WO2015152088A1 - Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle - Google Patents

Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle Download PDF

Info

Publication number
WO2015152088A1
WO2015152088A1 PCT/JP2015/059768 JP2015059768W WO2015152088A1 WO 2015152088 A1 WO2015152088 A1 WO 2015152088A1 JP 2015059768 W JP2015059768 W JP 2015059768W WO 2015152088 A1 WO2015152088 A1 WO 2015152088A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
electrolyte secondary
carbonaceous material
electrode
Prior art date
Application number
PCT/JP2015/059768
Other languages
French (fr)
Japanese (ja)
Inventor
誠 今治
佳余子 岡田
靖浩 多田
直弘 園部
真友 小松
Original Assignee
株式会社クレハ
株式会社クレハ・バッテリー・マテリアルズ・ジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ, 株式会社クレハ・バッテリー・マテリアルズ・ジャパン filed Critical 株式会社クレハ
Priority to EP15774007.7A priority Critical patent/EP3136482A1/en
Priority to KR1020167027011A priority patent/KR20160129867A/en
Priority to US15/300,304 priority patent/US9991517B2/en
Priority to JP2016511637A priority patent/JPWO2015152088A1/en
Priority to CN201580016423.5A priority patent/CN106133963A/en
Publication of WO2015152088A1 publication Critical patent/WO2015152088A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode, a negative electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, and a vehicle.
  • carbonaceous materials such as non-graphitizable carbon whose graphite structure is not highly developed are small in terms of expansion and contraction of particles due to lithium doping and dedoping reactions, and have high cycle durability. Suitable for use in automotive applications.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery negative electrode carbonaceous material having a high discharge capacity per volume and excellent storage characteristics, a negative electrode for a non-aqueous electrolyte secondary battery, and a negative electrode for the non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery including the vehicle and a vehicle are provided.
  • the present inventors have used a lithium reference electrode standard of 0.2 V to 1.
  • the slope of the discharge curve 0.9 / X (Vg / Ah) calculated from the discharge capacity X (Ah / g) of 1 V and the potential difference 0.9 (V) is large, the moisture absorption is high despite the high discharge capacity.
  • the present invention provides the following.
  • True density ( ⁇ Bt ) determined by the butanol method is 1.55 g / cm 3 or more and less than 1.75 g / cm 3
  • 0.05 V to 1.5 V negative electrode discharge capacity is 180 mAh / g based on a lithium reference electrode.
  • Ah) is 0.75 (Vg / Ah) or less
  • the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode has a moisture absorption amount of 1.5 wt% or less after 100 hours storage at 25 ° C. and 50% RH air atmosphere.
  • a negative electrode for a non-aqueous electrolyte secondary battery comprising the carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode according to any one of (1) to (5) above.
  • a nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery described in (6) above.
  • a carbonaceous material having a true density ( ⁇ Bt ) determined by a butanol method of 1.55 g / cm 3 or more and less than 1.75 g / cm 3 0.2 V to 1. Since the discharge curve slope 0.9 / X (Vg / Ah) calculated from the discharge capacity X (Ah / g) up to a potential of 1 V and the potential difference 0.9 (V) is low, the discharge capacity is increased. Nevertheless, the carbonaceous material is low in hygroscopicity and, as a result, has excellent storage characteristics.
  • Non-aqueous electrolyte secondary battery negative electrode carbonaceous material has a true density ( ⁇ Bt ) of 1.55 g / cm 3 or more determined by a butanol method.
  • the discharge capacity of the negative electrode of 0.05 V to 1.5 V on the basis of the lithium reference electrode is 180 mAh / g or more, and the discharge capacity X (Ah / L) of 0.2 V to 1.1 V on the basis of the lithium reference electrode g)
  • the slope (0.9 / X) of the discharge curve calculated from the potential difference 0.9 (V) is 0.75 (Vg / Ah) or less, and it is stored for 100 hours in an air atmosphere at 25 ° C. and 50% RH.
  • the subsequent moisture absorption is 1.5 wt% or less.
  • the true density ( ⁇ Bt ) determined by the butanol method is as high as 1.55 g / cm 3 or more and less than 1.75 g / cm 3 , and the discharge capacity of the negative electrode of 0.05 V to 1.5 V is 180 mAh based on the lithium reference electrode.
  • the slope 0.9 / X of the discharge curve calculated from a discharge capacity (X) of 0.2 V to 1.1 V and a potential difference of 0.9 V with respect to the lithium reference electrode is 0.00.
  • the slope of the discharge curve per volume in the potential range most used in the in-vehicle lithium ion secondary battery of 0.2 V to 1.1 V based on the lithium reference electrode becomes gentle. Thereby, in a practical state used in a charging range of around 50%, the potential difference between the negative electrode and the positive electrode is kept high, and a high discharge capacity per volume can be exhibited.
  • the discharge capacity per unit volume is calculated by the product of the discharge capacity per unit mass and the true density ( ⁇ Bt ) determined by the butanol method.
  • non-aqueous electrolyte secondary batteries for automobiles it is not a usage pattern in which full charge and complete discharge are repeated, but an area where the input characteristics and output characteristics are always balanced, that is, 50% when the full charge is 100%.
  • the use form which repeats charging / discharging so that a battery state may be located in the charge area before and behind is preferable.
  • the negative electrode material a material in which the potential change ⁇ E (V) with respect to the discharge capacity X (Ah / g) greatly changes with a constant slope.
  • the slope 0.9 / X (Vg / Ah) of the discharge curve calculated from the discharge capacity X (Ah / g) of 0.2 V to 1.1 V and the potential difference 0.9 (V) based on the lithium reference electrode is The smaller the value, the higher the discharge capacity per volume in the inclined region where the potential changes. Therefore, it is preferably 0.75 (Vg / Ah) or less, more preferably 0.70 (Vg / Ah) or less, 0 .65 (Vg / Ah) or less.
  • ⁇ Bt is related to the abundance of pores into which butanol can enter, the number of fine pores increases, the hygroscopicity increases excessively and storage stability tends to be impaired, and the discharge capacity per volume is improved. from the balance, it is preferably 1.55 g / cm 3 or more, more preferably 1.59 g / cm 3 or more and 1.61 g / cm 3 or more. On the other hand, since the increase in true density tends to be a material with high regularity of crystal structure, it is preferably 1.70 g / cm 3 or less, more preferably from the viewpoint of suppressing expansion and contraction associated with charge / discharge. Is 1.68 g / cm 3 or less.
  • the slope of the discharge curve is 0.9 / X (calculated from a discharge capacity X (Ah) of 0.2 V to 1.1 V and a potential difference of 0.9 (V) based on the lithium reference electrode.
  • Vg / Ah is small and the potential changes slowly, so that the discharge capacity of the negative electrode in a practical range of 0.05 V to 1.5 V with respect to the lithium reference electrode can be obtained in a high range.
  • the discharge capacity of the 0.05 V to 1.5 V negative electrode based on the lithium reference electrode is preferably 180 mAh / g or more. More preferably, it is 190 mAh / g or more and 195 mAh / g or more.
  • the moisture absorption after 100 hours storage at 25 ° C. and 50% RH air atmosphere is preferably 1.5 wt% or less, more preferably 1.3 wt% or less, 1.0 wt% or less, 0.80 wt% or less, 0.50 wt% and 0.30 wt% or less.
  • the true density obtained by helium displacement method ([rho the He) is in the respect of improving the volume per discharge capacity, is preferably 1.76 g / cm 3 or more, more preferably 1.85 g / cm 3 From the viewpoint of suppressing hygroscopicity, it is preferably 2.09 g / cm 3 or less, and more preferably 2.03 g / cm 3 or less.
  • ⁇ He depends on the number of holes that allow helium to enter. Such holes are not only relatively large holes that are greatly involved in moisture absorption, but also have a high degree of involvement in the storage and release of Li. Also included are pores that are considered. For this reason, ⁇ He affects both the discharge capacity per volume and the hygroscopicity.
  • the ratio of ⁇ He to ⁇ Bt is determined from the balance between the point that the hygroscopic property is excessively increased and the storage stability is liable to be impaired and the discharge capacity per volume is improved.
  • it is preferably 10.10 or more, preferably 1.37 or less, more preferably 1.28 or less.
  • This ratio reflects the number of pores large enough to allow butanol to penetrate but not helium, and these pores are more involved in the occlusion and release of Li than in the moisture absorption in the atmosphere. Is considered to be high.
  • the large BET / CALC reflects the large number of pores that are incapable of entering butanol but capable of entering nitrogen, and such pores are more than the degree of moisture absorption in the atmosphere.
  • Li is considered to be highly involved in occlusion and release of Li.
  • BET / CALC is preferably 8 or more, more preferably 11 or more, and preferably 50 or less, more preferably 15 or less.
  • the specific surface area (BET) determined by the BET method of nitrogen adsorption of the carbonaceous material of the present invention is too small, so that it is 1 m 2 / g or more, preferably 1.6 m 2. / G or more, more preferably 2.0 m 2 / g or more.
  • the BET specific surface area is too large, the irreversible capacity of the obtained battery tends to increase, and therefore, 25 m 2 / g or less is preferable. More preferably, it is 20 m 2 / g or less.
  • the specific surface area (CALC) obtained from the calculation formula “6 / (D v50 ⁇ ⁇ Bt )” is preferably 0.2 m 2 / g or more and 1.5 m 2 / g or less. If it is less than 0.2 m 2 / g, the discharge capacity of the battery tends to be small, and if it exceeds 1.5 m 2 / g, the resulting hygroscopicity tends to be high.
  • H / C of the carbonaceous material of the present invention is measured by elemental analysis of hydrogen atoms and carbon atoms. Since the hydrogen content of the carbonaceous material decreases as the degree of carbonization increases, H / C is It tends to be smaller. Therefore, H / C is effective as an index representing the degree of carbonization.
  • H / C of the carbonaceous material of this invention is not limited, it is 0.10 or less, More preferably, it is 0.08 or less. Especially preferably, it is 0.05 or less. If the ratio H / C of hydrogen atoms to carbon atoms exceeds 0.1, many functional groups are present in the carbonaceous material, and the irreversible capacity may increase due to reaction with lithium, which is not preferable.
  • the average layer spacing of the (002) plane of the carbonaceous material shows a smaller value as the crystal perfection is higher, that of an ideal graphite structure shows a value of 0.3354 nm, and the value increases as the structure is disturbed. Tend. Therefore, the average layer spacing is effective as an index indicating the carbon structure.
  • the average interplanar spacing of the 002 plane determined by the X-ray diffraction method of the carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is 0.365 nm or more, and more preferably 0.370 nm or more.
  • the average spacing is 0.400 nm or less, more preferably 0.395 nm or less, and still more preferably 0.390 nm or less.
  • the doping capacity becomes small when used as the negative electrode of a non-aqueous electrolyte secondary battery, which is not preferable.
  • it exceeds 0.400 nm the undedoped capacity increases, which is not preferable.
  • the active material layer of the electrode In order to improve the output characteristics, it is important to make the active material layer of the electrode thin, and for that purpose, it is important to reduce the average particle diameter. However, if the average particle size is too small, the amount of fine powder increases and safety is lowered, which is not preferable. On the other hand, if the particles are too small, the amount of binder necessary to form an electrode increases and the resistance of the electrode increases. On the other hand, when the average particle size is increased, it is difficult to apply a thin electrode, and further, the lithium free diffusion process in the particles is increased, so that rapid charge / discharge is difficult.
  • the average particle diameter D v50 (that is, the particle diameter at which the cumulative volume is 50%) is preferably 1 to 15 ⁇ m, more preferably 1.5 ⁇ m to 2 ⁇ m, while 13 ⁇ m or less, 12 ⁇ m or less. It is.
  • the carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but the firing conditions are optimized while being based on a manufacturing method similar to the conventional carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery. Therefore, it can be manufactured satisfactorily. Specifically, it is as follows.
  • the carbonaceous material of the present invention is produced from a carbon precursor.
  • the carbon precursor include petroleum pitch or tar, coal pitch or tar, thermoplastic resin, or thermosetting resin.
  • the thermoplastic resin polyacetal, polyacrylonitrile, styrene / divinylbenzene copolymer, polyimide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyarylate, polysulfone, polyphenylene sulfide, fluororesin, polyamideimide, or polyether Mention may be made of ether ketones.
  • thermosetting resin examples include phenol resin, amino resin, unsaturated polyester resin, diallyl phthalate resin, alkyd resin, epoxy resin, and urethane resin.
  • the “carbon precursor” means the carbonaceous material from the untreated carbonaceous material stage to the previous stage of the carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery finally obtained. That is, it means all the carbonaceous matter that has not finished the final process.
  • the “carbon precursor that is not meltable with respect to heat” means a resin that does not melt by pre-baking or main baking.
  • thermoplastic resin in the case of petroleum pitch or tar, coal pitch or tar, or a thermoplastic resin, it means a carbonaceous precursor that has been subjected to an infusibilization treatment described below.
  • thermosetting resin since the thermosetting resin does not melt even if pre-baking or main baking is performed as it is, no infusibilization treatment is required.
  • the carbonaceous material of the present invention is a non-graphitizable carbonaceous material, petroleum pitch or tar, coal pitch or tar, or thermoplastic resin is infusibilized to make it infusible to heat in the production process. It is necessary to perform processing.
  • the infusibilization treatment can be performed by forming a crosslink on the carbon precursor by oxidation. That is, the infusibilization treatment can be performed by a known method in the field of the present invention. For example, it can be performed according to the procedure of infusibilization (oxidation) described later.
  • infusibilization process When petroleum pitch or tar, coal pitch or tar, or a thermoplastic resin is used as the carbon precursor, infusibilization is performed.
  • the method of infusibilization treatment is not particularly limited, and can be performed using, for example, an oxidizing agent.
  • the oxidizing agent is not particularly limited, but as the gas, O 2 , O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen or the like, or an oxidizing gas such as air is used. Can do.
  • an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide, or a mixture thereof can be used.
  • the oxidation temperature is not particularly limited, but is preferably 120 to 400 ° C, and more preferably 150 to 350 ° C. If the temperature is lower than 120 ° C., a sufficient crosslinked structure cannot be formed and the particles are fused in the heat treatment step. On the other hand, when the temperature exceeds 400 ° C., the decomposition reaction is more than the crosslinking reaction, and the yield of the obtained carbon material is lowered.
  • Calcination uses a non-graphitizable carbon precursor as a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode.
  • the temperature may be once lowered after the pre-baking, pulverized, and main baking may be performed.
  • the pulverization step may be performed after the infusibilization step, but is preferably performed after preliminary firing.
  • the carbonaceous material of the present invention is produced by a step of pulverizing a carbon precursor and a step of firing the carbon precursor.
  • the pre-baking step in the present invention is performed by baking the carbon source at 300 ° C. or higher and lower than 900 ° C. Pre-firing removes volatile components such as CO 2 , CO, CH 4 , and H 2 , and tar components, and reduces the generation of these components in the main firing, thereby reducing the burden on the calciner. .
  • the pre-baking temperature is less than 300 ° C., detarring becomes insufficient, and there is a large amount of tar and gas generated in the main baking process after pulverization, which may adhere to the particle surface. This is not preferable because it cannot be maintained and the battery performance is lowered.
  • the pre-baking temperature is preferably 300 ° C.
  • the pre-baking temperature is 900 ° C. or higher, more preferably 500 ° C. or higher, and particularly preferably 600 ° C. or higher.
  • the pre-baking temperature is 900 ° C. or higher, the tar generation temperature range is exceeded, and the energy efficiency to be used is lowered, which is not preferable.
  • the generated tar causes a secondary decomposition reaction, which adheres to the carbon precursor and may cause a decrease in performance, which is not preferable.
  • the pre-baking temperature is too high, carbonization proceeds and the carbon precursor particles become too hard, and when pulverizing after pre-firing, it becomes difficult to pulverize such as scraping the inside of the pulverizer This is not preferable.
  • Pre-baking is performed in an inert gas atmosphere, and examples of the inert gas include nitrogen and argon. Pre-baking can also be performed under reduced pressure, for example, 10 kPa or less.
  • the pre-baking time is not particularly limited, but can be performed, for example, in 0.5 to 10 hours, and more preferably 1 to 5 hours.
  • the rate of temperature increase in the pre-firing is preferably 1 ° C / h or more and 150 ° C / h or less, more preferably 5 ° C / h or more and 100 ° C / h or less, and 10 ° C / h or more. 50 ° C./h or less is more preferable.
  • Carbon precursors with a true density ( ⁇ Bt) determined by the butanol method of 1.55 g / cm 3 or more and less than 1.75 g / cm 3 have a large amount of tar generated during pre-firing, and gradually volatilize these volatile components. It is considered that a carbonaceous material having a suitable pore diameter can be prepared and a high discharge capacity is developed.
  • the present invention is not limited by the above description.
  • the pulverization step is performed in order to make the particle size of the carbon precursor uniform. It can also grind
  • the pulverizer used for pulverization is not particularly limited. For example, a jet mill, a ball mill, a hammer mill, or a rod mill can be used. However, a jet mill having a classification function in that fine powder is generated less. Is preferred.
  • classification when using a ball mill, a hammer mill, a rod mill or the like, fine powder can be removed by classification after pulverization.
  • classification include classification with a sieve, wet classification, and dry classification.
  • wet classifier include a classifier using a principle such as gravity classification, inertia classification, hydraulic classification, or centrifugal classification.
  • dry classifier include a classifier using the principle of sedimentation classification, mechanical classification, or centrifugal classification.
  • pulverization and classification can be performed using one apparatus.
  • pulverization and classification can be performed using a jet mill having a dry classification function.
  • an apparatus in which the pulverizer and the classifier are independent can be used. In this case, pulverization and classification can be performed continuously, but pulverization and classification can also be performed discontinuously.
  • the main firing step in the present invention can be performed according to a normal main firing procedure, and a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode can be obtained by performing the main firing.
  • the firing temperature is 900 to 1600 ° C. If the main calcination temperature is less than 900 ° C., many functional groups remain in the carbonaceous material and the H / C value becomes high, and the irreversible capacity increases due to reaction with lithium, which is not preferable.
  • the lower limit of the main firing temperature of the present invention is 900 ° C. or higher, more preferably 1000 ° C. or higher, and particularly preferably 1100 ° C. or higher.
  • the upper limit of the main calcination temperature of the present invention is 1600 ° C. or less, more preferably 1500 ° C. or less, and particularly preferably 1450 ° C. or less.
  • the main firing is preferably performed in a non-oxidizing gas atmosphere. Examples of the non-oxidizing gas include helium, nitrogen, and argon, and these can be used alone or in combination.
  • the main calcination can be performed in a gas atmosphere in which a halogen gas such as chlorine is mixed with the non-oxidizing gas.
  • this baking can also be performed under reduced pressure, for example, can also be performed at 10 kPa or less.
  • the time for the main baking is not particularly limited, it can be performed, for example, in 0.1 to 10 hours, preferably 0.2 to 8 hours, and more preferably 0.4 to 6 hours.
  • a method for infusibilization there are a method using a crosslinking agent, a method of treating with an oxidizing agent such as air, and the like.
  • a cross-linking agent a carbon precursor is obtained by adding a cross-linking agent to petroleum tar or pitch, or coal tar or pitch and heating and mixing to proceed with a cross-linking reaction.
  • the crosslinking agent polyfunctional vinyl monomers such as divinylbenzene, trivinylbenzene, diallyl phthalate, ethylene glycol dimethacrylate, or N, N-methylenebisacrylamide that undergo a crosslinking reaction by radical reaction can be used.
  • the crosslinking reaction with the polyfunctional vinyl monomer is started by adding a radical initiator.
  • a radical initiator ⁇ , ⁇ ′ azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), lauroyl peroxide, cumene hydroperoxide, 1-butyl hydroperoxide, hydrogen peroxide, or the like can be used. .
  • a carbon precursor when the crosslinking reaction is advanced by treatment with an oxidizing agent such as air, it is preferable to obtain a carbon precursor by the following method. That is, to a petroleum pitch or coal pitch, a bicyclic to tricyclic aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added as an additive and heated and mixed, and then molded to obtain a pitch molded body. Next, the additive is extracted and removed from the pitch molded body with a solvent having low solubility with respect to pitch and high solubility with respect to the additive to form a porous pitch, which is then oxidized with an oxidizing agent, and then carbon precursor. Get the body.
  • the purpose of the aromatic additive is to extract and remove the additive from the molded pitch molded body to make the molded body porous, to facilitate crosslinking treatment by oxidation, and to obtain a carbonaceous material obtained after carbonization. To make it porous.
  • the additive can select from 1 type, or 2 or more types of mixtures, such as naphthalene, methyl naphthalene, phenyl naphthalene, benzyl naphthalene, methyl anthracene, phenanthrene, or biphenyl, for example.
  • the amount of the aromatic additive added to the pitch is preferably in the range of 30 to 70 parts by mass with respect to 100 parts by mass of the pitch.
  • Mixing of pitch and additives is performed in a molten state by heating in order to achieve uniform mixing.
  • the mixture of the pitch and the additive is preferably performed after being formed into particles having a particle diameter of 1 mm or less so that the additive can be easily extracted from the mixture.
  • Molding may be performed in a molten state, or may be performed by a method such as pulverizing the mixture after cooling.
  • Solvents for extracting and removing the additive from the mixture of pitch and additive include aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene, methanol, Aliphatic alcohols such as ethanol, propanol or butanol are preferred.
  • aliphatic hydrocarbons such as butane, pentane, hexane, or heptane
  • mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene
  • methanol methanol
  • Aliphatic alcohols such as ethanol, propanol or butanol are preferred.
  • Oil pitch or coal pitch or the like is pulverized to an average particle size (median diameter) of 60 ⁇ m or less to form a fine powder pitch, and then the fine powder pitch, preferably an average particle size (median diameter) of 5 ⁇ m or more and 40 ⁇ m or less.
  • An existing molding machine can be used for compression molding, and specific examples include a single-shot vertical molding machine, a continuous rotary molding machine, and a roll compression molding machine, but are not limited thereto.
  • the pressure at the time of compression molding is preferably 20 to 100 MPa as a surface pressure or 0.1 to 6 MN / m as a linear pressure, more preferably 23 to 86 MPa as a surface pressure or 0.2 to 3 MN / m as a linear pressure. m.
  • the pressure holding time at the time of the compression molding can be appropriately determined according to the type of molding machine, the properties of the fine powder pitch, and the processing amount, but is generally within the range of 0.1 second to 1 minute.
  • a binder binder
  • Specific examples of the binder include water, starch, methylcellulose, polyethylene, polyvinyl alcohol, polyurethane, and phenol resin, but are not necessarily limited thereto.
  • the shape of the porous pitch molded body obtained by compression molding is not particularly limited, and examples thereof include granular, columnar, spherical, pellet, plate, honeycomb, block, and Raschig rings.
  • the resulting porous pitch is then oxidized with an oxidizing agent, preferably at a temperature of 120 to 400 ° C.
  • an oxidizing agent O 2 , O 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used.
  • a gas containing oxygen such as air or a mixed gas of air and other gas such as combustion gas as an oxidizing agent. Is also advantageous.
  • the pitch used preferably has a softening point of 150 ° C. or higher.
  • the carbon precursor subjected to the crosslinking treatment as described above is pre-fired and then carbonized at 900 ° C. to 1600 ° C. in a non-oxidizing gas atmosphere to obtain the carbonaceous material of the present invention. Can do.
  • the carbonaceous material of the present invention can also be obtained by carbonizing at 900 ° C. to 1600 ° C. using a resin as a precursor.
  • a resin As the resin, a phenol resin, a furan resin, or the like, or a thermosetting resin obtained by partially modifying the functional group of these resins can be used. It can also be obtained by pre-calcining the thermosetting resin at a temperature lower than 900 ° C., if necessary, pulverizing, and carbonizing at 900 ° C. to 1600 ° C.
  • an oxidation treatment may be performed at a temperature of 120 to 400 ° C. for the purpose of accelerating the curing of the thermosetting resin, promoting the degree of crosslinking, or improving the carbonization yield.
  • the oxidizing agent O 2 , O 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used. be able to.
  • a carbon precursor obtained by subjecting a thermoplastic resin such as polyacrylonitrile or a styrene / divinylbenzene copolymer to infusibilization treatment can also be used.
  • a monomer mixture obtained by mixing a radically polymerizable vinyl monomer and a polymerization initiator is added to an aqueous dispersion medium containing a dispersion stabilizer and suspended by stirring to suspend the monomer mixture into fine droplets. Then, it can be obtained by proceeding radical polymerization by raising the temperature.
  • the obtained resin can be made into a spherical carbon precursor by developing a crosslinked structure by infusibilization treatment (oxidation treatment).
  • the infusibilization treatment can be performed in a temperature range of 120 to 400 ° C., particularly preferably 170 to 350 ° C., more preferably 220 to 350 ° C.
  • the oxidizing agent O 2 , O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing property such as sulfuric acid, nitric acid, hydrogen peroxide water, or the like Liquid can be used.
  • the carbon precursor that is infusible to heat as described above is pre-fired as necessary, and then pulverized and carbonized at 900 ° C. to 1600 ° C.
  • the carbonaceous material of the present invention can be obtained.
  • the pulverization step can be performed after carbonization, since the carbon precursor becomes hard as the carbonization reaction proceeds, it becomes difficult to control the particle size distribution by pulverization. It is preferable before the main baking later.
  • Nonaqueous electrolyte secondary battery negative electrode contains the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention.
  • a binder (binder) is added to the carbonaceous material, and an appropriate solvent is added and kneaded to form an electrode mixture. It can be produced by pressure molding after coating and drying.
  • a conductive aid can be added.
  • the conductive assistant conductive carbon black, vapor grown carbon fiber (VGCF), nanotube, etc. can be used, and the amount added varies depending on the type of conductive assistant used, but the amount added is too small.
  • the binder is not particularly limited as long as it does not react with an electrolytic solution such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene-butadiene rubber) and CMC (carboxymethylcellulose).
  • PVDF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • CMC carbboxymethylcellulose
  • the amount of the binder added is preferably 3 to 13% by mass, more preferably 3 to 10% by mass for the PVDF binder, although it varies depending on the type of binder used.
  • a binder using water as a solvent is often used by mixing a plurality of binders such as a mixture of SBR and CMC, and the total amount of all binders used is preferably 0.5 to 5% by mass. The amount is preferably 1 to 4% by mass.
  • the electrode active material layer is basically formed on both sides of the current collector plate, but may be on one side if necessary. A thicker electrode active material layer is preferable for increasing the capacity because fewer current collector plates and separators are required. However, the larger the electrode area facing the counter electrode, the better the input / output characteristics, and the thicker the active material layer. Too much is not preferable because the input / output characteristics deteriorate.
  • the thickness of the active material layer (per side) is preferably 10 to 80 ⁇ m, more preferably 20 to 75 ⁇ m, and still more preferably 20 to 60 ⁇ m.
  • Nonaqueous electrolyte secondary battery includes the negative electrode of the nonaqueous electrolyte secondary battery of the present invention.
  • non-aqueous electrolyte secondary batteries Manufacture of non-aqueous electrolyte secondary batteries
  • other materials constituting the battery such as a positive electrode material, a separator, and an electrolytic solution are not particularly limited, and are nonaqueous solvents.
  • Various materials conventionally used or proposed as a secondary battery can be used.
  • a layered oxide system represented as LiMO 2 , where M is a metal: for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiNi x Co y Mo z O 2 (where x, y and z represent composition ratios)
  • olivine system represented by LiMPO 4 , M is metal: for example, LiFePO 4, etc.
  • spinel system represented by LiM 2 O 4 , M is a metal: for example, LiMn 2 O 4, etc.
  • the composite metal chalcogen compound is preferable, and these chalcogen compounds may be mixed if necessary.
  • These positive electrode materials are molded together with an appropriate binder and a carbon material for imparting conductivity to the electrode, and are electrically conductive.
  • the positive electrode is formed by forming a layer on the conductive current collector.
  • the nonaqueous solvent electrolyte used in combination of these positive electrode and negative electrode is generally formed by dissolving an electrolyte in a nonaqueous solvent.
  • the non-aqueous solvent include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, ⁇ -butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, or 1,3-dioxolane. These can be used alone or in combination of two or more.
  • the electrolyte LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB (C 6 H 5 ) 4 , or LiN (SO 3 CF 3 ) 2 is used.
  • the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution with a liquid-permeable separator made of nonwoven fabric or other porous material facing each other as necessary. It is formed by.
  • a non-woven fabric usually used for a secondary battery or a permeable separator made of another porous material can be used.
  • a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of or together with the separator.
  • the lithium ion secondary battery of the present invention is suitable as a battery (typically a lithium ion secondary battery for driving a vehicle) mounted on a vehicle such as an automobile.
  • the vehicle according to the present invention can be targeted without particular limitation, such as a vehicle normally known as an electric vehicle, a hybrid vehicle with a fuel cell or an internal combustion engine, and at least a power supply device including the battery, An electric drive mechanism that is driven by power supply from the power supply device and a control device that controls the electric drive mechanism are provided. Further, a power generation brake or a regenerative brake may be provided, and a mechanism for converting the energy generated by braking into electricity and charging the lithium ion secondary battery may be provided. Since the hybrid vehicle has a particularly low degree of freedom in battery volume, the battery of the present invention is useful.
  • the physical property values ( ⁇ Bt , ⁇ He , BET specific surface area, average particle diameter (D v50 ), hydrogen / carbon atomic ratio (H / C) of the non-aqueous electrolyte secondary battery negative electrode of the present invention are as follows: d 002 , charge capacity, discharge capacity, irreversible capacity, moisture absorption), including physical properties values described in this specification including examples are based on values obtained by the following methods It is.
  • the true density was measured by a butanol method according to a method defined in JIS R 7212.
  • the mass (m 1 ) of a specific gravity bottle with a side tube having an internal volume of about 40 mL is accurately measured.
  • the sample is placed flat on the bottom so as to have a thickness of about 10 mm, and its mass (m 2 ) is accurately measured.
  • light vibration is applied to the specific gravity bottle, and it is confirmed that large bubbles are not generated.
  • the bottle is placed in a vacuum desiccator and gradually evacuated to 2.0 to 2.7 kPa.
  • d is the specific gravity (0.9946) of water at 30 ° C.
  • the measuring device has a sample chamber and an expansion chamber, and the sample chamber has a pressure gauge for measuring the pressure in the chamber.
  • the sample chamber and the expansion chamber are connected by a connecting pipe having a valve.
  • a helium gas introduction pipe having a stop valve is connected to the sample chamber, and a helium gas discharge pipe having a stop valve is connected to the expansion chamber.
  • the volume of the sample chamber (V CELL ) and the volume of the expansion chamber (V EXP ) are measured in advance using a calibration sphere with a known volume.
  • the sample is placed in the sample chamber, fills the system with helium, the system pressure at that time and P a. Then closing the valve, is increased to a pressure P 1 added sample chamber only helium gas. After that, when the valve is opened and the expansion chamber and the sample chamber are connected, the system pressure decreases to P 2 due to expansion.
  • the volume of the sample (V SAMP ) is calculated by the following equation.
  • v m is the adsorption amount necessary for forming a monomolecular layer on the surface of the sample (cm 3 / g)
  • x is a relative pressure.
  • the carbonaceous material powder was filled in the sample holder and measured by a symmetrical reflection method using X'Pert PRO manufactured by PANalytical.
  • the scanning range was 8 ⁇ 2 ⁇ ⁇ 50 °, and the applied current / applied voltage was 45 kV / 40 mA.
  • the wavelength of the CuK ⁇ ray is set to 0.15418 nm, and d 002 is calculated by the Bragg formula.
  • Dv50 Average particle diameter by laser diffraction method
  • a dispersing agent cationic surfactant “SN Wet 366” (manufactured by San Nopco)
  • SALD-3000S particle size distribution measuring instrument
  • a negative electrode mixture prepared by adding water to 96 parts by mass, 3 parts by mass of SBR, and 1 part by mass of CMC was prepared.
  • the electrode mixture was uniformly applied on the copper foil. After drying, it was punched out from a copper foil into a disk shape having a diameter of 15 mm and pressed to obtain an electrode.
  • the amount of carbonaceous material in the electrode was adjusted to about 10 mg.
  • the carbonaceous material of the present invention is suitable for constituting the negative electrode of a non-aqueous electrolyte secondary battery, but the discharge capacity (de-doping amount) and irreversible capacity (non-desorption) of the battery active material.
  • a lithium secondary battery is configured using the electrode obtained above, using lithium metal with stable characteristics as a counter electrode, Its characteristics were evaluated.
  • the lithium electrode was prepared in a glove box in an Ar atmosphere.
  • a 16 mm diameter stainless steel mesh disk is spot-welded to the outer lid of a 2016 coin-sized battery can, and then a 0.8 mm thick metal lithium sheet is punched into a 15 mm diameter disk shape.
  • the electrolyte solution was LiPF 6 at a ratio of 1.4 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2.
  • the lithium doping reaction on the carbon electrode will be described as “charging”.
  • “discharge” is a charging reaction in the test battery, but is referred to as “discharge” for convenience because it is a dedoping reaction of lithium from the carbonaceous material.
  • the charging method adopted here is a constant current constant voltage method. Specifically, constant current charging was performed at 0.5 mA / cm 2 until the terminal voltage reached 0.050 V, and the terminal voltage reached 0.050 V. Thereafter, constant voltage charging was performed at a terminal voltage of 0.050 V, and charging was continued until the current value reached 20 ⁇ A.
  • the value obtained by dividing the supplied amount of electricity by the mass of the carbonaceous material of the electrode was defined as the charge capacity (mAh / g) per unit mass of the carbonaceous material.
  • the battery circuit was opened for 30 minutes and then discharged.
  • the discharge was a constant current discharge at 0.5 mA / cm 2 and the final voltage was 1.5V.
  • a value obtained by dividing the quantity of electricity discharged at this time by the mass of the carbonaceous material of the electrode is defined as a discharge capacity (mAh / g) per unit mass of the carbonaceous material.
  • the irreversible capacity is calculated as charge capacity-discharge capacity.
  • Example 1 A 70 kg petroleum pitch with a softening point of 205 ° C. and an H / C atomic ratio of 0.65 and 30 kg of naphthalene are charged into a 300 liter pressure vessel equipped with a stirring blade and an outlet nozzle, and heated, melted and mixed at 190 ° C. After cooling to 80 to 90 ° C., the inside of the pressure vessel was pressurized with nitrogen gas, and the contents were extruded from the outlet nozzle to obtain a string-like molded body having a diameter of about 500 ⁇ m.
  • this string-like molded body was pulverized so that the ratio (L / D) of the diameter (D) to the length (L) was about 1.5, and the obtained crushed material was heated to 93 ° C.
  • the solution was poured into an aqueous solution in which 53% by mass of polyvinyl alcohol (saponification degree 88%) was dissolved, stirred and dispersed, and cooled to obtain a spherical pitch molded body slurry. After most of the water was removed by filtration, naphthalene in the pitch formed body was extracted and removed with n-hexane having a mass about 6 times that of the spherical pitch formed body.
  • porous spherical pitch thus obtained was heated to 240 ° C. while passing through heated air using a fluidized bed, oxidized at a temperature of 240 ° C. for 1 hour, and insoluble to heat. Spherical oxidized pitch was obtained.
  • 100 g of porous spherical oxidation pitch was put in a vertical tubular furnace having a diameter of 50 mm, heated to 600 ° C. at a rate of 100 ° C./h, held at 600 ° C. for 1 hour, pre-baked, and carbon precursor Got the body.
  • Pre-baking was performed in a nitrogen atmosphere with a flow rate of 5 L / min.
  • the obtained carbon precursor was pulverized to obtain a powdery carbon precursor having an average particle size of 4.8 ⁇ m. Subsequently, 10 g of this powdery carbon precursor was put into a horizontal tubular furnace having a diameter of 100 mm, heated to 1200 ° C. at a heating rate of 250 ° C./h, held at 1200 ° C. for 1 hour, and subjected to main firing, Carbonaceous material 1 was prepared. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
  • Example 2 A carbonaceous material 2 was obtained in the same manner as in Example 1 except that the nitrogen flow rate during main firing was changed to 1 L / min.
  • Example 3 A carbonaceous material 3 was obtained in the same manner as in Example 1 except that the oxidation temperature of the porous spherical pitch was changed to 230 ° C. and the pulverized particle size of the carbon precursor was changed to 9.5 ⁇ m.
  • Example 4 A carbonaceous material 4 was obtained in the same manner as in Example 1 except that the oxidation temperature of the porous spherical pitch was changed to 210 ° C. and the pulverized particle size of the carbon precursor was changed to 12.0 ⁇ m.
  • Example 5 A carbonaceous material 5 was obtained in the same manner as in Example 3 except that the oxidation temperature of the porous spherical pitch was changed to 205 ° C.
  • Example 6 A carbonaceous material 6 was obtained in the same manner as in Example 1 except that the pulverized particle size of the carbon precursor was changed to 3 ⁇ m.
  • Example 7 A carbonaceous material 7 was obtained in the same manner as in Example 1 except that the pulverized particle size of the carbon precursor was changed to 14 ⁇ m.
  • Example 8 A coal pitch having a softening point of 205 ° C. and an H / C atomic ratio of 0.49 was pulverized by a counter jet mill (Hosokawa Micron Corporation / 100-AFG) to obtain a powdery pitch having an average particle size of 6.2 ⁇ m. Then, this powdery pitch was put into a muffle furnace (Denken Co., Ltd.), and infusible treatment was carried out by maintaining at 260 ° C. for 1 hour while circulating air at 20 L / min, to obtain an infusible pitch. 100 g of the infusibilized pitch obtained was put in a crucible, heated at a rate of 50 ° C./h up to 600 ° C.
  • Example 9 A carbonaceous material 9 was obtained in the same manner as in Example 8 except that the infusibilization temperature was changed to 240 ° C. and the pulverized particle size of the carbon precursor was 9.0 ⁇ m.
  • Example 10 An aqueous dispersion medium of 250 g of 4% methylcellulose aqueous solution and 2.0 g of sodium nitrite was prepared in 1695 g of water. On the other hand, a monomer mixture composed of 500 g of acrylonitrile and 2.9 g of 2,2′-azobis-2,4 dimethylvaleronitrile was prepared. An aqueous dispersion medium was added to this monomer mixture, and the mixture was stirred for 15 minutes at 2000 rpm with a homogenizer to granulate fine droplets of the monomer mixture.
  • aqueous dispersion medium containing fine droplets of this polymerizable mixture was charged into a polymerization can equipped with a stirrer (10 L) and polymerized at 55 ° C. for 20 hours using a warm bath.
  • the obtained polymerization product was filtered from the aqueous phase, dried and sieved to obtain a spherical synthetic resin having an average particle size of 40 ⁇ m.
  • the obtained synthetic resin was oxidized at a temperature of 250 ° C. for 5 hours while passing heated air to obtain a heat-insoluble precursor. This was fired in a nitrogen gas atmosphere at a heating rate of 100 ° C./h up to 800 ° C.
  • Example 11 In the same manner as in Example 4, except that the carbonaceous material 4 obtained in Example 4 was made of a negative electrode mixture prepared by adding water to 96 parts by mass, 3 parts by mass of SBR, and 1 part by mass of CMC. evaluated.
  • Comparative Example 1 The oxidation temperature of the porous spherical pitch was changed to 270 ° C., the pulverized particle size of the carbon precursor was changed to 10 ⁇ m, and this powdery carbon precursor was calcined at 1200 ° C. under reduced pressure of 1.3 ⁇ 10 ⁇ 5 kPa for 1 hour.
  • a comparative carbonaceous material 1 was obtained in the same manner as in Example 1 except that.
  • Comparative Example 2 30 g of a powdery carbon precursor similar to that in Comparative Example 1 is charged into a cylindrical crucible having a sample container diameter of 40 mm and a height of 60 mm, the inlet is sealed with a carbon plate, and the gas generated during the carbonization reaction stays in the crucible. Carbonization was performed in the state. After charging the crucible in the electric furnace, vacuuming the inside of the system and substituting with nitrogen gas, the inside of the electric furnace is made into a nitrogen gas atmosphere, heated to 1200 ° C. at a rate of 250 ° C./h, and then at 1200 ° C. for 1 hour. Holding, a comparative carbonaceous material 2 was obtained.
  • Comparative Example 3 A comparative carbonaceous material 3 was obtained in the same manner as in Example 1 except that the firing temperature of the main firing was 1450 ° C.
  • Comparative Example 4 A comparative carbonaceous material 4 was obtained in the same manner as in Example 1 except that the firing temperature of the main firing was set to 800 ° C.
  • Comparative Example 5 Comparative carbonaceous material 5 was obtained in the same manner as in Comparative Example 2 except that the oxidation temperature of the porous spherical pitch was 223 ° C.
  • Comparative Example 6 Comparative carbonaceous material 6 was obtained in the same manner as in Comparative Example 2 except that the oxidation temperature of the porous spherical pitch was 215 ° C.
  • Table 1 shows the characteristics of the carbonaceous materials obtained in Examples and Comparative Examples, and the measurement results of the electrodes produced using the carbonaceous materials and the battery performance.
  • the carbonaceous materials of Examples 1 to 11 have a true density ( ⁇ Bt ) of 1.55 g / cm 3 or more and less than 1.75 g / cm 3 and a discharge capacity of 0.05 A to 1.5 V of 180 Ah / g or more.
  • the slope 0.9 / X of the discharge curve from 0.2 V to 1.1 V was in the range of 0.75 (Vg / Ah) or less. This indicates that the slope of the discharge curve per volume in the potential range most used in the in-vehicle lithium ion secondary battery of 0.2 V to 1.1 V is gentle, and thus the charging range of around 50%.
  • the potential difference between the negative electrode and the positive electrode is kept high and exhibits a high discharge capacity per volume. Moreover, the amount of moisture absorption was low. Therefore, Examples 1 to 10 were provided with a high discharge capacity per volume and storage characteristics in a practical range.
  • Comparative Examples 1, 2, and 4 the true density ( ⁇ Bt ) is less than 1.55 g / cm 3 and the voids are large in the crystal structure. The amount was high. In Comparative Example 2, the discharge capacity at 0.05 V to 1.5 V was low. In Comparative Examples 3, 5, and 6, the true density ( ⁇ Bt ) was included in the scope of the present invention, but the discharge capacity at 0.05 V to 1.5 V was low. In Comparative Examples 2, 3, 5, and 6, since the slope of the discharge curve (0.9 / X) is large, sufficient capacity cannot be secured in the slope region in the practical range.

Abstract

The present invention provides a carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode, said material having a high discharge capacity per volume and excellent storage characteristics. In this carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode, the true density (ρBt) determined by a butanol method is at least 1.55 g/cm3 but less than 1.75 g/cm3, and the discharge capacity of the negative electrode from 0.05-1.5 V in terms of a lithium reference electrode is at least 180 mAh/g. Furthermore, the slope (0.9/X (Vg/Ah)) of the discharge curve, which is calculated from the discharge capacity (X (Ah/g)) and potential difference (0.9 (V)) that correspond to 0.2-1.1 V in terms of the lithium reference electrode, is at most 0.75 (Vg/Ah), and the moisture absorption after 100 hours of storage in a 25 °C, 50% RH air environment is at most 1.5 wt%.

Description

非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery and vehicle
 本発明は、非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両に関する。 The present invention relates to a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode, a negative electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, and a vehicle.
 近年、環境問題への関心の高まりから、エネルギー密度が高く、出力特性の優れた大型のリチウムイオン二次電池の電気自動車への搭載が検討されている。特に車載用リチウムイオン二次電池は大型で且つ高価であることから、途中での交換が困難である。従って、少なくとも自動車と同じ耐久性が必要であり、10年以上の寿命性能の実現(高耐久性)が求められる。黒鉛質材料では、リチウムのドープ、脱ドープの繰り返しによる結晶の膨張収縮により破壊が起きやすく、充放電の繰り返し性能が劣るため、高いサイクル耐久性が求められる車載用リチウムイオン二次電池用負極材料としては適していない。これに対し、黒鉛構造が高度に発達していない難黒鉛化性炭素等の炭素質材料は、リチウムのドープ、脱ドープ反応による粒子の膨張収縮が小さく、高いサイクル耐久性を有するという観点からは自動車用途での使用に適している。 In recent years, due to increasing interest in environmental issues, the installation of large lithium ion secondary batteries with high energy density and excellent output characteristics in electric vehicles is being studied. In particular, an in-vehicle lithium ion secondary battery is large and expensive, and is difficult to replace on the way. Accordingly, at least the same durability as that of an automobile is required, and realization of a life performance of 10 years or more (high durability) is required. In the case of graphite materials, negative electrode materials for in-vehicle lithium ion secondary batteries that require high cycle durability because they are prone to breakage due to expansion and contraction of crystals due to repeated lithium doping and dedoping, and poor charge / discharge performance. Not suitable for. On the other hand, carbonaceous materials such as non-graphitizable carbon whose graphite structure is not highly developed are small in terms of expansion and contraction of particles due to lithium doping and dedoping reactions, and have high cycle durability. Suitable for use in automotive applications.
 また、近年の車載用リチウムイオン二次電池では、一充電での航続距離を延ばすとともに、車両燃費を一層改善するため、放電容量の増加が必要とされている。さらに、電池の車載スペースを低減させるニーズが高いことから、体積当たりの放電容量の向上が求められている。容量を増加させる手段として、炭素質材料の製造過程において、焼成を減圧下又は塩素雰囲気下で行うことで、細孔の発達を促進することが知られている(特許文献1、2)。しかし、これらの製法で製造される炭素質材料は、保存安定性に劣る。これに対し、炭素質材料の閉孔を増やすことで、保存安定性を向上することが提案されている(特許文献3)が、容量が大幅に低下するという好ましくない結果がもたらされる。 Also, in recent lithium-ion secondary batteries for in-vehicle use, it is necessary to increase the discharge capacity in order to extend the cruising distance by one charge and further improve the vehicle fuel consumption. Furthermore, since there is a high need to reduce the space on the battery, there is a demand for improvement in discharge capacity per volume. As means for increasing the capacity, it is known to promote the development of pores by performing firing in a reduced pressure or chlorine atmosphere in the production process of the carbonaceous material (Patent Documents 1 and 2). However, carbonaceous materials produced by these production methods are inferior in storage stability. On the other hand, it has been proposed that the storage stability is improved by increasing the number of closed pores of the carbonaceous material (Patent Document 3), but the undesirable result is that the capacity is greatly reduced.
特許3427577号公報Japanese Patent No. 3427577 特許3565994号公報Japanese Patent No. 3565994 特開2003-328911号公報JP 2003-328911 A
 本発明の目的は、体積当たり放電容量が高くかつ保存特性に優れる非水電解質二次電池負極用炭素質材料及び非水電解質二次電池用負極電極、並びにこの非水電解質二次電池用負極電極を備える非水電解質二次電池及び車両を提供することにある。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery negative electrode carbonaceous material having a high discharge capacity per volume and excellent storage characteristics, a negative electrode for a non-aqueous electrolyte secondary battery, and a negative electrode for the non-aqueous electrolyte secondary battery. A non-aqueous electrolyte secondary battery including the vehicle and a vehicle are provided.
 本発明者らは、ブタノール法によって求められる真密度(ρBt)が1.55g/cm以上1.75g/cm未満である炭素質材料において、リチウム参照電極基準で0.2Vから1.1Vの放電容量X(Ah/g)と電位差0.9(V)とから計算される放電曲線の傾き0.9/X(Vg/Ah)が大きいと、放電容量が高いにもかかわらず吸湿性が低く、その結果、保存特性に優れる炭素質材料が提供されることを見出し、本発明を完成するに至った。具体的に、本発明は以下のようなものを提供する。 In the carbonaceous material in which the true density (ρ Bt ) obtained by the butanol method is 1.55 g / cm 3 or more and less than 1.75 g / cm 3 , the present inventors have used a lithium reference electrode standard of 0.2 V to 1. When the slope of the discharge curve 0.9 / X (Vg / Ah) calculated from the discharge capacity X (Ah / g) of 1 V and the potential difference 0.9 (V) is large, the moisture absorption is high despite the high discharge capacity. As a result, it has been found that a carbonaceous material having excellent storage characteristics is provided, and the present invention has been completed. Specifically, the present invention provides the following.
 (1) ブタノール法によって求められる真密度(ρBt)が1.55g/cm以上1.75g/cm未満、リチウム参照電極基準で0.05V~1.5V負極の放電容量が180mAh/g以上であり、リチウム参照電極基準で0.2Vから1.1Vの放電容量X(Ah/g)と電位差0.9(V)とから計算される放電曲線の傾き0.9/X(Vg/Ah)が0.75(Vg/Ah)以下であり、25℃50%RH空気雰囲気で100時間保存後の吸湿量が1.5wt%以下である非水電解質二次電池負極用炭素質材料。 (1) True density (ρ Bt ) determined by the butanol method is 1.55 g / cm 3 or more and less than 1.75 g / cm 3 , and 0.05 V to 1.5 V negative electrode discharge capacity is 180 mAh / g based on a lithium reference electrode. The slope of the discharge curve 0.9 / X (Vg / V) calculated from the discharge capacity X (Ah / g) of 0.2 V to 1.1 V and the potential difference 0.9 (V) based on the lithium reference electrode. Ah) is 0.75 (Vg / Ah) or less, and the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode has a moisture absorption amount of 1.5 wt% or less after 100 hours storage at 25 ° C. and 50% RH air atmosphere.
 (2) ヘリウム置換法によって求められる真密度(ρHe)が、1.76g/cm以上である上記(1)に記載の非水電解質二次電池負極用炭素質材料。 (2) The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to (1), wherein the true density (ρ He ) obtained by the helium substitution method is 1.76 g / cm 3 or more.
 (3) ρHeとρBtとの比(ρHe/ρBt)が1.10以上である上記(1)または(2)に記載の非水電解質二次電池負極用炭素質材料。 (3) [rho the He and [rho Bt and the ratio (ρ He / ρ Bt) is a non-aqueous electrolyte secondary battery negative electrode carbonaceous material according to (1) or (2) is 1.10 or more.
 (4) 窒素ガスの吸着によるBET法により求めた比表面積(BET)(単位:m/g)と、平均粒子径(単位:μm)をDv50とした場合に、計算式「6/(Dv50×ρBt)」から求められる比表面積(CALC)(単位:m/g)との比表面積比(BET/CALC)が、5.5超である上記(1)から(3)のいずれかに記載の非水電解質二次電池負極用炭素質材料。 (4) When the specific surface area (BET) (unit: m 2 / g) determined by the BET method by adsorption of nitrogen gas and the average particle diameter (unit: μm) are Dv50 , the calculation formula “6 / ( The specific surface area ratio (BET / CALC) with respect to the specific surface area (CALC) (unit: m 2 / g) determined from “D v50 × ρ Bt ” ”is more than 5.5, from (1) to (3) above The carbonaceous material for non-aqueous electrolyte secondary battery negative electrode in any one.
 (5) 平均粒子径が1~15μmである上記(1)から(4)のいずれかに記載の非水電解質二次電池負極用炭素質材料。 (5) The carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode according to any one of (1) to (4), wherein the average particle size is 1 to 15 μm.
 (6) 上記(1)から(5)のいずれかに記載の非水電解質二次電池負極用炭素質材料を含む非水電解質二次電池用負極電極。 (6) A negative electrode for a non-aqueous electrolyte secondary battery comprising the carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode according to any one of (1) to (5) above.
 (7) 上記(6)に記載の非水電解質二次電池用負極電極を備える非水電解質二次電池。 (7) A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery described in (6) above.
 (8) 上記(7)に記載の非水電解質二次電池を搭載した車両。 (8) A vehicle equipped with the nonaqueous electrolyte secondary battery described in (7) above.
 本発明によれば、ブタノール法によって求められる真密度(ρBt)が1.55g/cm以上1.75g/cm未満である炭素質材料において、リチウム参照電極基準で0.2Vから1.1Vの電位までの放電容量X(Ah/g)と電位差0.9(V)とから計算される放電曲線の傾き0.9/X(Vg/Ah)が低いことで、放電容量が高いにもかかわらず吸湿性が低く、その結果、保存特性に優れる炭素質材料が提供される。 According to the present invention, in a carbonaceous material having a true density (ρ Bt ) determined by a butanol method of 1.55 g / cm 3 or more and less than 1.75 g / cm 3 , 0.2 V to 1. Since the discharge curve slope 0.9 / X (Vg / Ah) calculated from the discharge capacity X (Ah / g) up to a potential of 1 V and the potential difference 0.9 (V) is low, the discharge capacity is increased. Nevertheless, the carbonaceous material is low in hygroscopicity and, as a result, has excellent storage characteristics.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
[1]非水電解質二次電池負極用炭素質材料
 本発明の非水電解質二次電池負極用炭素質材料は、ブタノール法によって求められる真密度(ρBt)が1.55g/cm以上1.75g/cm未満、リチウム参照電極基準で0.05V~1.5V負極の放電容量が180mAh/g以上であり、リチウム参照電極基準で0.2Vから1.1Vの放電容量X(Ah/g)と電位差0.9(V)とから計算される放電曲線の傾き(0.9/X)が0.75(Vg/Ah)以下であり、25℃50%RH空気雰囲気で100時間保存後の吸湿量が1.5wt%以下であることを特徴とする。
[1] Non-aqueous electrolyte secondary battery negative electrode carbonaceous material The non-aqueous electrolyte secondary battery negative electrode carbonaceous material of the present invention has a true density (ρ Bt ) of 1.55 g / cm 3 or more determined by a butanol method. Less than .75 g / cm 3 , the discharge capacity of the negative electrode of 0.05 V to 1.5 V on the basis of the lithium reference electrode is 180 mAh / g or more, and the discharge capacity X (Ah / L) of 0.2 V to 1.1 V on the basis of the lithium reference electrode g) The slope (0.9 / X) of the discharge curve calculated from the potential difference 0.9 (V) is 0.75 (Vg / Ah) or less, and it is stored for 100 hours in an air atmosphere at 25 ° C. and 50% RH. The subsequent moisture absorption is 1.5 wt% or less.
 ブタノール法によって求められる真密度(ρBt)が1.55g/cm以上1.75g/cm未満という高密度でありかつリチウム参照電極基準で0.05V~1.5V負極の放電容量が180mAh/g以上である炭素質材料において、リチウム参照電極基準で0.2Vから1.1Vの放電容量(X)と電位差0.9Vとから計算される放電曲線の傾き0.9/Xが0.75(Vg/Ah)以下であると、リチウム参照電極基準で0.2V~1.1Vという車載用リチウムイオン二次電池で最も使用に供する電位範囲における体積あたり放電曲線の傾きがなだらかになる。これにより、50%前後の充電領域で使用される実用状態において、負極と正極との電位差が高く維持され、高い体積当たり放電容量を呈することができる。単位体積当たりの放電容量は、単位質量当たりの放電容量とブタノール法によって求められる真密度(ρBt)との積によって算出している。
 自動車用の非水電解質二次電池においては、満充電と完全放電とを繰り返す使用形態ではなく、常に入力特性と出力特性のバランスがとれた領域、すなわち満充電を100%とした場合の50%前後の充電領域に電池状態が位置するように充放電を繰り返す使用形態が好ましい。このような使用形態においては、放電容量X(Ah/g)に対する電位変化ΔE(V)が一定の傾きで大きく変化する材料を負極材料として使用することが好ましい。
The true density (ρ Bt ) determined by the butanol method is as high as 1.55 g / cm 3 or more and less than 1.75 g / cm 3 , and the discharge capacity of the negative electrode of 0.05 V to 1.5 V is 180 mAh based on the lithium reference electrode. In a carbonaceous material that is greater than or equal to 1 / g, the slope 0.9 / X of the discharge curve calculated from a discharge capacity (X) of 0.2 V to 1.1 V and a potential difference of 0.9 V with respect to the lithium reference electrode is 0.00. When it is 75 (Vg / Ah) or less, the slope of the discharge curve per volume in the potential range most used in the in-vehicle lithium ion secondary battery of 0.2 V to 1.1 V based on the lithium reference electrode becomes gentle. Thereby, in a practical state used in a charging range of around 50%, the potential difference between the negative electrode and the positive electrode is kept high, and a high discharge capacity per volume can be exhibited. The discharge capacity per unit volume is calculated by the product of the discharge capacity per unit mass and the true density (ρ Bt ) determined by the butanol method.
In non-aqueous electrolyte secondary batteries for automobiles, it is not a usage pattern in which full charge and complete discharge are repeated, but an area where the input characteristics and output characteristics are always balanced, that is, 50% when the full charge is 100%. The use form which repeats charging / discharging so that a battery state may be located in the charge area before and behind is preferable. In such a usage pattern, it is preferable to use as the negative electrode material a material in which the potential change ΔE (V) with respect to the discharge capacity X (Ah / g) greatly changes with a constant slope.
 リチウム参照電極基準で0.2Vから1.1Vの放電容量X(Ah/g)と電位差0.9(V)とから計算される放電曲線の傾き0.9/X(Vg/Ah)は、小さいほど、電位が変化する傾斜領域において高い体積当たり放電容量を与えるので、0.75(Vg/Ah)以下であることが好ましく、より好ましくは0.70(Vg/Ah)以下であり、0.65(Vg/Ah)以下である。 The slope 0.9 / X (Vg / Ah) of the discharge curve calculated from the discharge capacity X (Ah / g) of 0.2 V to 1.1 V and the potential difference 0.9 (V) based on the lithium reference electrode is The smaller the value, the higher the discharge capacity per volume in the inclined region where the potential changes. Therefore, it is preferably 0.75 (Vg / Ah) or less, more preferably 0.70 (Vg / Ah) or less, 0 .65 (Vg / Ah) or less.
 ρBtは、ブタノールが進入できる細孔の存在量に関係することから、微細な細孔が増し、吸湿性が過度に高まり保存安定性を損ないやすい点と、体積当たり放電容量の向上の点とのバランスから、1.55g/cm以上であることが好ましく、より好ましくは1.59g/cm以上、1.61g/cm以上である。他方、真密度の増加は、結晶構造の規則性の高い材料になる傾向があるので、充放電に伴う膨張収縮を抑制する観点から、1.70g/cm以下であることが好ましく、より好ましくは1.68g/cm以下である。 Since ρ Bt is related to the abundance of pores into which butanol can enter, the number of fine pores increases, the hygroscopicity increases excessively and storage stability tends to be impaired, and the discharge capacity per volume is improved. from the balance, it is preferably 1.55 g / cm 3 or more, more preferably 1.59 g / cm 3 or more and 1.61 g / cm 3 or more. On the other hand, since the increase in true density tends to be a material with high regularity of crystal structure, it is preferably 1.70 g / cm 3 or less, more preferably from the viewpoint of suppressing expansion and contraction associated with charge / discharge. Is 1.68 g / cm 3 or less.
 本発明の炭素質材料では、リチウム参照電極基準で0.2Vから1.1Vの放電容量X(Ah)と電位差0.9(V)とから計算される放電曲線の傾き0.9/X(Vg/Ah)が小さく、電位が緩やかに変化するため、リチウム参照電極基準で0.05V~1.5Vという実用域での負極の放電容量を高い範囲で得られる。具体的に、リチウム参照電極基準で0.05V~1.5V負極の放電容量は、180mAh/g以上であることが好ましい。より好ましくは、190mAh/g以上、195mAh/g以上である。 In the carbonaceous material of the present invention, the slope of the discharge curve is 0.9 / X (calculated from a discharge capacity X (Ah) of 0.2 V to 1.1 V and a potential difference of 0.9 (V) based on the lithium reference electrode. Vg / Ah) is small and the potential changes slowly, so that the discharge capacity of the negative electrode in a practical range of 0.05 V to 1.5 V with respect to the lithium reference electrode can be obtained in a high range. Specifically, the discharge capacity of the 0.05 V to 1.5 V negative electrode based on the lithium reference electrode is preferably 180 mAh / g or more. More preferably, it is 190 mAh / g or more and 195 mAh / g or more.
 25℃50%RH空気雰囲気で100時間保存後の吸湿量は、1.5wt%以下であることが好ましく、より好ましくは、1.3wt%以下、1.0wt%以下、0.80wt%以下、0.50wt%、0.30wt%以下である。 The moisture absorption after 100 hours storage at 25 ° C. and 50% RH air atmosphere is preferably 1.5 wt% or less, more preferably 1.3 wt% or less, 1.0 wt% or less, 0.80 wt% or less, 0.50 wt% and 0.30 wt% or less.
 本発明において、ヘリウム置換法によって求められる真密度(ρHe)は、体積当たり放電容量の向上の点で、1.76g/cm以上であることが好ましく、より好ましくは1.85g/cm以上であり、吸湿性を抑える点で、2.09g/cm以下であることが好ましく、より好ましくは2.03g/cm以下である。ρHeは、ヘリウムが進入できる大きさの孔の多さに依存するところ、このような孔は、吸湿に大きく関与する比較的大きい孔だけでなく、Liの吸蔵放出への関与の度合いが高いと考えられる細孔も包含する。このため、ρHeは、体積当たり放電容量及び吸湿性の双方に影響を与える。 In the present invention, the true density obtained by helium displacement method ([rho the He) is in the respect of improving the volume per discharge capacity, is preferably 1.76 g / cm 3 or more, more preferably 1.85 g / cm 3 From the viewpoint of suppressing hygroscopicity, it is preferably 2.09 g / cm 3 or less, and more preferably 2.03 g / cm 3 or less. ρ He depends on the number of holes that allow helium to enter. Such holes are not only relatively large holes that are greatly involved in moisture absorption, but also have a high degree of involvement in the storage and release of Li. Also included are pores that are considered. For this reason, ρ He affects both the discharge capacity per volume and the hygroscopicity.
 本発明において、ρHeとρBtとの比(ρHe/ρBt)は、吸湿性が過度に高まり保存安定性を損ないやすい点と、体積当たり放電容量の向上の点とのバランスから、1.10以上であることが好ましい一方、1.37以下であることが好ましく、より好ましくは1.28以下である。この比率は、ブタノールは進入できないがヘリウムは進入できる大きさの細孔の多さを反映しており、このような細孔は、雰囲気中の吸湿への関与より、Liの吸蔵放出への関与の度合いが高いと考えられる。 In the present invention, the ratio of ρ He to ρ BtHe / ρ Bt ) is determined from the balance between the point that the hygroscopic property is excessively increased and the storage stability is liable to be impaired and the discharge capacity per volume is improved. On the other hand, it is preferably 10.10 or more, preferably 1.37 or less, more preferably 1.28 or less. This ratio reflects the number of pores large enough to allow butanol to penetrate but not helium, and these pores are more involved in the occlusion and release of Li than in the moisture absorption in the atmosphere. Is considered to be high.
 本発明において、窒素ガスの吸着によるBET法により求めた比表面積(BET)(単位:m/g)と、平均粒子径(単位:μm)をDv50とした場合に、計算式「6/(Dv50×ρBt)」から求められる比表面積(CALC)(単位:m/g)との比表面積比(BET/CALC)が、5.5超であることが好ましい。BETは、窒素ガスが進入できる細孔を広く考慮して決定される一方、CALCはρBtに依存するため、ブタノールが進入できる程度の比較的大きい孔に依存する。つまり、BET/CALCが大きいことは、ブタノールは進入できないが窒素は進入できる大きさの細孔の多さを反映しており、このような細孔は、雰囲気中の吸湿に関与する度合いよりも、Liの吸蔵放出に関与する度合いが高いと考えられる。この観点から、BET/CALCは、8以上であることが好ましく、より好ましくは11以上である一方、50以下であることが好ましく、より好ましくは15以下である。 In the present invention, when the specific surface area (BET) (unit: m 2 / g) determined by the BET method by adsorption of nitrogen gas and the average particle diameter (unit: μm) are Dv50 , the calculation formula “6 / It is preferable that the specific surface area ratio (BET / CALC) with respect to the specific surface area (CALC) (unit: m 2 / g) obtained from (D v50 × ρ Bt ) ” exceeds 5.5. While BET is determined taking into account the pores into which nitrogen gas can enter, CALC depends on ρ Bt and therefore depends on relatively large pores to which butanol can enter. In other words, the large BET / CALC reflects the large number of pores that are incapable of entering butanol but capable of entering nitrogen, and such pores are more than the degree of moisture absorption in the atmosphere. , Li is considered to be highly involved in occlusion and release of Li. In this respect, BET / CALC is preferably 8 or more, more preferably 11 or more, and preferably 50 or less, more preferably 15 or less.
 本発明の炭素質材料の窒素吸着のBET法により求めた比表面積(BET)は、過小であると電池の放電容量が小さくなる傾向があるため、1m/g以上、好ましくは1.6m/g以上、より好ましくは、2.0m/g以上である。他方、BET比表面積が大きすぎると、得られる電池の不可逆容量が大きくなる傾向があるため、25m/g以下が好ましい。より好ましくは、20m/g以下である。 If the specific surface area (BET) determined by the BET method of nitrogen adsorption of the carbonaceous material of the present invention is too small, the discharge capacity of the battery tends to be small, so that it is 1 m 2 / g or more, preferably 1.6 m 2. / G or more, more preferably 2.0 m 2 / g or more. On the other hand, when the BET specific surface area is too large, the irreversible capacity of the obtained battery tends to increase, and therefore, 25 m 2 / g or less is preferable. More preferably, it is 20 m 2 / g or less.
 計算式「6/(Dv50×ρBt)」から求められる比表面積(CALC)は、0.2m/g以上1.5m/g以下であるとよい。0.2m/g未満であると電池の放電容量が小さくなりやすく、1.5m/gを超えると、得られる吸湿性が高くなりやすい。 The specific surface area (CALC) obtained from the calculation formula “6 / (D v50 × ρ Bt )” is preferably 0.2 m 2 / g or more and 1.5 m 2 / g or less. If it is less than 0.2 m 2 / g, the discharge capacity of the battery tends to be small, and if it exceeds 1.5 m 2 / g, the resulting hygroscopicity tends to be high.
 本発明の炭素質材料のH/Cは、水素原子及び炭素原子を元素分析により測定されたものであり、炭素化度が高くなるほど炭素質材料の水素含有率が小さくなるため、H/Cが小さくなる傾向にある。したがって、H/Cは、炭素化度を表す指標として有効である。本発明の炭素質材料のH/Cは、限定されないが0.10以下であり、より好ましくは0.08以下である。特に好ましくは0.05以下である。水素原子と炭素原子の比H/Cが0.1を超えると、炭素質材料に官能基が多く存在し、リチウムとの反応により不可逆容量が増加することがあるので好ましくない。 H / C of the carbonaceous material of the present invention is measured by elemental analysis of hydrogen atoms and carbon atoms. Since the hydrogen content of the carbonaceous material decreases as the degree of carbonization increases, H / C is It tends to be smaller. Therefore, H / C is effective as an index representing the degree of carbonization. Although H / C of the carbonaceous material of this invention is not limited, it is 0.10 or less, More preferably, it is 0.08 or less. Especially preferably, it is 0.05 or less. If the ratio H / C of hydrogen atoms to carbon atoms exceeds 0.1, many functional groups are present in the carbonaceous material, and the irreversible capacity may increase due to reaction with lithium, which is not preferable.
 炭素質材料の(002)面の平均層面間隔は、結晶完全性が高いほど小さな値を示し、理想的な黒鉛構造のそれは、0.3354nmの値を示し、構造が乱れるほどその値が増加する傾向がある。したがって、平均層面間隔は、炭素の構造を示す指標として有効である。本発明の非水電解質二次電池負極用炭素質材料のX線回折法により求めた002面の平均面間隔は、0.365nm以上であり、0.370nm以上がより好ましい。同じく、上記平均面間隔は、0.400nm以下であり、0.395nm以下がより好ましく、0.390nm以下が更に好ましい。002面の面間隔が0.365nm未満であると、非水電解質二次電池の負極として用いた場合にドープ容量が小さくなり好ましくない。また0.400nmを超えると非脱ドープ容量が大きくなるため好ましくない。 The average layer spacing of the (002) plane of the carbonaceous material shows a smaller value as the crystal perfection is higher, that of an ideal graphite structure shows a value of 0.3354 nm, and the value increases as the structure is disturbed. Tend. Therefore, the average layer spacing is effective as an index indicating the carbon structure. The average interplanar spacing of the 002 plane determined by the X-ray diffraction method of the carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is 0.365 nm or more, and more preferably 0.370 nm or more. Similarly, the average spacing is 0.400 nm or less, more preferably 0.395 nm or less, and still more preferably 0.390 nm or less. When the 002 plane spacing is less than 0.365 nm, the doping capacity becomes small when used as the negative electrode of a non-aqueous electrolyte secondary battery, which is not preferable. On the other hand, if it exceeds 0.400 nm, the undedoped capacity increases, which is not preferable.
 出力特性を向上させるには電極の活物質層を薄くすることが重要であり、そのためには平均粒子径を小さくすることが重要である。しかし、平均粒子径が小さ過ぎると微粉が増加し安全性が低下するので好ましくない。また、粒子が小さすぎると電極にするために必要なバインダー量が多くなり、電極の抵抗が増加する。一方、平均粒子径が大きくなると、電極を薄く塗工することが困難になり、さらに粒子内でのリチウムの拡散自由行程が増加するため急速な充放電が困難となる。このため、平均粒子径Dv50(すなわち累積容積が50%となる粒子径)は、1~15μmであることが好ましく、より好ましくは1.5μm以上、2μm以上である一方、13μm以下、12μm以下である。 In order to improve the output characteristics, it is important to make the active material layer of the electrode thin, and for that purpose, it is important to reduce the average particle diameter. However, if the average particle size is too small, the amount of fine powder increases and safety is lowered, which is not preferable. On the other hand, if the particles are too small, the amount of binder necessary to form an electrode increases and the resistance of the electrode increases. On the other hand, when the average particle size is increased, it is difficult to apply a thin electrode, and further, the lithium free diffusion process in the particles is increased, so that rapid charge / discharge is difficult. Therefore, the average particle diameter D v50 (that is, the particle diameter at which the cumulative volume is 50%) is preferably 1 to 15 μm, more preferably 1.5 μm to 2 μm, while 13 μm or less, 12 μm or less. It is.
 本発明の非水電解質二次電池負極用炭素質材料は、特に限定されないが、従来の非水電解質二次電池負極用炭素質材料と類似の製造法をベースにしつつ、焼成条件を最適化することで良好に製造することができる。具体的には、以下のとおりである。 The carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but the firing conditions are optimized while being based on a manufacturing method similar to the conventional carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery. Therefore, it can be manufactured satisfactorily. Specifically, it is as follows.
(炭素前駆体)
 本発明の炭素質材料は、炭素前駆体から製造されるものである。炭素前駆体として、石油ピッチ若しくはタール、石炭ピッチ若しくはタール、熱可塑性樹脂、又は熱硬化性樹脂を挙げることができる。また、熱可塑性樹脂としては、ポリアセタール、ポリアクリロニトリル、スチレン/ジビニルベンゼン共重合体、ポリイミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリアリレート、ポリスルホン、ポリフェニレンスルフィド、フッ素樹脂、ポリアミドイミド、又はポリエーテルエーテルケトンを挙げることができる。更に、熱硬化性樹脂としては、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂を挙げることができる。
 なお、本明細書において、「炭素前駆体」は、未処理の炭素質の段階から、最終的に得られる非水電解質二次電池負極用炭素質材料の前段階までの炭素質を意味する。すなわち、最終工程の終了していないすべての炭素質を意味する。
 また、本明細書において、「熱に対し非溶融性の炭素前駆体」は、予備焼成、又は本焼成によって溶融しない樹脂を意味する。すなわち、石油ピッチ若しくはタール、石炭ピッチ若しくはタール、又は熱可塑性樹脂の場合、後述の不融化処理を行った炭素質前駆体を意味する。一方、熱硬化性樹脂は、そのままで予備焼成、又は本焼成を行っても溶融しないため、不融化処理を必要としない。
(Carbon precursor)
The carbonaceous material of the present invention is produced from a carbon precursor. Examples of the carbon precursor include petroleum pitch or tar, coal pitch or tar, thermoplastic resin, or thermosetting resin. In addition, as the thermoplastic resin, polyacetal, polyacrylonitrile, styrene / divinylbenzene copolymer, polyimide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyarylate, polysulfone, polyphenylene sulfide, fluororesin, polyamideimide, or polyether Mention may be made of ether ketones. Furthermore, examples of the thermosetting resin include phenol resin, amino resin, unsaturated polyester resin, diallyl phthalate resin, alkyd resin, epoxy resin, and urethane resin.
In the present specification, the “carbon precursor” means the carbonaceous material from the untreated carbonaceous material stage to the previous stage of the carbonaceous material for the negative electrode of the nonaqueous electrolyte secondary battery finally obtained. That is, it means all the carbonaceous matter that has not finished the final process.
In the present specification, the “carbon precursor that is not meltable with respect to heat” means a resin that does not melt by pre-baking or main baking. That is, in the case of petroleum pitch or tar, coal pitch or tar, or a thermoplastic resin, it means a carbonaceous precursor that has been subjected to an infusibilization treatment described below. On the other hand, since the thermosetting resin does not melt even if pre-baking or main baking is performed as it is, no infusibilization treatment is required.
 本発明の炭素質材料は、難黒鉛化性炭素質材料であるため、石油ピッチ若しくはタール、石炭ピッチ若しくはタール、又は熱可塑性樹脂は、製造過程において、熱に対し不融とするための不融化処理を行う必要がある。不融化処理は、酸化によって炭素前駆体に架橋を形成させることによって行うことができる。すなわち、不融化処理は、本発明の分野において、公知の方法によって行うことができる。例えば、後述の不融化(酸化)の手順に従って行うことができる。 Since the carbonaceous material of the present invention is a non-graphitizable carbonaceous material, petroleum pitch or tar, coal pitch or tar, or thermoplastic resin is infusibilized to make it infusible to heat in the production process. It is necessary to perform processing. The infusibilization treatment can be performed by forming a crosslink on the carbon precursor by oxidation. That is, the infusibilization treatment can be performed by a known method in the field of the present invention. For example, it can be performed according to the procedure of infusibilization (oxidation) described later.
(不融化工程)
 炭素前駆体として、石油ピッチ若しくはタール、石炭ピッチ若しくはタール、又は熱可塑性樹脂を用いる場合、不融化処理を行う。不融化処理の方法は、特に限定されるものではないが、例えば、酸化剤を用いて行うことができる。酸化剤も特に限定されるものではないが、気体としては、O、O、SO、NO、これらを空気、窒素などで希釈した混合ガス、又は空気などの酸化性気体を用いることができる。また、液体としては、硫酸、硝酸、若しくは過酸化水素等の酸化性液体、又はそれらの混合物を用いることができる。酸化温度も、特に限定されるものではないが、好ましくは、120~400℃であり、より好ましくは、150~350℃である。温度が120℃未満であると、十分に架橋構造ができず熱処理工程で粒子同士が融着してしまう。また温度が400℃を超えると、架橋反応よりも分解反応のほうが多くなり、得られる炭素材料の収率が低くなる。
(Infusibilization process)
When petroleum pitch or tar, coal pitch or tar, or a thermoplastic resin is used as the carbon precursor, infusibilization is performed. The method of infusibilization treatment is not particularly limited, and can be performed using, for example, an oxidizing agent. The oxidizing agent is not particularly limited, but as the gas, O 2 , O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen or the like, or an oxidizing gas such as air is used. Can do. As the liquid, an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide, or a mixture thereof can be used. The oxidation temperature is not particularly limited, but is preferably 120 to 400 ° C, and more preferably 150 to 350 ° C. If the temperature is lower than 120 ° C., a sufficient crosslinked structure cannot be formed and the particles are fused in the heat treatment step. On the other hand, when the temperature exceeds 400 ° C., the decomposition reaction is more than the crosslinking reaction, and the yield of the obtained carbon material is lowered.
 焼成は、難黒鉛化性炭素前駆体を非水電解質二次電池負極用炭素質材料とするものである。予備焼成及び本焼成を行う場合は、予備焼成の後に一旦温度を低下させて、粉砕し、本焼成を行ってもよい。粉砕工程は、不融化工程の後に行ってもよいが、予備焼成後に行う方が好ましい。 Calcination uses a non-graphitizable carbon precursor as a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode. When pre-baking and main baking are performed, the temperature may be once lowered after the pre-baking, pulverized, and main baking may be performed. The pulverization step may be performed after the infusibilization step, but is preferably performed after preliminary firing.
 本発明の炭素質材料は、炭素前駆体を粉砕する工程、炭素前駆体を焼成する工程により製造される。 The carbonaceous material of the present invention is produced by a step of pulverizing a carbon precursor and a step of firing the carbon precursor.
(予備焼成工程)
 本発明における予備焼成工程は、炭素源を300℃以上900℃未満で焼成することによって行う。予備焼成は、揮発分、例えばCO、CO、CH、及びHなどと、タール分とを除去し、本焼成において、それらの発生を軽減し、焼成器の負担を軽減することができる。予備焼成温度が300℃未満であると脱タールが不十分となり、粉砕後の本焼成工程で発生するタール分やガスが多く、粒子表面に付着する可能性があり、粉砕したときの表面性を保てず電池性能の低下を引き起こすので好ましくない。予備焼成温度は、300℃以上が好ましく、更に好ましくは500℃以上、特に好ましくは600℃以上である。一方、予備焼成温度が900℃以上であると、タール発生温度領域を超えることになり、使用するエネルギー効率が低下するため好ましくない。更に、発生したタールが二次分解反応を引き起こし、それらが炭素前駆体に付着し、性能の低下を引き起こすことがあるので好ましくない。また、予備焼成温度が高すぎると、炭素化が進んで炭素前駆体の粒子が硬くなりすぎて、予備焼成後に粉砕を行う場合に、粉砕機の内部を削り取ってしまうなど粉砕が困難になる場合があるため、好ましくない。
 予備焼成は、不活性ガス雰囲気中で行い、不活性ガスとしては、窒素、又はアルゴンなどを挙げることができる。また、予備焼成は、減圧下で行うこともでき、例えば、10kPa以下で行うことができる。予備焼成の時間も特に限定されるものではないが、例えば0.5~10時間で行うことができ、1~5時間がより好ましい。
(Pre-baking process)
The pre-baking step in the present invention is performed by baking the carbon source at 300 ° C. or higher and lower than 900 ° C. Pre-firing removes volatile components such as CO 2 , CO, CH 4 , and H 2 , and tar components, and reduces the generation of these components in the main firing, thereby reducing the burden on the calciner. . When the pre-baking temperature is less than 300 ° C., detarring becomes insufficient, and there is a large amount of tar and gas generated in the main baking process after pulverization, which may adhere to the particle surface. This is not preferable because it cannot be maintained and the battery performance is lowered. The pre-baking temperature is preferably 300 ° C. or higher, more preferably 500 ° C. or higher, and particularly preferably 600 ° C. or higher. On the other hand, when the pre-baking temperature is 900 ° C. or higher, the tar generation temperature range is exceeded, and the energy efficiency to be used is lowered, which is not preferable. Furthermore, the generated tar causes a secondary decomposition reaction, which adheres to the carbon precursor and may cause a decrease in performance, which is not preferable. Also, if the pre-baking temperature is too high, carbonization proceeds and the carbon precursor particles become too hard, and when pulverizing after pre-firing, it becomes difficult to pulverize such as scraping the inside of the pulverizer This is not preferable.
Pre-baking is performed in an inert gas atmosphere, and examples of the inert gas include nitrogen and argon. Pre-baking can also be performed under reduced pressure, for example, 10 kPa or less. The pre-baking time is not particularly limited, but can be performed, for example, in 0.5 to 10 hours, and more preferably 1 to 5 hours.
本発明の炭素質材料を得るためには予備焼成における昇温速度は1℃/h以上150℃/h以下が好ましく、5℃/h以上100℃/h以下がより好ましく、10℃/h以上50℃/h以下が更に好ましい。ブタノール法によって求められる真密度(ρBt)が1.55g/cm以上1.75g/cm未満となる炭素前駆体は予備焼成時に発生するタールが多く、これら揮発成分を徐々に揮発させることで、好適な細孔径を有する炭素質材料が調製可能となり、高い放電容量を発現するようになるためと考えている。ただし、本発明は上記説明によって限定されるものではない。 In order to obtain the carbonaceous material of the present invention, the rate of temperature increase in the pre-firing is preferably 1 ° C / h or more and 150 ° C / h or less, more preferably 5 ° C / h or more and 100 ° C / h or less, and 10 ° C / h or more. 50 ° C./h or less is more preferable. Carbon precursors with a true density (ρBt) determined by the butanol method of 1.55 g / cm 3 or more and less than 1.75 g / cm 3 have a large amount of tar generated during pre-firing, and gradually volatilize these volatile components. It is considered that a carbonaceous material having a suitable pore diameter can be prepared and a high discharge capacity is developed. However, the present invention is not limited by the above description.
(粉砕工程)
 粉砕工程は、炭素前駆体の粒径を、均一にするために行うものである。本焼成による炭素化後に粉砕することもできる。炭素化反応が進行すると炭素前駆体が硬くなり、粉砕による粒子径分布の制御が困難になるため、粉砕工程は、予備焼成の後で本焼成の前が好ましい。
 粉砕に用いる粉砕機は、特に限定されるものではなく、例えばジェットミル、ボールミル、ハンマーミル、又はロッドミルなどを使用することができるが、微粉の発生が少ないという点で分級機能を備えたジェットミルが好ましい。一方、ボールミル、ハンマーミル、又はロッドミルなどを用いる場合は、粉砕後に分級を行うことで微粉を除くことができる。
 分級として、篩による分級、湿式分級、又は乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、又は遠心分級などの原理を利用した分級機を挙げることができる。また、乾式分級機としては、沈降分級、機械的分級、又は遠心分級の原理を利用した分級機を挙げることができる。
(Crushing process)
The pulverization step is performed in order to make the particle size of the carbon precursor uniform. It can also grind | pulverize after carbonization by this baking. As the carbonization reaction proceeds, the carbon precursor becomes hard and it becomes difficult to control the particle size distribution by pulverization. Therefore, the pulverization step is preferably performed after preliminary calcination and before main calcination.
The pulverizer used for pulverization is not particularly limited. For example, a jet mill, a ball mill, a hammer mill, or a rod mill can be used. However, a jet mill having a classification function in that fine powder is generated less. Is preferred. On the other hand, when using a ball mill, a hammer mill, a rod mill or the like, fine powder can be removed by classification after pulverization.
Examples of classification include classification with a sieve, wet classification, and dry classification. Examples of the wet classifier include a classifier using a principle such as gravity classification, inertia classification, hydraulic classification, or centrifugal classification. Examples of the dry classifier include a classifier using the principle of sedimentation classification, mechanical classification, or centrifugal classification.
 粉砕工程において、粉砕と分級は1つの装置を用いて行うこともできる。例えば、乾式の分級機能を備えたジェットミルを用いて、粉砕と分級を行うことができる。
 更に、粉砕機と分級機とが独立した装置を用いることもできる。この場合、粉砕と分級とを連続して行うこともできるが、粉砕と分級とを不連続に行うこともできる。
In the pulverization step, pulverization and classification can be performed using one apparatus. For example, pulverization and classification can be performed using a jet mill having a dry classification function.
Furthermore, an apparatus in which the pulverizer and the classifier are independent can be used. In this case, pulverization and classification can be performed continuously, but pulverization and classification can also be performed discontinuously.
(本焼成工程)
 本発明における本焼成工程は、通常の本焼成の手順に従って行うことができ、本焼成を行うことにより、非水電解質二次電池負極用炭素質材料を得ることができる。本焼成の温度は、900~1600℃である。本焼成温度が900℃未満では、炭素質材料に官能基が多く残存してH/Cの値が高くなり、リチウムとの反応により不可逆容量が増加するため好ましくない。本発明の本焼成温度の下限は900℃以上であり、より好ましくは1000℃以上であり、特に好ましくは1100℃以上である。一方、本焼成温度が1600℃を超えると炭素六角平面の選択的配向性が高まり放電容量が低下するため好ましくない。本発明の本焼成温度の上限は1600℃以下であり、より好ましくは1500℃以下であり、特に好ましくは1450℃以下である。
 本焼成は、非酸化性ガス雰囲気中で行うことが好ましい。非酸化性ガスとしては、ヘリウム、窒素又はアルゴンなどを挙げることができこれらを単独或いは混合して用いることができる。更には塩素などのハロゲンガスを上記非酸化性ガスと混合したガス雰囲気中で本焼成を行うことも可能である。また、本焼成は、減圧下で行うこともでき、例えば、10kPa以下で行うことも可能である。本焼成の時間も特に限定されるものではないが、例えば0.1~10時間で行うことができ、0.2~8時間が好ましく、0.4~6時間がより好ましい。
(Main firing process)
The main firing step in the present invention can be performed according to a normal main firing procedure, and a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode can be obtained by performing the main firing. The firing temperature is 900 to 1600 ° C. If the main calcination temperature is less than 900 ° C., many functional groups remain in the carbonaceous material and the H / C value becomes high, and the irreversible capacity increases due to reaction with lithium, which is not preferable. The lower limit of the main firing temperature of the present invention is 900 ° C. or higher, more preferably 1000 ° C. or higher, and particularly preferably 1100 ° C. or higher. On the other hand, if the main firing temperature exceeds 1600 ° C., the selective orientation of the carbon hexagonal plane increases and the discharge capacity decreases, which is not preferable. The upper limit of the main calcination temperature of the present invention is 1600 ° C. or less, more preferably 1500 ° C. or less, and particularly preferably 1450 ° C. or less.
The main firing is preferably performed in a non-oxidizing gas atmosphere. Examples of the non-oxidizing gas include helium, nitrogen, and argon, and these can be used alone or in combination. Furthermore, the main calcination can be performed in a gas atmosphere in which a halogen gas such as chlorine is mixed with the non-oxidizing gas. Moreover, this baking can also be performed under reduced pressure, for example, can also be performed at 10 kPa or less. Although the time for the main baking is not particularly limited, it can be performed, for example, in 0.1 to 10 hours, preferably 0.2 to 8 hours, and more preferably 0.4 to 6 hours.
(タール又はピッチからの炭素質材料の製造)
 タール又はピッチからの本発明の炭素質材料の製造方法について、以下に例を挙げて説明する。
 まず、タール又はピッチに対して架橋処理(不融化)を施した。この架橋処理を施したタール又はピッチは、その後の焼成で炭素化されて難黒鉛化性の炭素質材料になる。タール又はピッチとしては、エチレン製造時に複製する石油タール又はピッチ、石炭乾留時に生成するコールタール、及びコールタールの低沸点成分を蒸留除去した重質成分又はピッチ、石炭の液化により得られるタール又はピッチなどの石油又は石炭のタール又はピッチが使用できる。また、これらのタール及びピッチの2種類以上を混合してもよい。
(Manufacture of carbonaceous material from tar or pitch)
An example is given and demonstrated below about the manufacturing method of the carbonaceous material of this invention from a tar or a pitch.
First, the tar or pitch was subjected to a crosslinking treatment (infusibilization). The tar or pitch subjected to the crosslinking treatment is carbonized by subsequent firing to become a non-graphitizable carbonaceous material. Tar or pitch includes petroleum tar or pitch replicated during ethylene production, coal tar produced during coal carbonization, heavy component or pitch obtained by distilling off low boiling components of coal tar, tar or pitch obtained by liquefaction of coal Oil or coal tar or pitch can be used. Two or more of these tars and pitches may be mixed.
 具体的に、不融化の方法としては架橋剤を使用する方法、又は空気などの酸化剤で処理する方法等がある。架橋剤を用いる場合は、石油タール若しくはピッチ、又は石炭タール若しくはピッチに対し、架橋剤を加えて加熱混合し架橋反応を進め炭素前駆体を得る。例えば、架橋剤としては、ラジカル反応により架橋反応が進行するジビニルベンゼン、トリビニルベンゼン、ジアリルフタレート、エチレングリコールジメタクリレート、又はN,N-メチレンビスアクリルアミド等の多官能ビニルモノマーが使用できる。多官能ビニルモノマーによる架橋反応は、ラジカル開始剤を添加することにより反応が開始する。ラジカル開始剤としては、α,α’アゾビスイソブチロニトリル(AIBN)、過酸化ベンゾイル(BPO)、過酸化ラウロイル、クメンヒドロベルオキシド、1-ブチルヒドロペルオキシド、又は過酸化水素などが使用できる。 Specifically, as a method for infusibilization, there are a method using a crosslinking agent, a method of treating with an oxidizing agent such as air, and the like. When using a cross-linking agent, a carbon precursor is obtained by adding a cross-linking agent to petroleum tar or pitch, or coal tar or pitch and heating and mixing to proceed with a cross-linking reaction. For example, as the crosslinking agent, polyfunctional vinyl monomers such as divinylbenzene, trivinylbenzene, diallyl phthalate, ethylene glycol dimethacrylate, or N, N-methylenebisacrylamide that undergo a crosslinking reaction by radical reaction can be used. The crosslinking reaction with the polyfunctional vinyl monomer is started by adding a radical initiator. As the radical initiator, α, α ′ azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), lauroyl peroxide, cumene hydroperoxide, 1-butyl hydroperoxide, hydrogen peroxide, or the like can be used. .
 また、空気などの酸化剤で処理して架橋反応を進める場合は、以下のような方法で炭素前駆体を得ることが好ましい。すなわち石油ピッチ又は石炭ピッチに対し、添加剤として沸点200℃以上の2乃至3環の芳香族化合物又はその混合物を加えて加熱混合した後、成形しピッチ成形体を得る。次にピッチに対し低溶解度を有しかつ添加剤に対して高溶解度を有する溶剤でピッチ成形体から添加剤を抽出除去して多孔性ピッチとした後、酸化剤を用いて酸化し、炭素前駆体を得る。前記の芳香族添加剤の目的は、成形後のピッチ成形体から該添加剤を抽出除去して成形体を多孔質とし、酸化による架橋処理を容易にし、また炭素化後に得られる炭素質材料を多孔質にすることにある。前記の添加剤としては、例えばナフタレン、メチルナフタレン、フェニルナフタレン、ベンジルナフタレン、メチルアントラセン、フェナンスレン、又はビフェニル等の1種又は2種以上の混合物から選択することができる。ピッチに対する芳香族添加剤の添加量は、ピッチ100質量部に対し30~70質量部の範囲が好ましい。 Also, when the crosslinking reaction is advanced by treatment with an oxidizing agent such as air, it is preferable to obtain a carbon precursor by the following method. That is, to a petroleum pitch or coal pitch, a bicyclic to tricyclic aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added as an additive and heated and mixed, and then molded to obtain a pitch molded body. Next, the additive is extracted and removed from the pitch molded body with a solvent having low solubility with respect to pitch and high solubility with respect to the additive to form a porous pitch, which is then oxidized with an oxidizing agent, and then carbon precursor. Get the body. The purpose of the aromatic additive is to extract and remove the additive from the molded pitch molded body to make the molded body porous, to facilitate crosslinking treatment by oxidation, and to obtain a carbonaceous material obtained after carbonization. To make it porous. As said additive, it can select from 1 type, or 2 or more types of mixtures, such as naphthalene, methyl naphthalene, phenyl naphthalene, benzyl naphthalene, methyl anthracene, phenanthrene, or biphenyl, for example. The amount of the aromatic additive added to the pitch is preferably in the range of 30 to 70 parts by mass with respect to 100 parts by mass of the pitch.
 ピッチと添加剤の混合は、均一な混合を達成するため、加熱し溶融状態で行う。ピッチと添加剤との混合物は、添加剤を混合物から容易に抽出できるようにするため、粒径1mm以下の粒子に成形してから行うことが好ましい。成形は溶融状態で行ってもよく、また混合物を冷却後粉砕する等の方法によってもよい。ピッチと添加剤の混合物から添加剤を抽出除去するための溶剤としては、ブタン、ペンタン、ヘキサン、又はヘプタン等の脂肪族炭化水素、ナフサ、又はケロシン等の脂肪族炭化水素主体の混合物、メタノール、エタノール、プロパノール、又はブタノール等の脂肪族アルコール類が好適である。このような溶剤でピッチと添加剤の混合物成形体から添加剤を抽出することによって、成形体の形状を維持したまま添加剤を成形体から除去することができる。この際に成形体中に添加剤の抜け穴が形成され、均一な多孔性を有するピッチ成形体が得られるものと推定される。 * Mixing of pitch and additives is performed in a molten state by heating in order to achieve uniform mixing. The mixture of the pitch and the additive is preferably performed after being formed into particles having a particle diameter of 1 mm or less so that the additive can be easily extracted from the mixture. Molding may be performed in a molten state, or may be performed by a method such as pulverizing the mixture after cooling. Solvents for extracting and removing the additive from the mixture of pitch and additive include aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene, methanol, Aliphatic alcohols such as ethanol, propanol or butanol are preferred. By extracting the additive from the pitch and additive mixture molded body with such a solvent, the additive can be removed from the molded body while maintaining the shape of the molded body. At this time, it is presumed that a through hole for the additive is formed in the molded body, and a pitch molded body having uniform porosity is obtained.
 また、多孔性ピッチ成形体の調製方法としては、上記の方法以外に以下の方法も用いることができる。石油ピッチ又は石炭ピッチ等を平均粒径(メディアン径)60μm以下に粉砕して微粉状ピッチを形成し、次いで前記微粉状ピッチ、好ましくは平均粒径(メディアン径)5μm以上40μm以下の微粉状ピッチを圧縮成形して多孔性圧縮成形体を形成することができる。圧縮成形は既存の成形機が使用でき、具体的には単発式の竪型成型機、連続式のロータリー式成型機やロール圧縮成形機が挙げられるが、それらに限定されるものではない。上記圧縮成形時の圧力は、好ましくは、面圧で20~100MPaまたは線圧で0.1~6MN/mであり、より好ましくは面圧で23~86MPaまたは線圧で0.2~3MN/mである。前記圧縮成形時の圧力の保持時間は、成形機の種類や微粉状ピッチの性状及び処理量に応じて、適宜定めることが出来るが、概ね0.1秒~1分の範囲内である。微粉状ピッチを圧縮成形する時には必要に応じてバインダー(結合剤)を配合してもよい。バインダーの具体例としては、水、澱粉、メチルセルロース、ポリエチレン、ポリビニルアルコール、ポリウレタン、又はフェノール樹脂などが挙げられるが、必ずしもこれらに限定されない。圧縮成形により得られる多孔性ピッチ成形体の形状については特に限定はなく、粒状、円柱状、球状、ペレット状、板状、ハニカム状、ブロック状、ラシヒリング状などが例示される。 Further, as a method for preparing the porous pitch formed body, the following method can be used in addition to the above method. Oil pitch or coal pitch or the like is pulverized to an average particle size (median diameter) of 60 μm or less to form a fine powder pitch, and then the fine powder pitch, preferably an average particle size (median diameter) of 5 μm or more and 40 μm or less. Can be compression-molded to form a porous compression-molded body. An existing molding machine can be used for compression molding, and specific examples include a single-shot vertical molding machine, a continuous rotary molding machine, and a roll compression molding machine, but are not limited thereto. The pressure at the time of compression molding is preferably 20 to 100 MPa as a surface pressure or 0.1 to 6 MN / m as a linear pressure, more preferably 23 to 86 MPa as a surface pressure or 0.2 to 3 MN / m as a linear pressure. m. The pressure holding time at the time of the compression molding can be appropriately determined according to the type of molding machine, the properties of the fine powder pitch, and the processing amount, but is generally within the range of 0.1 second to 1 minute. When compression molding a fine powdery pitch, a binder (binder) may be blended as necessary. Specific examples of the binder include water, starch, methylcellulose, polyethylene, polyvinyl alcohol, polyurethane, and phenol resin, but are not necessarily limited thereto. The shape of the porous pitch molded body obtained by compression molding is not particularly limited, and examples thereof include granular, columnar, spherical, pellet, plate, honeycomb, block, and Raschig rings.
 得られた多孔性ピッチを架橋するため、次に酸化剤を用いて、好ましくは120~400℃の温度で酸化する。酸化剤としては、O、O、NO、これらを空気、窒素等で希釈した混合ガス、又は空気等の酸化性気体、あるいは硫酸、硝酸、過酸化水素水等の酸化性液体を用いることができる。酸化剤として、空気又は空気と他のガス例えば燃焼ガス等との混合ガスのような酸素を含むガスを用いて、120~400℃で酸化して架橋処理を行うことが簡便であり、経済的にも有利である。この場合、ピッチの軟化点が低いと、酸化時にピッチが溶融して酸化が困難となるので、使用するピッチは軟化点が150℃以上であることが好ましい。
 上述のようにして架橋処理を施した炭素前駆体を、予備焼成を行った後、非酸化性ガス雰囲気中で900℃~1600℃で炭素化することにより、本発明の炭素質材料を得ることができる。
In order to crosslink the resulting porous pitch, it is then oxidized with an oxidizing agent, preferably at a temperature of 120 to 400 ° C. As the oxidizing agent, O 2 , O 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used. be able to. It is simple and economical to oxidize at 120 to 400 ° C. and carry out a crosslinking treatment using a gas containing oxygen such as air or a mixed gas of air and other gas such as combustion gas as an oxidizing agent. Is also advantageous. In this case, if the pitch has a low softening point, the pitch melts during oxidation, making it difficult to oxidize. Therefore, the pitch used preferably has a softening point of 150 ° C. or higher.
The carbon precursor subjected to the crosslinking treatment as described above is pre-fired and then carbonized at 900 ° C. to 1600 ° C. in a non-oxidizing gas atmosphere to obtain the carbonaceous material of the present invention. Can do.
(樹脂からの炭素質材料の製造)
 樹脂からの炭素質材料の製造方法について、以下に例を挙げて説明する。
 本発明の炭素質材料は、樹脂を前駆体として用い、900℃~1600℃で炭素化することによっても得ることができる。樹脂としては、フェノール樹脂又はフラン樹脂など、或いはそれらの樹脂の官能基を一部変性した熱硬化性樹脂を使用することができる。熱硬化性樹脂を必要に応じて900℃未満の温度で予備焼成したのち、粉砕し、900℃~1600℃で炭素化することによっても得ることができる。熱硬化性樹脂の硬化促進、架橋度の促進、或いは炭素化収率の向上を目的に必要に応じて120~400℃の温度で酸化処理(不融化処理)を行ってもよい。酸化剤としては、O、O、NO、これらを空気、窒素等で希釈した混合ガス、又は空気等の酸化性気体、あるいは硫酸、硝酸、過酸化水素水等の酸化性液体を用いることができる。
 更に、ポリアクリロニトリル又はスチレン/ジビニルベンゼン共重合体などの熱可塑性樹脂に不融化処理を施した炭素前駆体を使用することもできる。これらの樹脂は、例えばラジカル重合性のビニルモノマー及び重合開始剤を混合したモノマー混合物を、分散安定剤を含有する水性分散媒体中に添加し、撹拌混合により懸濁してモノマー混合物を微細な
液滴とした後、ついで昇温することによりラジカル重合を進めて得ることができる。得られた樹脂を不融化処理(酸化処理)により、架橋構造を発達させることにより球状の炭素前駆体とすることができる。不融化処理は、120~400℃の温度範囲で行うことができ、特に好ましくは170℃~350℃、更に好ましくは220~350℃の温度範囲で行うことが好ましい。酸化剤としては、O、O、SO、NO、これらを空気、窒素等で希釈した混合ガス、又は空気等の酸化性気体、又は硫酸、硝酸、過酸化水素水等の酸化性液体を用いることができる。その後、前記のように熱に不融である炭素前駆体を、必要に応じて予備焼成を行った後、粉砕し、非酸化性ガス雰囲気中で900℃~1600℃で炭素化することにより、本発明の炭素質材料を得ることができる。
 粉砕工程は、炭素化後に行うことも出来るが、炭素化反応が進行すると炭素前駆体が硬くなるため、粉砕による粒子径分布の制御が困難になるため、粉砕工程は900℃未満の予備焼成の後で本焼成の前が好ましい。
(Manufacture of carbonaceous material from resin)
A method for producing a carbonaceous material from a resin will be described below with an example.
The carbonaceous material of the present invention can also be obtained by carbonizing at 900 ° C. to 1600 ° C. using a resin as a precursor. As the resin, a phenol resin, a furan resin, or the like, or a thermosetting resin obtained by partially modifying the functional group of these resins can be used. It can also be obtained by pre-calcining the thermosetting resin at a temperature lower than 900 ° C., if necessary, pulverizing, and carbonizing at 900 ° C. to 1600 ° C. If necessary, an oxidation treatment (infusibilization treatment) may be performed at a temperature of 120 to 400 ° C. for the purpose of accelerating the curing of the thermosetting resin, promoting the degree of crosslinking, or improving the carbonization yield. As the oxidizing agent, O 2 , O 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used. be able to.
Furthermore, a carbon precursor obtained by subjecting a thermoplastic resin such as polyacrylonitrile or a styrene / divinylbenzene copolymer to infusibilization treatment can also be used. In these resins, for example, a monomer mixture obtained by mixing a radically polymerizable vinyl monomer and a polymerization initiator is added to an aqueous dispersion medium containing a dispersion stabilizer and suspended by stirring to suspend the monomer mixture into fine droplets. Then, it can be obtained by proceeding radical polymerization by raising the temperature. The obtained resin can be made into a spherical carbon precursor by developing a crosslinked structure by infusibilization treatment (oxidation treatment). The infusibilization treatment can be performed in a temperature range of 120 to 400 ° C., particularly preferably 170 to 350 ° C., more preferably 220 to 350 ° C. As the oxidizing agent, O 2 , O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing property such as sulfuric acid, nitric acid, hydrogen peroxide water, or the like Liquid can be used. Thereafter, the carbon precursor that is infusible to heat as described above is pre-fired as necessary, and then pulverized and carbonized at 900 ° C. to 1600 ° C. in a non-oxidizing gas atmosphere, The carbonaceous material of the present invention can be obtained.
Although the pulverization step can be performed after carbonization, since the carbon precursor becomes hard as the carbonization reaction proceeds, it becomes difficult to control the particle size distribution by pulverization. It is preferable before the main baking later.
[2]非水電解質二次電池負極
 本発明の非水電解質二次電池負極は、本発明の非水電解質二次電池負極用炭素質材料を含む。
[2] Nonaqueous electrolyte secondary battery negative electrode The nonaqueous electrolyte secondary battery negative electrode of the present invention contains the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention.
(負極電極の製造)
 本発明の炭素質材料を用いる負極電極は、炭素質材料に結合剤(バインダー)を添加し適当な溶媒を適量添加、混練し、電極合剤とした後に、金属板などからなる集電板に塗布・乾燥後、加圧成形することにより製造することができる。本発明の炭素質材料を用いることにより特に導電助剤を添加しなくとも高い導電性を有する電極を製造することができるが、更に高い導電性を賦与することを目的に必要に応じて電極合剤を調製時に、導電助剤を添加することができる。導電助剤としては、導電性のカーボンブラック、気相成長炭素繊維(VGCF)、ナノチューブなどを用いることができ、添加量は使用する導電助剤の種類によっても異なるが、添加する量が少なすぎると期待する導電性が得られないので好ましくなく、多すぎると電極合剤中の分散が悪くなるので好ましくない。このような観点から、添加する導電助剤の好ましい割合は0.5~10質量%(ここで、活物質(炭素質材料)量+バインダー量+導電助剤量=100質量%とする)であり、更に好ましくは0.5~7質量%、とくに好ましくは0.5~5質量%である。結合剤としては、PVDF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、及びSBR(スチレン・ブタジエン・ラバー)とCMC(カルボキシメチルセルロース)との混合物などの電解液と反応しないものであれば特に限定されない。中でもPVDFは、活物質表面に付着したPVDFがリチウムイオン移動を阻害することが少なく、良好な入出力特性を得るために好ましい。PVDFを溶解しスラリーを形成するためにN-メチルピロリドン(NMP)などの極性溶媒が好ましく用いられるが、SBRなどの水性エマルジョンやCMCを水に溶解して用いることもできる。結合剤の添加量が多すぎると、得られる電極の抵抗が大きくなるため、電池の内部抵抗が大きくなり電池特性を低下させるので好ましくない。また、結合剤の添加量が少なすぎると、負極材料粒子相互及び集電材との結合が不十分となり好ましくない。結合剤の好ましい添加量は、使用するバインダーの種類によっても異なるが、PVDF系のバインダーでは好ましくは3~13質量%であり、更に好ましくは3~10質量%である。一方、溶媒に水を使用するバインダーでは、SBRとCMCとの混合物など、複数のバインダーを混合して使用することが多く、使用する全バインダーの総量として0.5~5質量%が好ましく、更に好ましくは1~4質量%である。電極活物質層は集電板の両面に形成するのが基本であるが、必要に応じて片面でもよい。電極活物質層が厚いほど、集電板やセパレータなどが少なくて済むため高容量化には好ましいが、対極と対向する電極面積が広いほど入出力特性の向上に有利なため活物質層が厚すぎると入出力特性が低下するため好ましくない。好ましい活物質層(片面当たり)の厚みは、10~80μmであり、より好ましくは20~75μm、さらに好ましくは20~60μmである。
(Manufacture of negative electrode)
In the negative electrode using the carbonaceous material of the present invention, a binder (binder) is added to the carbonaceous material, and an appropriate solvent is added and kneaded to form an electrode mixture. It can be produced by pressure molding after coating and drying. By using the carbonaceous material of the present invention, it is possible to produce an electrode having high conductivity without adding a conductive auxiliary agent. When preparing the agent, a conductive aid can be added. As the conductive assistant, conductive carbon black, vapor grown carbon fiber (VGCF), nanotube, etc. can be used, and the amount added varies depending on the type of conductive assistant used, but the amount added is too small. Since the expected conductivity cannot be obtained, it is not preferable, and too much is not preferable because the dispersion in the electrode mixture becomes worse. From such a point of view, the preferable ratio of the conductive auxiliary agent to be added is 0.5 to 10% by mass (where the amount of active material (carbonaceous material) + the amount of binder + the amount of conductive auxiliary agent = 100% by mass). More preferably, it is 0.5 to 7% by mass, particularly preferably 0.5 to 5% by mass. The binder is not particularly limited as long as it does not react with an electrolytic solution such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene-butadiene rubber) and CMC (carboxymethylcellulose). Among them, PVDF is preferable because PVDF attached to the surface of the active material hardly inhibits lithium ion migration and obtains favorable input / output characteristics. In order to dissolve PVDF and form a slurry, a polar solvent such as N-methylpyrrolidone (NMP) is preferably used, but an aqueous emulsion such as SBR or CMC can also be dissolved in water. When the amount of the binder added is too large, the resistance of the obtained electrode is increased, which is not preferable because the internal resistance of the battery is increased and the battery characteristics are deteriorated. Moreover, when there is too little addition amount of binder, the coupling | bonding with negative electrode material particle | grains and a collector is insufficient, and it is unpreferable. The amount of the binder added is preferably 3 to 13% by mass, more preferably 3 to 10% by mass for the PVDF binder, although it varies depending on the type of binder used. On the other hand, a binder using water as a solvent is often used by mixing a plurality of binders such as a mixture of SBR and CMC, and the total amount of all binders used is preferably 0.5 to 5% by mass. The amount is preferably 1 to 4% by mass. The electrode active material layer is basically formed on both sides of the current collector plate, but may be on one side if necessary. A thicker electrode active material layer is preferable for increasing the capacity because fewer current collector plates and separators are required. However, the larger the electrode area facing the counter electrode, the better the input / output characteristics, and the thicker the active material layer. Too much is not preferable because the input / output characteristics deteriorate. The thickness of the active material layer (per side) is preferably 10 to 80 μm, more preferably 20 to 75 μm, and still more preferably 20 to 60 μm.
[3]非水電解質二次電池
 本発明の非水電解質二次電池は、本発明の非水電解質二次電池負極を含む。
[3] Nonaqueous electrolyte secondary battery The nonaqueous electrolyte secondary battery of the present invention includes the negative electrode of the nonaqueous electrolyte secondary battery of the present invention.
(非水電解質二次電池の製造)
 本発明の負極材料を用いて、非水電解質二次電池の負極電極を形成した場合、正極材料、セパレータ、及び電解液など電池を構成する他の材料は特に限定されることなく、非水溶媒二次電池として従来使用され、あるいは提案されている種々の材料を使用することが可能である。
(Manufacture of non-aqueous electrolyte secondary batteries)
When the negative electrode material of the present invention is used to form a negative electrode of a nonaqueous electrolyte secondary battery, other materials constituting the battery such as a positive electrode material, a separator, and an electrolytic solution are not particularly limited, and are nonaqueous solvents. Various materials conventionally used or proposed as a secondary battery can be used.
 例えば、正極材料としては、層状酸化物系(LiMOと表されるもので、Mは金属:例えば、LiCoO、LiNiO、LiMnO、又はLiNiCoMo(ここでx、y、zは組成比を表わす)、オリビン系(LiMPOで表され、Mは金属:例えばLiFePOなど)、スピネル系(LiMで表され、Mは金属:例えばLiMnなど)の複合金属カルコゲン化合物が好ましく、これらのカルコゲン化合物を必要に応じて混合してもよい。これらの正極材料を適当なバインダーと電極に導電性を付与するための炭素材料とともに成形して、導電性の集電材上に層形成することにより正極が形成される。 For example, as the positive electrode material, a layered oxide system (represented as LiMO 2 , where M is a metal: for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiNi x Co y Mo z O 2 (where x, y and z represent composition ratios), olivine system (represented by LiMPO 4 , M is metal: for example, LiFePO 4, etc.), spinel system (represented by LiM 2 O 4 , M is a metal: for example, LiMn 2 O 4, etc. The composite metal chalcogen compound is preferable, and these chalcogen compounds may be mixed if necessary.These positive electrode materials are molded together with an appropriate binder and a carbon material for imparting conductivity to the electrode, and are electrically conductive. The positive electrode is formed by forming a layer on the conductive current collector.
 これら正極と負極との組み合わせで用いられる非水溶媒型電解液は、一般に非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ-ブチルラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、又は1,3-ジオキソランなどの有機溶媒の一種又は二種以上を組み合わせて用いることができる。また、電解質としては、LiClO、LiPF、LiBF、LiCFSO、LiAsF、LiCl、LiBr、LiB(C、又はLiN(SOCFなどが用いられる。二次電池は、一般に上記のようにして形成した正極層と負極層とを必要に応じて不織布、その他の多孔質材料などからなる透液性セパレータを介して対向させ電解液中に浸漬させることにより形成される。セパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性セパレータを用いることができる。あるいはセパレータの代わりに、もしくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。 The nonaqueous solvent electrolyte used in combination of these positive electrode and negative electrode is generally formed by dissolving an electrolyte in a nonaqueous solvent. Examples of the non-aqueous solvent include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, or 1,3-dioxolane. These can be used alone or in combination of two or more. As the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB (C 6 H 5 ) 4 , or LiN (SO 3 CF 3 ) 2 is used. In secondary batteries, the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution with a liquid-permeable separator made of nonwoven fabric or other porous material facing each other as necessary. It is formed by. As the separator, a non-woven fabric usually used for a secondary battery or a permeable separator made of another porous material can be used. Alternatively, a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of or together with the separator.
 本発明のリチウムイオン二次電池は、例えば自動車などの車両に搭載される電池(典型的には車両駆動用リチウムイオン二次電池)として好適である。 The lithium ion secondary battery of the present invention is suitable as a battery (typically a lithium ion secondary battery for driving a vehicle) mounted on a vehicle such as an automobile.
 本発明による車両とは、通常電動車両として知られるものや燃料電池や内燃機関とのハイブリッド車など、特に制限されることなく対象とすることができるが、少なくとも上記電池を備えた電源装置と、該電源装置からの電源供給により駆動する電動駆動機構と、これを制御する制御装置を備える。更に、発電ブレーキや回生ブレーキを備え、制動によるエネルギーを電気に変換して当該リチウムイオン二次電池に充電する機構を備えてもよい。ハイブリッド車は特に電池容積の自由度が低いため、本発明の電池が有用である。 The vehicle according to the present invention can be targeted without particular limitation, such as a vehicle normally known as an electric vehicle, a hybrid vehicle with a fuel cell or an internal combustion engine, and at least a power supply device including the battery, An electric drive mechanism that is driven by power supply from the power supply device and a control device that controls the electric drive mechanism are provided. Further, a power generation brake or a regenerative brake may be provided, and a mechanism for converting the energy generated by braking into electricity and charging the lithium ion secondary battery may be provided. Since the hybrid vehicle has a particularly low degree of freedom in battery volume, the battery of the present invention is useful.
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
 以下に本発明の非水電解質二次電池負極用炭素質材料の物性値(ρBt、ρHe、BET比表面積、平均粒子径(Dv50)、水素/炭素の原子比(H/C)、d002、充電容量、放電容量、不可逆容量、吸湿量)の測定法を記載するが、実施例を含めて、本明細書中に記載する物性値は、以下の方法により求めた値に基づくものである。 The physical property values (ρ Bt , ρ He , BET specific surface area, average particle diameter (D v50 ), hydrogen / carbon atomic ratio (H / C) of the non-aqueous electrolyte secondary battery negative electrode of the present invention are as follows: d 002 , charge capacity, discharge capacity, irreversible capacity, moisture absorption), including physical properties values described in this specification including examples are based on values obtained by the following methods It is.
(ブタノール法による真密度(ρBt))
 真密度は、JIS R 7212に定められた方法に従い、ブタノール法により測定した。内容積約40mLの側管付比重びんの質量(m)を正確に量る。次に、その底部に試料を約10mmの厚さになるように平らにいれた後、その質量(m)を正確に量る。これに1-ブタノールを静かに加えて、底から20mm程度の深さにする。次に比重びんに軽い振動を加えて、大きな気泡の発生がなくなったのを確かめた後、真空デシケーター中にいれ、徐々に排気して2.0~2.7kPaとする。その圧力に20分間以上保ち、気泡の発生が止まった後に、取り出し、更に1-ブタノールを満たし、栓をして恒温水槽(30±0.03℃に調節してあるもの)に15分間以上浸し、1-ブタノールの液面を標線に合わせる。次に、これを取り出して外部をよくぬぐって室温まで冷却した後質量(m)を正確に量る。
(True density by the butanol method (ρ Bt ))
The true density was measured by a butanol method according to a method defined in JIS R 7212. The mass (m 1 ) of a specific gravity bottle with a side tube having an internal volume of about 40 mL is accurately measured. Next, the sample is placed flat on the bottom so as to have a thickness of about 10 mm, and its mass (m 2 ) is accurately measured. Gently add 1-butanol to this to a depth of about 20 mm from the bottom. Next, light vibration is applied to the specific gravity bottle, and it is confirmed that large bubbles are not generated. Then, the bottle is placed in a vacuum desiccator and gradually evacuated to 2.0 to 2.7 kPa. Keep at that pressure for 20 minutes or more, and after the generation of bubbles has stopped, take it out, fill it with 1-butanol, plug it and immerse it in a constant temperature water bath (adjusted to 30 ± 0.03 ° C) for 15 minutes or more. Adjust the liquid level of 1-butanol to the marked line. Next, this is taken out, the outside is well wiped off and cooled to room temperature, and then the mass (m 4 ) is accurately measured.
 次に、同じ比重びんに1-ブタノールだけを満たし、前記と同じようにして恒温水槽に浸し、標線を合わせた後、質量(m)を量る。また、使用直前に沸騰させて溶解した気体を除いた蒸留水を比重びんに採取し、前記と同様に恒温水槽に浸し、標線を合わせた後、質量(m)を量る。ρBtは、次の式により計算する。 Next, the same specific gravity bottle is filled with only 1-butanol, immersed in a constant temperature water bath as described above, and after aligning the marked lines, the mass (m 3 ) is measured. Moreover, distilled water excluding the gas that has been boiled and dissolved immediately before use is collected in a specific gravity bottle, immersed in a constant temperature water bath in the same manner as described above, and after aligning the marked line, the mass (m 5 ) is measured. ρ Bt is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000001
 このとき、dは、水の30℃における比重(0.9946)である。
Figure JPOXMLDOC01-appb-M000001
At this time, d is the specific gravity (0.9946) of water at 30 ° C.
(ヘリウム法による真密度(ρHe))
 ρHeの測定は、島津製作所社製乾式自動密度計アキュピックII1340を用いた。試料を予め200℃で5時間以上乾燥した後、測定を行った。10cmのセルを用い、1gの試料をセルに入れ、周囲温度は23℃で測定を行った。パージ回数は10回とし、そのうち、体積値が繰り返し測定により0.5%以内で一致することを確認した5回(n=5)の平均値を用いて、ρHeとした。
(True density by the helium method (ρ He ))
Measurement of [rho the He used a Shimadzu dry automatic densimeter Accupyc II1340. The sample was previously dried at 200 ° C. for 5 hours or more and then measured. Using a 10 cm 3 cell, a 1 g sample was placed in the cell, and the measurement was performed at an ambient temperature of 23 ° C. Purge number is 10 times, of which, using the average value of 5 times was confirmed to agree to within 0.5% by repeated measurement volume value (n = 5), and a [rho the He.
 測定装置は試料室及び膨張室を有し、試料室は室内の圧力を測定するための圧力計を有する。試料室と膨張室はバルブを備える連結管により接続されている。試料室にはストップバルブを備えるヘリウムガス導入管が接続され、膨張室にはストップバルブを備えるヘリウムガス排出管が接続されている。 The measuring device has a sample chamber and an expansion chamber, and the sample chamber has a pressure gauge for measuring the pressure in the chamber. The sample chamber and the expansion chamber are connected by a connecting pipe having a valve. A helium gas introduction pipe having a stop valve is connected to the sample chamber, and a helium gas discharge pipe having a stop valve is connected to the expansion chamber.
 具体的には、測定は以下のようにして行った。
試料室の容積(VCELL)及び膨張室の容積(VEXP)は体積既知の校正球を使用して予め測定しておく。試料室に試料を入れ、系内をヘリウムで満たし、その時の系内圧力をPとする。次にバルブを閉じ、試料室のみヘリウムガスを加え圧力Pまで増加させる。その後バルブを開け、膨張室と試料室を接続すると、膨張により系内圧力はPまで減少する。
 このとき試料の体積(VSAMP)は次式で計算する。
Specifically, the measurement was performed as follows.
The volume of the sample chamber (V CELL ) and the volume of the expansion chamber (V EXP ) are measured in advance using a calibration sphere with a known volume. The sample is placed in the sample chamber, fills the system with helium, the system pressure at that time and P a. Then closing the valve, is increased to a pressure P 1 added sample chamber only helium gas. After that, when the valve is opened and the expansion chamber and the sample chamber are connected, the system pressure decreases to P 2 due to expansion.
At this time, the volume of the sample (V SAMP ) is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000002
 したがって、試料の質量をWSAMPとすると密度は
Figure JPOXMLDOC01-appb-M000002
Therefore, if the sample mass is W SAMP , the density is
Figure JPOXMLDOC01-appb-M000003
となる。
Figure JPOXMLDOC01-appb-M000003
It becomes.
(窒素吸着による比表面積(BET))
 以下にBETの式から誘導された近似式を記す。
(Specific surface area by nitrogen adsorption (BET))
An approximate expression derived from the BET expression is described below.
Figure JPOXMLDOC01-appb-M000004
 上記の近似式を用いて、液体窒素温度における、窒素吸着による1点法(相対圧力x=0.2)によりvを求め、次式により試料の比表面積を計算した。
Figure JPOXMLDOC01-appb-M000004
Using the above approximate expression, at liquid nitrogen temperature, 1-point method by nitrogen adsorption seek v m by (relative pressure x = 0.2), was calculated a specific surface area of the sample by the following equation.
Figure JPOXMLDOC01-appb-M000005
 このとき、vは試料表面に単分子層を形成するに必要な吸着量(cm/g)、vは実測される吸着量(cm/g)、xは相対圧力である。
Figure JPOXMLDOC01-appb-M000005
In this case, v m is the adsorption amount necessary for forming a monomolecular layer on the surface of the sample (cm 3 / g), v the adsorption amount of the measured (cm 3 / g), x is a relative pressure.
 具体的には、MICROMERITICS社製「Flow Sorb II2300」を用いて、以下のようにして液体窒素温度における炭素質材料への窒素の吸着量を測定した。粒子径約1~20μmに粉砕した炭素質材料を試料管に充填し、ヘリウム:窒素=80:20の混合ガスを流しながら、試料管を-196℃に冷却し、炭素質材料に窒素を吸着させる。つぎに試料管を室温に戻す。このとき試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着ガス量vとした。 Specifically, using a “Flow Sorb II2300” manufactured by MICROMERITICS, the amount of nitrogen adsorbed on the carbonaceous material at the liquid nitrogen temperature was measured as follows. Fill the sample tube with a carbonaceous material pulverized to a particle size of about 1 to 20 μm, and cool the sample tube to -196 ° C while flowing a mixed gas of helium: nitrogen = 80:20 to adsorb nitrogen to the carbonaceous material. Let The sample tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and the amount of adsorbed gas v was obtained.
(水素/炭素の原子比(H/C))
 JIS M8819に定められた方法に準拠し測定した。CHNアナライザーによる元素分析により得られる試料中の水素及び炭素の質量割合から、水素/炭素の原子数の比として求めた。
(Atomic ratio of hydrogen / carbon (H / C))
Measurement was performed in accordance with the method defined in JIS M8819. From the mass ratio of hydrogen and carbon in the sample obtained by elemental analysis with a CHN analyzer, the hydrogen / carbon atom number ratio was obtained.
(X線回折法による平均層面間隔(d002))
 炭素質材料粉末を試料ホルダーに充填し、PANalytical社製X’Pert PROを用いて、対称反射法にて測定した。走査範囲は8<2θ<50°で印加電流/印加電圧は45kV/40mAの条件で、Niフィルターにより単色化したCuKα線(λ=1.5418Å)を線源とし、X線回折図形を得た。標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長を0.15418nmとし、Braggの公式によりd002を算出する。
(Average layer surface spacing by X-ray diffraction method (d 002 ))
The carbonaceous material powder was filled in the sample holder and measured by a symmetrical reflection method using X'Pert PRO manufactured by PANalytical. The scanning range was 8 <2θ <50 °, and the applied current / applied voltage was 45 kV / 40 mA. An X-ray diffraction pattern was obtained using a CuKα ray (λ = 1.5418Å) monochromated by a Ni filter as a radiation source. . Correction was performed using the diffraction peak of the (111) plane of the high-purity silicon powder for standard substances. The wavelength of the CuKα ray is set to 0.15418 nm, and d 002 is calculated by the Bragg formula.
Figure JPOXMLDOC01-appb-M000006
 λ:X線の波長,θ:回折角
Figure JPOXMLDOC01-appb-M000006
λ: X-ray wavelength, θ: diffraction angle
(レーザー回折法による平均粒子径(Dv50))
 試料約0.01gに対し、分散剤(カチオン系界面活性剤「SNウェット366」(サンノプコ社製))を3滴加え、試料に分散剤を馴染ませる。次に純水を加えて、超音波により分散させた後、粒径分布測定器(島津製作所社製「SALD-3000S」)で、複素屈折率パラメータ(実数部-虚数部)を2.0-0.1iとし、粒径0.08~3000μmの範囲の粒径分布を求めた。得られた粒径分布から、累積容積が50%となる粒径をもって、平均粒子径Dv50とした。
(Average particle diameter by laser diffraction method ( Dv50 ))
Three drops of a dispersing agent (cationic surfactant “SN Wet 366” (manufactured by San Nopco)) are added to about 0.01 g of the sample, and the dispersing agent is acclimated to the sample. Next, after adding pure water and dispersing with ultrasonic waves, the complex refractive index parameter (real part-imaginary part) is set to 2.0- with a particle size distribution measuring instrument (“SALD-3000S” manufactured by Shimadzu Corporation). A particle size distribution in the range of 0.08 to 3000 μm was obtained with 0.1i. From the obtained particle size distribution, the average particle size Dv50 was defined as the particle size with a cumulative volume of 50%.
(吸湿量)
 測定前に、炭素質材料を200℃で12時間、真空乾燥させ、その後、この炭素質材料1gを直径9.5cm、高さ1.5cmのシャーレに、できる限り薄い厚みとなるように広げた。温度25℃、湿度50%の一定雰囲気に制御した恒温恒湿槽内に、100時間、放置した後、恒温恒湿槽から容器を取り出し、カールフィッシャ―水分計(三菱化学アナリテック/CA-200)を用いて吸湿量を測定した。気化室(三菱化学アナリテック/VA-200)の温度は200℃とした。
(Moisture absorption)
Before the measurement, the carbonaceous material was vacuum-dried at 200 ° C. for 12 hours, and then 1 g of this carbonaceous material was spread on a petri dish having a diameter of 9.5 cm and a height of 1.5 cm so as to be as thin as possible. . After being left in a constant temperature and humidity chamber controlled to a constant atmosphere at a temperature of 25 ° C. and a humidity of 50% for 100 hours, the container is removed from the constant temperature and humidity chamber, and a Karl Fischer moisture meter (Mitsubishi Chemical Analytech / CA-200) is used. ) Was used to measure the amount of moisture absorption. The temperature of the vaporization chamber (Mitsubishi Chemical Analytech / VA-200) was 200 ° C.
(活物質のドープ-脱ドープ試験)
 実施例及び比較例で得られた炭素質材料1~10及び比較炭素質材料1~6を用いて、以下の(a)~(d)の操作を行い、負極電極及び非水電解質二次電池を作製し、そして電極性能の評価を行った。
(Active material dope-dedope test)
Using the carbonaceous materials 1 to 10 and the comparative carbonaceous materials 1 to 6 obtained in the examples and comparative examples, the following operations (a) to (d) are performed to form a negative electrode and a nonaqueous electrolyte secondary battery. And the electrode performance was evaluated.
(a)電極作製
 上記炭素質材料94質量部、ポリフッ化ビニリデン(株式会社クレハ製「KF#9100」)6質量部にNMPを加えてペースト状にした負極合剤と、上記炭素質材料4を96質量部、SBR3質量部、CMC1質量部に水を加えてペースト状にした負極合剤を作製した。当該電極合剤を銅箔上に均一に塗布した。乾燥した後、銅箔より直径15mmの円板状に打ち抜き、これをプレスして電極とした。なお、電極中の炭素質材料の量は約10mgになるように調整した。
(A) Electrode preparation 94 parts by mass of the above carbonaceous material, 6 parts by mass of polyvinylidene fluoride (“KF # 9100” manufactured by Kureha Co., Ltd.) and a negative electrode mixture made into a paste by adding NMP, and the above carbonaceous material 4 A negative electrode mixture prepared by adding water to 96 parts by mass, 3 parts by mass of SBR, and 1 part by mass of CMC was prepared. The electrode mixture was uniformly applied on the copper foil. After drying, it was punched out from a copper foil into a disk shape having a diameter of 15 mm and pressed to obtain an electrode. The amount of carbonaceous material in the electrode was adjusted to about 10 mg.
(b)試験電池の作製
 本発明の炭素質材料は非水電解質二次電池の負極電極を構成するのに適しているが、電池活物質の放電容量(脱ドープ量)及び不可逆容量(非脱ドープ量)を、対極の性能のバラツキに影響されることなく精度良く評価するために、特性の安定したリチウム金属を対極として、上記で得られた電極を用いてリチウム二次電池を構成し、その特性を評価した。
(B) Production of test battery The carbonaceous material of the present invention is suitable for constituting the negative electrode of a non-aqueous electrolyte secondary battery, but the discharge capacity (de-doping amount) and irreversible capacity (non-desorption) of the battery active material. In order to accurately evaluate the amount of doping) without being affected by variations in the performance of the counter electrode, a lithium secondary battery is configured using the electrode obtained above, using lithium metal with stable characteristics as a counter electrode, Its characteristics were evaluated.
 リチウム極の調製は、Ar雰囲気中のグローブボックス内で行った。予め2016サイズのコイン型電池用缶の外蓋に直径16mmのステンレススチール網円盤をスポット溶接した後、厚さ0.8mmの金属リチウム薄板を直径15mmの円盤状に打ち抜いたものをステンレススチール網円盤に圧着し、電極(対極)とした。 The lithium electrode was prepared in a glove box in an Ar atmosphere. A 16 mm diameter stainless steel mesh disk is spot-welded to the outer lid of a 2016 coin-sized battery can, and then a 0.8 mm thick metal lithium sheet is punched into a 15 mm diameter disk shape. To be an electrode (counter electrode).
 このようにして製造した電極の対を用い、電解液としてはエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.4mol/Lの割合でLiPFを加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜をセパレータとして使用し、ポリエチレン製のガスケットを用いて、Arグローブボックス中で、2016サイズのコイン型非水電解質系リチウム二次電池を組み立てた。 Using the electrode pair thus produced, the electrolyte solution was LiPF 6 at a ratio of 1.4 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2. A coin-type non-aqueous electrolyte system of 2016 size in an Ar glove box using a polyethylene-made gasket as a separator, using a borosilicate glass fiber fine pore membrane having a diameter of 19 mm as a separator A lithium secondary battery was assembled.
(c)電池容量の測定
 上記構成のリチウム二次電池について、充放電試験装置(東洋システム製「TOSCAT」)を用いて25℃にて充放電試験を行った。炭素極へのリチウムのドープ反応を定電流定電圧法により行い、脱ドープ反応を定電流法で行った。ここで、正極にリチウムカルコゲン化合物を使用した電池では、炭素極へのリチウムのドープ反応が「充電」であり、本発明の試験電池のように対極にリチウム金属を使用した電池では、炭素極へのドープ反応が「放電」と呼ぶことになり、用いる対極により同じ炭素極へのリチウムのドープ反応の呼び方が異なる。そこでここでは、便宜上炭素極へのリチウムのドープ反応を「充電」と記述することにする。逆に「放電」とは試験電池では充電反応であるが、炭素質材料からのリチウムの脱ドープ反応であるため便宜上「放電」と記述することにする。ここで採用した充電方法は定電流定電圧法であり、具体的には端子電圧が0.050Vになるまで0.5mA/cmで定電流充電を行い、端子電圧が0.050Vに達した後、端子電圧0.050Vで定電圧充電を行い電流値が20μAに達するまで充電を継続した。このとき、供給した電気量を電極の炭素質材料の質量で除した値を炭素質材料の単位質量当たりの充電容量(mAh/g)と定義した。充電終了後、30分間電池回路を開放し、その後放電を行った。放電は0.5mA/cmで定電流放電を行い、終止電圧を1.5Vとした。このとき放電した電気量を電極の炭素質材料の質量で除した値を炭素質材料の単位質量当たりの放電容量(mAh/g)と定義する。不可逆容量は、充電容量-放電容量として計算される。同一試料を用いて作製した試験電池について、3回(n=3)測定し、その測定値を平均して充放電容量及び不可逆容量を決定した。さらに、放電容量を充電容量で除した値に100を乗じて、効率(%)を求めた。これは活物質がどれだけ有効に使用されたかを示す値である。
(C) Measurement of battery capacity About the lithium secondary battery of the said structure, the charge / discharge test was done at 25 degreeC using the charge / discharge test apparatus ("TOSCAT" by Toyo System). Lithium doping reaction on the carbon electrode was performed by the constant current constant voltage method, and dedoping reaction was performed by the constant current method. Here, in a battery using a lithium chalcogen compound as a positive electrode, the lithium doping reaction to the carbon electrode is “charging”, and in a battery using a lithium metal as the counter electrode like the test battery of the present invention, This doping reaction is referred to as “discharge”, and the naming of the lithium doping reaction to the same carbon electrode differs depending on the counter electrode used. Therefore, for the sake of convenience, the lithium doping reaction on the carbon electrode will be described as “charging”. Conversely, “discharge” is a charging reaction in the test battery, but is referred to as “discharge” for convenience because it is a dedoping reaction of lithium from the carbonaceous material. The charging method adopted here is a constant current constant voltage method. Specifically, constant current charging was performed at 0.5 mA / cm 2 until the terminal voltage reached 0.050 V, and the terminal voltage reached 0.050 V. Thereafter, constant voltage charging was performed at a terminal voltage of 0.050 V, and charging was continued until the current value reached 20 μA. At this time, the value obtained by dividing the supplied amount of electricity by the mass of the carbonaceous material of the electrode was defined as the charge capacity (mAh / g) per unit mass of the carbonaceous material. After completion of charging, the battery circuit was opened for 30 minutes and then discharged. The discharge was a constant current discharge at 0.5 mA / cm 2 and the final voltage was 1.5V. A value obtained by dividing the quantity of electricity discharged at this time by the mass of the carbonaceous material of the electrode is defined as a discharge capacity (mAh / g) per unit mass of the carbonaceous material. The irreversible capacity is calculated as charge capacity-discharge capacity. The test battery produced using the same sample was measured three times (n = 3), and the measured values were averaged to determine the charge / discharge capacity and the irreversible capacity. Further, the value obtained by dividing the discharge capacity by the charge capacity was multiplied by 100 to obtain the efficiency (%). This is a value indicating how effectively the active material has been used.
(d)放電曲線の傾き
 リチウム参照電極基準で0.2Vから1.1Vに相当する放電容量X(Ah/g)を求め、それを電位差0.9(V)で除して、放電曲線の傾き0.9/X(Vg/Ah)を算出した。
(D) The slope of the discharge curve The discharge capacity X (Ah / g) corresponding to 0.2 V to 1.1 V is obtained on the basis of the lithium reference electrode, divided by the potential difference 0.9 (V), and the discharge curve A slope of 0.9 / X (Vg / Ah) was calculated.
(実施例1)
 軟化点205℃、H/C原子比0.65の石油ピッチ70kgと、ナフタレン30kgとを、撹拌翼および出口ノズルのついた内容積300リットルの耐圧容器に仕込み、190℃で加熱溶融混合を行った後、80~90℃に冷却し、耐圧容器内を窒素ガスにより加圧して、内容物を出口ノズルから押出し、直径約500μmの紐状成型体を得た。次いで、この紐状成型体を直径(D)と長さ(L)の比(L/D)が約1.5になるように粉砕し、得られた破砕物を93℃に加熱した0.53質量%のポリビニルアルコール(ケン化度88%)を溶解した水溶液中に投入し、撹拌分散し、冷却して球状ピッチ成型体スラリーを得た。大部分の水をろ過により取り除いた後、球状ピッチ成形体の約6倍量の質量のn-ヘキサンでピッチ成形体中のナフタレンを抽出除去した。このようにして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、240℃まで昇温し、240℃に1時間保持して酸化し、熱に対して不融性の多孔性球状酸化ピッチを得た。
 次に多孔性球状酸化ピッチ100gを直径50mmの縦型管状炉に入れて、600℃まで100℃/hの速度で昇温し、600℃で1時間保持して予備焼成を実施し、炭素前駆体を得た。予備焼成は流量5L/minの窒素雰囲気下で行った。得られた炭素前駆体を粉砕し、平均粒径4.8μmの粉末状炭素前駆体とした。続いて、この粉末状炭素前駆体10gを直径100mmの横型管状炉に入れ、250℃/hの昇温速度で1200℃まで昇温し、1200℃で1時間保持して、本焼成を行い、炭素質材料1を調製した。なお、本焼成は、流量10L/minの窒素雰囲気下で行った。
Example 1
A 70 kg petroleum pitch with a softening point of 205 ° C. and an H / C atomic ratio of 0.65 and 30 kg of naphthalene are charged into a 300 liter pressure vessel equipped with a stirring blade and an outlet nozzle, and heated, melted and mixed at 190 ° C. After cooling to 80 to 90 ° C., the inside of the pressure vessel was pressurized with nitrogen gas, and the contents were extruded from the outlet nozzle to obtain a string-like molded body having a diameter of about 500 μm. Subsequently, this string-like molded body was pulverized so that the ratio (L / D) of the diameter (D) to the length (L) was about 1.5, and the obtained crushed material was heated to 93 ° C. The solution was poured into an aqueous solution in which 53% by mass of polyvinyl alcohol (saponification degree 88%) was dissolved, stirred and dispersed, and cooled to obtain a spherical pitch molded body slurry. After most of the water was removed by filtration, naphthalene in the pitch formed body was extracted and removed with n-hexane having a mass about 6 times that of the spherical pitch formed body. The porous spherical pitch thus obtained was heated to 240 ° C. while passing through heated air using a fluidized bed, oxidized at a temperature of 240 ° C. for 1 hour, and insoluble to heat. Spherical oxidized pitch was obtained.
Next, 100 g of porous spherical oxidation pitch was put in a vertical tubular furnace having a diameter of 50 mm, heated to 600 ° C. at a rate of 100 ° C./h, held at 600 ° C. for 1 hour, pre-baked, and carbon precursor Got the body. Pre-baking was performed in a nitrogen atmosphere with a flow rate of 5 L / min. The obtained carbon precursor was pulverized to obtain a powdery carbon precursor having an average particle size of 4.8 μm. Subsequently, 10 g of this powdery carbon precursor was put into a horizontal tubular furnace having a diameter of 100 mm, heated to 1200 ° C. at a heating rate of 250 ° C./h, held at 1200 ° C. for 1 hour, and subjected to main firing, Carbonaceous material 1 was prepared. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
(実施例2)
 本焼成時の窒素流量を1L/minに変更した以外は、実施例1と同様の方法で炭素質材料2を得た。
(Example 2)
A carbonaceous material 2 was obtained in the same manner as in Example 1 except that the nitrogen flow rate during main firing was changed to 1 L / min.
(実施例3)
 多孔性球状ピッチの酸化温度を、230℃に変更し、炭素前駆体の粉砕粒径を9.5μmにした以外は、実施例1と同様の方法で炭素質材料3を得た。
Example 3
A carbonaceous material 3 was obtained in the same manner as in Example 1 except that the oxidation temperature of the porous spherical pitch was changed to 230 ° C. and the pulverized particle size of the carbon precursor was changed to 9.5 μm.
(実施例4)
 多孔性球状ピッチの酸化温度を、210℃に変更し、炭素前駆体の粉砕粒径を12.0μmにした以外は、実施例1と同様の方法で炭素質材料4を得た。
Example 4
A carbonaceous material 4 was obtained in the same manner as in Example 1 except that the oxidation temperature of the porous spherical pitch was changed to 210 ° C. and the pulverized particle size of the carbon precursor was changed to 12.0 μm.
(実施例5)
 多孔性球状ピッチの酸化温度を、205℃に変更した以外は、実施例3と同様の方法で炭素質材料5を得た。
(Example 5)
A carbonaceous material 5 was obtained in the same manner as in Example 3 except that the oxidation temperature of the porous spherical pitch was changed to 205 ° C.
(実施例6)
 炭素前駆体の粉砕粒径を3μmに変更した以外は、実施例1と同様の方法で炭素質材料6を得た。
(Example 6)
A carbonaceous material 6 was obtained in the same manner as in Example 1 except that the pulverized particle size of the carbon precursor was changed to 3 μm.
(実施例7)
 炭素前駆体の粉砕粒径を14μmに変更した以外は、実施例1と同様の方法で炭素質材料7を得た。
(Example 7)
A carbonaceous material 7 was obtained in the same manner as in Example 1 except that the pulverized particle size of the carbon precursor was changed to 14 μm.
(実施例8)
 軟化点205℃、H/C原子比0.49の石炭ピッチをカウンタージェットミル(ホソカワミクロン株式会社/100-AFG)で粉砕し、平均粒径6.2μmの粉末状ピッチを得た。その後、この粉末状ピッチをマッフル炉(株式会社デンケン)に入れ、空気を20L/minで流通させながら、260℃で1時間保持して不融化処理を行い、不融化ピッチを得た。得られた不融化ピッチ100gを坩堝に入れ、直径50mmの縦型管状炉で、600℃まで50℃/hの速度で昇温し、600℃で1時間保持して予備焼成を実施し、炭素前駆体を得た。予備焼成は流量5L/minの窒素雰囲気下で行い、坩堝は開放した状態で実施した。炭素前駆体10gを直径100mmの横型管状炉に入れ、250℃/hの昇温速度で1200℃まで昇温し、1200℃で1時間保持して、本焼成を行い、炭素質材料8を調製した。なお、本焼成は、流量10L/minの窒素雰囲気下で行った。
(Example 8)
A coal pitch having a softening point of 205 ° C. and an H / C atomic ratio of 0.49 was pulverized by a counter jet mill (Hosokawa Micron Corporation / 100-AFG) to obtain a powdery pitch having an average particle size of 6.2 μm. Then, this powdery pitch was put into a muffle furnace (Denken Co., Ltd.), and infusible treatment was carried out by maintaining at 260 ° C. for 1 hour while circulating air at 20 L / min, to obtain an infusible pitch. 100 g of the infusibilized pitch obtained was put in a crucible, heated at a rate of 50 ° C./h up to 600 ° C. in a vertical tubular furnace with a diameter of 50 mm, pre-fired by holding at 600 ° C. for 1 hour, carbon A precursor was obtained. Pre-baking was performed in a nitrogen atmosphere with a flow rate of 5 L / min, and the crucible was opened. 10 g of carbon precursor is placed in a horizontal tubular furnace having a diameter of 100 mm, heated to 1200 ° C. at a heating rate of 250 ° C./h, held at 1200 ° C. for 1 hour, and subjected to main firing to prepare carbonaceous material 8 did. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
(実施例9)
 不融化温度を240℃に変更したことと、炭素前駆体の粉砕粒径を9.0μmとした以外は、実施例8と同様の方法で炭素質材料9を得た。
Example 9
A carbonaceous material 9 was obtained in the same manner as in Example 8 except that the infusibilization temperature was changed to 240 ° C. and the pulverized particle size of the carbon precursor was 9.0 μm.
(実施例10)
 水1695gに4%メチルセルロース水溶液250g、亜硝酸ナトリウム2.0gの水性分散媒体を調製した。一方、アクリロニトリル500g、2,2’-アゾビス-2,4ジメチルバレロニトリル2.9gからなるモノマー混合物を調製した。このモノマー混合物に水性分散媒体を加え、ホモジナイザーにより2000rpmで15分間撹拌し、モノマー混合物の微小液滴を造粒した。この重合性混合物の微小液滴を含有する水性分散媒体を撹拌機付重合缶(10L)に仕込み、温浴を使用し55℃で20時間重合した。得られた重合生成物を水相から濾過後、乾燥し、篩にかけ、平均粒子径40μmの球状の合成樹脂を得た。
 得られた合成樹脂を、加熱空気を通じながら250℃で5時間保持して酸化処理を行い、熱に対して不融性の前駆体を得た。これを窒素ガス雰囲気中、100℃/hの昇温速度で800℃まで焼成した後にカウンタージェットミル(ホソカワミクロン株式会社/100-AFG)で粉砕し、粉末状炭素前駆体とした。次に、この炭素前駆体10gを直径100mmの横型管状炉に入れ、250℃/hの昇温速度で1250℃まで昇温し、1250℃で1時間保持して本焼成を行い、炭素質材料10を得た。
(Example 10)
An aqueous dispersion medium of 250 g of 4% methylcellulose aqueous solution and 2.0 g of sodium nitrite was prepared in 1695 g of water. On the other hand, a monomer mixture composed of 500 g of acrylonitrile and 2.9 g of 2,2′-azobis-2,4 dimethylvaleronitrile was prepared. An aqueous dispersion medium was added to this monomer mixture, and the mixture was stirred for 15 minutes at 2000 rpm with a homogenizer to granulate fine droplets of the monomer mixture. An aqueous dispersion medium containing fine droplets of this polymerizable mixture was charged into a polymerization can equipped with a stirrer (10 L) and polymerized at 55 ° C. for 20 hours using a warm bath. The obtained polymerization product was filtered from the aqueous phase, dried and sieved to obtain a spherical synthetic resin having an average particle size of 40 μm.
The obtained synthetic resin was oxidized at a temperature of 250 ° C. for 5 hours while passing heated air to obtain a heat-insoluble precursor. This was fired in a nitrogen gas atmosphere at a heating rate of 100 ° C./h up to 800 ° C. and then pulverized by a counter jet mill (Hosokawa Micron Corporation / 100-AFG) to obtain a powdery carbon precursor. Next, 10 g of this carbon precursor is placed in a horizontal tubular furnace having a diameter of 100 mm, heated to 1250 ° C. at a heating rate of 250 ° C./h, and held at 1250 ° C. for 1 hour to perform main firing, thereby producing a carbonaceous material. 10 was obtained.
(実施例11)
 実施例4で得られた炭素質材料4を96質量部、SBR3質量部、CMC1質量部に水を加えて調製した負極合剤により電極を作製したこと以外は、実施例4と同様の方法で評価した。
(Example 11)
In the same manner as in Example 4, except that the carbonaceous material 4 obtained in Example 4 was made of a negative electrode mixture prepared by adding water to 96 parts by mass, 3 parts by mass of SBR, and 1 part by mass of CMC. evaluated.
(比較例1)
 多孔性球状ピッチの酸化温度を、270℃に変更し、炭素前駆体の粉砕粒径を10μmとし、この粉末状炭素前駆体を1.3×10-5kPaの減圧下1200℃で1時間焼成すること以外は、実施例1と同様の方法で比較炭素質材料1を得た。
(Comparative Example 1)
The oxidation temperature of the porous spherical pitch was changed to 270 ° C., the pulverized particle size of the carbon precursor was changed to 10 μm, and this powdery carbon precursor was calcined at 1200 ° C. under reduced pressure of 1.3 × 10 −5 kPa for 1 hour. A comparative carbonaceous material 1 was obtained in the same manner as in Example 1 except that.
(比較例2)
 比較例1と同様の粉末状炭素前駆体を試料収容部直径40mm、高さ60mmの円柱状るつぼに30g仕込み、炭素板で入り口を密封し、炭素化反応時に発生したガスがるつぼ内に滞留する状態で炭素化を行った。電気炉内にるつぼを仕込み、系内を真空脱気して窒素ガス置換した後、電気炉内を窒素ガス雰囲気とし、250℃/hの速度で1200℃まで昇温し、1200℃で1時間保持して、比較炭素質材料2を得た。
(Comparative Example 2)
30 g of a powdery carbon precursor similar to that in Comparative Example 1 is charged into a cylindrical crucible having a sample container diameter of 40 mm and a height of 60 mm, the inlet is sealed with a carbon plate, and the gas generated during the carbonization reaction stays in the crucible. Carbonization was performed in the state. After charging the crucible in the electric furnace, vacuuming the inside of the system and substituting with nitrogen gas, the inside of the electric furnace is made into a nitrogen gas atmosphere, heated to 1200 ° C. at a rate of 250 ° C./h, and then at 1200 ° C. for 1 hour. Holding, a comparative carbonaceous material 2 was obtained.
(比較例3)
 本焼成の焼成温度を1450℃にした以外は、実施例1と同様の方法で比較炭素質材料3を得た。
(Comparative Example 3)
A comparative carbonaceous material 3 was obtained in the same manner as in Example 1 except that the firing temperature of the main firing was 1450 ° C.
(比較例4)
 本焼成の焼成温度を800℃にした以外は、実施例1と同様の方法で比較炭素質材料4を得た。
(Comparative Example 4)
A comparative carbonaceous material 4 was obtained in the same manner as in Example 1 except that the firing temperature of the main firing was set to 800 ° C.
(比較例5)
 多孔性球状ピッチの酸化温度を223℃とした以外は、比較例2と同様にの方法で比較炭素質材料5を得た。
(Comparative Example 5)
Comparative carbonaceous material 5 was obtained in the same manner as in Comparative Example 2 except that the oxidation temperature of the porous spherical pitch was 223 ° C.
(比較例6)
 多孔性球状ピッチの酸化温度を215℃とした以外は、比較例2と同様の方法で比較炭素質材料6を得た。
(Comparative Example 6)
Comparative carbonaceous material 6 was obtained in the same manner as in Comparative Example 2 except that the oxidation temperature of the porous spherical pitch was 215 ° C.
 実施例および比較例で得られた炭素質材料の特性、それを用いて作製した電極および電池性能の測定結果を表1に示す。 Table 1 shows the characteristics of the carbonaceous materials obtained in Examples and Comparative Examples, and the measurement results of the electrodes produced using the carbonaceous materials and the battery performance.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1~11の炭素質材料は、真密度(ρBt)1.55g/cm以上1.75g/cm未満、0.05V~1.5Vにおける放電容量180Ah/g以上を有しており、0.2Vから1.1Vの放電曲線の傾き0.9/Xが0.75(Vg/Ah)以下の範囲であった。これは、0.2V~1.1Vという車載用リチウムイオン二次電池で最も使用に供する電位範囲における体積あたり放電曲線の傾きがなだらかであることを示しており、これにより50%前後の充電領域で使用される実用状態において、負極と正極との電位差が高く維持され、高い体積当たり放電容量を呈する。また、吸湿量が低かった。そのため、実施例1~10は、実用域で高い体積当たり放電容量と保存特性を備えていた。 The carbonaceous materials of Examples 1 to 11 have a true density (ρ Bt ) of 1.55 g / cm 3 or more and less than 1.75 g / cm 3 and a discharge capacity of 0.05 A to 1.5 V of 180 Ah / g or more. The slope 0.9 / X of the discharge curve from 0.2 V to 1.1 V was in the range of 0.75 (Vg / Ah) or less. This indicates that the slope of the discharge curve per volume in the potential range most used in the in-vehicle lithium ion secondary battery of 0.2 V to 1.1 V is gentle, and thus the charging range of around 50%. In the practical state used in the above, the potential difference between the negative electrode and the positive electrode is kept high and exhibits a high discharge capacity per volume. Moreover, the amount of moisture absorption was low. Therefore, Examples 1 to 10 were provided with a high discharge capacity per volume and storage characteristics in a practical range.
 これに対し、比較例1、2、4は、真密度(ρBt)が1.55g/cm未満であり、結晶構造的に空隙が大きくなるので、水分の吸着部分が多くなるため、吸湿量が高かった。また、比較例2は、0.05V~1.5Vにおける放電容量が低かった。比較例3、5、6は、真密度(ρBt)が本発明の範囲に含まれるものの、0.05V~1.5Vにおける放電容量が低かった。また、比較例2、3、5、6は、放電曲線の傾き(0.9/X)が大きいため、実用域での傾斜領域で容量を十分に確保できない。
 
On the other hand, in Comparative Examples 1, 2, and 4, the true density (ρ Bt ) is less than 1.55 g / cm 3 and the voids are large in the crystal structure. The amount was high. In Comparative Example 2, the discharge capacity at 0.05 V to 1.5 V was low. In Comparative Examples 3, 5, and 6, the true density (ρ Bt ) was included in the scope of the present invention, but the discharge capacity at 0.05 V to 1.5 V was low. In Comparative Examples 2, 3, 5, and 6, since the slope of the discharge curve (0.9 / X) is large, sufficient capacity cannot be secured in the slope region in the practical range.

Claims (8)

  1.  ブタノール法によって求められる真密度(ρBt)が1.55g/cm以上1.75g/cm未満、リチウム参照電極基準で0.05V~1.5Vにおける負極の放電容量が180mAh/g以上であり、
     リチウム参照電極基準で0.2Vから1.1Vに相当する放電容量X(Ah/g)と電位差0.9(V)とから計算される放電曲線の傾き0.9/X(Vg/Ah)が0.75(Vg/Ah)以下であり、25℃50%RH空気雰囲気で100時間保存後の吸湿量が1.5wt%以下であることを特徴とする非水電解質二次電池負極用炭素質材料。
    The true density (ρ Bt ) determined by the butanol method is 1.55 g / cm 3 or more and less than 1.75 g / cm 3 , and the discharge capacity of the negative electrode at 0.05 V to 1.5 V based on the lithium reference electrode is 180 mAh / g or more. Yes,
    Slope of discharge curve 0.9 / X (Vg / Ah) calculated from discharge capacity X (Ah / g) corresponding to 0.2 V to 1.1 V on the basis of lithium reference electrode and potential difference 0.9 (V) Is 0.75 (Vg / Ah) or less, and the moisture absorption after storage for 100 hours in a 25 ° C. and 50% RH air atmosphere is 1.5 wt% or less. Carbon for non-aqueous electrolyte secondary battery negative electrode Quality material.
  2.  ヘリウム置換法によって求められる真密度(ρHe)が、1.76g/cm以上である請求項1に記載の非水電解質二次電池負極用炭素質材料。 The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to claim 1, wherein a true density (ρ He ) obtained by a helium substitution method is 1.76 g / cm 3 or more.
  3.  ρHeとρBtとの比(ρHe/ρBt)が1.10以上である請求項1または2に記載の非水電解質二次電池負極用炭素質材料。 [rho the He and [rho Bt and the ratio (ρ He / ρ Bt) is a non-aqueous electrolyte secondary battery negative electrode carbonaceous material according to claim 1 or 2 is 1.10 or more.
  4.  窒素ガスの吸着によるBET法により求めた比表面積(BET)(m/g)と、平均粒子径(単位:μm)をDv50とした場合に、計算式「6/(Dv50×ρBt)」から求められる比表面積(CALC)(m/g)との比表面積比(BET/CALC)が、5.5超である請求項1から3のいずれかに記載の非水電解質二次電池負極用炭素質材料。 When the specific surface area (BET) (m 2 / g) determined by the BET method by adsorption of nitrogen gas and the average particle diameter (unit: μm) are D v50 , the calculation formula “6 / (D v50 × ρ Bt 4) The specific surface area ratio (BET / CALC) to the specific surface area (CALC) (m 2 / g) obtained from “)” is more than 5.5. The nonaqueous electrolyte secondary according to any one of claims 1 to 3 Carbonaceous material for battery negative electrode.
  5.  平均粒子径が1μm以上15μm以下である請求項1から4のいずれかに記載の非水電解質二次電池負極用炭素質材料。 The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to any one of claims 1 to 4, wherein the average particle size is 1 µm or more and 15 µm or less.
  6.  請求項1から5のいずれかに記載の非水電解質二次電池負極用炭素質材料を含む非水電解質二次電池用負極電極。 A negative electrode for a non-aqueous electrolyte secondary battery comprising the carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode according to any one of claims 1 to 5.
  7.  請求項6に記載の非水電解質二次電池用負極電極を備える非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to claim 6.
  8.  請求項7に記載の非水電解質二次電池を搭載した車両。 A vehicle equipped with the nonaqueous electrolyte secondary battery according to claim 7.
PCT/JP2015/059768 2014-03-31 2015-03-27 Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle WO2015152088A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15774007.7A EP3136482A1 (en) 2014-03-31 2015-03-27 Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle
KR1020167027011A KR20160129867A (en) 2014-03-31 2015-03-27 Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle
US15/300,304 US9991517B2 (en) 2014-03-31 2015-03-27 Carbonaceous material for non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery, and vehicle
JP2016511637A JPWO2015152088A1 (en) 2014-03-31 2015-03-27 Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery and vehicle
CN201580016423.5A CN106133963A (en) 2014-03-31 2015-03-27 Non-aqueous electrolyte secondary cell negative electrode carbonaceous material, anode for nonaqueous electrolyte secondary battery electrode, rechargeable nonaqueous electrolytic battery and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014074972 2014-03-31
JP2014-074972 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152088A1 true WO2015152088A1 (en) 2015-10-08

Family

ID=54240411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059768 WO2015152088A1 (en) 2014-03-31 2015-03-27 Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle

Country Status (7)

Country Link
US (1) US9991517B2 (en)
EP (1) EP3136482A1 (en)
JP (1) JPWO2015152088A1 (en)
KR (1) KR20160129867A (en)
CN (1) CN106133963A (en)
TW (1) TWI556495B (en)
WO (1) WO2015152088A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978947B2 (en) * 2018-01-12 2021-12-08 株式会社クレハ Negative electrode materials for batteries and their manufacturing methods, negative electrodes for secondary batteries, and secondary batteries
JP6593510B1 (en) * 2018-09-27 2019-10-23 住友大阪セメント株式会社 Electrode material, method for producing the electrode material, electrode, and lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279358A (en) * 1995-02-09 1996-10-22 Kureha Chem Ind Co Ltd Carbonaceous material for battery electrode, its manufacture, electrode structure body and battery
WO2005098999A1 (en) * 2004-04-05 2005-10-20 Kureha Corporation Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
JP2008047456A (en) * 2006-08-18 2008-02-28 Sumitomo Bakelite Co Ltd Carbon material and its manufacturing method, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
WO2014034431A1 (en) * 2012-08-29 2014-03-06 住友ベークライト株式会社 Negative electrode material, negative electrode active material, negative electrode, and alkali metal ion battery
WO2014034858A1 (en) * 2012-08-30 2014-03-06 株式会社クレハ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries and method for producing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427577A (en) 1990-05-23 1992-01-30 Matsushita Electric Ind Co Ltd Impact printer
US5601950A (en) 1994-06-29 1997-02-11 Sony Corporation Non-aqueous electrolyte secondary cell
JP3427577B2 (en) 1994-12-13 2003-07-22 ソニー株式会社 Non-aqueous electrolyte secondary battery
EP0726606B1 (en) 1995-02-09 2002-12-04 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous electrode material for battery and process for production thereof
JP3565994B2 (en) 1996-06-28 2004-09-15 呉羽化学工業株式会社 Carbonaceous material for electrode of non-aqueous solvent secondary battery, method for producing the same, and non-aqueous solvent secondary battery
JP4187804B2 (en) 1997-04-03 2008-11-26 ソニー株式会社 Non-aqueous solvent secondary battery electrode carbonaceous material, method for producing the same, and nonaqueous solvent secondary battery
JP4057838B2 (en) 2002-05-14 2008-03-05 本田技研工業株式会社 How to start the engine
TW200723579A (en) * 2005-09-09 2007-06-16 Kureha Corp Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery
JP5389652B2 (en) * 2007-08-10 2014-01-15 昭和電工株式会社 Negative electrode for lithium secondary battery, method for producing carbon negative electrode active material, lithium secondary battery and use thereof
EP2685535A4 (en) * 2011-03-10 2014-09-03 Kureha Corp Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
JP6345116B2 (en) 2012-09-06 2018-06-20 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode carbonaceous material and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279358A (en) * 1995-02-09 1996-10-22 Kureha Chem Ind Co Ltd Carbonaceous material for battery electrode, its manufacture, electrode structure body and battery
WO2005098999A1 (en) * 2004-04-05 2005-10-20 Kureha Corporation Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
JP2008047456A (en) * 2006-08-18 2008-02-28 Sumitomo Bakelite Co Ltd Carbon material and its manufacturing method, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
WO2014034431A1 (en) * 2012-08-29 2014-03-06 住友ベークライト株式会社 Negative electrode material, negative electrode active material, negative electrode, and alkali metal ion battery
WO2014034858A1 (en) * 2012-08-30 2014-03-06 株式会社クレハ Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136482A4 *

Also Published As

Publication number Publication date
CN106133963A (en) 2016-11-16
EP3136482A4 (en) 2017-03-01
EP3136482A1 (en) 2017-03-01
TW201545401A (en) 2015-12-01
JPWO2015152088A1 (en) 2017-04-13
US9991517B2 (en) 2018-06-05
KR20160129867A (en) 2016-11-09
TWI556495B (en) 2016-11-01
US20170141394A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
TWI481105B (en) Carbonaceous material for non-aqueous electrolyte secondary batteries
JP6450480B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material
JP6297703B2 (en) Method for producing carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
WO2015152214A1 (en) Negative electrode for all-solid battery and all-solid battery including same
KR20160130432A (en) Carbonaceous material for negative electrode of nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, nonaqueous-electrolyte secondary battery, and vehicle
JP6195660B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery and vehicle
JP2016181348A (en) Carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof
US9991517B2 (en) Carbonaceous material for non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery, and vehicle
WO2015141852A1 (en) Non-aqueous electrolyte secondary battery
JP6605451B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery and vehicle
JP6570413B2 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
WO2015152089A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and vehicle
JP2016157648A (en) Nonaqueous electrolyte secondary battery
JP2016177975A (en) Carbonaceous material for nonaqueous electrolyte secondary battery, manufacturing method thereof, negative electrode arranged by use of carbonaceous material, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511637

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015774007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015774007

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167027011

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15300304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE