような負極材料としての炭素質材料、
あるいはリチウム源をドープする正極材料としての炭素
質材料においても、単位重量当たりに利用できる電気量
は、リチウムの脱ドープ量によって決まるため、これら
電極材料を構成する炭素質材料は、リチウムの脱ドープ
量を大きくすることが望ましい。
A carbonaceous material as such a negative electrode material,
Alternatively, even in a carbonaceous material as a positive electrode material that is doped with a lithium source, the amount of electricity that can be used per unit weight is determined by the lithium dedoping amount. It is desirable to increase the amount.

【0004】従来、フェノール樹脂やフラン樹脂を焼成
して得られる炭素質材料は、リチウムのドープ量が大き
く、この観点では好ましいことが知られている。しか
し、フェノール樹脂やフラン樹脂を焼成して得られる炭
素質材料を用いて負極を構成した場合、負極炭素にドー
プされたリチウムが完全には脱ドープされず、多量のリ
チウムが負極炭素中に残り、活物質であるリチウムが無
駄に消費されるという問題がある。
It is known that a carbonaceous material obtained by firing a phenol resin or a furan resin has a large lithium doping amount and is preferable in this respect. However, when a negative electrode is formed by using a carbonaceous material obtained by firing a phenol resin or a furan resin, the lithium doped in the negative electrode carbon is not completely dedoped, and a large amount of lithium remains in the negative electrode carbon. However, there is a problem that the active material, lithium, is wasted.

【0005】また黒鉛または黒鉛構造の発達した炭素質
材料を用いて電極を構成した場合、炭素質材料にリチウ
ムをドープした際に、黒鉛層間化合物が形成され、黒鉛
層間隔は広がる。層間にドープされたリチウムを脱ドー
プすることにより、黒鉛層間隔は元に戻る。従って、黒
鉛構造の発達した炭素質材料では、リチウムのドープ−
脱ドープの繰り返しにより黒鉛結晶の破壊が起き易い。
そのため黒鉛または黒鉛構造の発達した炭素質材料を用
いて構成した二次電池は充放電の繰り返し性能が劣ると
いわれている。更に、このような黒鉛構造の発達した炭
素質材料を使用した電池においては電池作動時に電解液
の分解が起こり易いという問題も指摘されている。
When the electrode is made of graphite or a carbonaceous material having a developed graphite structure, when the carbonaceous material is doped with lithium, a graphite intercalation compound is formed and the graphite layer spacing is widened. By dedoping the lithium doped between the layers, the graphite layer spacing is restored. Therefore, in a carbonaceous material with a developed graphite structure, lithium doping-
Repeated dedoping easily causes breakage of graphite crystals.
Therefore, it is said that the secondary battery formed by using graphite or a carbonaceous material having a developed graphite structure is inferior in repeated charge / discharge performance. Further, it has been pointed out that in a battery using such a carbonaceous material having a developed graphite structure, the electrolytic solution is likely to decompose during operation of the battery.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の問題点
を解決するためになされたものであり、大きな充放電容
量を有し、ドープ容量と脱ドープ容量の差として求めら
れる活物質の不可逆容量が小さく活物質を有効に利用す
る非水溶媒系二次電池を可能とする二次電池電極用炭素
質材料及びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems and has a large charge / discharge capacity, and is an irreversible active material which is required as the difference between the doping capacity and the dedoping capacity. An object of the present invention is to provide a carbonaceous material for a secondary battery electrode that enables a non-aqueous solvent-based secondary battery that has a small capacity and effectively uses an active material, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者等らは、炭素質
材料の結晶構造及び微細構造を適正に制御することによ
り、大きな充放電容量を有し、充放電サイクル特性に優
れ、不可逆容量の小さい(活物質利用率の大きい)非水
溶媒系二次電池を可能とする炭素質材料が得られること
を見出した。
The present inventors have a large charge / discharge capacity, excellent charge / discharge cycle characteristics, and irreversible capacity by appropriately controlling the crystal structure and fine structure of the carbonaceous material. It has been found that a carbonaceous material that enables a non-aqueous solvent-based secondary battery with a small (high utilization rate of active material) is obtained.

【0008】すなわち、本発明の非水溶媒系二次電池電
極用炭素質材料は、X線回折法により求めた(002)
面の平均層面間隔(以下「d002 」と略記することがあ
る。)が0.365nm以上、ブタノールを置換媒体と
して測定した密度(以下「ρB 」と略記することがあ
る。)に対するヘリウムガスを置換媒体として測定した
密度(以下「ρH 」と略記することがある。)の比(以
下「ρH /ρB 」と略記することがある。)が1.15
以上であることを特徴とするものである。
That is, the carbonaceous material for a non-aqueous solvent type secondary battery electrode of the present invention was obtained by an X-ray diffraction method (002).
Helium gas with respect to the average layer surface spacing (hereinafter sometimes abbreviated as “d 002 ”) of 0.365 nm or more and the density (hereinafter sometimes abbreviated as “ρ B ”) measured using butanol as a replacement medium. Of the density (hereinafter sometimes abbreviated as “ρ H ”) measured as a replacement medium (hereinafter sometimes referred to as “ρ H / ρ B ”) is 1.15.
The above is a feature.

【0009】このような特性を有する炭素質材料は、石
油系又は石炭系のピッチに対し、添加剤として沸点20
0℃以上の2乃至3環の芳香族化合物の1種又は2種以
上を加えて加熱して溶融混合した後成形してピッチ成形
体を得、次にピッチに対し低溶解度を有しかつ添加剤に
対して高溶解度を有する溶剤で、該ピッチ成形体から添
加剤を抽出除去し、得られた多孔性ピッチを酸化した
後、10kPa(0.1気圧)以下の減圧下で900℃
〜1500℃の温度で焼成することによって製造するこ
とができる。また、椰子殻チャーを10kPa以下の減
圧下900℃〜1500℃の温度で焼成することによっ
ても製造することができる。
The carbonaceous material having such characteristics has a boiling point of 20 as an additive to petroleum-based or coal-based pitch.
One or two or more aromatic compounds having 2 to 3 rings having a temperature of 0 ° C. or higher are added, heated, melt-mixed, and then molded to obtain a pitch molded product, which has a low solubility in pitch and is added. The additive is extracted and removed from the pitch molded product with a solvent having a high solubility for the agent, and the obtained porous pitch is oxidized, and then 900 ° C under a reduced pressure of 10 kPa (0.1 atm) or less.
It can be manufactured by firing at a temperature of ˜1500 ° C. It can also be produced by firing palm shell char at a temperature of 900 ° C to 1500 ° C under a reduced pressure of 10 kPa or less.

【0010】本発明の方法に従い、ピッチにナフタレン
等の添加剤を加えて加熱して溶融混合した後、冷却して
得たピッチ成形体から添加剤を抽出除去することによ
り、ピッチ中に微細な細孔を形成することができる。こ
のようにして得た多孔性ピッチを酸化して熱に対して不
融性にした後、焼成することによってピッチに形成され
た微細な細孔を維持したまま炭素質材料に転換すること
ができる。更に焼成を減圧下で行なうことによって焼成
時に生成する分解ガスやタール分の散逸を容易にし微細
な細孔の生成を促進することができる。このようにして
製造した炭素質材料は、開細孔(ヘリウムが進入できる
細孔)の割合が多くρH が大きく、ρH /ρB が大きく
なる。本発明の炭素質材料は、リチウムのドープ容量
が、リチウムの黒鉛層間化合物LiC6 から計算される
値よりはるかに大きい。従って、本発明の炭素質材料に
おいては、炭素中にドープされたリチウムは黒鉛層間化
合物以外の状態でも炭素質材料中に存在するものと考え
られる。黒鉛層間化合物以外の状態のリチウムのドー
プ、脱ドープには、ヘリウムは進入できるがブタノール
は進入できないような大きさの開細孔が寄与しているも
のと推測される。
According to the method of the present invention, an additive such as naphthalene is added to the pitch, the mixture is heated and melted and mixed, and then the additive is extracted and removed from the pitch molded body obtained by cooling to obtain fine particles in the pitch. Pores can be formed. The porous pitch thus obtained can be converted into a carbonaceous material while maintaining the fine pores formed in the pitch by oxidizing the porous pitch to make it infusible to heat and then firing it. . Further, by performing the firing under reduced pressure, it is possible to easily dissipate the decomposition gas and the tar component produced during firing and to promote the production of fine pores. The carbonaceous material produced in this manner has a large proportion of open pores (pores into which helium can enter), a large ρ H , and a large ρ H / ρ B. The carbonaceous material of the present invention has a lithium doping capacity much higher than the value calculated from the lithium graphite intercalation compound LiC 6 . Therefore, in the carbonaceous material of the present invention, it is considered that lithium doped in carbon is present in the carbonaceous material even in a state other than the graphite intercalation compound. It is presumed that open pores of a size that allows helium to enter but not butanol to contribute to the doping and dedoping of lithium in a state other than the graphite intercalation compound.

【0011】[0011]

【発明の実施の形態】本発明の炭素質材料が満たすべき
第1の特性は、X線回折法により求めた(002)面の
平均層面間隔d002 が0.365nm以上となることで
ある。d002が0.365未満の炭素質材料を負極とし
て非水溶媒系二次電池を構成した場合、電池活物質のド
ープ容量が小さくなり、充放電の繰り返しにより炭素質
材料の崩壊が起こりやすく好ましくない。また、d002
が0.400nmを越えるような炭素質材料は、ドープ
容量と脱ドープ容量の差として求められる活物質の不可
逆容量が大きくなるので好ましくない。d002 は好まし
くは0.370nm以上0.395nm以下、更に好ま
しくは0.375nm以上0.390nm以下である。
BEST MODE FOR CARRYING OUT THE INVENTION The first characteristic to be satisfied by the carbonaceous material of the present invention is that the average layer spacing d 002 of (002) planes obtained by X-ray diffraction is 0.365 nm or more. When a non-aqueous solvent-based secondary battery is constructed using a carbonaceous material having a d 002 of less than 0.365 as a negative electrode, the dope capacity of the battery active material becomes small, and the carbonaceous material is likely to collapse due to repeated charging / discharging. Absent. Also, d 002
A carbonaceous material having a value of more than 0.400 nm is not preferable because the irreversible capacity of the active material, which is required as the difference between the doping capacity and the dedoping capacity, increases. d 002 is preferably 0.370 nm or more and 0.395 nm or less, more preferably 0.375 nm or more and 0.390 nm or less.

【0012】本発明の炭素質材料が具備すべき第2の特
性は、ブタノールを置換媒体として測定した密度ρB
対するヘリウムガスを置換媒体として測定した密度ρH
の比ρH /ρB が1.15以上を示すことである。
The second characteristic that the carbonaceous material of the present invention must have is that the density ρ H measured with helium gas as the replacement medium against the density ρ B measured with butanol as the replacement medium.
Ratio ρ H / ρ B is 1.15 or more.

【0013】ρH /ρB の値は、炭素質材料の細孔構造
の一つの指標であり、この値が大きいということはブタ
ノールは進入できないがヘリウムは進入できる大きさの
細孔が多いことを意味する。つまり、ρH /ρB が大き
いことは微細な細孔が多数存在することを意味する。ま
た、ヘリウムも進入できないような閉じた細孔(クロー
ズドポア)が多く存在すると、ρH /ρB は小さくな
る。
The value of ρ H / ρ B is one index of the pore structure of the carbonaceous material, and a large value means that butanol cannot enter but helium can enter many pores. Means That is, a large ρ H / ρ B means that many fine pores exist. Further, if there are many closed pores (closed pores) such that helium cannot enter, ρ H / ρ B becomes small.

【0014】ρH /ρB が1.15未満であるような炭
素質材料は、電池活物質のドープ量及び脱ドープ量が小
さくなるので好ましくない。ρH /ρB は好ましくは
1.20以上、更に好ましくは1.25以上である。
A carbonaceous material having ρ H / ρ B of less than 1.15 is not preferable because the doping amount and the undoping amount of the battery active material are small. ρ H / ρ B is preferably 1.20 or more, more preferably 1.25 or more.

【0015】本発明の炭素質材料は上記必須要件の他
に、更に、以下の特性を備えることが好ましい。
In addition to the above essential requirements, the carbonaceous material of the present invention preferably further has the following characteristics.

【0016】一つには、炭素質材料の元素分析による水
素/炭素の原子比H/C(以下「H/C」と略記するこ
とがある。)が0.1以下を示すことである。炭素質材
料は一般には、その製造の際の最終的な熱処理温度の上
昇に従ってH/Cは減少する。H/Cが0.1を越える
炭素質材料は、活物質のドープ容量と脱ドープ容量の差
として求められる活物質の不可逆容量が大きくなり、好
ましくない。H/Cは、より好ましくは0.08以下、
更に好ましくは0.06以下である。
One is that the atomic ratio H / C of hydrogen / carbon (hereinafter sometimes abbreviated as "H / C") by the elemental analysis of the carbonaceous material is 0.1 or less. The carbonaceous material generally decreases in H / C as the final heat treatment temperature rises during its production. A carbonaceous material having an H / C exceeding 0.1 is not preferable because the irreversible capacity of the active material, which is required as the difference between the doping capacity and the dedoping capacity of the active material, becomes large. H / C is more preferably 0.08 or less,
More preferably, it is 0.06 or less.

【0017】更に、本発明の炭素質材料は、X線回折法
により求めたc軸方向の結晶子の大きさ(以下「Lc
(002) 」と略記することがある。)が15nm以下であ
ることが好ましい。炭素質材料は、易黒鉛化性炭素質材
料と難黒鉛化性炭素質材料の2つに大別できる。易黒鉛
化性炭素質材料は、高温(例えば2800℃以上)の熱
処理により結晶構造が発達し、d002 が減少し、Lc
(002) が増大し、黒鉛のそれらの値に近づく。一方、難
黒鉛化性炭素質材料は、高温の熱処理によってもそれほ
ど結晶構造は発達しない。本発明の炭素質材料は、難黒
鉛化性炭素質材料であって、そのLc(002) は、15n
m以下、好ましくは10nm以下、更に好ましくは5n
m以下である。
Further, in the carbonaceous material of the present invention, the crystallite size in the c-axis direction (hereinafter referred to as “Lc
(002) ”may be abbreviated. ) Is preferably 15 nm or less. Carbonaceous materials can be roughly classified into two types: graphitizable carbonaceous materials and nongraphitizable carbonaceous materials. The graphitizable carbonaceous material has a crystalline structure developed by heat treatment at a high temperature (for example, 2800 ° C. or higher), d 002 decreases, and Lc
(002) increases and approaches those values of graphite. On the other hand, in the non-graphitizable carbonaceous material, the crystal structure does not develop so much even by the high temperature heat treatment. The carbonaceous material of the present invention is a non-graphitizable carbonaceous material, and its Lc (002) is 15n.
m or less, preferably 10 nm or less, more preferably 5 n
m or less.

【0018】また、本発明の炭素質材料は、ρB が1.
70g/cm3 以下であることが好ましい。d002 及び
Lc(002) の値がほぼ同じ炭素質材料にあっては、ρB
が小さいということは微細な細孔が多く存在することを
意味する。ρB は1.70g/cm3 以下、好ましくは
1.65g/cm3 以下、更に好ましくは1.60g/
cm3 以下である。
The carbonaceous material of the present invention has a ρ B of 1.
It is preferably 70 g / cm 3 or less. For carbonaceous materials having almost the same d 002 and Lc (002) values, ρ B
The fact that is small means that there are many fine pores. [rho B is 1.70 g / cm 3 or less, preferably 1.65 g / cm 3 or less, more preferably 1.60 g /
It is not more than cm 3 .

【0019】本発明の炭素質材料は例えば以下の方法に
より製造することができる。
The carbonaceous material of the present invention can be produced, for example, by the following method.

【0020】石油ピッチ、石炭ピッチ等のピッチに対
し、添加剤として沸点200℃以上の2乃至3環の芳香
族化合物又はその混合物を加えて加熱して溶融混合した
後、成形しピッチ成形体を得る。次にピッチに対し低溶
解度を有しかつ添加剤に対して高溶解度を有する溶剤
で、ピッチ成形体から添加剤を抽出除去し、得られた多
孔性ピッチを酸化した後、10kPa以下の減圧下で9
00℃〜1500℃の温度で焼成する。
To a pitch such as petroleum pitch or coal pitch, an aromatic compound having 2 to 3 rings having a boiling point of 200 ° C. or more or a mixture thereof is added as an additive, heated and melt-mixed, and then molded into a pitch molded body. obtain. Then, the additive is extracted and removed from the pitch-molded product with a solvent having a low solubility in pitch and a high solubility in the additive, and the obtained porous pitch is oxidized, and then the pressure is reduced to 10 kPa or less. In 9
Baking is performed at a temperature of 00 ° C to 1500 ° C.

【0021】上記した芳香族添加剤の目的は、成形後の
ピッチ成形体から該添加剤を抽出除去して成形体を多孔
質にし、得られる炭素質材料の微細構造を制御し併せて
後の酸化ならびに焼成を容易にすることにある。このよ
うな添加剤は、例えばナフタレン、メチルナフタレン、
フェニルナフタレン、ベンジルナフタレン、メチルアン
トラセン、フェナンスレン、ビフェニル等の1種又は2
種以上の混合物から選択される。ピッチに対する添加量
は、ピッチ100重量部に対し30〜70重量部の範囲
が好ましい。
The purpose of the above-mentioned aromatic additive is to extract and remove the additive from the pitch molded product after molding to make the molded product porous and to control the fine structure of the resulting carbonaceous material and to It is to facilitate oxidation and baking. Such additives include, for example, naphthalene, methylnaphthalene,
One or two of phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, biphenyl, etc.
It is selected from a mixture of two or more species. The amount of addition to the pitch is preferably in the range of 30 to 70 parts by weight with respect to 100 parts by weight of the pitch.

【0022】ピッチと添加剤の混合は、均一な混合を達
成するため、加熱し溶融状態で行う。ピッチと添加剤の
混合物は、添加剤を混合物から容易に抽出できるように
するため、粒径1mm以下の粒子に成形することが好ま
しい。成形は溶融状態で行ってもよく、また混合物を冷
却後粉砕する等の方法によってもよい。
The pitch and the additives are mixed in a molten state by heating in order to achieve uniform mixing. The mixture of pitch and additive is preferably molded into particles having a particle size of 1 mm or less so that the additive can be easily extracted from the mixture. The molding may be performed in a molten state, or may be performed by a method such as pulverizing after cooling the mixture.

【0023】ピッチと添加剤の混合物から添加剤を抽出
除去するための溶剤としては、ブタン、ペンタン、ヘキ
サン、ヘプタン等の脂肪族炭化水素、ナフサ、ケロシン
等の脂肪族炭化水素主体の混合物、メタノール、エタノ
ール、プロパノール、ブタノール等の脂肪族アルコール
類等が好適である。
As a solvent for extracting and removing the additive from the mixture of pitch and the additive, aliphatic hydrocarbons such as butane, pentane, hexane, heptane, etc., mixtures mainly containing aliphatic hydrocarbons such as naphtha, kerosene, methanol, etc. And aliphatic alcohols such as ethanol, propanol and butanol are preferable.

【0024】このような溶剤でピッチと添加剤の混合物
成形体から添加剤を抽出することによって、成形体の形
状を維持したまま、添加剤を成形体から除去することが
できる。この際に成形体中に添加剤の抜け穴が形成さ
れ、均一な多孔性を有するピッチ成形体が得られるもの
と推定される。
By extracting the additive from the mixture of pitch and the additive molded body with such a solvent, the additive can be removed from the molded body while maintaining the shape of the molded body. At this time, it is presumed that voids of the additive are formed in the molded body and a pitch molded body having uniform porosity can be obtained.

【0025】次に、かくして得られた多孔性を示すピッ
チ成形体を酸化する。酸化は、好ましくは常温から40
0℃までの温度で行なう。酸化剤としては、O2
3 、SO3 、NO2 、これらを空気、窒素等で希釈し
た混合ガス、または空気等の酸化性気体、あるいは硫
酸、硝酸、過酸化水素水等の酸化性液体を用いることが
できる。
Next, the thus obtained porous pitch molded body is oxidized. Oxidation is preferably at room temperature to 40
Perform at temperatures up to 0 ° C. As the oxidant, O 2 ,
O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen or the like, an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid or hydrogen peroxide solution can be used.

【0026】多孔性ピッチの酸化は、酸化剤として空気
又は空気と他のガス例えば燃焼ガス等との混合ガスのよ
うな酸素を含むガスを用いて、120℃〜300℃で行
なうことが簡便であり、経済的にも有利である。この場
合、ピッチの軟化点が低いと、酸化時にピッチが溶融し
て酸化が困難となるので、使用するピッチは軟化点が1
50℃以上であることが好ましい。
Oxidation of the porous pitch is conveniently carried out at 120 ° C. to 300 ° C. using a gas containing oxygen such as air or a mixed gas of air and another gas such as combustion gas as an oxidant. Yes, it is economically advantageous. In this case, if the softening point of the pitch is low, the pitch will be melted during oxidation and oxidation will be difficult. Therefore, the pitch used has a softening point of 1 or less.
It is preferably 50 ° C. or higher.

【0027】酸化の度合いは、酸素を含むガスを用いて
酸化する場合は、目安として酸化処理後の多孔性ピッチ
の元素分析による酸素含有量が5〜30%となるように
するのがよい。酸素含有量は、好ましくは10〜25
%、更に好ましくは13〜22%である。
The degree of oxidation is preferably set so that the oxygen content by elemental analysis of the porous pitch after the oxidation treatment is 5 to 30% when the oxidation is performed using a gas containing oxygen. The oxygen content is preferably 10 to 25
%, And more preferably 13 to 22%.

【0028】本発明の方法においては、得られる炭素質
材料が経験する最高温度を含む熱処理を本焼成という。
本焼成は、酸化後の多孔性ピッチを10kPa(0.1
気圧)以下の減圧下で900℃〜1500℃の温度で行
なう。焼成時の被焼成物の酸化を防止するため、酸素等
の酸化性ガスが存在しない、窒素、アルゴン等の不活性
ガスのみが許容される減圧下雰囲気の中で焼成すること
が好ましい。減圧下での圧力が10kPaを越える場合
は、被焼成物からの分解ガスの抜けが不十分となり、微
細な細孔の形成が不十分となるので好ましくない。圧力
は、好ましくは1kPa以下、更に好ましくは、0.1
kPa以下である。本焼成温度が900℃未満では、被
焼成物の炭化が不十分であり、得られる炭素質材料を二
次電池の電極材料に使用した場合、炭素質材料にドープ
された電池活物質が脱ドープされずに炭素質材料中に残
存する量(不可逆容量)が大きくなり、好ましくない。
また、本焼成温度が1500℃を越える場合は、ρH
小さくなり、得られる炭素質材料への電池活物質のドー
プ容量が減少するので好ましくない。本焼成は好ましく
は950℃〜1450℃、更に好ましくは1000℃〜
1400℃で行なう。
In the method of the present invention, the heat treatment including the highest temperature experienced by the obtained carbonaceous material is called main firing.
In the main firing, the porous pitch after oxidation is set to 10 kPa (0.1
It is carried out at a temperature of 900 ° C. to 1500 ° C. under a reduced pressure of atmospheric pressure or less. In order to prevent the object to be fired from being oxidized during firing, it is preferable to perform firing in a reduced pressure atmosphere in which an oxidizing gas such as oxygen does not exist and only an inert gas such as nitrogen or argon is allowed. If the pressure under reduced pressure exceeds 10 kPa, it is not preferable because the decomposition gas is not sufficiently released from the material to be fired and the formation of fine pores is insufficient. The pressure is preferably 1 kPa or less, more preferably 0.1
It is kPa or less. If the main calcination temperature is lower than 900 ° C, carbonization of the material to be calcinated is insufficient, and when the obtained carbonaceous material is used as an electrode material of a secondary battery, the battery active material doped in the carbonaceous material is dedoped. The amount (irreversible capacity) that remains in the carbonaceous material without being increased becomes unfavorable.
Further, if the main calcination temperature exceeds 1500 ° C., ρ H becomes small and the dope capacity of the obtained carbonaceous material of the battery active material decreases, which is not preferable. The main calcination is preferably 950 ° C to 1450 ° C, more preferably 1000 ° C to
Perform at 1400 ° C.

【0029】焼成は、酸化後のピッチを連続的に最終的
な焼成温度(900℃〜1500℃)まで昇温して行な
うことも可能であるが、最終的な焼成温度よりも低い温
度で一旦仮焼成を行った後、本焼成することも可能であ
る。
The firing can be carried out by continuously raising the pitch after oxidation to the final firing temperature (900 ° C. to 1500 ° C.), but once the temperature is lower than the final firing temperature. It is also possible to perform the main firing after performing the preliminary firing.

【0030】微粉末状の炭素質材料が要求される場合
は、本焼成完了後に得られた炭素質材料を粉砕すること
も可能であるが、ピッチを上述のようにして酸化したも
の(酸化ピッチ)を、本焼成に先立ち、不活性ガス雰囲
気中(例えば窒素、アルゴン等のガス雰囲気中、あるい
は減圧下)で350〜700℃で仮焼成し、揮発分(測
定法は後述)を15%以下とした炭素前駆体を得、これ
を平均粒径100μm以下、好ましくは50μm以下に
粉砕した後本焼成して、粉末状の炭素質材料を製造する
ことができる。
When a fine powdery carbonaceous material is required, the carbonaceous material obtained after the completion of the main firing can be crushed, but the pitch oxidized as described above (oxidized pitch ) Is calcined at 350 to 700 ° C. in an inert gas atmosphere (for example, in a gas atmosphere of nitrogen, argon or the like, or under reduced pressure) prior to the main calcination, and the volatile matter (measuring method described later) is 15% or less. The powdery carbonaceous material can be manufactured by obtaining the carbon precursor described above, pulverizing the carbon precursor to an average particle size of 100 μm or less, preferably 50 μm or less, and then firing the powder.

【0031】炭素前駆体の揮発分を15%以下とするの
は、焼成時に粉砕粒子の溶融や粉砕粒子同士の融着が起
るのを防止するためである。炭素前駆体の揮発分は好ま
しくは10%以下である。
The volatile content of the carbon precursor is set to 15% or less in order to prevent melting of the crushed particles and fusion of the crushed particles during firing. The volatile content of the carbon precursor is preferably 10% or less.

【0032】本焼成前の炭素前駆体は、本焼成されたも
のに比べて、非常に粉砕が容易で粉砕機の摩耗等も少な
いので、本焼成前に炭素前駆体を粉砕する方法は非常に
有利である。また炭素前駆体の揮発分を少なくすること
は、本焼成工程でのタールや分解ガスの発生を少なく
し、本焼成工程の負荷が軽減されるので好ましい。
Since the carbon precursor before the main calcination is much easier to pulverize and the abrasion of the crusher is less than that of the carbon precursor after the main calcination, the method of pulverizing the carbon precursor before the main calcination is very It is advantageous. Further, it is preferable to reduce the volatile content of the carbon precursor because the generation of tar and decomposition gas in the main firing step is reduced and the load of the main firing step is reduced.

【0033】本発明の炭素質材料は、また、椰子殻チャ
ーを10kPa以下の減圧下900℃〜1500℃の温
度で焼成することによっても製造することができる。
The carbonaceous material of the present invention can also be produced by firing coconut shell char at a temperature of 900 ° C. to 1500 ° C. under a reduced pressure of 10 kPa or less.

【0034】上記のいずれの方法においても、減圧下の
焼成は全焼成過程を通して行ってもよいが、800℃以
上の温度域が減圧下で行われれば十分である。
In any of the above methods, the firing under reduced pressure may be performed throughout the firing process, but it is sufficient if the temperature range of 800 ° C. or higher is performed under reduced pressure.

【0035】本発明の炭素質材料を用いて非水溶媒系二
次電池の電極を構成する場合には、炭素質材料を、必要
に応じて平均粒径約5〜100μmの微粒子とした後、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン、
ポリエチレン等の非水溶媒に対して安定な結合剤によ
り、例えば、円形あるいは矩形の金属板等からなる導電
性の集電材に接着して厚さが例えば10〜200μmの
層を形成する等の方法により電極を製造する。結合剤の
好ましい添加量は、炭素質材料に対して1〜20重量%
である。結合剤の添加量が多すぎると、得られる電極の
電気抵抗が大きくなり電池の内部抵抗が大きくなり電池
特性を低下させるので好ましくない。また結合剤の添加
量が少なすぎると、炭素質材料粒子相互及び集電材との
結合が不十分となり好ましくない。なお、上記は、比較
的小容量の二次電池についての値であるが、より大形の
二次電池の形成のためには、上記炭素質微粒子と結合剤
の混合物をプレス成形等の方法により、より大なる厚さ
の成形体を製造し、これを集電材と電気的に接続する等
の方法も可能である。
In the case where the carbonaceous material of the present invention is used to form an electrode of a non-aqueous solvent type secondary battery, the carbonaceous material is made into fine particles having an average particle size of about 5 to 100 μm, if necessary.
Polyvinylidene fluoride, polytetrafluoroethylene,
A method of forming a layer having a thickness of, for example, 10 to 200 μm by bonding to a conductive current collector made of, for example, a circular or rectangular metal plate with a binder that is stable to a non-aqueous solvent such as polyethylene. The electrode is manufactured by. The preferable addition amount of the binder is 1 to 20% by weight with respect to the carbonaceous material.
Is. If the amount of the binder added is too large, the electric resistance of the obtained electrode increases, the internal resistance of the battery increases, and the battery characteristics deteriorate, which is not preferable. On the other hand, if the amount of the binder added is too small, the binding between the carbonaceous material particles and the current collector becomes insufficient, which is not preferable. The above is the value for a relatively small capacity secondary battery, but in order to form a larger secondary battery, a mixture of the carbonaceous fine particles and a binder is formed by a method such as press molding. It is also possible to manufacture a molded body having a larger thickness and electrically connect the molded body to a current collector.

【0036】本発明の炭素質材料は、その良好なドープ
特性を利用して、非水溶媒型二次電池の正極材料として
用いることも可能であるが、上述したように、非水溶媒
型二次電池の負極、特にリチウム二次電池の負極活物質
としてのリチウムのドープ用負極、の構成に用いること
が好ましい。
The carbonaceous material of the present invention can be used as a positive electrode material of a non-aqueous solvent type secondary battery by utilizing its good doping property. However, as described above, the non-aqueous solvent type secondary battery can be used. It is preferably used for the constitution of a negative electrode of a secondary battery, particularly a negative electrode for doping lithium as a negative electrode active material of a lithium secondary battery.

【0037】この場合、正極材料としては、LiCoO
2 、LiNiO2 、LiMnO4 等の複合金属カルコゲ
ン化物が好ましく、適当なバインダーと電極に導電性を
付与するための炭素材料とともに成形して、導電性の集
電材上に層形成される。
In this case, the positive electrode material is LiCoO 2.
Complex metal chalcogenides such as 2 , LiNiO 2 and LiMnO 4 are preferable, and they are formed with a suitable binder and a carbon material for imparting conductivity to the electrode to form a layer on the conductive current collector.

【0038】これら正極及び負極との組合せで用いられ
る非水溶媒型電解液は、一般に非水溶媒に電解質を溶解
することにより形成される。非水溶媒としては、例えば
プロピレンカーボネート、エチレンカーボネート、ジメ
チルカーボネート、ジエチルカーボネート、ジメトキシ
エタン、ジエトキシエタン、γ−ブチロラクトン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、スル
ホラン、1,3−ジオキソラン等の有機溶媒の一種また
は二種以上を組合せて用いることが出来る。また電解質
としては、LiClO4 、LiPF6 、LiBF4 、L
iCF3 SO3、LiAsF6 、LiCl、LiBr、
LiB(C6 5 4 、LiN(So2CF3 2 等が
用いられる。
The non-aqueous solvent type electrolytic solution used in combination with the positive electrode and the negative electrode is generally formed by dissolving an electrolyte in a non-aqueous solvent. As the non-aqueous solvent, for example, one of organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, and 1,3-dioxolane. Alternatively, two or more kinds can be used in combination. Further, as the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , L
iCF 3 SO 3 , LiAsF 6 , LiCl, LiBr,
LiB (C 6 H 5) 4 , LiN (So 2 CF 3) 2 or the like is used.

【0039】二次電池は、一般に上記のようにして形成
した正極層と負極層とを、必要に応じて不織布、その他
の多孔質材料等からなる透液性セパレータを介して、対
向させ電解液中に浸漬することにより形成される。
In a secondary battery, generally, the positive electrode layer and the negative electrode layer formed as described above are opposed to each other through a liquid-permeable separator made of a non-woven fabric or other porous material, if necessary. It is formed by immersing in.

【0040】なお、本明細書に記載する炭素ないし黒鉛
質材料のd002 、Lc(002) ρB 、ρH 、H/C、及び
ピッチの揮発分、軟化点の測定は、以下のようにして行
った。
The measurements of d 002 , Lc (002) ρ B , ρ H , H / C, and pitch volatiles and softening points of the carbon or graphitic materials described in this specification were conducted as follows. I went.

【0041】「炭素質材料のd002 およびL
(002) 」:炭素質材料粉末をアルミニウム製試料セル
に充填し、グラファイトモノクロメーターにより単色化
したCuKα線(波長λ=0.15418nm)を線源
とし、反射式デフラクトメーター法によりX線回折図形
を得る。回折図形の補正には、ローレンツ偏光因子、吸
収因子、原子散乱因子等に関する補正を行わず、K
α1 、Kα2 の2重線の補正のみをRachinger
の方法により行った。(002)回折線のピーク位置
は、重心法(回折線の重心位置を求め、これに対応する
2θ値でピーク位置を求める方法)により求め、標準物
質用高純度シリコン粉末の(111)回折線を用いて補
正し、下記Braggの公式よりd002 を計算した。
"Carbonaceous materials d 002 and L
c (002) ”: A carbonaceous material powder is filled in an aluminum sample cell, and CuKα rays (wavelength λ = 0.15418 nm) monochromated by a graphite monochromator are used as a radiation source, and X-rays are produced by a reflection defractometer method. Get the diffraction pattern. For correction of the diffraction pattern, corrections for Lorentz polarization factor, absorption factor, atomic scattering factor, etc. are not performed, and K
Rachinger only corrects the double line of α 1 and K α 2.
It was performed by the method of. The peak position of the (002) diffraction line is obtained by the center of gravity method (the position of the center of gravity of the diffraction line is determined and the peak position is obtained from the corresponding 2θ value), and the (111) diffraction line of the high-purity silicon powder for standard substance is obtained. Was corrected, and d 002 was calculated from the Bragg formula below.

【0042】Lc(002) は、炭素質試料の(002)回
折線の半値幅と標準物質用高純度シリコン粉末の(11
1)回折線の半値幅からAlexander曲線を用い
てβ1/2 を求め、下記Scherrerの式により計算
した。ここで、形状因子Kは、0.9とした。
Lc (002) is the full width at half maximum of the (002) diffraction line of the carbonaceous sample and (11 of the high-purity silicon powder for standard substance).
1) β 1/2 was obtained from the half width of the diffraction line using the Alexander curve, and was calculated by the Scherrer's formula below. Here, the shape factor K is 0.9.

【0043】 d002 =λ/(2・sinθ) (Braggの公式) Lc(002) =K・λ/(β1/2 cosθ) (Scherrerの式) 「ρB 」:JIS R7212に定められた方法に従
い、ブタノール法により測定した。その概要を以下に記
す。
D 002 = λ / (2 · sin θ) (Bragg's formula) Lc (002) = K · λ / (β 1/2 cos θ) (Scherrer's formula) “ρ B ”: defined in JIS R7212 According to the method, it was measured by the butanol method. The outline is given below.

【0044】内容積約40mlの側管付比重びんの質量
(m1 )を正確に量る。次に、その底部に試料を約10
mmの厚さになるように平らにいれた後、その質量(m
2 )を正確に量る。これに1−ブタノールを静かに加え
て、底から20mm程度の深さにする。次に比重びんに
軽い振動を加えて、大きな気ほうの発生がなくなったの
を確かめた後、真空デシケーター中にいれ、徐々に排気
して2.0〜2.7kPaとする。その圧力に20分間
以上保ち、気ほうの発生が止まった後取り出して、更に
1−ブタノール満たし、せんをして恒温水そう(30±
0.03℃に調節してあるもの)に15分間以上浸し、
1−ブタノールの液面を標線に合わせる。次に、これを
取り出して外部をよくぬぐって室温まで冷却した後質量
(m4 )を正確に量る。
Accurately measure the mass (m 1 ) of a specific gravity bottle with a side tube having an internal volume of about 40 ml. Then, place about 10 samples on the bottom.
After putting it flat to a thickness of mm, its mass (m
2 ) Weigh accurately. 1-Butanol is gently added to this to make a depth of about 20 mm from the bottom. Next, a light vibration is applied to the pycnometer to confirm that the generation of large bubbles has disappeared, and then the pycnometer is placed in a vacuum desiccator and gradually evacuated to 2.0 to 2.7 kPa. Keep that pressure for more than 20 minutes, take out after the bubble formation stops, fill it with 1-butanol, wipe it with a bottle of constant temperature water (30 ±
Soak for 15 minutes or more)
Align the liquid level of 1-butanol with the marked line. Next, this is taken out, the outside is well wiped off, and after cooling to room temperature, the mass (m 4 ) is accurately measured.

【0045】次に同じ比重びんに1−ブタノールだけを
満たし、前記と同じようにして恒温水そうに浸し、標線
を合わせた後、質量(m3 )を量る。
Next, the same pycnometer was filled with 1-butanol alone, immersed in a constant temperature water bath in the same manner as above, the marked lines were set, and then the mass (m 3 ) was measured.

【0046】また、使用直前に沸騰させて溶解した気体
を除いた蒸留水を比重びんにとり、前と同様に恒温水そ
うに浸し、標線を合わせた後質量(m5 )を量る。
[0046] Also, taking the distilled water, except for the gas dissolved by boiling just before use in pycnometer, as before immersed in a constant temperature water likely, weigh the mass (m 5) After combining the marked line.

【0047】ρB は次の式により計算する。Ρ B is calculated by the following formula.

【0048】ρB =(m2 −m1 )(m3 −m1 )d/
[{m2 −m1 −(m4 −m3 )}(m3 −m1 )] ここにdは水の30℃における比重(0.9946)で
ある。
Ρ B = (m 2 −m 1 ) (m 3 −m 1 ) d /
[{M 2 −m 1 − (m 4 −m 3 )} (m 3 −m 1 )] Here, d is the specific gravity of water at 30 ° C. (0.9946).

【0049】「ρH 」:ρH の測定は、マイクロメリテ
ィックス社製マルチボリューム・ピクノメーター130
5を用い、試料は120℃で2時間乾燥してから測定を
行った。測定時の周囲温度は、22℃で一定として行っ
た。本測定法での圧力はいずれもゲージ圧力であり、絶
対圧力から周囲圧力を差し引いた圧力である。
“Ρ H ”: The measurement of ρ H is made by Micromeritics Multivolume Pycnometer 130.
5, the sample was dried at 120 ° C. for 2 hours and then measured. The ambient temperature at the time of measurement was constant at 22 ° C. All the pressures in this measurement method are gauge pressures, which are absolute pressures minus ambient pressures.

【0050】測定装置は試料室および膨張室を有し、試
料室は室内の圧力を測定するための圧力計を有する。試
料室と膨張室はバルブ備える連結管により接続されてい
る。試料室にはストップバルブを備えるヘリウムガス導
入管が接続され、膨張室にはストップバルブを備えるヘ
リウムガス配出管が接続されている。
The measuring device has a sample chamber and an expansion chamber, and the sample chamber has a pressure gauge for measuring the pressure inside the chamber. The sample chamber and the expansion chamber are connected by a connecting pipe equipped with a valve. A helium gas introduction pipe having a stop valve is connected to the sample chamber, and a helium gas delivery pipe having a stop valve is connected to the expansion chamber.

【0051】測定は以下のようにして行った。試料室の
容積(VCELL)および膨張室の容積(VEXP )を標準球
を用いて予め測定しておく。
The measurement was performed as follows. The volume of the sample chamber (V CELL ) and the volume of the expansion chamber (V EXP ) are measured in advance using a standard sphere.

【0052】試料室に試料を入れ、試料室のヘリウムガ
ス導入管、連結管、膨張室のヘリウムガス排出管を通し
てヘリウムガスを2時間流し装置内をヘリウムガスで置
換する。次に試料室と膨張室の間のバルブ及び膨張室か
らのヘリウムガス排出管のバルブを閉じ(膨張室には周
囲圧力と同じ圧力のヘリウムガスが残る)、試料室のヘ
リウムガス導入管からヘリウムガスを134kPaにな
るまで導入した後、ヘリウムガス導入管のストップバル
ブを閉じる。ストップバルブを閉じてから5分後の試料
室の圧力(P1 )を測定する。次に試料室と膨張室の間
のバルブを開いてヘリウムガスを膨張室に移送しそのと
きの圧力(P2 )を測定する。
A sample is put in the sample chamber, and helium gas is caused to flow for 2 hours through the helium gas introduction pipe of the sample chamber, the connecting pipe, and the helium gas discharge pipe of the expansion chamber to replace the inside of the apparatus with the helium gas. Next, the valve between the sample chamber and the expansion chamber and the valve for the helium gas discharge pipe from the expansion chamber are closed (helium gas at the same pressure as the ambient pressure remains in the expansion chamber), and helium gas is introduced from the helium gas introduction pipe in the sample chamber. After introducing the gas to 134 kPa, the stop valve of the helium gas introducing pipe is closed. The pressure (P 1 ) in the sample chamber is measured 5 minutes after the stop valve is closed. Next, the valve between the sample chamber and the expansion chamber is opened to transfer the helium gas to the expansion chamber, and the pressure (P 2 ) at that time is measured.

【0053】試料の体積(VSAMP )は次式で計算す
る。
The sample volume (V SAMP ) is calculated by the following equation.

【0054】 VSAMP =VCELL−VEXP /[(P1 /P2 )−1] したがって、試料の重量をWSAMP とすると密度は ρH =WSAMP /VSAMP となる。V SAMP = V CELL −V EXP / [(P 1 / P 2 ) −1] Therefore, when the weight of the sample is W SAMP , the density is ρ H = W SAMP / V SAMP .

【0055】「H/C」:CHNアナライザーによる元
素分析により求めた。
"H / C": determined by elemental analysis using a CHN analyzer.

【0056】「揮発分」:揮発分はJIS R7212
に定められた方法に準じて測定を行った。ただし、試料
の加熱を800℃、30分間とした。
"Volatile": Volatile is JIS R7212
The measurement was performed according to the method specified in. However, the sample was heated at 800 ° C. for 30 minutes.

【0057】「軟化点」:島津製作所製高化式フローテ
スターを用い、250μm以下に粉砕された試料1gを
直径1mmのノズルを底部に有する断面積1cm2 のシ
リンダーに充填し、9.8N/cm2 (10Kg/cm
2 )の加重を加えながら6℃/分の速度で昇温する。温
度の上昇に伴い粉体粒子が軟化し充填率が向上し、試料
粉体の体積は減少するが、ある温度以上では体積の減少
は停止する。さらに昇温を続けるとシリンダー下部のノ
ズルより試料が溶融して流出する。このときの試料粉体
の体積減少が停止する温度をその試料の軟化点と定義す
る。なお軟化点の高い試料においては、ノズルからの試
料の流出が起らない場合もある。
"Softening point": Using a Shimadzu high-performance flow tester, 1 g of a sample ground to 250 μm or less was filled in a cylinder having a cross-sectional area of 1 cm 2 having a nozzle of 1 mm in diameter at the bottom, and 9.8 N / cm 2 (10 Kg / cm
The temperature is raised at a rate of 6 ° C / min while adding the weight of 2 ). As the temperature rises, the powder particles are softened and the filling rate is improved, and the volume of the sample powder decreases, but the volume stops decreasing above a certain temperature. When the temperature is further raised, the sample melts and flows out from the nozzle at the bottom of the cylinder. The temperature at which the volume reduction of the sample powder stops at this time is defined as the softening point of the sample. In the case of a sample having a high softening point, the sample may not flow out from the nozzle.

【0058】[0058]

【実施例】以下、実施例および比較例により、本発明を
更に詳細に説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0059】(実施例1)軟化点210℃、キノリン不
溶分1重量%、H/C原子比0.63の石油系ピッチ6
8kgと、ナフタレン32kgとを、撹拌翼のついた内
容積300リットルの耐圧容器に仕込み、190℃で加
熱溶融混合を行った後、80〜90℃に冷却して押し出
し、径約500μmの紐状成形体を得た。次いで、この
紐状成形体を直径と長さの比が約1.5になるように破
砕し、得られた破砕物を93℃に加熱した0.53重量
%のポリビニルアルコール(ケン化度88%)を溶解し
た水溶液中に投入し、撹拌分散し、冷却して球状ピッチ
成形体スラリーを得た。大部分の水をろ過により除いた
後、球状ピッチ成形体の約6倍量の重量のn−ヘキサン
でピッチ成形体中のナフタレンを抽出除去した。この様
にして得た多孔性球状ピッチを、流動床を用いて、加熱
空気を通じながら、260℃まで昇温し、260℃に1
時間保持して酸化し、熱に対して不融性の多孔性球状酸
化ピッチを得た。得られた酸化ピッチは酸素含有量が1
7重量%であった。次に酸化ピッチを窒素ガス雰囲気中
(常圧)で600℃まで昇温し、600℃で1時間保持
して仮焼成し、揮発分2%以下の炭素前駆体を得た。得
られた炭素前駆体を粉砕し、平均粒径25μmの粉末状
炭素前駆体とした。次に粉末状炭素前駆体を真空焼成炉
に仕込み、内部を窒素置換した。少量の窒素を真空焼成
炉中に導入しながら昇温し、800℃に到達したら真空
ポンプで吸引し、真空焼成炉内の圧力を0.01〜0.
03Paに保つようにした。更に昇温を続け、真空焼成
炉の温度が1200℃に到達したら、1200℃で1時
間保持して本焼成を行った後、冷却し、粉末状炭素質材
料を製造した。
Example 1 Petroleum pitch 6 having a softening point of 210 ° C., a quinoline insoluble content of 1% by weight and an H / C atomic ratio of 0.63.
8 kg and naphthalene 32 kg were placed in a pressure vessel having an inner volume of 300 liters equipped with a stirring blade, heated and melt-mixed at 190 ° C., then cooled to 80 to 90 ° C. and extruded to form a cord having a diameter of about 500 μm. A molded body was obtained. Next, this string-shaped molded product was crushed so that the ratio of diameter to length was about 1.5, and the crushed product was heated to 93 ° C. to give 0.53% by weight of polyvinyl alcohol (saponification degree: 88). %) Was poured into an aqueous solution in which it was dissolved, stirred and dispersed, and cooled to obtain a spherical pitch compact slurry. After removing most of the water by filtration, the naphthalene in the pitch molded body was extracted and removed with n-hexane in an amount about 6 times as much as the weight of the spherical pitch molded body. The porous spherical pitch thus obtained was heated to 260 ° C. while flowing heated air using a fluidized bed, and heated to 260 ° C.
It was held for a period of time to be oxidized to obtain a porous spherical oxidized pitch that is infusible to heat. The obtained oxidized pitch has an oxygen content of 1
It was 7% by weight. Next, the oxidized pitch was heated to 600 ° C. in a nitrogen gas atmosphere (normal pressure), held at 600 ° C. for 1 hour, and calcined to obtain a carbon precursor having a volatile content of 2% or less. The obtained carbon precursor was pulverized to obtain a powdery carbon precursor having an average particle diameter of 25 μm. Next, the powdery carbon precursor was charged into a vacuum firing furnace, and the inside was replaced with nitrogen. The temperature was raised while introducing a small amount of nitrogen into the vacuum firing furnace, and when it reached 800 ° C., suction was performed with a vacuum pump, and the pressure in the vacuum firing furnace was adjusted to 0.01 to 0.
It was kept at 03 Pa. When the temperature of the vacuum firing furnace reached 1200 ° C., the temperature was further raised and the temperature was maintained at 1200 ° C. for 1 hour to carry out main firing, followed by cooling to produce a powdery carbonaceous material.

【0060】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0061】(実施例2)実施例1における多孔性球状
ピッチの酸化温度を200℃とし、酸化ピッチの酸素含
有量を10重量%とした以外は実施例1と同様にして多
孔性炭素質材料を製造した。
Example 2 A porous carbonaceous material was prepared in the same manner as in Example 1 except that the oxidation temperature of the porous spherical pitch in Example 1 was 200 ° C. and the oxygen content of the oxidized pitch was 10% by weight. Was manufactured.

【0062】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0063】(実施例3、4)実施例1における本焼成
温度をそれぞれ、1000℃(実施例3)及び1250
℃(実施例4)とした以外は実施例1と同様にして炭素
質材料を製造した。
(Examples 3 and 4) Main firing temperatures in Example 1 were 1000 ° C. (Example 3) and 1250, respectively.
A carbonaceous material was produced in the same manner as in Example 1 except that the temperature was changed to ° C (Example 4).

【0064】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0065】(実施例5、6)実施例1における本焼成
時の炉内圧力を、それぞれ40Pa(実施例5)、40
00Pa(実施例6)とした以外は実施例1と同様にし
て炭素質材料を製造した。
(Examples 5 and 6) The pressure in the furnace during the main firing in Example 1 was 40 Pa (Example 5) and 40 Pa, respectively.
A carbonaceous material was produced in the same manner as in Example 1 except that the pressure was changed to 00 Pa (Example 6).

【0066】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0067】(実施例7)椰子殻チャー(エム・シー・
カーボン(株)製)を窒素ガス雰囲気中(常圧)で60
0℃まで昇温し、600℃で1時間保持して仮焼成し、
揮発分2%以下の炭素前駆体を得た。得られた炭素前駆
体を粉砕し、平均粒径25μmの粉末状炭素前駆体とし
た。粉末状炭素前駆体を真空焼成炉に仕込み、内部を窒
素置換した。少量の窒素を真空焼成炉に導入しながら昇
温し、800℃に到達したら真空ポンプで吸引し、真空
焼成炉内の圧力を0.01〜0.03Paに保つように
した。更に昇温を続け、真空焼成炉の温度が1200℃
に到達したら、1200℃で1時間保持して本焼成を行
った後、冷却し、粉末状炭素質材料を製造した。
(Example 7) Palm shell char (MC sea
Carbon Co., Ltd. 60 in a nitrogen gas atmosphere (normal pressure)
The temperature is raised to 0 ° C., the temperature is kept at 600 ° C. for 1 hour, and the calcination is performed.
A carbon precursor having a volatile content of 2% or less was obtained. The obtained carbon precursor was pulverized to obtain a powdery carbon precursor having an average particle diameter of 25 μm. The powdery carbon precursor was charged into a vacuum firing furnace, and the inside was replaced with nitrogen. The temperature was raised while introducing a small amount of nitrogen into the vacuum firing furnace, and when it reached 800 ° C., it was sucked with a vacuum pump to keep the pressure in the vacuum firing furnace at 0.01 to 0.03 Pa. The temperature of the vacuum firing furnace is 1200 ℃
When the temperature reaches 1, the temperature is maintained at 1200 ° C. for 1 hour to perform the main calcination, followed by cooling to produce a powdery carbonaceous material.

【0068】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0069】(実施例8)実施例7における本焼成温度
を1300℃とした以外は実施例7と同様にして炭素質
材料を製造した。
Example 8 A carbonaceous material was produced in the same manner as in Example 7 except that the main firing temperature in Example 7 was changed to 1300 ° C.

【0070】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0071】(比較例1)実施例1で使用した石油ピッ
チを粒径20μm以下に粉砕した。この粉砕ピッチ20
0gを内容積1リットルの内部に突起を有するガラス製
のなす形フラスコに仕込み、なす形フラスコを傾斜させ
て回転しながら、空気を1リットル/分で流し、300
℃まで100℃/時間の昇温速度で昇温し、300℃で
1時間保持して酸化した。得られた酸化ピッチは酸素含
有量10重量%であった。この酸化ピッチを真空焼成炉
に仕込み、真空焼成炉内の圧力を0.01〜0.03P
aに保ちながら、昇温速度5℃/分で1200℃まで昇
温し、1200℃で1時間保持して本焼成を行い、炭素
質材料を得た。
Comparative Example 1 The petroleum pitch used in Example 1 was crushed to a particle size of 20 μm or less. This crushing pitch 20
0 g was charged into a glass eggplant-shaped flask having protrusions inside with an internal volume of 1 liter, and while the eggplant-shaped flask was tilted and rotated, air was flowed at 1 liter / min.
The temperature was raised to 100 ° C. at a heating rate of 100 ° C./hour, and held at 300 ° C. for 1 hour for oxidation. The obtained oxidized pitch had an oxygen content of 10% by weight. This oxide pitch was charged into a vacuum firing furnace and the pressure in the vacuum firing furnace was adjusted to 0.01 to 0.03P.
While maintaining at a, the temperature was raised to 1200 ° C. at a temperature rising rate of 5 ° C./minute, and the temperature was maintained at 1200 ° C. for 1 hour to carry out main firing to obtain a carbonaceous material.

【0072】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0073】(比較例2)本焼成を40kPaの減圧下
で行った以外は実施例1と同様にして炭素質材料を製造
した。
Comparative Example 2 A carbonaceous material was produced in the same manner as in Example 1 except that the main calcination was carried out under a reduced pressure of 40 kPa.

【0074】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0075】(比較例3)実施例1記載の石油ピッチを
酸化することなく、窒素ガス雰囲気中(常圧)600℃
で1時間仮焼成した後粉砕し平均粒径が約20μmの炭
素前駆体微粒子とした。
Comparative Example 3 The petroleum pitch described in Example 1 was oxidized at 600 ° C. in a nitrogen gas atmosphere (normal pressure) without being oxidized.
After calcination for 1 hour, the powder was pulverized to obtain carbon precursor fine particles having an average particle diameter of about 20 μm.

【0076】次に、この炭素前駆体微粒子を0.01〜
0.03Paの減圧下1200℃で1時間炭素化し炭素
質材料を得た。
Then, the carbon precursor particles are added in an amount of 0.01 to
Carbonization was performed at 1200 ° C. for 1 hour under reduced pressure of 0.03 Pa to obtain a carbonaceous material.

【0077】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0078】(参考例、比較例4)本焼成温度をそれぞ
れ800℃(参考例)、1600℃(比較例4)とした
以外は実施例1と同様にして炭素質材料を製造した。
Reference Example and Comparative Example 4 A carbonaceous material was produced in the same manner as in Example 1 except that the main firing temperatures were 800 ° C. (reference example) and 1600 ° C. (comparative example 4), respectively.

【0079】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0080】(比較例5)フルフリルアルコール100
gに85%燐酸0.5gと水10.0gを加え、90℃
で5時間反応させたのち、1NのNaOH水溶液を徐々
に加えpHを約5に調整し、さらにこれより2.7kP
aの減圧下70℃の条件で、残留水および未反応アルコ
ールを留去しフルフリルアルコール初期縮合物を得た。
得られた縮合物をさらに150℃で16時間硬化させフ
ラン樹脂とした。
Comparative Example 5 Furfuryl alcohol 100
85% phosphoric acid 0.5g and water 10.0g are added to g, and the temperature is 90 ° C.
After reacting for 5 hours at room temperature, 1N NaOH aqueous solution is gradually added to adjust the pH to about 5, and further 2.7 kP
Residual water and unreacted alcohol were distilled off under the reduced pressure of 70 ° C. at 70 ° C. to obtain a furfuryl alcohol initial condensation product.
The obtained condensate was further cured at 150 ° C. for 16 hours to obtain a furan resin.

【0081】つぎに、得られたフラン樹脂を粗粉砕した
のち、窒素気流下(常圧)500℃で1時間仮焼成し
た。これを平均粒子径が約20μmに粉砕した後、窒素
ガス雰囲気下(常圧)1100℃で1時間炭素化し炭素
質材料を得た。
Next, the obtained furan resin was roughly crushed and then calcined for 1 hour at 500 ° C. under a nitrogen stream (normal pressure). After crushing this to an average particle size of about 20 μm, it was carbonized at 1100 ° C. for 1 hour in a nitrogen gas atmosphere (normal pressure) to obtain a carbonaceous material.

【0082】得られた炭素質材料の特性を後記表1に示
す。
Properties of the obtained carbonaceous material are shown in Table 1 below.

【0083】(比較例6)オルトクレゾール108gに
パラホルムアルデヒド32g、エチルセロソルブ242
gおよび硫酸10gを添加し115℃で3時間反応させ
たのち、炭酸水素ナトリウム17gおよび水30gを加
え反応液を中和した。得られた反応溶液は高速で撹拌し
た2リットルの水中投入しノボラック樹脂を得た。つぎ
に、ノボラック樹脂17.3gとヘキサミン2.0gを
120℃で混練し、窒素ガス雰囲気中250℃で2時間
加熱し硬化樹脂とした。得られた硬化樹脂を粗粉砕した
のち、600℃で窒素雰囲気下(常圧)1時間仮焼成
し、さらにアルゴンガス雰囲気下(常圧)1900℃で
1時間熱処理して炭素質材料を得た。得られた炭素質材
料を、さらに粉砕し平均粒子径15μmに調整した。
Comparative Example 6 Orthocresol 108 g, paraformaldehyde 32 g and ethyl cellosolve 242
g and 10 g of sulfuric acid were added and reacted at 115 ° C. for 3 hours, and then 17 g of sodium hydrogen carbonate and 30 g of water were added to neutralize the reaction solution. The resulting reaction solution was poured into 2 liters of water stirred at high speed to obtain a novolak resin. Next, 17.3 g of novolac resin and 2.0 g of hexamine were kneaded at 120 ° C., and heated at 250 ° C. for 2 hours in a nitrogen gas atmosphere to obtain a cured resin. The obtained cured resin was coarsely pulverized, calcined at 600 ° C. in a nitrogen atmosphere (normal pressure) for 1 hour, and further heat-treated at 1900 ° C. in an argon gas atmosphere (normal pressure) for 1 hour to obtain a carbonaceous material. . The obtained carbonaceous material was further pulverized to have an average particle size of 15 μm.

【0084】得られた炭素質材料の特性を後記表1に示
す。
The characteristics of the obtained carbonaceous material are shown in Table 1 below.

【0085】(比較例7)マダガスカル産燐片状天然黒
鉛(日本黒鉛商事(株)CP)を用いて評価した。この
天然黒鉛は固定炭素分が97%、灰分が2%、揮発分が
1%、平均粒径7μmである。
(Comparative Example 7) Evaluation was carried out using scaly natural graphite (CP from Nippon Graphite Co., Ltd.) produced in Madagascar. This natural graphite has a fixed carbon content of 97%, an ash content of 2%, a volatile content of 1%, and an average particle size of 7 μm.

【0086】この天然黒鉛の特性を後記表1に示す。The properties of this natural graphite are shown in Table 1 below.

【0087】(活物質のドープ・脱ドープ試験)上記実
施例及び比較例で得られた各炭素質材料を用いて、以下
のようにして非水溶媒系二次電池を作成し、その特性を
評価した。
(Doping / Undoping Test of Active Material) Using the carbonaceous materials obtained in the above Examples and Comparative Examples, a non-aqueous solvent type secondary battery was prepared as follows, and its characteristics were evaluated. evaluated.

【0088】本発明の炭素質材料は非水溶媒二次電池の
負極として用いるのに適しているが、本発明の効果であ
る電池活物質のドープ容量、脱ドープ容量及び脱ドープ
されずに炭素質材料中に残存する量(不可逆容量)を、
対極の性能のバラツキに影響されることなく精度良く評
価するために、特性の安定した大過剰のリチウム金属を
対極(負極)とし、上記で得られた炭素質材料を正極と
するリチウム二次電池を構成し、その特性を評価した。
The carbonaceous material of the present invention is suitable for use as the negative electrode of a non-aqueous solvent secondary battery. However, the effect of the present invention is to improve the doping capacity, de-doping capacity and carbon content of a carbon material without de-doping. The amount remaining in the quality material (irreversible capacity)
A lithium secondary battery in which a large excess of lithium metal with stable characteristics is used as the counter electrode (negative electrode) and the carbonaceous material obtained above is used as the positive electrode for accurate evaluation without being affected by variations in the performance of the counter electrode. Was constructed and its characteristics were evaluated.

【0089】すなわち正極(炭素質材料電極)は以下の
ようにして製造した。上記のようにして製造した微粒子
状炭素質材料90重量部、ポリフッ化ビニリデン10重
量部に、N−メチル−2−ピロリドンを加えてペースト
状とし、銅箔上に均一に塗布し、乾燥した後、銅箔より
剥離させ直径21mmの円板状に打ち抜く。これを直径
21mmのステンレススチール網円板にプレスにより加
圧して圧着し正極とした。なお正極中の炭素材料の量は
約40mgになるように調整した。
That is, the positive electrode (carbonaceous material electrode) was manufactured as follows. After 90 parts by weight of the particulate carbonaceous material and 10 parts by weight of polyvinylidene fluoride produced as described above, N-methyl-2-pyrrolidone was added to form a paste, which was evenly applied on a copper foil and dried. Then, peel it off from the copper foil and punch it into a disk shape with a diameter of 21 mm. This was pressed against a stainless steel mesh disk having a diameter of 21 mm by a press to be a pressure-bonded positive electrode. The amount of carbon material in the positive electrode was adjusted to about 40 mg.

【0090】負極には、厚さ1mmの金属リチウム薄板
を直径21mmの円板状に打ち抜いたものを使用した。
As the negative electrode, a metal lithium thin plate having a thickness of 1 mm punched into a disk shape having a diameter of 21 mm was used.

【0091】このようにして製造した正極及び負極を用
い、電解液としてはプロピレンカーボネートとジメトキ
シエタンを容量比で1:1で混合した混合溶媒に1モル
/リットルの割合でLiClO4 を加えたものを使用
し、ポリプロピレン製微細孔膜をセパレータとし非水溶
媒系リチウム二次電池を構成した。
Using the positive electrode and the negative electrode thus produced, as the electrolytic solution, LiClO 4 was added at a ratio of 1 mol / liter to a mixed solvent in which propylene carbonate and dimethoxyethane were mixed at a volume ratio of 1: 1. Was used to form a non-aqueous solvent type lithium secondary battery using a polypropylene microporous membrane as a separator.

【0092】このような構成のリチウム二次電池におい
て炭素質材料にリチウムのドーピング、脱ドーピングを
行いそのときの容量を求めた。
In the lithium secondary battery having such a structure, the carbonaceous material was doped with lithium and dedoped to obtain the capacity at that time.

【0093】ドーピングは、0.5mA/cm2 の電流
密度で1時間通電したのち2時間休止する操作を繰り返
し、端子間の平衡電位が5mVに達するまで行った。こ
のときの電気量を使用した炭素質材料の重量で除した値
をドープ容量と定義し、mAh/gの単位で表わした。
次に同様にして逆方向に電流を流し炭素質材料にドープ
されたリチウムを脱ドープした。脱ドープは、0.5m
A/cm2 の電流密度で1時間通電したのち2時間休止
する操作を繰り返し、端子電圧1.5Vをカットオフ電
圧とした。このとき流れた電気量を使用した炭素質材料
の重量で除した値を脱ドープ容量と定義し、mAh/g
の単位で表わした。次いでドープ容量と脱ドープ容量と
の差として不可逆容量を求めた。脱ドープ容量をドープ
容量で除した値に100を乗じて、放電効率(%)を求
めた。これは活物質がどれだけ有効に使用されたかを示
す値である。
Doping was carried out by repeating an operation in which a current was applied for 1 hour at a current density of 0.5 mA / cm 2 and then rested for 2 hours until the equilibrium potential between terminals reached 5 mV. The value obtained by dividing the quantity of electricity at this time by the weight of the carbonaceous material used was defined as the dope capacity and expressed in units of mAh / g.
Next, in the same manner, an electric current was applied in the opposite direction to dedope the lithium doped in the carbonaceous material. Dedoping is 0.5m
The operation of supplying current for 1 hour at a current density of A / cm 2 and then resting for 2 hours was repeated, and the terminal voltage of 1.5 V was taken as the cutoff voltage. The value obtained by dividing the amount of electricity flowing at this time by the weight of the carbonaceous material used was defined as the dedoping capacity, and was defined as mAh / g.
It was expressed in units. Then, the irreversible capacity was determined as the difference between the doping capacity and the dedoping capacity. The value obtained by dividing the dedoping capacity by the doping capacity was multiplied by 100 to obtain the discharge efficiency (%). This is a value indicating how effectively the active material was used.

【0094】以上のようにして求めた各炭素質材料を正
極としたリチウム二次電池の電池特性を表2に示す。
Table 2 shows the battery characteristics of the lithium secondary battery in which each carbonaceous material obtained as described above is used as a positive electrode.

【0095】表2から、本発明の実施例で得られた炭素
質材料を使用した二次電池は、比較例1、2、3、4、
5及び6で得た炭素材料を使用した電池と比較しドー
プ、脱ドープ容量がともに大きいことが分かる。
From Table 2, the secondary batteries using the carbonaceous materials obtained in the examples of the present invention are comparative examples 1, 2, 3, 4,
It can be seen that the dope and dedope capacities are both large as compared with the battery using the carbon materials obtained in 5 and 6.

【0096】参考例で得られる炭素材料は、リチウムの
ドープ、脱ドープ容量は大きく高エネルギー密度二次電
池用の炭素質材料としては適しているが、不可逆容量す
なわち脱ドープされずに炭素材料中に残るリチウム量が
大きく、リチウムが有効に利用されないという難点を有
する。
The carbon material obtained in the reference example has a large lithium doping and dedoping capacity and is suitable as a carbonaceous material for a high energy density secondary battery. However, the amount of remaining lithium is large, and lithium is not effectively used.

【0097】尚、比較例7の天然黒鉛を使用した二次電
池では、電解液の分解などによりリチウムのドーピング
を行うことができなかった。
In the secondary battery using the natural graphite of Comparative Example 7, lithium could not be doped due to decomposition of the electrolytic solution.

【0098】[0098]

【表1】 [Table 1]

【0099】[0099]

【表2】 [Table 2]

【0100】[0100]

【発明の効果】上述したように、本発明によれば、炭素
質材料の微細構造を制御することにより電池活物質のド
ープ、脱ドープ容量の大きな非水溶媒系二次電池用の炭
素質材料が提供される。そして、この炭素質材料を用い
て、例えばリチウム二次電池の負極を構成することによ
り、リチウムの利用率の高い、高エネルギー密度の二次
電池を製造することができる。
As described above, according to the present invention, the carbonaceous material for a non-aqueous solvent secondary battery having a large capacity for doping and dedoping of a battery active material by controlling the fine structure of the carbonaceous material. Will be provided. Then, by using this carbonaceous material to form a negative electrode of a lithium secondary battery, for example, a secondary battery having a high utilization rate of lithium and a high energy density can be manufactured.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 X線回折法により求めた(002)面の
平均層面間隔が0.365nm以上、ブタノールを置換
媒体として測定した密度(ρB )に対するヘリウムガス
を置換媒体として測定した密度(ρH )の比(ρH /ρ
B )が1.15以上であることを特徴とする二次電池電
極用炭素質材料。
1. The average layer spacing of (002) planes determined by X-ray diffraction is 0.365 nm or more, and the density (ρ B ) measured with helium gas as a replacement medium against the density (ρ B ) measured with butanol as a replacement medium. H ) ratio (ρ H / ρ
B ) is 1.15 or more, a carbonaceous material for secondary battery electrodes.
【請求項2】 水素、炭素の原子比(H/C)が0.1
以下である請求項1に記載の二次電池電極用炭素質材
料。
2. The atomic ratio (H / C) of hydrogen to carbon is 0.1.
It is the following, The carbonaceous material for secondary battery electrodes of Claim 1.
【請求項3】 石油系又は石炭系のピッチに対し、添加
剤として沸点200℃以上の2乃至3環の芳香族化合物
の1種又は2種以上を加えて加熱して溶融混合した後成
形してピッチ成形体を得、次にピッチに対し低溶解度を
有しかつ添加剤に対して高溶解度を有する溶剤で、該ピ
ッチ成形体から添加剤を抽出除去し、得られた多孔性ピ
ッチを酸化した後、10kPa以下の減圧下で900℃
〜1500℃の温度で焼成することを特徴とする二次電
池電極用炭素質材料の製造方法。
3. A petroleum-based or coal-based pitch is added with one or more two or three ring aromatic compounds having a boiling point of 200 ° C. or higher as an additive, heated, melted and mixed, and then molded. To obtain a pitch compact, and then extract and remove the additive from the pitch compact with a solvent having a low solubility in the pitch and a high solubility in the additive, and oxidizing the obtained porous pitch. Then, 900 ° C under reduced pressure of 10 kPa or less
A method for manufacturing a carbonaceous material for a secondary battery electrode, which comprises firing at a temperature of ˜1500 ° C.
【請求項4】 多孔性ピッチを酸素を含むガスで酸化す
ることを特徴とする請求項3に記載の二次電池電極用炭
素質材料の製造法。
4. The method for producing a carbonaceous material for a secondary battery electrode according to claim 3, wherein the porous pitch is oxidized with a gas containing oxygen.
JP23591095A 1994-08-23 1995-08-23 Carbonaceous materials for secondary battery electrodes Expired - Lifetime JP3496901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23591095A JP3496901B2 (en) 1994-08-23 1995-08-23 Carbonaceous materials for secondary battery electrodes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-219636 1994-08-23
JP21963694 1994-08-23
JP23591095A JP3496901B2 (en) 1994-08-23 1995-08-23 Carbonaceous materials for secondary battery electrodes

Publications (2)

Publication Number Publication Date
JPH08115723A true JPH08115723A (en) 1996-05-07
JP3496901B2 JP3496901B2 (en) 2004-02-16

Family

ID=26523254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23591095A Expired - Lifetime JP3496901B2 (en) 1994-08-23 1995-08-23 Carbonaceous materials for secondary battery electrodes

Country Status (1)

Country Link
JP (1) JP3496901B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207535A (en) * 2006-02-01 2007-08-16 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2009200014A (en) * 2008-02-25 2009-09-03 Sumitomo Bakelite Co Ltd Secondary battery, and carbon material and electrode therefor
WO2012121407A1 (en) 2011-03-10 2012-09-13 株式会社クレハ Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
WO2013088711A1 (en) 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013088712A1 (en) 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013111595A1 (en) 2012-01-27 2013-08-01 Jfeケミカル株式会社 Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2013218856A (en) * 2012-04-06 2013-10-24 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery
WO2013187061A1 (en) 2012-06-13 2013-12-19 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
EP2704235A1 (en) 2012-08-29 2014-03-05 Sumitomo Bakelite Company Limited Negative-electrode material, negative-electrode active material, negative electrode, and alkali metal ion battery
WO2014038491A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, and method for producing same
WO2014038494A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Material for negative electrode of non-aqueous electrolyte secondary battery
JP2017084707A (en) * 2015-10-30 2017-05-18 株式会社クラレ Method for manufacturing carbonaceous material for nonaqueous electrolyte secondary battery
JP2017084706A (en) * 2015-10-30 2017-05-18 株式会社クラレ Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207535A (en) * 2006-02-01 2007-08-16 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2009200014A (en) * 2008-02-25 2009-09-03 Sumitomo Bakelite Co Ltd Secondary battery, and carbon material and electrode therefor
KR20130124584A (en) 2011-03-10 2013-11-14 가부시끼가이샤 구레하 Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
WO2012121407A1 (en) 2011-03-10 2012-09-13 株式会社クレハ Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
JP6062849B2 (en) * 2011-03-10 2017-01-18 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode carbonaceous material
JPWO2012121407A1 (en) * 2011-03-10 2014-07-17 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode carbonaceous material
WO2013088712A1 (en) 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
KR20140093986A (en) 2011-12-16 2014-07-29 제이에프이 케미칼 가부시키가이샤 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
KR20140093987A (en) 2011-12-16 2014-07-29 제이에프이 케미칼 가부시키가이샤 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013088711A1 (en) 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013111595A1 (en) 2012-01-27 2013-08-01 Jfeケミカル株式会社 Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US9327978B2 (en) 2012-01-27 2016-05-03 Jfe Chemical Corporation Method for producing non-graphitizable carbon material, non-graphitizable carbon material, negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2013218856A (en) * 2012-04-06 2013-10-24 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery
WO2013187061A1 (en) 2012-06-13 2013-12-19 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US10170752B2 (en) 2012-06-13 2019-01-01 Jfe Chemical Corporation Method for producing amorphous carbon particle, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
EP2704235A1 (en) 2012-08-29 2014-03-05 Sumitomo Bakelite Company Limited Negative-electrode material, negative-electrode active material, negative electrode, and alkali metal ion battery
WO2014034431A1 (en) 2012-08-29 2014-03-06 住友ベークライト株式会社 Negative electrode material, negative electrode active material, negative electrode, and alkali metal ion battery
WO2014038494A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Material for negative electrode of non-aqueous electrolyte secondary battery
JPWO2014038494A1 (en) * 2012-09-06 2016-08-08 株式会社クレハ Nonaqueous electrolyte secondary battery negative electrode material
JPWO2014038491A1 (en) * 2012-09-06 2016-08-08 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode carbonaceous material and method for producing the same
US9537176B2 (en) 2012-09-06 2017-01-03 Kureha Corporation Material for non-aqueous electrolyte secondary battery negative electrode
KR20150021045A (en) * 2012-09-06 2015-02-27 가부시끼가이샤 구레하 Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, and method for producing same
WO2014038491A1 (en) * 2012-09-06 2014-03-13 株式会社クレハ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, and method for producing same
JP2017084707A (en) * 2015-10-30 2017-05-18 株式会社クラレ Method for manufacturing carbonaceous material for nonaqueous electrolyte secondary battery
JP2017084706A (en) * 2015-10-30 2017-05-18 株式会社クラレ Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3496901B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
JP6450480B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material
JPH07320740A (en) Carbonaceous material for secondary battery electrode
KR0169170B1 (en) Carbonaceous electrode material for secondary battery
JP6456474B2 (en) Method for producing mixed negative electrode material for nonaqueous electrolyte secondary battery and mixed negative electrode material for nonaqueous electrolyte secondary battery obtained by the production method
JP3496901B2 (en) Carbonaceous materials for secondary battery electrodes
JPH10326611A (en) Carbon material for negative electrode of lithium secondary battery
JP2007141677A (en) Compound graphite and lithium secondary cell using same
JP2018092916A (en) Carbonous coated graphite particles for lithium ion secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JP3568563B2 (en) Carbonaceous material for secondary battery electrode and method for producing the same
WO2010131473A1 (en) Anode active material for lithium secondary batteries, anode electrode for lithium secondary batteries, in-vehicle lithium secondary battery using said anode active material and anode electrode, and method for manufacturing an anode active material for lithium secondary batteries
JP6620812B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2948097B2 (en) Graphite material for secondary battery electrode and method for producing the same
EP3131144B1 (en) Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and vehicle
JP2009231113A (en) Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2016181348A (en) Carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof
JPH0992284A (en) Graphite material for secondary battery electrode, its manufacture, and secondary battery
WO2015152088A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle
JPH11343109A (en) Carbon material and its production, negative pole for lithium secondary battery and lithium secondary battery
JP5662698B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP2016157648A (en) Nonaqueous electrolyte secondary battery
JPH08306359A (en) Anode material for lithium secondary battery and its manufacture
JP4029232B2 (en) Negative electrode for lithium secondary battery and method for producing the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term