JP2000012020A - Carbon material for lithium secondary battery negative electrode - Google Patents

Carbon material for lithium secondary battery negative electrode

Info

Publication number
JP2000012020A
JP2000012020A JP10176201A JP17620198A JP2000012020A JP 2000012020 A JP2000012020 A JP 2000012020A JP 10176201 A JP10176201 A JP 10176201A JP 17620198 A JP17620198 A JP 17620198A JP 2000012020 A JP2000012020 A JP 2000012020A
Authority
JP
Japan
Prior art keywords
boron
nitrogen
carbon
carbon powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10176201A
Other languages
Japanese (ja)
Inventor
Kimihito Suzuki
公仁 鈴木
Taro Kono
太郎 河野
Takeshi Hamada
健 濱田
Tsutomu Sugiura
勉 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10176201A priority Critical patent/JP2000012020A/en
Publication of JP2000012020A publication Critical patent/JP2000012020A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a powdery carbon material, which is high in discharge capacity, and excellent in initial charging/discharging efficiency and cycle characteristics, by specifying the 10% cumulative diameter (d10) of a graphitized carbon powder containing boron and nitrogen. SOLUTION: In a graphitized powder containing boron and nitrogen, a 10% cumulative diameter (d10) of the carbon powder is set 5 to 25 μm. Preferably, the carbon powder contains boron of 0.1 to 10% in terms of atomic ratio and nitrogen of 10% or less in terms of atomic ratio, and a spacing (d002) of a carbon mesh surface layer by an X-ray wide-angle diffraction method satisfies d002<=0.337 nm, and the size (Lc) of crystallite in a C-axis direction satisfies Lc>=40 nm. More preferably, surfaces of the powder satisfy C(N)/(C(B)+C(C)+C (N))<0.3, where the concentration of boron atoms, the concentration of carbon atoms, and the concentration of nitrogen atoms on the surfaces measured by a photoelectric spectrophotometer are C(B), C(C), and C(N), respectively, and boron nitride is used as a compound coating the surfaces.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
負極用材料に関するものである。さらに詳しくは、本発
明は工業的に大量に製造可能であって、放電容量が大き
く充放電時の容量ロスの少ない高性能なリチウム二次電
池負極用黒鉛化炭素材料に関するものである。
TECHNICAL FIELD The present invention relates to a material for a negative electrode of a lithium secondary battery. More specifically, the present invention relates to a graphitized carbon material for a negative electrode of a lithium secondary battery, which can be industrially manufactured in large quantities, has a large discharge capacity, and has a small capacity loss during charge and discharge.

【0002】[0002]

【従来の技術】リチウム二次電池は、高エネルギー密度
を有するため、移動体通信、携帯用情報端末用電源とし
て利用され、端末の普及とともにその市場が急速に伸び
ている。しかし端末機器の特徴である容積の大きな部分
を占める電池に対し更なる小型、軽量化へ向けた性能改
善が進められている。
2. Description of the Related Art Since lithium secondary batteries have a high energy density, they are used as power sources for mobile communication and portable information terminals, and the market is rapidly expanding with the spread of terminals. However, the performance improvement of the battery occupying a large part of the volume, which is a characteristic of the terminal device, for further reduction in size and weight is being promoted.

【0003】現在その二次電池に使用されている負極材
料は炭素材料であり、電池性能を左右するキーマテリア
ルとなっている。その炭素材料の中でも、天然黒鉛、炭
素繊維、メソフェース小球体は、それ自体若くは単に高
温で熱処理することでリチウム二次電池用負極材料とし
て高性能を発現することが知られている(例えば、Carb
on, 13, 337 (1975)、特開昭64−2258号公報、J.
Electrochem. Soc.,142, 2564 (1995)、第34回電池
討論会3A07)。しかし、天然黒鉛は黒鉛結晶の優先
配向が進みすぎているために負荷特性が悪く、炭素繊維
やメソフェース小球体はその製造方法から容易に推測さ
れるように製造コストに問題がある。
The negative electrode material currently used for such secondary batteries is a carbon material, which is a key material that affects battery performance. Among the carbon materials, it is known that natural graphite, carbon fiber, and mesoface microspheres exhibit high performance as a negative electrode material for a lithium secondary battery by itself or simply by heat treatment at a high temperature (for example, Carb
on, 13, 337 (1975), JP-A-64-2258, J.
Electrochem. Soc., 142, 2564 (1995), 34th Battery Symposium 3A07). However, natural graphite has poor load characteristics due to excessive advancement of the graphite crystal in the preferred orientation, and carbon fiber and mesoface spheroids have a problem in production cost as easily estimated from the production method.

【0004】高性能を有し、且つ、大量に低コストで生
産し得る黒鉛系負極材料の候補としてホウ素添加黒鉛材
料が特開平8−31422号公報、特開平5−2908
43号公報等に開示されている。ホウ素との共存下での
実用的な熱処理温度レベルの焼成により、原料である炭
素粉末を単独で焼成した場合と比較して高度に発達した
黒鉛結晶を有する炭素材料を獲得することができる。こ
うして得た高黒鉛化炭素材料はリチウム二次電池負極と
して高い電極性能(放電容量、初期効率、サイクル特性
等)を有する。
As a candidate for a graphite-based negative electrode material which has high performance and can be mass-produced at low cost, boron-doped graphite materials are disclosed in JP-A-8-31422 and JP-A-5-2908.
No. 43, and the like. By firing at a practical heat treatment temperature level in the coexistence with boron, a carbon material having highly developed graphite crystals can be obtained as compared with a case where carbon powder as a raw material is fired alone. The highly graphitized carbon material thus obtained has high electrode performance (discharge capacity, initial efficiency, cycle characteristics, etc.) as a negative electrode for a lithium secondary battery.

【0005】本発明者らは、このようなホウ素添加によ
る高黒鉛化炭素材料を実験炉を用いて作成し、その効果
を見い出すことに成功したため、次ステップとして本材
料の製造プロセスの工業化を試みた。すなわち原料とな
る大量の炭素粉末にホウ素化合物を添加し、アチソン炉
(詰め粉への通電による間接通電加熱方式)およびLW
G炉(坩堝への直接通電加熱方式)を用いてリチウム二
次電池用高性能炭素材料の製造を行った。しかし、大量
に製造された炭素粉末は実験炉で作成した場合と同様十
分に黒鉛化触媒効果が現れているにもかかわらず、それ
を電池に組み込んだ場合に特に不可逆容量が大きいこと
が判明した。
[0005] The present inventors have succeeded in producing such a graphitized carbon material by adding boron using an experimental furnace and finding out the effect thereof. Was. That is, a boron compound is added to a large amount of carbon powder as a raw material, and an Acheson furnace (an indirect current heating method in which current is applied to the filling powder) and LW
Production of a high-performance carbon material for a lithium secondary battery was performed using a G furnace (direct current heating method for a crucible). However, even though the carbon powder produced in large quantities exhibited a sufficient graphitizing catalytic effect as in the case of the experimental furnace, it was found that the irreversible capacity was particularly large when it was incorporated into the battery. .

【0006】その原因を追及した結果、大量に製造され
た炭素粉末の表面に絶縁性の窒化ホウ素が生成している
ことが確認された。窒化ホウ素自体は電気化学的に不活
性とされているが、実際に測定を行ったところ、リチウ
ムのインターカレーション反応は起こさないが、還元時
にその表面で溶媒の分解に相当する不可逆容量が観測さ
れた。従って、大量に製造された炭素粉末では表面に存
在する窒化ホウ素が副反応を起こすために不可逆容量が
大きくなったものと推定された。
[0006] As a result of investigating the cause, it was confirmed that insulating boron nitride was formed on the surface of a large amount of carbon powder. Boron nitride itself is considered to be electrochemically inert, but when measured, no lithium intercalation reaction occurs, but an irreversible capacity corresponding to the decomposition of the solvent is observed on the surface during reduction. Was done. Therefore, it was presumed that the irreversible capacity of the carbon powder produced in large quantities was increased due to the side reaction of boron nitride present on the surface.

【0007】工業用焼成炉は開放系で運転されるため、
炭素粉末の黒鉛化が生ずる温度域では炉内雰囲気は一酸
化炭素および窒素で満たされる。当該温度域では雰囲気
中の窒素が黒鉛化触媒として加えたホウ素と反応して窒
化ホウ素が生成する(理化学辞典、第3版、833
頁)。従って大量製造された炭素粉末はその表面に不可
避的に窒化ホウ素を生ずるものと考えられる。また工業
用焼成炉はその熱容量が非常に大きいため、加熱及び冷
却に長時間を必要とする。従って、工業用焼成炉での炭
素粉末の大量製造では、雰囲気中の窒素と触媒であるホ
ウ素が窒化ホウ素を生成する温度域にある時間が相当長
いため、窒化ホウ素の生成反応が十分に進行してしま
う。
[0007] Since the industrial firing furnace is operated in an open system,
The furnace atmosphere is filled with carbon monoxide and nitrogen in a temperature range where graphitization of the carbon powder occurs. In the temperature range, nitrogen in the atmosphere reacts with boron added as a graphitization catalyst to produce boron nitride (Physical Dictionary, Third Edition, 833).
page). Therefore, it is considered that the carbon powder mass-produced inevitably produces boron nitride on its surface. Further, since the heat capacity of an industrial firing furnace is very large, a long time is required for heating and cooling. Therefore, in the mass production of carbon powder in an industrial firing furnace, the time in which nitrogen in the atmosphere and boron as a catalyst are in a temperature range in which boron nitride is generated is considerably long, so that the boron nitride generation reaction proceeds sufficiently. Would.

【0008】以上の知見より、窒化ホウ素の生成を防ぎ
つつ工業用焼成炉を用いて炭素粉末を大量焼成するに
は、焼成炉内のガス雰囲気の制御や、加熱、冷却速度の
制御が必要となるが、その実現には莫大なコストが必要
であり実質上困難である。従って、単に工業用焼成炉で
大量に焼成するだけでは特開平8−31422号公報、
特開平5−290843号公報等で開示されているホウ
素黒鉛化炭素材料と同等の電極性能を発揮する材料を得
ることは不可能であった。
[0008] From the above-mentioned knowledge, it is necessary to control the gas atmosphere in the sintering furnace and control the heating and cooling rates in order to sinter a large amount of carbon powder using an industrial sintering furnace while preventing the formation of boron nitride. However, its implementation requires enormous costs and is practically difficult. Therefore, simply firing a large amount in an industrial firing furnace is disclosed in JP-A-8-31422,
It has not been possible to obtain a material exhibiting the same electrode performance as the boron graphitized carbon material disclosed in JP-A-5-290843 and the like.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、工業
用焼成炉にてホウ素化合物と炭素粉末を熱処理して製造
された炭素粉末において発生する上記の問題点、すなわ
ち、粉末表面に不可避的に形成する窒化ホウ素表面で起
こる副反応により不可逆容量が大きくなるという問題点
を、材料内部の高度に発達した黒鉛結晶構造を保持しな
がら解決するリチウム二次電池負極用黒鉛化炭素粉末の
大量製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems that occur in carbon powder produced by heat-treating a boron compound and carbon powder in an industrial sintering furnace, that is, inevitably, the powder surface is inevitable. Mass production of graphitized carbon powder for negative electrodes of lithium secondary batteries that solves the problem of irreversible capacity increasing due to side reactions occurring on the surface of boron nitride formed while maintaining the highly developed graphite crystal structure inside the material It is to provide a method.

【0010】[0010]

【課題を解決するための手段】本発明者らは、窒化ホウ
素自体の電気化学特性を基に、工業炉で製造された窒化
ホウ素がその表面に形成されているホウ素添加黒鉛化炭
素粉末について鋭意検討した結果、窒化ホウ素としての
面積を減らすために黒鉛化材料の微粉部分を除去して粒
度分布をある範囲に規定することにより不可逆容量が大
きく改善されることを見い出した。本発明はかかる知見
に基づいて完成されたものである。
Means for Solving the Problems The inventors of the present invention have eagerly studied a boron-added graphitized carbon powder having boron nitride produced in an industrial furnace formed on its surface, based on the electrochemical characteristics of boron nitride itself. As a result of the investigation, it has been found that the irreversible capacity is largely improved by removing the fine powder portion of the graphitized material and defining the particle size distribution in a certain range in order to reduce the area as boron nitride. The present invention has been completed based on such findings.

【0011】即ち、本発明によるホウ素及び窒素を含有
する黒鉛化炭素粉末は、その炭素質粉末の10%累積径
(d10)が5〜25μmであることを特徴とするもので
ある。また好ましくはその炭素粉末が、ホウ素を原子比
で0.1〜10%、窒素を原子比で10%以下の範囲で
含有し、X線広角回折法における炭素網面層の面間隔
(d002 )および結晶子のC軸方向の大きさ(Lc)が
002 ≦0.337nm、Lc≧40nmである。さら
に好ましくは、その粉末の表面が光電子分光法で測定し
た表面のホウ素原子濃度、炭素原子濃度、窒素原子濃度
をそれぞれC(B)、C(C)、C(N)とした場合に C(N)/(C(B)+C(C)+C(N))<0.3 を満足し、且つ、表面を被覆する化合物が窒化ホウ素で
あることを特徴とするものである。
That is, the graphitized carbon powder containing boron and nitrogen according to the present invention is characterized in that the carbonaceous powder has a 10% cumulative diameter (d 10 ) of 5 to 25 μm. Preferably, the carbon powder contains boron in an atomic ratio of 0.1 to 10% and nitrogen in an atomic ratio of 10% or less, and the plane spacing (d 002) of the carbon mesh layer in the X-ray wide-angle diffraction method. ) And the crystallite size (Lc) in the C-axis direction is d 002 ≦ 0.337 nm and Lc ≧ 40 nm. More preferably, when the surface of the powder has a boron atom concentration, a carbon atom concentration, and a nitrogen atom concentration measured by photoelectron spectroscopy as C (B), C (C), and C (N), respectively, C ( N) / (C (B) + C (C) + C (N)) <0.3, and the compound covering the surface is boron nitride.

【0012】[0012]

【発明の実施の形態】以下に本発明の具体的な内容につ
いて述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The specific contents of the present invention will be described below.

【0013】本発明は、工業用焼成炉にてホウ素化合物
と炭素粉末を熱処理して製造された炭素粉末が、研究炉
で製造された炭素粉末と同様のホウ素の黒鉛化触媒効果
により高度に発達した黒鉛結晶構造に由来した高い放電
容量、且つ、高い初期充放電効率を示すことを可能にす
るものである。
According to the present invention, carbon powder produced by heat-treating a boron compound and carbon powder in an industrial firing furnace is highly developed by the same graphitizing catalytic effect of boron as carbon powder produced in a research furnace. It is possible to exhibit high discharge capacity and high initial charge / discharge efficiency derived from the obtained graphite crystal structure.

【0014】すなわち本発明は、工業用焼成炉にてホウ
素化合物と炭素粉末を熱処理して製造された炭素粉末
が、ホウ素添加により通常の熱処理では得られない高い
黒鉛結晶性を保持し、且つ、表面に生成する窒化ホウ素
の面積の少ない材料になることを目的として、黒鉛化処
理後の粉砕、分級操作を通じて最終的に製造される材料
の粒度分布を規定することにより窒化ホウ素による影響
を低減することに着目したものである。
That is, according to the present invention, a carbon powder produced by heat-treating a boron compound and carbon powder in an industrial sintering furnace retains high graphite crystallinity which cannot be obtained by ordinary heat treatment by adding boron, and Reduce the effect of boron nitride by defining the particle size distribution of the material finally manufactured through pulverization and classification operations after graphitization, with the aim of becoming a material with a small area of boron nitride generated on the surface It focuses on that.

【0015】窒化ホウ素表面で起こる不可逆反応に関し
ては明らかではないが、黒鉛とほぼ同一の結晶構造を有
し、且つ、その非水電解質中での充放電曲線で特に初期
還元時に出現するショルダー部分が黒鉛を電極とした場
合の電解質の分解に相当する電位に近く、放電時に取り
出せる容量が全く無いこと等を考え併せると、黒鉛電極
で起こる層間への溶媒和イオンの共挿入が引き金となっ
て溶媒の還元分解が起こっていると推定された。
Although it is not clear about the irreversible reaction occurring on the surface of boron nitride, it has a crystal structure almost identical to that of graphite, and its charge-discharge curve in a non-aqueous electrolyte has a shoulder portion which appears especially during initial reduction. Considering that the potential is close to the potential corresponding to the decomposition of the electrolyte when graphite is used as the electrode, and there is no capacity to be taken out during discharge, co-insertion of solvated ions between layers at the graphite electrode triggers the solvent Was presumed to have undergone reductive decomposition.

【0016】本発明で最終製品の比表面積を規定するこ
とで窒化ホウ素による電極性能への影響を低減する理由
は以下の通りである。即ち、黒鉛化処理により得られた
黒鉛化炭素粉末は粉末粒子間が一部生成する炭化ホウ素
を介して強く焼結した状態になるので、粉砕などにより
製品としての粒径に調整する必要がある。その粒度調整
の際に行う粉砕等により、その条件にもよるが黒鉛化炭
素粉末表面の窒化ホウ素の一部、あるいは大部分が機械
的に剥離されると思われる。その過程で発生した細かく
粉砕された窒化ホウ素を多く含む微小粉を黒鉛化炭素質
粉末の10%累積径(d10)が5〜25μmになるよう
に分級操作で除去することにより、最終製品の材料表面
の窒化ホウ素の存在量およびその面積を相当低く抑える
ことが可能となる。10%累積径が5μm未満のような
例えば単に粉砕操作を行ったのみ、あるいは、その後の
分級操作が十分でない場合、粉砕で生じた窒化ホウ素の
粉砕片が多く含まれたままとなり、窒化ホウ素表面での
副反応を抑制するまでには至らず、初期効率が大幅に悪
化し、実用上大きな問題となる。また、10%累積径が
25μmを超える場合には、最終的な電極厚みである1
00μm程度にすることが困難になるばかりでなく、粒
子と集電体との接触面積が小さく集電体から剥離しやす
くなるため、サイクル特性が低下するなど種々の電池性
能に悪影響を及ぼす。
The reason why the influence of boron nitride on the electrode performance is reduced by defining the specific surface area of the final product in the present invention is as follows. That is, the graphitized carbon powder obtained by the graphitization treatment is in a strongly sintered state through the boron carbide generated partially between the powder particles, so that it is necessary to adjust the particle size as a product by grinding or the like. . It is considered that some or most of the boron nitride on the surface of the graphitized carbon powder is mechanically peeled off by pulverization or the like at the time of adjusting the particle size, depending on the conditions. The fine powder containing a large amount of finely pulverized boron nitride generated in the process is removed by a classification operation so that the 10% cumulative diameter (d 10 ) of the graphitized carbonaceous powder becomes 5 to 25 μm. The amount and area of boron nitride on the surface of the material can be considerably reduced. For example, if the 10% cumulative diameter is less than 5 μm, for example, if only the pulverizing operation is performed, or if the subsequent classification operation is not sufficient, pulverized pieces of boron nitride generated by the pulverization remain contained and the boron nitride surface However, the initial efficiency is greatly deteriorated, which is a serious problem in practical use. When the 10% cumulative diameter exceeds 25 μm, the final electrode thickness of 1
Not only is it difficult to reduce the thickness to about 00 μm, but also the contact area between the particles and the current collector is so small that the particles can be easily separated from the current collector.

【0017】ここでいう黒鉛化炭素粉末の粒度分布の調
整は工業的に通常用いられる方法を用いることが可能で
ある。たとえば、粉砕にはボールミル、ピンミル、ディ
スクミル、インペラーミル、ジェットミル、ローラーミ
ル、スタンプミル、カッティングミル等が、分級には空
気分級機、ふるい等が好適に用いられるが、特にこれら
に限定されるものではない。
The particle size distribution of the graphitized carbon powder can be adjusted by a method generally used in industry. For example, ball mills, pin mills, disk mills, impeller mills, jet mills, roller mills, stamp mills, cutting mills, etc. are preferably used for pulverization, and air classifiers, sieves, etc. are preferably used for classification, but are not particularly limited thereto. Not something.

【0018】焼成後の黒鉛化炭素粉中に含まれるホウ素
及び窒素の含有量に関して検討した結果、高い放電容量
且つ高い初期効率を得るためには、材料中のホウ素の含
有量は原子比で0.1%以上10%以下、窒素の含有量
は原子比で10%以下が好ましいことが判明した。ホウ
素含有量が10%を越える場合には、ホウ素の黒鉛への
固溶限界量以上のホウ素が炭化ホウ素として黒鉛化品中
に残存するが、電気化学的に不活性であるため、その分
放電容量が低下してしまう。また、ホウ素含有量0.1
%未満の黒鉛化粉末の場合には添加されたホウ素の触媒
効果が十分に発揮されず、通常の熱処理品とほとんど変
わらないため、電池として求められる各種物性が向上し
ない。一方、窒素含有量が10%を越える材料では、材
料自体の電気比抵抗が増大し充放電時の過電圧が大きく
なるため、リチウムのドープ/脱ドープ量を増やすこと
ができず放電容量が大きく低下してしまう。
As a result of examining the contents of boron and nitrogen contained in the graphitized carbon powder after firing, in order to obtain a high discharge capacity and a high initial efficiency, the content of boron in the material should be 0 in atomic ratio. It has been found that the content of nitrogen is preferably not less than 0.1% and not more than 10%, and the content of nitrogen is preferably not more than 10% in atomic ratio. When the boron content exceeds 10%, boron exceeding the solid solubility limit of boron in graphite remains in the graphitized product as boron carbide, but is inactive electrochemically, and accordingly, the amount of discharge increases. The capacity will decrease. In addition, boron content 0.1
% Of the graphitized powder, the catalytic effect of the added boron is not sufficiently exhibited, and is substantially the same as that of a normal heat-treated product, so that various physical properties required for a battery are not improved. On the other hand, in the case of a material having a nitrogen content of more than 10%, the electric resistivity of the material itself increases, and the overvoltage at the time of charging and discharging increases, so that the doping / dedoping amount of lithium cannot be increased and the discharge capacity is greatly reduced. Resulting in.

【0019】黒鉛構造の発達度合の指標である黒鉛化度
に関し、炭素質材料を規定するX線回折法によるパラメ
ーターとして、炭素網面層の面間隔(d002 )および結
晶子のC軸方向の大きさ(Lc)がd002 ≦0.337
nm、Lc≧40nmを満たすことが必要であることが
判明した。
Regarding the degree of graphitization, which is an index of the degree of development of the graphite structure, as parameters by the X-ray diffraction method for defining the carbonaceous material, the plane spacing (d 002 ) of the carbon mesh layer and the C-axis direction of the crystallite The size (Lc) is d 002 ≦ 0.337
It was found that it was necessary to satisfy nm and Lc ≧ 40 nm.

【0020】d002 が0.337nmを越え、且つ、L
cが40nmに満たない場合には、黒鉛構造の発達度合
が低いため、リチウムのドープ量が小さくなり、高い放
電容量を得ることができない。
When d 002 exceeds 0.337 nm and L
When c is less than 40 nm, the degree of development of the graphite structure is low, so that the doping amount of lithium becomes small and a high discharge capacity cannot be obtained.

【0021】また工業炉で製造されるホウ素添加黒鉛化
炭素材料の表面化学種が窒化ホウ素であり、且つ、光電
子分光法で測定した表面のホウ素原子濃度、炭素原子濃
度、窒素原子濃度をそれぞれC(B)、C(C)、C
(N)とした場合に C(N)/(C(B)+C(C)+C(N))<0.3 を満足することが必要であることが判明した。C(N)
/(C(B)+C(C)+C(N))が0.3以上であ
る場合には、窒化ホウ素による電極性能への悪影響が無
視できないレベルにまで達し、特に窒化ホウ素表面での
副反応が進行して実用レベルの高い初期効率を得ること
ができない。またここで表面化学種を窒化ホウ素と同定
した理由は、光電子分光法で測定した窒素原子の1s軌
道由来のピーク位置とホウ素原子の1s軌道由来のピー
ク位置が窒化ホウ素単体について測定した各々のピーク
位置に一致すること、及び、ピーク面積から定量した窒
素原子濃度とホウ素原子濃度の比がほぼ1:1となるこ
とである。
The surface chemical species of the boron-added graphitized carbon material produced in the industrial furnace is boron nitride, and the boron atom concentration, carbon atom concentration, and nitrogen atom concentration on the surface measured by photoelectron spectroscopy are represented by C, respectively. (B), C (C), C
It was found that it was necessary to satisfy C (N) / (C (B) + C (C) + C (N)) <0.3 when (N) was set. C (N)
When / (C (B) + C (C) + C (N)) is 0.3 or more, the adverse effect of boron nitride on the electrode performance reaches a nonnegligible level, and in particular, side reactions on the boron nitride surface Progress and it is not possible to obtain a practically high initial efficiency. The reason why the surface species was identified as boron nitride is that the peak position derived from the 1s orbital of the nitrogen atom measured by photoelectron spectroscopy and the peak position derived from the 1s orbital of the boron atom were the respective peaks measured for boron nitride alone. That is, they correspond to the positions, and the ratio of the nitrogen atom concentration to the boron atom concentration determined from the peak area is approximately 1: 1.

【0022】本発明に用いられる原料の炭素粉末は、リ
チウム二次電池負極用高黒鉛化炭素粉末として最適な黒
鉛構造(グラファイト層の積層配列規則性)を形成しや
すい材料であり、例えばピッチを原料とした炭素繊維、
ピッチコークス、メソフェース小球体等を挙げることが
できるが、特にこれらに限定するものではない。また、
その炭素粉末の原料としてピッチを用いた場合は、用い
たピッチについては特に制約を受けないが、焼成によっ
て黒鉛結晶性が発達しやすいもの、いわゆる黒鉛化のし
やすい(易黒鉛化性)ことが本質的に重要であり、例示
すれば、石油ピッチ、アスファルトピッチ、コールター
ルピッチ、ナフタレンピッチ、原油分解ピッチ、石油ス
ラッジピッチ、高分子重合体の熱分解により得られるピ
ッチ等を挙げることができ、また、これらのピッチに水
添処理等を施したものでもよい。
The carbon powder as a raw material used in the present invention is a material that easily forms a graphite structure (regular arrangement regularity of graphite layers) as a highly graphitized carbon powder for a negative electrode of a lithium secondary battery. Carbon fiber as raw material,
Examples include pitch coke and mesoface small spheres, but are not particularly limited to these. Also,
When pitch is used as a raw material of the carbon powder, there is no particular restriction on the pitch used, but it is easy for graphite crystallinity to develop by firing, so-called graphitization (easy graphitization). Essentially important, for example, petroleum pitch, asphalt pitch, coal tar pitch, naphthalene pitch, crude cracking pitch, petroleum sludge pitch, pitch obtained by pyrolysis of a high-molecular polymer, etc. Further, these pitches may be subjected to a hydrogenation treatment or the like.

【0023】原料である炭素粉末の平均粒径は50μm
以下であることが望ましい。これは、炭素粉末をリチウ
ム二次電池用負極材料として用いて電極を作成する際
に、集電体上に厚さ100μm程度の薄膜状にする必要
があるためである。またこのような原料炭素粉末の粒度
分布の調整は黒鉛化炭素粉末の粒度分布の調製と同様に
工業的に通常用いられる方法を用いることが可能であ
る。
The average particle size of the carbon powder as a raw material is 50 μm.
It is desirable that: This is because when forming an electrode using carbon powder as a negative electrode material for a lithium secondary battery, it is necessary to form a thin film having a thickness of about 100 μm on the current collector. Adjustment of the particle size distribution of the raw material carbon powder can be performed by a method generally used in industry, similarly to the preparation of the particle size distribution of the graphitized carbon powder.

【0024】本発明が提供する黒鉛化炭素粉末の成型に
関しては、リチウム電池に用いる粉末状電池活物質に対
し、通常用いられる方法で成型することが可能であり、
炭素質粉末の性能を十分に引き出し、且つ、粉末に対す
る賦型性が高く、化学的、電気化学的に安定であれば何
らこれに制限されるものではないが、例示すれば、炭素
質粉末にポリテトラフルオロエチレン等フッ素系樹脂の
粉末あるいはディスパージョン溶液を添加後、混合、混
練する方法がある。また、炭素質粉末にポリエチレン、
ポリビニルアルコール等の樹脂粉末を添加した後、乾式
混合物を金型に挿入し、ホットプレスにより成型する方
法もある。さらに、炭素質粉末にポリフッ化ビニリデン
等のフッ素系樹脂粉末あるいはカルボキシメチルセルロ
ース等の水溶性粘結剤をバインダーにして、N−メチル
ピロリドン、ジメチルホルムアミドあるいは水、アルコ
ール等の溶媒を用いて混合することによりスラリーを作
成し、集電体上に塗布、乾燥することにより成型するこ
ともできる。
With regard to the molding of the graphitized carbon powder provided by the present invention, it is possible to mold the powdered battery active material used for a lithium battery by a method generally used,
The performance of the carbonaceous powder is sufficiently extracted, and the shapeability of the powder is high, and it is not limited to this as long as it is chemically and electrochemically stable. There is a method in which a powder or dispersion solution of a fluororesin such as polytetrafluoroethylene is added, followed by mixing and kneading. In addition, polyethylene,
There is also a method of adding a resin powder such as polyvinyl alcohol, inserting the dry mixture into a mold, and molding by hot pressing. Further, a carbonaceous powder is mixed with a fluorine-based resin powder such as polyvinylidene fluoride or a water-soluble binder such as carboxymethyl cellulose as a binder, and mixed with a solvent such as N-methylpyrrolidone, dimethylformamide or water or alcohol. Can be formed by applying a slurry on a current collector and drying the slurry.

【0025】本発明の炭素材料は、正極活物質と有機溶
媒系電解質と適宜に組み合わせて用いることができる
が、これらの有機溶媒系電解質や正極活物質は、リチウ
ム二次電池に通常用いることのできるものであれば、特
にこれを制限するものではない。
The carbon material of the present invention can be used in an appropriate combination with a positive electrode active material and an organic solvent-based electrolyte. These organic solvent-based electrolytes and the positive electrode active material are usually used in lithium secondary batteries. This is not particularly limited as long as it is possible.

【0026】正極活物質としては、例えば、リチウム含
有遷移金属酸化物LiM(1)x 2 (式中Xは0≦X
≦1の範囲の数値であり、式中M(1)は遷移金属を表
しCo、Ni、Mn、Cr、Ti、V、Fe、Zn、A
l、In、Snの少なくとも一種類からなる)或いはL
iM(1)y M(2)2-y 4 (式中Yは0≦Y≦1の
範囲の数値であり、式中M(1)、M(2)は遷移金属
を表しCo、Ni、Mn、Cr、Ti、V、Fe、Z
n、B、Al、In、Snの少なくとも一種類からな
る)、遷移金属カルコゲン化物(TiS2 、NbSe3
など)、バナジウム酸化物(V2 5 、V6 13、V2
4 、V3 8 など)及びそのLi化合物、一般式Mx
Mo6 Ch8-y (式中Xは0≦X≦4、Yは0≦Y≦1
の範囲の数値であり、式中Mは遷移金属をはじめとする
金属、Chはカルコゲン元素を表す)で表されるシェブ
レル相化合物、或いは活性炭、活性炭素繊維等を用いる
ことができる。
As the positive electrode active material, for example, a lithium-containing transition metal oxide LiM (1) x O 2 (where X is 0 ≦ X
≦ 1 where M (1) represents a transition metal, Co, Ni, Mn, Cr, Ti, V, Fe, Zn, A
l, In, Sn) or L
iM (1) y M (2) 2-y O 4 (where Y is a numerical value in the range of 0 ≦ Y ≦ 1, where M (1) and M (2) represent transition metals and Co and Ni , Mn, Cr, Ti, V, Fe, Z
n, B, Al, In, Sn), transition metal chalcogenides (TiS 2 , NbSe 3
Etc.), vanadium oxide (V 2 O 5, V 6 O 13, V 2
O 4 , V 3 O 8, etc.) and its Li compounds, the general formula M x
Mo 6 Ch 8-y (where X is 0 ≦ X ≦ 4, Y is 0 ≦ Y ≦ 1
Wherein M represents a metal such as a transition metal, and Ch represents a chalcogen element), a chevrel phase compound represented by the following formula, activated carbon, activated carbon fiber, or the like.

【0027】有機溶媒系電解質における有機溶媒として
は、特に制限されるものではないが、例えば、プロピレ
ンカーボネート、エチレンカーボネート、ブチレンカー
ボネート、クロロエチレンカーボネート、ジメチルカー
ボネート、ジエチルカーボネート、1,1−及び1,2
−ジメトキシエタン、1,2−ジエトキシエタン、γ−
ブチロラクトン、テトラヒドロフラン、2−メチルテト
ラヒドロフラン、1,3−ジオキソラン、4−メチル−
1,3−ジオキソラン、アニソール、ジエチルエーテ
ル、スルホラン、メチルスルホラン、アセトニトリル、
クロロニトリル、プロピオニトリル、ホウ酸トリメチ
ル、ケイ酸テトラメチル、ニトロメタン、ジメチルホル
ムアミド、N−メチルピロリドン、酢酸エチル、トリメ
チルオルトホルメート、ニトロベンゼン、塩化ベンゾイ
ル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチ
ルスルホキシド、3−メチル−2−オキサゾリドン、エ
チレングリコール、サルファイト、ジメチルサルファイ
ト等の単独もしくは2種類以上の混合溶媒が使用でき
る。
The organic solvent in the organic solvent-based electrolyte is not particularly limited. For example, propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,1- and 1,1- 2
-Dimethoxyethane, 1,2-diethoxyethane, γ-
Butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-
1,3-dioxolan, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile,
Chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3 A single solvent such as -methyl-2-oxazolidone, ethylene glycol, sulfite, dimethyl sulfite and the like, or a mixed solvent of two or more thereof can be used.

【0028】電解質としては、従来より公知のものを何
れも使用することができ、例えば、LiClO4 、Li
BF4 、LiPF6 、LiAsF6 、LiB(C
6 5 )、LiCl、LiBr、LiCF3 SO3 、L
iCH3 SO3 、Li(CF3 SO2 2 N、Li(C
3 SO2 3 C、Li(CF3 CH2 OSO2
2 N、Li(CF3 CF2 CH2 OSO2 2 N、Li
(HCF2 CF2 CH2 OSO2)2 N、Li((C
3 2 CHOSO2 2 N、LiB[C6 3 (CF
3 2 4 等の一種または二種以上の混合物を挙げるこ
とができる。
As the electrolyte, any of conventionally known electrolytes can be used. For example, LiClO 4 , Li
BF 4 , LiPF 6 , LiAsF 6 , LiB (C
6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , L
iCH 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C
F 3 SO 2 ) 3 C, Li (CF 3 CH 2 OSO 2 )
2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N, Li
(HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((C
F 3 ) 2 CHOSO 2 ) 2 N, LiB [C 6 H 3 (CF
3) 2] can be exemplified one or two or more thereof, such as 4.

【0029】以下に本発明のリチウム二次電池負極用炭
素材料の規定に用いた種々の物性値の表現方法、及び、
測定方法を示す。
Hereinafter, various physical property expression methods used for defining the carbon material for a negative electrode of a lithium secondary battery according to the present invention, and
The measurement method will be described.

【0030】(1)d002 、Lc 単色のX線を平行ビームにコリメートし、高純度シリコ
ンを内部標準として加えた炭素粉末に照射し、黒鉛の0
02面に対応するピークを測定する。そのピークの位置
及び半値幅を内部標準のシリコンのピークを標準として
補正することにより層面間の間隔d002 及び結晶子のC
軸方向の大きさLcを算出する。さらに具体的な評価方
法は、例えば、“炭素繊維”、近代編集社、昭和61年
3月発行、p733からp742に記載されている。
(1) d 002 , Lc Monochromatic X-rays are collimated into a parallel beam and irradiated to a carbon powder to which high-purity silicon is added as an internal standard.
The peak corresponding to the 02 plane is measured. By correcting the peak position and half-value width with the internal standard silicon peak as a standard, the distance d 002 between the layer planes and the C
The size Lc in the axial direction is calculated. A more specific evaluation method is described in, for example, "Carbon Fiber", pp. 733 to p.

【0031】(2)光電子分光法による炭素粉末表面領
域での元素濃度 高真空下、試料台に固定した炭素粉末に単色X線を照射
し、そのときに出てくる各元素の内殻電子の個数を計測
し、各元素毎の感度係数を掛けることで、各元素の炭素
粉末表面領域における濃度が測定される。尚、本発明の
炭素粉末での測定に際しては、ホウ素、炭素、窒素のみ
を測定元素とし、それらの原子濃度は、これら3つを加
えると1になるように規格化する。
(2) Element concentration in the carbon powder surface region by photoelectron spectroscopy The carbon powder fixed on the sample table is irradiated with monochromatic X-rays under high vacuum, and the inner electrons of each element appearing at that time are emitted. By measuring the number and multiplying by the sensitivity coefficient of each element, the concentration of each element in the carbon powder surface region is measured. In the measurement using the carbon powder of the present invention, only boron, carbon, and nitrogen are used as measurement elements, and their atomic concentrations are standardized to be 1 when these three are added.

【0032】(3)粒度分布 分散された粒子に平行光線を照射した際の回折パターン
を演算することにより粒度分布を求めた(フランホーフ
ァ回折)。通常、各試料約0.2gを分散媒としての水
20ccに入れ、さらに市販の界面活性剤を2〜3滴加
えたものを用いてセイシン企業社製粒度分布測定装置L
MS−24により測定した。
(3) Particle Size Distribution The particle size distribution was determined by calculating the diffraction pattern when the dispersed particles were irradiated with parallel rays (Franhofer diffraction). Usually, about 0.2 g of each sample is put in 20 cc of water as a dispersion medium, and a particle size distribution analyzer L manufactured by Seishin Enterprise Co., Ltd.
Measured by MS-24.

【0033】[0033]

【実施例】実施例1 コールタールピッチを原料とした平均粒度20μmの炭
素質粉末に炭化ホウ素をホウ素の重量換算で3%添加し
て十分混合した後、この混合物を黒鉛製容器中に格納
し、アチソン炉によって約2900℃まで昇温しこの温
度で約1時間保持し、その後徐冷して室温近傍まで冷却
した。熱処理した炭素粉末を黒鉛製容器から取り出し、
インペラーミルによって解砕後、空気分級機を用いて微
粉部分を除去することにより、その炭素質粉末の10%
累積径(d10)が10μmのリチウム二次電池負極用高
黒鉛化炭素粉末を得た。その焼成粉に含まれるホウ素
量、窒素量はそれぞれ原子比で2.5%、1%であり、
黒鉛化粉末の結晶構造はd002=0.3358nm、L
c=80nmであった。この炭素粉末の表面でのホウ素
原子濃度C(B)、炭素原子濃度C(C)、窒素原子濃
度C(N)を光電子分光法を用い上に述べた方法で測定
した結果、各々C(B)=0.21、C(C)=0.5
9、C(N)=0.20であり、炭素粉末表面に窒化ホ
ウ素が存在することを示していた。またC(N)/(C
(B)+C(C)+C(N))は0.20であり、黒鉛
化処理後の炭素質粉末の値のほぼ1/2となった。
EXAMPLE 1 Boron carbide was added to carbonaceous powder having an average particle size of 20 μm from coal tar pitch as a raw material in an amount of 3% by weight of boron and mixed well, and the mixture was stored in a graphite container. The temperature was raised to about 2900 ° C. in an Acheson furnace, maintained at this temperature for about 1 hour, and then gradually cooled to near room temperature. Remove the heat-treated carbon powder from the graphite container,
After pulverized by an impeller mill, fine particles are removed using an air classifier, so that 10% of the carbonaceous powder is removed.
A highly graphitized carbon powder for a negative electrode of a lithium secondary battery having a cumulative diameter (d 10 ) of 10 μm was obtained. The amount of boron and the amount of nitrogen contained in the calcined powder are 2.5% and 1% in atomic ratio, respectively.
The crystal structure of the graphitized powder is d 002 = 0.3358 nm, L
c = 80 nm. The boron atom concentration C (B), the carbon atom concentration C (C), and the nitrogen atom concentration C (N) on the surface of the carbon powder were measured by photoelectron spectroscopy as described above. ) = 0.21, C (C) = 0.5
9, C (N) = 0.20, indicating that boron nitride was present on the carbon powder surface. Also, C (N) / (C
(B) + C (C) + C (N)) was 0.20, which was almost 1 / of the value of the carbonaceous powder after the graphitization treatment.

【0034】このようにして調製した炭素質粉末に、バ
インダーとしてポリテトラフルオロエチレン粉末を5重
量%加えて混練し、約0.1mm厚の電極シートを作成
し、約15mgに切り出し(炭素材料に換算して約14
mg)、集電体であるNiメッシュに圧着することによ
り負極電極を作成した。
To the carbonaceous powder thus prepared, 5% by weight of a polytetrafluoroethylene powder as a binder was added and kneaded to prepare an electrode sheet having a thickness of about 0.1 mm, which was cut into about 15 mg (for carbon material). Approximately 14
mg), and pressed against a Ni mesh as a current collector to form a negative electrode.

【0035】上記成型電極の単極での電極特性を評価す
るために、対極、参照極にリチウム金属を用いた三極式
セルを用いた。電解液には、エチレンカーボネートとジ
エチルカーボネートの混合溶媒(体積比で1:1混合)
にLiPF6 を1mol/lの割合で溶解したものを用
いた。充放電試験に関しては、電位規制の下、充電、放
電共に定電流(0.5mA/cm2 )で行なった。電位
範囲は0Vから1.0V(リチウム金属基準)とした。
初回充電容量が380mAh/g、初回放電容量が34
5mAh/gで初期充放電効率は90%強と非常に高
く、2サイクル目以降ほぼ100%で安定に推移した。
また2回目以後の充放電においても放電容量はほとんど
変わらず優れたサイクル特性を示すなど非常に高い電極
性能を有していた。
In order to evaluate the monopolar electrode characteristics of the molded electrode, a three-electrode cell using lithium metal for the counter electrode and the reference electrode was used. In the electrolyte, a mixed solvent of ethylene carbonate and diethyl carbonate (1: 1 mixture by volume)
Was used in which LiPF 6 was dissolved at a rate of 1 mol / l. Regarding the charge / discharge test, both charging and discharging were performed at a constant current (0.5 mA / cm 2 ) under potential regulation. The potential range was 0 V to 1.0 V (based on lithium metal).
Initial charge capacity is 380 mAh / g, initial discharge capacity is 34
At 5 mAh / g, the initial charge / discharge efficiency was extremely high at just over 90%, and remained stable at almost 100% after the second cycle.
Further, even in the second and subsequent charging / discharging, the discharge capacity was hardly changed, and excellent cycle characteristics were exhibited.

【0036】実施例2 コールタールピッチから得たメソフェースピッチを原料
として調整した平均粒径18μmの球状炭素粉末を90
0℃で炭化した後にインペラーミルで軽度の粉砕を行っ
た後、その炭素粉末にホウ酸をホウ素の重量換算で2%
添加して十分混合した後、この混合物を黒鉛製容器中に
格納し、アチソン炉によって約2900℃まで昇温しこ
の温度で約1時間保持し、その後徐冷して室温近傍まで
冷却した。熱処理した炭素粉末を黒鉛製容器から取り出
し、ジェットミルによって解砕後、空気分級機を用いて
微粉部分を除去することにより、その炭素質粉末の10
%累積径(d10)が6μmのリチウム二次電池負極用高
黒鉛化炭素粉末を得た。その焼成粉に含まれるホウ素
量、窒素量はそれぞれ原子比で1.6%、0.8%であ
り、黒鉛化粉末の結晶構造はd002 =0.3362n
m、Lc=50nmであった。この炭素粉末の表面での
ホウ素原子濃度C(B)、炭素原子濃度C(C)、窒素
原子濃度C(N)を光電子分光法を用い上に述べた方法
で測定した結果、各々C(B)=0.28、C(C)=
0.44、C(N)=0.28であり、炭素粉末表面に
窒化ホウ素が存在することを示していた。またC(N)
/(C(B)+C(C)+C(N))は0.26であっ
た。
Example 2 A spherical carbon powder having an average particle diameter of 18 μm prepared by using a mesoface pitch obtained from coal tar pitch as a raw material was mixed with 90
After carbonization at 0 ° C., light grinding was performed with an impeller mill, and boric acid was added to the carbon powder in an amount of 2% by weight of boron.
After the addition and thorough mixing, the mixture was stored in a graphite container, heated to about 2900 ° C. in an Acheson furnace, kept at this temperature for about 1 hour, and then gradually cooled to near room temperature. The heat-treated carbon powder is taken out of the graphite container, crushed by a jet mill, and fine particles are removed using an air classifier.
% Graphitized carbon powder for a negative electrode of a lithium secondary battery having a cumulative diameter (d 10 ) of 6 μm was obtained. The amount of boron and the amount of nitrogen contained in the calcined powder were 1.6% and 0.8% in atomic ratio, respectively, and the crystal structure of the graphitized powder was d 002 = 0.3362n.
m, Lc = 50 nm. The boron atom concentration C (B), the carbon atom concentration C (C), and the nitrogen atom concentration C (N) on the surface of the carbon powder were measured by photoelectron spectroscopy as described above. ) = 0.28, C (C) =
0.44 and C (N) = 0.28, indicating that boron nitride was present on the surface of the carbon powder. Also C (N)
/ (C (B) + C (C) + C (N)) was 0.26.

【0037】このようにして調製した炭素質粉末を実施
例1と同様の手法により電極特性を評価した。その結
果、初回充電容量が385mAh/g、初回放電容量が
330mAh/gで初期充放電効率は85%強と高く、
2サイクル目以降ほぼ100%で安定に推移した。また
2回目以後の充放電においても放電容量はほとんど変わ
らず優れたサイクル特性を示すなど非常に高い電極性能
を有していた。
The carbonaceous powder thus prepared was evaluated for electrode characteristics in the same manner as in Example 1. As a result, the initial charge capacity was 385 mAh / g, the initial discharge capacity was 330 mAh / g, the initial charge / discharge efficiency was as high as over 85%,
After the second cycle, it was stable at almost 100%. Further, even in the second and subsequent charging / discharging, the discharge capacity was hardly changed, and excellent cycle characteristics were exhibited.

【0038】実施例3 石油ピッチを原料とした平均粒度30μmの炭素質粉末
に酸化ホウ素をホウ素の重量換算で3%添加して十分混
合した後、この混合物を黒鉛製容器中に格納し、アチソ
ン炉によって約2900℃まで昇温しこの温度で約1時
間保持し、その後徐冷して室温近傍まで冷却した。熱処
理した炭素粉末を黒鉛製容器から取り出し、インペラー
ミルによって解砕後、空気分級機を用いて微粉部分を除
去することにより、その炭素質粉末の10%累積径(d
10)が20μmのリチウム二次電池負極用高黒鉛化炭素
粉末を得た。その焼成粉に含まれるホウ素量、窒素量は
それぞれ原子比で2.5%、1.5%であり、黒鉛化粉
末の結晶構造はd002 =0.3355nm、Lc=10
0nmであった。この炭素粉末の表面でのホウ素原子濃
度C(B)、炭素原子濃度C(C)、窒素原子濃度C
(N)を光電子分光法を用い上に述べた方法で測定した
結果、各々C(B)=0.11、C(C)=0.79、
C(N)=0.10であり、炭素粉末表面に多くの窒化
ホウ素が存在することを示していた。またC(N)/
(C(B)+C(C)+C(N))は0.10であり、
黒鉛化処理後の炭素質粉末の値のほぼ1/5となった。
Example 3 Boron oxide was added to carbonaceous powder having a mean particle size of 30 μm from petroleum pitch as a raw material in an amount of 3% by weight of boron and mixed well. The mixture was stored in a graphite container, The temperature was raised to about 2900 ° C. in a furnace, maintained at this temperature for about 1 hour, and then gradually cooled to near room temperature. The heat-treated carbon powder is taken out of the graphite container, crushed by an impeller mill, and fine particles are removed by using an air classifier to obtain a 10% cumulative diameter (d
10 ) to obtain a highly graphitized carbon powder for a negative electrode of a lithium secondary battery having a thickness of 20 μm. The amount of boron and the amount of nitrogen contained in the calcined powder are 2.5% and 1.5% in atomic ratio, respectively, and the crystal structure of the graphitized powder is d 002 = 0.3355 nm, Lc = 10
It was 0 nm. Boron atom concentration C (B), carbon atom concentration C (C), nitrogen atom concentration C on the surface of this carbon powder
(N) was measured by photoelectron spectroscopy in the manner described above. As a result, C (B) = 0.11, C (C) = 0.79,
C (N) = 0.10, indicating that much boron nitride was present on the carbon powder surface. Also, C (N) /
(C (B) + C (C) + C (N)) is 0.10.
The value was approximately 1/5 of the value of the carbonaceous powder after the graphitization treatment.

【0039】このようにして調製した炭素質粉末を実施
例1と同様の手法により電極特性を評価した。その結
果、初回充電容量が388mAh/g、初回放電容量が
348mAh/gで初期充放電効率はほぼ90%と高
く、2サイクル目以降ほぼ100%で安定に推移した。
また2回目以後の充放電においても放電容量はほとんど
変わらず優れたサイクル特性を示すなど非常に高い電極
性能を有していた。
The carbonaceous powder thus prepared was evaluated for electrode characteristics in the same manner as in Example 1. As a result, the initial charge capacity was 388 mAh / g, the initial discharge capacity was 348 mAh / g, and the initial charge / discharge efficiency was as high as about 90%, and was stable at about 100% after the second cycle.
Further, even in the second and subsequent charging / discharging, the discharge capacity was hardly changed, and excellent cycle characteristics were exhibited.

【0040】比較例1 実施例1と同じ炭素質粉末を用い同様の操作を行って黒
鉛化炭素質粉末の黒鉛化を行った。
Comparative Example 1 The same operation was performed using the same carbonaceous powder as in Example 1 to graphitize the graphitized carbonaceous powder.

【0041】熱処理後の炭素粉末を黒鉛製容器から取り
出し、インペラーミルによって解砕のみ行うことによ
り、その炭素質粉末の10%累積径(d10)が2μmの
リチウム二次電池負極用高黒鉛化炭素粉末を得た。その
焼成粉に含まれるホウ素量、窒素量はそれぞれ原子比で
2.8%、2%であり、黒鉛化粉末の結晶構造はd002
=0.3359nm、Lc=70nmであった。この炭
素粉末の表面でのホウ素原子濃度C(B)、炭素原子濃
度C(C)、窒素原子濃度C(N)を光電子分光法を用
い上に述べた方法で測定した結果、各々C(B)=0.
44、C(C)=0.11、C(N)=0.45であ
り、炭素粉末表面に非常に多くの窒化ホウ素が存在する
ことを示していた。またC(N)/(C(B)+C
(C)+C(N))は0.45であった。
The carbon powder after the heat treatment is taken out of the graphite container, and is only crushed by an impeller mill, whereby the carbonaceous powder has a 10% cumulative diameter (d 10 ) of 2 μm and has a high graphitization for a negative electrode of a lithium secondary battery. A carbon powder was obtained. The amount of boron and the amount of nitrogen contained in the calcined powder are 2.8% and 2%, respectively, in atomic ratio, and the crystal structure of the graphitized powder is d 002.
= 0.3359 nm and Lc = 70 nm. The boron atom concentration C (B), the carbon atom concentration C (C), and the nitrogen atom concentration C (N) on the surface of the carbon powder were measured by photoelectron spectroscopy as described above. ) = 0.
44, C (C) = 0.11 and C (N) = 0.45, indicating that a great amount of boron nitride was present on the surface of the carbon powder. Also, C (N) / (C (B) + C
((C) + C (N)) was 0.45.

【0042】このようにして調製した炭素質粉末を実施
例1と同様の手法により電極特性を評価した。その結
果、初回充電容量が452mAh/gと大きい一方、粒
子表面の窒化ホウ素が絶縁性で電極の過電圧が大きいた
め、材料中に挿入されたリチウムが十分に放出されない
ため初回放電容量は308mAh/gに留まり、初期充
放電効率は約68%と非常に低いものとなった。また放
電容量はその後サイクルを繰り返すと共に増加し5サイ
クル目で322mAh/gまで回復したが、不可逆容量
が大きく電極表面に多量の不働態膜が形成されるため、
高い黒鉛化度を有しているにもかかわらず大きな放電容
量を示さなかった。また、充放電効率も2サイクル目以
後95〜98%で推移し、6サイクル目でようやく10
0%に到達した。また5回目以後の充放電で放電容量は
再び減少傾向になり、100サイクル目で5サイクル目
の約70%まで低下するなど高い電極性能を示さなかっ
た。
The electrode properties of the carbonaceous powder thus prepared were evaluated in the same manner as in Example 1. As a result, while the initial charge capacity is as large as 452 mAh / g, the boron nitride on the particle surface is insulative and the overvoltage of the electrode is large, so that the lithium inserted in the material is not sufficiently released, so that the initial discharge capacity is 308 mAh / g. And the initial charge / discharge efficiency was as very low as about 68%. In addition, the discharge capacity increased with the repetition of the cycle thereafter and recovered to 322 mAh / g at the fifth cycle. However, since the irreversible capacity was large and a large amount of passive film was formed on the electrode surface,
Despite having a high degree of graphitization, it did not show a large discharge capacity. In addition, the charge / discharge efficiency also changes at 95 to 98% after the second cycle, and finally reaches 10% at the sixth cycle.
Reached 0%. In addition, the discharge capacity showed a tendency to decrease again after the fifth charge and discharge, and did not show high electrode performance, such as being reduced to about 70% of the fifth cycle at the 100th cycle.

【0043】[0043]

【発明の効果】以上の説明からも明白なように、本発明
のリチウム二次電池用炭素負極材料は、原料である炭素
粉末にホウ素化合物を添加して大量に高温で熱処理する
場合に起こる、炭素粉末表面への窒化ホウ素生成による
不可逆容量の増大という問題を解決し、高い放電容量、
初期充放電効率、及びサイクル特性の優れた粉末状炭素
材料を提供することができる。
As is clear from the above description, the carbon anode material for a lithium secondary battery of the present invention is produced when a boron compound is added to carbon powder as a raw material and heat-treated at a high temperature in a large amount. Solving the problem of irreversible capacity increase due to the formation of boron nitride on the carbon powder surface, high discharge capacity,
A powdered carbon material having excellent initial charge / discharge efficiency and cycle characteristics can be provided.

フロントページの続き (72)発明者 濱田 健 神奈川県川崎市中原区井田3−35−1 新 日本製鐵株式会社技術開発本部内 (72)発明者 杉浦 勉 神奈川県川崎市中原区井田3−35−1 新 日本製鐵株式会社技術開発本部内 Fターム(参考) 4G046 CA07 CB02 CB09 5H003 AA02 AA04 BB01 BB02 BC01 BC05 BC06 BD00 BD02 BD03 5H014 AA02 CC07 EE05 EE08 HH00 HH01 5H029 AJ03 AJ05 AK02 AK03 AK05 AL01 AL06 AL07 AM01 AM02 AM03 AM04 AM05 AM07 DJ12 DJ16 DJ17 HJ00 HJ01 HJ05Continued on the front page (72) Inventor Ken Hamada 3-35-1 Ida, Nakahara-ku, Kawasaki City, Kanagawa Prefecture New Nippon Steel Corporation Technology Development Division (72) Inventor Tsutomu Sugiura 3-35 Ida, Nakahara-ku, Kawasaki City, Kanagawa Prefecture -1 New Nippon Steel Corporation Technology Development Division F term (reference) 4G046 CA07 CB02 CB09 5H003 AA02 AA04 BB01 BB02 BC01 BC05 BC06 BD00 BD02 BD03 5H014 AA02 CC07 EE05 EE08 HH00 HH01 5H029 AJ03 AJ05 AK02 AM01 AL01 AM01 AM03 AM04 AM05 AM07 DJ12 DJ16 DJ17 HJ00 HJ01 HJ05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ホウ素及び窒素を含有する黒鉛化炭素粉
末であって、その炭素質粉末の10%累積径(d10)が
5〜25μmであることを特徴とするリチウム二次電池
用負極材料。
1. A negative electrode material for a lithium secondary battery, comprising a graphitized carbon powder containing boron and nitrogen, wherein the carbonaceous powder has a 10% cumulative diameter (d 10 ) of 5 to 25 μm. .
【請求項2】 ホウ素及び窒素を含有する黒鉛化炭素粉
末であって、ホウ素を原子比で0.1〜10%、窒素を
原子比で10%以下の範囲で含有することを特徴とする
請求項1に記載のリチウム二次電池用負極材料。
2. A graphitized carbon powder containing boron and nitrogen, comprising boron in an atomic ratio of 0.1 to 10% and nitrogen in an atomic ratio of 10% or less. Item 7. The negative electrode material for a lithium secondary battery according to Item 1.
【請求項3】 ホウ素及び窒素を含有する黒鉛化炭素粉
末であって、X線広角回折法における炭素網面層の面間
隔(d002 )および結晶子のC軸方向の大きさ(Lc)
が d002 ≦0.337nm、Lc≧40nm であることを特徴とする請求項1に記載のリチウム二次
電池用負極材料。
3. A graphitized carbon powder containing boron and nitrogen, wherein a plane distance (d 002 ) of a carbon netting layer and a size of a crystallite in a C-axis direction (Lc) in a wide angle X-ray diffraction method.
2. The negative electrode material for a lithium secondary battery according to claim 1, wherein d satisfies d 002 ≦ 0.337 nm and Lc ≧ 40 nm.
【請求項4】 ホウ素及び窒素を含有する黒鉛化炭素粉
末の表面が光電子分光法で測定した表面のホウ素原子濃
度、炭素原子濃度、窒素原子濃度をそれぞれC(B)、
C(C)、C(N)とした場合に C(N)/(C(B)+C(C)+C(N))<0.3 を満足し、且つ、表面を被覆する化合物が窒化ホウ素で
あることを特徴とする請求項1に記載のリチウム二次電
池負極用炭素材料。
4. The surface of a graphitized carbon powder containing boron and nitrogen, wherein the surface has a boron atom concentration, a carbon atom concentration, and a nitrogen atom concentration measured by photoelectron spectroscopy, respectively, of C (B),
When C (C) and C (N) are used, the compound satisfying C (N) / (C (B) + C (C) + C (N)) <0.3 and the compound covering the surface is boron nitride The carbon material for a negative electrode of a lithium secondary battery according to claim 1, wherein:
JP10176201A 1998-06-23 1998-06-23 Carbon material for lithium secondary battery negative electrode Withdrawn JP2000012020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10176201A JP2000012020A (en) 1998-06-23 1998-06-23 Carbon material for lithium secondary battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10176201A JP2000012020A (en) 1998-06-23 1998-06-23 Carbon material for lithium secondary battery negative electrode

Publications (1)

Publication Number Publication Date
JP2000012020A true JP2000012020A (en) 2000-01-14

Family

ID=16009400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10176201A Withdrawn JP2000012020A (en) 1998-06-23 1998-06-23 Carbon material for lithium secondary battery negative electrode

Country Status (1)

Country Link
JP (1) JP2000012020A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200043A (en) * 2008-01-22 2009-09-03 Sony Corp Battery
JP2010118243A (en) * 2008-11-12 2010-05-27 Kansai Coke & Chem Co Ltd Anode material for lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery using this anode material
WO2014058040A1 (en) * 2012-10-12 2014-04-17 昭和電工株式会社 Carbon material, carbon material for battery electrode, and battery
JP5876155B2 (en) * 2013-04-26 2016-03-02 Jx金属株式会社 Sputtering target for magnetic recording film and carbon raw material used for manufacturing the same
JP2019021620A (en) * 2017-07-14 2019-02-07 パナソニックIpマネジメント株式会社 Anode active material and battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200043A (en) * 2008-01-22 2009-09-03 Sony Corp Battery
JP2010118243A (en) * 2008-11-12 2010-05-27 Kansai Coke & Chem Co Ltd Anode material for lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery using this anode material
WO2014058040A1 (en) * 2012-10-12 2014-04-17 昭和電工株式会社 Carbon material, carbon material for battery electrode, and battery
JP5571270B1 (en) * 2012-10-12 2014-08-13 昭和電工株式会社 Carbon material, carbon material for battery electrode, and battery
US9406936B2 (en) 2012-10-12 2016-08-02 Showa Denko K.K. Carbon material, carbon material for battery electrode, and battery
JP5876155B2 (en) * 2013-04-26 2016-03-02 Jx金属株式会社 Sputtering target for magnetic recording film and carbon raw material used for manufacturing the same
TWI595103B (en) * 2013-04-26 2017-08-11 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film and carbon material used for the production thereof
JP2019021620A (en) * 2017-07-14 2019-02-07 パナソニックIpマネジメント株式会社 Anode active material and battery
JP7022917B2 (en) 2017-07-14 2022-02-21 パナソニックIpマネジメント株式会社 Negative electrode active material and battery

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
US6814764B2 (en) Method for producing cathode active material and method for producing non-aqueous electrolyte cell
JP5184567B2 (en) Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
US8062556B2 (en) Nanocomposite material for the anode of a lithium cell
US6555272B2 (en) Lithium secondary battery and active material for negative electrode in lithium secondary battery
EP1281673B1 (en) Cathode active material made of cobalt-oxide particles for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
EP3723171A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing same
EP2991141A1 (en) Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
EP0713258A1 (en) Nonaqueous-electrolyte secondary cell
KR20100107396A (en) Negative electrode material for nonaqueous electrolyte secondary battery, making method and lithium ion secondary battery
EP2913871A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP3054505A1 (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP2013008696A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JP2004323284A (en) Silicon composite and method of manufacturing the same, and negative electrode material for non-aqueous electrolyte secondary battery
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP3496901B2 (en) Carbonaceous materials for secondary battery electrodes
JP2001266866A (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP4081211B2 (en) Lithium secondary battery and negative electrode active material for lithium secondary battery
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP2000012020A (en) Carbon material for lithium secondary battery negative electrode
JP2000012021A (en) Carbon material for lithium secondary battery negative electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906