JPH10223223A - Anode material for lithium secondary battery and manufacture thereof - Google Patents

Anode material for lithium secondary battery and manufacture thereof

Info

Publication number
JPH10223223A
JPH10223223A JP9024038A JP2403897A JPH10223223A JP H10223223 A JPH10223223 A JP H10223223A JP 9024038 A JP9024038 A JP 9024038A JP 2403897 A JP2403897 A JP 2403897A JP H10223223 A JPH10223223 A JP H10223223A
Authority
JP
Japan
Prior art keywords
boron
powder
nitrogen
carbon
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9024038A
Other languages
Japanese (ja)
Inventor
Kimihito Suzuki
公仁 鈴木
Kenji Hirano
兼次 平野
Kenryo Sasaki
健了 佐々木
Yukiteru Inada
幸輝 稲田
Tsutomu Sugiura
勉 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP9024038A priority Critical patent/JPH10223223A/en
Publication of JPH10223223A publication Critical patent/JPH10223223A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a material which is suitable for an anode material for a lithium secondary battery, has high discharge capacity, high charging and discharging electric efficiency from cycle starting stages, a good cydic property, and load property, and moreover to provide high sieving yield ratio of graphitized powder and lower the production cost as a whole at the time of producing the material. SOLUTION: In graphtized powder produced by thermal treatment of a carbon powder using pitch as a raw material, the powder has plane distance (d002 ) of laminated carbon net planes by X-ray wide angle diffraction method, d002 <=0.337nm and the size (Lc) of the crystallite Lc >=40nm and contains 0.1-10%, by atomic ratio, of boron and 0.1-10% of nitrogen. The powder is produced by adding 0.1-25wt.% (based on boron) of a boron compound and 0.1-25wt.% (based on nitrogen) of a nitrogen compound with respect to a carbon powder produced by using pitch as a raw material, mixing the resultant mixture, and heating the obtained mixture at 2500 deg.C or higher in an inert or reducing atmosphere for 0.1 hours or longer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの挿入・
脱離反応を利用するリチウム二次電極用負極材料とその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a negative electrode material for a lithium secondary electrode utilizing an elimination reaction and a method for producing the same.

【0002】[0002]

【従来の技術】近年の携帯用電子通信機器用電源として
高エネルギー密度を有するリチウム二次電池が搭載され
はじめ、これら電子通信機器の市場の広がりと共にリチ
ウム二次電池の市場は急速に拡大している。現在その二
次電池に使用されている負極材料は炭素材料であり、電
池性能を左右するキーマテリアルとなっている。しか
し、炭素材料とはいえ多種多様な構造、組織、形態を有
するものが存在し、それにより充放電時の作動電圧をは
じめとする電極性能が大きく異なる。現在、搭載側の電
子機器の使用環境/条件から黒鉛結晶性材料、非晶質材
料が棲み分けられているが、電池電圧の制御のしやすさ
や体積当たりのエネルギー密度などの観点から、今後も
黒鉛結晶性材料の需要がますます増えるものと思われ
る。
2. Description of the Related Art In recent years, lithium secondary batteries having a high energy density have been mounted as power supplies for portable electronic communication devices, and the market for lithium secondary batteries has rapidly expanded with the expansion of the market for these electronic communication devices. I have. The negative electrode material currently used for the secondary battery is a carbon material, which is a key material that affects battery performance. However, although there are carbon materials having various structures, structures, and forms, there is a great difference in electrode performance such as operating voltage during charging and discharging. Currently, graphite crystalline materials and amorphous materials are separated according to the usage environment / conditions of the electronic devices on the mounting side. However, from the viewpoint of easy control of battery voltage and energy density per volume, etc. The demand for graphite crystalline materials is expected to increase.

【0003】理想的な黒鉛結晶構造を有する天然黒鉛に
着目した検討は古くから行なわれている(例えば、J. E
lectrochem. Soc.,117,222(1970)、Carbon,13,337(197
5) 、特開昭64−2258号公報など)が、これらの
結晶構造は炭素網面層が特定方向への優先配向をしてい
るため、材料中でのリチウムの拡散方向が限定され、し
かもその拡散距離が非常に長い。従って非常に小さな充
放電電流下においてのみ、高い放電容量を得ることが確
認されている(例えば、Electrochimica Acta,38(9),11
79(1993))。しかしながら、実用的な見地からは電流密
度を高くできないために、その使用範囲に大きな制約を
受けるものと思われる。また、メソフェースピッチの光
学的異方性相が球状に生成した段階で採取して調製した
メソフェース小球体(メソカーボンマイクロビーズ)に
関しても、サイクル特性に問題があると指摘されていた
(例えば、第34回電池討論会3A07)。
Investigations focused on natural graphite having an ideal graphite crystal structure have been conducted for a long time (for example, J. E.
lectrochem. Soc., 117, 222 (1970), Carbon, 13, 337 (197
5), JP-A-64-2258, etc.), however, in these crystal structures, since the carbon network layer has a preferential orientation in a specific direction, the diffusion direction of lithium in the material is limited, and Its diffusion distance is very long. Therefore, it has been confirmed that a high discharge capacity is obtained only under a very small charge / discharge current (for example, Electrochimica Acta, 38 (9), 11).
79 (1993)). However, since the current density cannot be increased from a practical point of view, it is considered that the range of use is greatly restricted. It has also been pointed out that there is a problem in the cycle characteristics of mesoface microspheres (mesocarbon microbeads) prepared by collecting the optically anisotropic phase of the mesoface pitch at the stage where the mesophase pitch is formed into a sphere (for example, The 34th Battery Symposium 3A07).

【0004】ピッチ系炭素繊維もピッチコークスと同
様、超高温の温度領域での黒鉛化処理により天然黒鉛に
近い炭素網面層の層間距離となり、しかもリチウムの拡
散方向が繊維外周から内部へ向かっての多方向、且つ、
拡散距離が繊維外周から繊維軸までの繊維径の半分の高
々5μm程度と短かいため、この炭素繊維を粉砕した粉
末は拡散係数が他の易黒鉛化性材料と比較して大きく重
負荷に強いことが期待される。事実、最近ピッチ系炭素
繊維を用いて良好な重負荷特性を確認したとの報告(J.
Electrochem. Soc.,142,8,2564(1995))もされている。
しかし、繊維の形態を維持するがゆえに熱処理温度を高
くしても結晶構造の発達が阻害されて放電容量が大きく
ならないこと、繊維の形態を確保するためのピッチの高
純度化処理、繊維化工程等が必要なため他材料と比較し
てより多くの製造コストがかかるなどの問題がある。
[0004] Similarly to pitch coke, pitch-based carbon fibers are graphitized in an ultra-high temperature range to have an interlayer distance of a carbon netting layer close to that of natural graphite, and the diffusion direction of lithium is from the fiber outer periphery toward the inside. Multi-directional, and
Since the diffusion distance is as short as about 5 μm, which is half of the fiber diameter from the fiber outer periphery to the fiber axis, the powder obtained by pulverizing this carbon fiber has a large diffusion coefficient compared to other graphitizable materials and is resistant to heavy loads. It is expected. In fact, it has recently been reported that good heavy load characteristics have been confirmed using pitch-based carbon fibers (J.
Electrochem. Soc., 142, 8, 2564 (1995)).
However, even if the heat treatment temperature is increased because the fiber form is maintained, the development of the crystal structure is not hindered even when the heat treatment temperature is increased, so that the discharge capacity does not increase. And the like, there is a problem that a higher production cost is required as compared with other materials.

【0005】ピッチコークスは易黒鉛化性材料の部類に
属し、超高温の温度領域での黒鉛化処理により天然黒鉛
に近い炭素網面層の層間距離に近づくが、コークスの持
つ光学的異方性組織により、天然黒鉛ほど黒鉛化が発達
せず、これらの結晶構造は炭素網面層が特定方向への優
先配向をしていない。従って、天然黒鉛にみられた高い
電流密度下での使用範囲の制約はなく、リチウム二次電
池用負極材料として非常に有望な材料であり、これまで
多くの研究がなされている(例えば、特開昭63−12
1257号公報、特開平1−204361号公報、特開
平4−206276号公報など)。しかしながら、通常
のコークスの超高温熱処理(2000〜3000℃焼
成)品の放電容量は、理論容量(372mAh/g)と
比較して低く(<300mAh/g)、さらなる性能の
改善が求められていた。
[0005] Pitch coke belongs to the class of graphitizable materials. Graphite treatment in an ultra-high temperature range approaches the interlayer distance of a carbon netting layer close to natural graphite. Due to the structure, graphitization does not develop as much as natural graphite, and in these crystal structures, the carbon network layer does not have a preferred orientation in a specific direction. Therefore, there is no restriction on the range of use under a high current density found in natural graphite, and it is a very promising material as a negative electrode material for lithium secondary batteries, and many studies have been made so far (for example, 63-12
1257, JP-A-1-204361, JP-A-4-206276, etc.). However, the discharge capacity of the ultra-high temperature heat-treated (2000-3000 ° C. fired) product of ordinary coke is lower (<300 mAh / g) compared to the theoretical capacity (372 mAh / g), and further improvement in performance has been required. .

【0006】最近、黒鉛類似の構造を有する材料に関し
て、幾つかの検討がなされている。例えば、塩化ホウ
素とベンゼンの蒸気による900℃での気相反応(CV
D)により合成した炭素原子の一部をホウ素で置換した
炭素粉末に関する報告(Physical Review B,Vol.46,No.
3,1697(1992)、特開平7−73898号公報)、ピッ
チコークスへホウ素化合物を添加し2400℃で黒鉛化
処理することにより合成した炭素原子の一部をホウ素及
び窒素原子で置換した炭素粉末に関する報告(特開平5
−290843号公報)、ピッチへH3 BO3 等を添
加し1000℃で炭化処理することにより合成した炭素
粉末に関する報告(特開平5−251080号公報、特
開平5−266880号公報)、ピリジンの気相反応
(CVD)により合成した炭素原子の一部を窒素で置換
した炭素粉末に関する報告(J. Electrochem. Soc.,14
1,900(1994)、電気化学,64(11),1180(1996))などがあ
る。
[0006] Recently, several studies have been made on materials having a structure similar to graphite. For example, a gas phase reaction (CV) at 900 ° C. by the vapor of boron chloride and benzene
D) Report on carbon powder synthesized by D) in which part of carbon atoms are replaced with boron (Physical Review B, Vol. 46, No.
3,1697 (1992), JP-A-7-73898), carbon powder synthesized by adding a boron compound to pitch coke and graphitizing at 2400 ° C., wherein a part of carbon atoms is replaced by boron and nitrogen atoms. Report on Japanese Patent
-290843), a report on carbon powder synthesized by adding H 3 BO 3 or the like to the pitch and carbonizing at 1000 ° C. (JP-A-5-251080, JP-A-5-266880); Report on carbon powder synthesized by gas phase reaction (CVD), in which carbon atoms are partially substituted with nitrogen (J. Electrochem. Soc., 14
1,900 (1994), Electrochemistry, 64 (11), 1180 (1996)).

【0007】では炭素の六員環骨格の一部をホウ素で
置換することで黒鉛面内の電子受容性を高め、電子供与
体であるリチウムをより多く取り込むことによって、放
電容量を増加させることを狙ったものである。その報告
によれば、CVD法により得られた材料の結晶構造は非
晶質材料の構造に近く、黒鉛シートの層間距離が大きく
(0.351nm≧d002 ≧0.337nm)、且つc
軸方向、a軸方向の結晶の積み重なりの大きさの指標で
ある結晶子の大きさも小さい(30nm>Lc>10n
m)。従って、この材料は、従来の非晶質材料に類似し
た電池電圧が大きく変化する充放電挙動を示すことやC
VD法といった量産に向かない製造法であることから、
今後の需要の伸びが期待され、且つ、黒鉛結晶性材料に
近い特性が要求される分野へは必ずしも適さないと考え
られる。
[0007] In Japanese Patent Application Laid-Open No. H10-157, it has been proposed that the substitution of a part of the carbon six-membered ring skeleton with boron enhances the electron acceptability in the graphite plane and increases the discharge capacity by incorporating more lithium as an electron donor. It was aimed. According to the report, the crystal structure of the material obtained by the CVD method is close to the structure of the amorphous material, the interlayer distance of the graphite sheet is large (0.351 nm ≧ d 002 ≧ 0.337 nm), and c
The crystallite size, which is an index of the size of the crystals stacked in the axial direction and the a-axis direction, is also small (30 nm>Lc> 10n).
m). Therefore, this material exhibits a charge / discharge behavior in which the battery voltage changes greatly similar to the conventional amorphous material,
Because it is a manufacturing method that is not suitable for mass production such as VD method,
It is considered that it is not necessarily suitable for a field where demand growth is expected in the future and a property close to that of a graphite crystalline material is required.

【0008】また、についても、手法は異なるがと
同様に黒鉛骨格を形成する炭素原子の一部をホウ素原子
や窒素原子で置換された化合物(BC3 、BC3 N)に
することにより、黒鉛面内の電子受容性を高めてリチウ
ムのドープ量(放電容量)を改善することを狙ったもの
である。では、やと同様に黒鉛骨格を形成する炭
素原子の一部をホウ素原子で置換する(ホウ素置換)こ
と、または炭素網面層の層間にホウ素化合物が入り込む
(ホウ素挿入)ことを期待しているか明らかではない
が、ホウ素置換ではと同じ機構により、ホウ素挿入
では黒鉛層間を広げることによりリチウムのドープ量
(放電容量)を増加させることを狙ったものと思われ
る。しかし、上記で得られた炭素粉末の電気的性質
は一般に半導体的となるため、充放電時の過電圧が大き
くなり、実用的な充放電電圧領域では炭素材料中に挿入
されたリチウムを効率良く引き抜くことができず高い初
期効率が得られない。さらに、この半導体的性質は充放
電時の大きなIRドロップを引き起こすため、高い放電
容量が得られないことなどが課題である。
[0008] In the same manner, although the method is different, graphite is converted into a compound (BC 3 , BC 3 N) in which a part of carbon atoms forming a graphite skeleton is replaced by a boron atom or a nitrogen atom. The purpose is to increase the in-plane electron acceptability and improve the lithium doping amount (discharge capacity). Do you expect to replace some of the carbon atoms that form the graphite skeleton with boron atoms (boron substitution), or to insert boron compounds between the layers of the carbon netting layer (boron insertion) in the same way as described above? Although it is not clear, it seems that boron insertion aims at increasing the doping amount (discharge capacity) of lithium by expanding the graphite layer by the same mechanism as that of boron substitution. However, since the electrical properties of the carbon powder obtained above are generally semiconductive, the overvoltage during charging and discharging increases, and in a practical charging and discharging voltage region, lithium inserted into the carbon material is efficiently extracted. And high initial efficiency cannot be obtained. Furthermore, since this semiconductor property causes a large IR drop at the time of charge and discharge, there is a problem that a high discharge capacity cannot be obtained.

【0009】で得られた炭素粉末はで合成される材
料と同様、その結晶構造は非晶質材料の構造に近く、黒
鉛シートの層間距離が大きく(d002 ≧0.337n
m)、且つc軸方向、a軸方向の結晶の積み重なりの大
きさの指標である結晶子の大きさが極端に小さい。従っ
て、その材料の充放電曲線は従来の非晶質材料に酷似し
て電池電圧が大きく変化することやCVD法といった量
産に向かない製造法であることから、今後の需要の伸び
が期待され、且つ、黒鉛結晶性材料に近い特性が要求さ
れる分野へは必ずしも適さないと考えられる。
The crystal structure of the carbon powder obtained in step (1) is similar to that of the amorphous material, and the interlayer distance of the graphite sheet is large (d 002 ≧ 0.337 n).
m) The crystallite size, which is an index of the size of the stack of crystals in the c-axis direction and the a-axis direction, is extremely small. Therefore, the charge and discharge curve of the material is very similar to the conventional amorphous material, the battery voltage is greatly changed, and the manufacturing method is not suitable for mass production such as the CVD method. In addition, it is considered that it is not necessarily suitable for a field in which characteristics close to those of a graphite crystalline material are required.

【0010】本発明者らは、広範な炭素質粉末について
その電極特性を結晶構造の観点から鋭意研究した結果、
黒鉛化度が高くなるほど放電容量が大きくなることを見
い出して報告した(電気化学及び工業物理化学,61(2),1
383(1993)) 。しかしながら、一連の易黒鉛化性炭素材
料の通常の3000℃付近までの熱処理により得られる
黒鉛化品では、ある黒鉛化度以上に結晶構造が発達でき
ず、放電容量を高めるのに限界があった。従ってさらな
る性能向上のためには、通常の超高温熱処理以外の手法
によりさらなる高い黒鉛化度をもった材料を開発するこ
とが本質的に最も重要である。
The present inventors have conducted extensive studies on the electrode characteristics of a wide range of carbonaceous powders from the viewpoint of the crystal structure.
It was found that the higher the degree of graphitization, the greater the discharge capacity, and reported (Electrochemical and Industrial Physical Chemistry, 61 (2), 1
383 (1993)). However, in a graphitized product obtained by heat-treating a series of graphitizable carbon materials to a normal temperature of about 3000 ° C., a crystal structure cannot be developed beyond a certain graphitization degree, and there is a limit in increasing the discharge capacity. . Therefore, in order to further improve the performance, it is essentially the most important to develop a material having a higher degree of graphitization by a method other than ordinary ultra-high temperature heat treatment.

【0011】通常の超高温熱処理で調製した炭素粉末よ
りも高い黒鉛化度を有する炭素粉末を得る方法として、
高品位炭素繊維製造における緊張下熱処理、熱分解炭素
の応力下での処理等の物理的手法や、黒鉛化触媒を利用
する化学的手法がある。これらのうち、黒鉛化触媒によ
る黒鉛化促進とは、結晶性の低い炭素質を金属や無機化
合物の触媒作用により黒鉛化度を向上させるものであ
る。
As a method for obtaining a carbon powder having a higher degree of graphitization than a carbon powder prepared by ordinary ultra-high temperature heat treatment,
There are physical methods such as heat treatment under tension in the production of high-grade carbon fiber and treatment under stress of pyrolytic carbon, and chemical methods using a graphitization catalyst. Of these, graphitization promotion by the graphitization catalyst refers to improving the degree of graphitization of carbonaceous material having low crystallinity by a catalytic action of a metal or an inorganic compound.

【0012】黒鉛化触媒の作用機構については、これま
での報告(例えば、Ber. Deut.Keram. Ges.,45,224(196
8)など)によると、二つの機構が考えられている。一つ
は、通常“溶解−再析出”機構と呼ばれるもので、触媒
がより黒鉛化度の低い炭素質を溶解し、黒鉛を析出しな
がら炭素中を移動するモデルである。もう一つは、“炭
化物生成−分解”機構と呼ばれるもので、黒鉛化度の低
い炭素質が触媒と反応して炭化物を生成し、この炭化物
が更に高温で分解して黒鉛を生成するモデルである。
The mechanism of action of the graphitization catalyst has been reported so far (for example, see Ber. Deut. Keram. Ges., 45, 224 (196).
8)) two mechanisms are considered. One is a so-called "dissolution-reprecipitation" mechanism, in which a catalyst dissolves carbonaceous material having a lower degree of graphitization, and moves through carbon while precipitating graphite. The other is called the "carbide formation-decomposition" mechanism, in which carbonaceous material with a low degree of graphitization reacts with the catalyst to form carbides, which are further decomposed at higher temperatures to form graphite. is there.

【0013】即ち炭素材料への黒鉛化触媒添加の機能の
本質は、触媒共存下の焼成における黒鉛構造及び組織構
造の発達を促進する作用にある。焼成の際、黒鉛化触媒
は黒鉛結晶中に固溶し、その際に結晶の歪みを除去する
効果をもたらし、その結果、黒鉛構造が発達するとされ
ている(炭素,102(1980)118)。
That is, the essence of the function of adding the graphitization catalyst to the carbon material is to promote the development of the graphite structure and the structure during firing in the presence of the catalyst. Upon calcination, the graphitization catalyst dissolves in the graphite crystal, which has the effect of removing the crystal distortion, and as a result, the graphite structure is said to be developed (carbon, 102 (1980) 118).

【0014】黒鉛化を促進させる効果を有する黒鉛化触
媒を利用して炭素質粉末の黒鉛化度を向上させることに
関する研究については非常に古くから行われている(例
えば、U. S. Patent,568323(1896) 、炭素,41,18(196
5)、Carbon,3,387(1966)、Carbon,7,185(1969)、窯業協
会誌,86(12),56(1978)など)。しかし、これらはいずれ
もできるだけ低温で黒鉛化度を向上させ、高温処理と同
じ効果を得ようとするコスト削減に向けた製造法に主眼
を置いたもの、あるいは、黒鉛化触媒による成型物の緻
密化を利用して機械的強度向上を図ることに主眼を置い
たものに限られていた。一方、黒鉛化触媒により黒鉛化
度を向上させた炭素質粉末をリチウム二次電池負極にお
けるリチウムの挿入−脱離反応といった機能性材料とし
て利用する検討は先に本発明者らが出願した特開平8−
31422号公報がある。しかしながら、その公報では
黒鉛化反応を進行させる際に窒素化合物を利用しておら
ず、その中で提示された材料の電極性能は電池として実
際に使用される場合と類似の条件下での負荷特性が十分
でなく、さらなる改良が必要であった。また、同条件で
焼成した場合、焼成後に粒が粗大化することから最終製
品の製造歩留りが高くなかった。
Research on improving the degree of graphitization of carbonaceous powders using a graphitization catalyst having an effect of promoting graphitization has been carried out for a long time (for example, see US Patent, 568323 (1896)). ), Carbon, 41, 18 (196
5), Carbon, 3,387 (1966), Carbon, 7,185 (1969), Journal of the Ceramic Society of Japan, 86 (12), 56 (1978), etc.). However, all of these methods focus on manufacturing methods aimed at reducing costs to improve the degree of graphitization at as low a temperature as possible and achieve the same effect as high-temperature processing, or densely molded products using a graphitization catalyst. It has been limited to ones that focus on improving mechanical strength by utilizing chemical conversion. On the other hand, the use of a carbonaceous powder whose degree of graphitization has been improved by a graphitization catalyst as a functional material such as lithium insertion-desorption reaction in a negative electrode of a lithium secondary battery has been studied. 8-
There is 31422 gazette. However, the publication does not utilize a nitrogen compound in the progress of the graphitization reaction, and the electrode performance of the material presented therein is a load characteristic under conditions similar to those actually used as a battery. Was not enough and further improvement was needed. In the case of firing under the same conditions, the production yield of the final product was not high because the grains became coarse after firing.

【0015】[0015]

【発明が解決しようとする課題】本発明は、上記の問題
を鑑み、放電容量が大きく、サイクル初期の段階からの
充放電効率が高く、サイクル特性に優れた負荷特性の良
好なリチウム二次電池用負極材料を提供すること、及
び、その材料を製造する上で、黒鉛化粉末の分級歩留り
が高く、全体の製造コストを低減できる工業的に優れた
製造方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a lithium secondary battery having a large discharge capacity, high charge / discharge efficiency from the initial stage of the cycle, and excellent load characteristics with excellent cycle characteristics. The object of the present invention is to provide a negative electrode material for use, and to provide an industrially superior production method capable of reducing the overall production cost with a high classification yield of graphitized powder in producing the material. It is.

【0016】[0016]

【課題を解決するための手段】本発明者らは一連のホウ
素化合物の黒鉛化触媒効果を鋭意検討した結果、さらに
窒素化合物を添加することにより、焼成後の黒鉛化粉末
の電極特性、特に負荷特性が改善されることを見い出し
た。さらに、ホウ素化合物と窒素化合物を用いた場合に
は、ホウ素化合物単独の場合と比較して焼成後の粉末の
粒径が粗粒化しないため焼成前の粒径をコントロールす
れば焼成後の分級工程の省略が可能になる。それにより
最終製品の製造効率が高く工程の簡略化につながるた
め、工業的に優れた製造方法であることを見い出した。
本発明はかかる知見に基づいて完成されたものである。
The present inventors have conducted intensive studies on the graphitizing catalytic effect of a series of boron compounds. As a result, by further adding a nitrogen compound, the electrode characteristics of the calcined graphitized powder, particularly the It has been found that the properties are improved. Furthermore, when the boron compound and the nitrogen compound are used, the particle size of the powder after firing does not become coarse compared to the case of using the boron compound alone. Can be omitted. As a result, the manufacturing efficiency of the final product is high, which leads to simplification of the process.
The present invention has been completed based on such findings.

【0017】即ち、本発明による黒鉛化炭素粉末はピッ
チを原料とする炭素粉末を熱処理して調製した黒鉛化粉
末であって、X線広角回折法における炭素網面層の面間
隔(d002 )及び結晶子のc軸方向の大きさ(Lc)が
002 ≦0.337nm、Lc≧40nmであり、且
つ、ホウ素を原子比で0.1〜10%、窒素を原子比で
0.1〜10%含有することを特徴とするものである。
That is, the graphitized carbon powder according to the present invention is a graphitized powder prepared by heat-treating a carbon powder using pitch as a raw material, and has a plane spacing (d 002 ) of a carbon mesh plane layer in the X-ray wide-angle diffraction method. And the size (Lc) of the crystallite in the c-axis direction is d 002 ≦ 0.337 nm, Lc ≧ 40 nm, and boron is 0.1 to 10% in atomic ratio, and nitrogen is 0.1 to 0.1 in atomic ratio. It is characterized by containing 10%.

【0018】また本発明のリチウム二次電池用炭素負極
材料の製造方法は、ピッチを原料とする炭素粉末に対し
て、ホウ素化合物をホウ素換算で重量比0.1〜25
%、及び、窒素化合物を窒素換算で重量比0.1〜25
%添加、混合し、不活性あるいは還元性雰囲気下、25
00℃以上の温度で0.1時間以上熱処理することを特
徴とするものである。
The method for producing a carbon negative electrode material for a lithium secondary battery according to the present invention is characterized in that the weight ratio of the boron compound to the carbon powder from the pitch is 0.1 to 25 in terms of boron.
% And a nitrogen compound in a weight ratio of 0.1 to 25 in terms of nitrogen.
%, Mixed and mixed under an inert or reducing atmosphere.
The heat treatment is performed at a temperature of 00 ° C. or more for 0.1 hour or more.

【0019】[0019]

【発明の実施の形態】以下に本発明の具体的な内容につ
いて述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The specific contents of the present invention will be described below.

【0020】本発明は、易黒鉛化性炭素材料の部類に属
する炭素質粉末をホウ素化合物及び窒素化合物と共に熱
処理することにより、添加する化合物が炭素材料の黒鉛
化を促進し、黒鉛化後の炭素粉末が通常の熱処理では得
られないほど結晶構造が発達するため高い放電容量、高
い初期充放電効率を示すのに加えて、材料中に窒素が存
在するため優れた負荷特性を示すことを可能にするもの
である。また、添加する化合物の物理的性質から焼成後
の粉末が粗粒化しないため、高い分級歩留りで最終製品
を製造することを可能にするものである。
According to the present invention, a carbonaceous powder belonging to the class of graphitizable carbon materials is heat-treated together with a boron compound and a nitrogen compound, whereby the compound to be added promotes the graphitization of the carbon material, In addition to high discharge capacity and high initial charge / discharge efficiency due to the development of a crystal structure so that the powder cannot be obtained by ordinary heat treatment, it is possible to exhibit excellent load characteristics due to the presence of nitrogen in the material. Is what you do. In addition, since the powder after firing does not become coarse due to the physical properties of the compound to be added, the final product can be manufactured with a high classification yield.

【0021】すなわち本発明は、リチウム二次電池用炭
素負極材料として有望な易黒鉛化性材料の部類に属する
ピッチを原料とする炭素粉末を通常の黒鉛化処理で得ら
れる以上に高い黒鉛化度を有し、且つ、ある範囲内のホ
ウ素及び窒素を含んだ材料を得ることを目的として、黒
鉛化触媒作用を有するホウ素化合物と窒素化合物を適用
することに着目したものである。従って、本発明は炭素
粉末と共に焼成する化合物が保有する黒鉛化反応促進の
触媒作用によって炭素粉末の黒鉛化が促進されることが
本質的に重要であって、添加した触媒の一部が黒鉛結晶
の層間に入り込むこと、或いは面内の六員環網目格子を
形成する炭素原子を置換することは重要ではない。
That is, the present invention provides a graphitization degree higher than that obtained by ordinary graphitization of a carbon powder made from pitch belonging to the class of graphitizable materials which is promising as a carbon anode material for lithium secondary batteries. For the purpose of obtaining a material containing boron and nitrogen in a certain range, the present invention focuses on applying a boron compound and a nitrogen compound having a graphitization catalytic action. Therefore, in the present invention, it is essentially important that the graphitization reaction of the carbon powder is promoted by the catalytic action of the graphitization reaction held by the compound calcined with the carbon powder, and a part of the added catalyst is a graphite crystal. It is not important to penetrate between the layers or to replace carbon atoms forming an in-plane six-membered ring network lattice.

【0022】本発明者らは、種々の黒鉛化炭素材料を鋭
意研究した結果、材料の組織、結晶構造、及び材料表面
層の結晶子の配向が非常に重要な因子であり、ホウ素、
炭化ホウ素、酸化ホウ素、ホウ酸の黒鉛化触媒効果を利
用した黒鉛化材料が従来の負極材料よりも非常に高い電
極特性を有することを見いだし、先に出願した(特開平
8−31422号公報)。本発明では、電極特性の中で
も特に負荷特性の改善、及び、焼成過程での粉体の粗大
化抑制を通じた製造効率向上へ向けて鋭意検討した結
果、上記以外のホウ素化合物でも黒鉛化触媒効果を示す
ことを見い出し、またこのホウ素化合物に窒素化合物を
添加させることによりそのホウ素化合物の黒鉛化触媒効
果を損なうことなくその黒鉛化触媒作用を受けた炭素粉
末が高放電容量、高初期効率を示すのに加えて、ホウ
素、炭化ホウ素、酸化ホウ素、ホウ酸を単独で添加した
系と比較してさらに負荷特性に優れた電極特性を有する
ことを見い出した。
The present inventors have conducted intensive studies on various graphitized carbon materials. As a result, the structure, crystal structure, and orientation of crystallites in the material surface layer are very important factors.
A graphitizing material utilizing the graphitizing catalytic effect of boron carbide, boron oxide, and boric acid was found to have much higher electrode characteristics than conventional negative electrode materials, and was filed earlier (Japanese Patent Application Laid-Open No. 8-31422). . In the present invention, among the electrode characteristics, particularly improved load characteristics, and, as a result of intensive study to improve the production efficiency by suppressing the coarsening of the powder in the firing process, the graphitization catalyst effect even boron compounds other than the above. By adding a nitrogen compound to the boron compound, the carbon powder catalyzed by the graphitization exhibits a high discharge capacity and a high initial efficiency without impairing the graphitization catalytic effect of the boron compound. In addition to the above, it has been found that the electrode has more excellent load characteristics as compared with a system in which boron, boron carbide, boron oxide, and boric acid are added alone.

【0023】その材料の良好な負荷特性は材料中に存在
する窒素量と相関があり、今のところそのメカニズムは
明らかではないが窒素が存在することが負荷特性改善に
重要であることを見い出した。またホウ素化合物と窒素
化合物が共存した場合、黒鉛化後の粉末の粗粒化が起こ
りにくく、その結果目的とする粒径範囲の最終製品を分
級工程を省略できるほど高効率で製造することが可能に
なることを見い出した。特にホウ素化合物あるいは窒素
化合物として窒化ホウ素を用いた場合に顕著にみられ
る。これは前出願特許にあるような窒化ホウ素以外のホ
ウ素化合物は、黒鉛化温度(≧2500℃)より低い温
度に融点をもつのに対して、窒化ホウ素は融点をもたず
3000℃付近で昇華するという物理的性状に起因する
と思われる。すなわち、前者の場合には焼成段階で原料
の炭素粉末同士が触媒の溶融した液層を介して融着した
結果焼成品の粗粒化が起こるのに対して、後者ではその
ような現象が起こることなく触媒黒鉛化反応が進行する
ため、原料である炭素粉末の融着、粗粒化が起こりにく
いのではないかと推測される。
The good load characteristics of the material are correlated with the amount of nitrogen present in the material. Although the mechanism is not clear at present, it has been found that the presence of nitrogen is important for improving the load characteristics. . Also, when the boron compound and the nitrogen compound coexist, coarsening of the powder after graphitization hardly occurs, and as a result, a final product having a target particle size range can be manufactured with high efficiency so that the classification step can be omitted. I found it to be. In particular, when boron nitride is used as a boron compound or a nitrogen compound, it is remarkably observed. This is because boron compounds other than boron nitride as in the prior application patent have a melting point below the graphitization temperature (≧ 2500 ° C.), whereas boron nitride has no melting point and sublimates around 3000 ° C. It seems to be due to the physical nature of doing so. That is, in the former case, the carbon particles of the raw materials are fused together through the liquid layer in which the catalyst is melted in the sintering step, and as a result, the baked product is coarsened, whereas in the latter case, such a phenomenon occurs. It is presumed that since the catalyst graphitization reaction proceeds without causing the carbon powder as the raw material, fusion and coarsening of the carbon powder are unlikely to occur.

【0024】本発明におけるホウ素化合物とはその中に
ホウ素を含んだものであれば特に限定するものではない
が、好ましくは金属ホウ素、ホウ酸、酸化ホウ素、炭化
ホウ素、窒化ホウ素、ホウ酸塩のうち少なくとも一つか
らなるものである。また窒素化合物とはその中に窒素を
含んだものであれば特に限定するものではないが、好ま
しくは窒化物、硝酸塩、アンモニウム塩、シアン化物の
うち少なくとも一つからなるものである。さらに好まし
くは窒化ホウ素である。
The boron compound in the present invention is not particularly limited as long as it contains boron, but is preferably a metal compound of boron, boric acid, boron oxide, boron carbide, boron nitride or borate. At least one of them. The nitrogen compound is not particularly limited as long as it contains nitrogen therein, but is preferably made of at least one of nitride, nitrate, ammonium salt and cyanide. More preferably, it is boron nitride.

【0025】上記の化合物を添加する場合、化合物を予
め水やアルコール等の有機溶媒で溶解、あるいは分散さ
せた状態で添加することも可能である。
When the above compound is added, the compound can be added in a state of being dissolved or dispersed in advance with an organic solvent such as water or alcohol.

【0026】黒鉛構造の発達度合いの指標である黒鉛化
度に関し、炭素質材料を規定するX線回折法によるパラ
メーターとして、d002 ≦0.337nm、Lc≧40
nmを満たすことが必要であることが判明した。この黒
鉛化度を有する炭素質材料は、本発明にある黒鉛化触媒
との熱処理以外には得ることができない。炭素質粉末を
通常の熱処理温度で焼成した場合には、d002 >0.3
37nm、Lc<40nmとなってしまうため、黒鉛構
造の発達の程度が低く、リチウムのドープ量が小さくな
り、高い放電容量を得ることができない。
Regarding the degree of graphitization, which is an index of the degree of development of the graphite structure, as parameters according to the X-ray diffraction method for defining the carbonaceous material, d 002 ≦ 0.337 nm, Lc ≧ 40
It has been found necessary to satisfy nm. A carbonaceous material having this degree of graphitization cannot be obtained except for the heat treatment with the graphitization catalyst according to the present invention. When the carbonaceous powder is fired at a normal heat treatment temperature, d 002 > 0.3
Since 37 nm and Lc <40 nm, the degree of development of the graphite structure is low, the doping amount of lithium is small, and a high discharge capacity cannot be obtained.

【0027】焼成後の黒鉛化炭素粉中に含まれるホウ素
及び窒素の含有量に関して検討した結果、高い放電容量
且つ高い初期効率を維持したまま優れた負荷特性を得る
ためには、材料中のホウ素の含有量は原子比で0.1%
以上10%以下、窒素の含有量は原子比で0.1%以上
10%以下が好ましいことが判明した。ホウ素含有量が
10%を越える場合には、ホウ素の黒鉛への固溶限界量
以上のホウ素がB4 Cとして黒鉛化品中に残存するが、
リチウムのドープ/脱ドープ反応には全く関与しないた
め、放電容量が低下してしまう。また、0.1%未満の
黒鉛化粉末の場合には添加されたホウ素の触媒効果が十
分に発揮されず、その場合には各電極特性が通常の熱処
理品とほとんど変わらず、何ら改善されない。一方、窒
素含有量が10%を越える材料では、材料自体の電気比
抵抗が増大し充放電時の過電圧が大きくなるため、リチ
ウムのドープ/脱ドープ量を増やすことができず放電容
量が大きく低下してしまう。またドープされたリチウム
と窒素との間での相互作用が強まり、材料中にトラップ
されるリチウムの割合が多くなるため初期効率が大きく
低下してしまう。また窒素含有量が0.1%未満の材料
では、電池として実際に使用される場合と類似の条件下
での負荷特性が十分でない。
As a result of studying the contents of boron and nitrogen contained in the graphitized carbon powder after firing, in order to obtain excellent load characteristics while maintaining a high discharge capacity and a high initial efficiency, the boron content in the material was determined. Content is 0.1% by atomic ratio
It was found that the content of nitrogen is preferably not less than 0.1% and not more than 10% in atomic ratio. When the boron content exceeds 10%, boron exceeding the solid solution limit of boron in graphite remains in the graphitized product as B 4 C,
Since it does not participate in the doping / dedoping reaction of lithium at all, the discharge capacity is reduced. In addition, in the case of less than 0.1% of the graphitized powder, the catalytic effect of the added boron is not sufficiently exhibited, and in that case, the characteristics of each electrode are almost the same as those of a normal heat-treated product and are not improved at all. On the other hand, in the case of a material having a nitrogen content of more than 10%, the electric resistivity of the material itself increases and the overvoltage during charging and discharging increases, so that the amount of doping / dedoping of lithium cannot be increased and the discharge capacity is greatly reduced. Resulting in. Further, the interaction between the doped lithium and nitrogen is strengthened, and the ratio of lithium trapped in the material is increased, so that the initial efficiency is greatly reduced. Further, a material having a nitrogen content of less than 0.1% does not have sufficient load characteristics under conditions similar to those when actually used as a battery.

【0028】本発明に用いられるピッチを原料とする炭
素粉末は、リチウム二次電池負極用炭素材料として最適
な黒鉛構造(グラファイト層の積層配列規則性)を形成
しやすい材料であり、例えばピッチを原料とした炭素繊
維、ピッチコークス、メソフェース小球体等を挙げるこ
とができるが、特にこれらに限定するものではない。ま
た、その原料であるピッチについては特に制約を受けな
いが、焼成によって黒鉛結晶性が発達しやすいもの、い
わゆる黒鉛化のしやすい(易黒鉛化性)ことが本質的に
重要であり、例示すれば、石油ピッチ、アスファルトピ
ッチ、コールタールピッチ、ナフタレンピッチ、原油分
解ピッチ、石油スラッジピッチ、高分子重合体の熱分解
により得られるピッチ等を挙げることができ、また、こ
れらのピッチに水添処理等を施したものでもよい。
The carbon powder using pitch as a raw material used in the present invention is a material which is easy to form a graphite structure (regular arrangement regularity of graphite layers) as a carbon material for a negative electrode of a lithium secondary battery. Examples of the raw material include carbon fiber, pitch coke, and mesoface small spheres, but are not particularly limited thereto. There is no particular limitation on the pitch, which is the raw material, but it is essentially important that graphite crystallinity is easily developed by firing, that is, easy to graphitize (easy graphitization). For example, petroleum pitch, asphalt pitch, coal tar pitch, naphthalene pitch, crude oil cracking pitch, petroleum sludge pitch, pitch obtained by thermal decomposition of a polymer, and the like can be mentioned. May be applied.

【0029】また、本発明で用いる炭素質粉末の形状
は、平均粒度を50μm以下にすることで、バインダー
を用いて成型した際の充放電サイクル特性を高めること
ができる。平均粒度が50μmを超えると、リチウムが
炭素粉末内部まで挿入することが困難となり、炭素質粉
末の利用率が低下して放電容量が小さくなってしまうこ
とや、粗い粒度のものがあると実用電池に搭載される1
00μm前後の厚みの電極を作成する上で均一な厚みに
成型することが困難になってしまい、炭素質粉末の性能
を十分に引き出すことができなくなる。
The shape of the carbonaceous powder used in the present invention has an average particle size of 50 μm or less, whereby the charge / discharge cycle characteristics when molded using a binder can be improved. If the average particle size exceeds 50 μm, it becomes difficult to insert lithium into the inside of the carbon powder, and the utilization rate of the carbonaceous powder is reduced to decrease the discharge capacity. 1 to be mounted on
When an electrode having a thickness of about 00 μm is formed, it is difficult to mold the electrode into a uniform thickness, and the performance of the carbonaceous powder cannot be sufficiently brought out.

【0030】以上のような炭素質材料の粉砕方法は、上
述の平均粒度の範囲であることを満たす方法、装置であ
れば何らこれを制限するものではないが、例えば、摩擦
粉砕型のボールミル、ローラーミル、衝撃圧縮粉砕型の
振動ディスクミル、振動ボールミル、ピンミル、ジェッ
トミル、スタンプミル、剪断粉砕型のカッティングミ
ル、インペラーミル等を使用することができる。
The method of pulverizing the carbonaceous material as described above is not particularly limited as long as the method and apparatus satisfy the above-mentioned average particle size range. For example, a friction pulverization type ball mill, A roller mill, an impact compression crushing type vibration disk mill, a vibration ball mill, a pin mill, a jet mill, a stamp mill, a shearing crushing type cutting mill, an impeller mill and the like can be used.

【0031】また、ピッチコークス等のピッチを原料と
する炭素粉末と共に焼成するホウ素化合物、即ちピッチ
コークス等のピッチを原料とする炭素粉末の黒鉛化に有
効なホウ素化合物の焼成前の添加量は、ホウ素換算で重
量比0.1%〜25%であることが望ましい。焼成時に
は超高温になるため、黒鉛化触媒であるホウ素化合物自
身の融点、或いは沸点以上の温度に達し、添加したホウ
素化合物の一部が熱処理中に一部消失してしまう。従っ
て、焼成後の炭素粉中に存在するホウ素含有量は、焼成
前に添加したホウ素化合物のホウ素換算での含有量より
も減少する。しかし、焼成前に添加するホウ素化合物が
ホウ素換算で25重量%を越えた場合には、焼成後の炭
素粉中のホウ素含有量が原子比10%を越えてしまうた
め、多量の炭化ホウ素が混在し、放電容量の低下を引き
起こすことになる。また、添加するホウ素化合物がホウ
素換算で0.1重量%に満たない場合には、焼成段階に
おいて黒鉛化触媒として十分機能しない。一方、ピッチ
コークス等のピッチを原料とする炭素粉末と共に焼成す
る窒素化合物、即ちピッチコークス等のピッチを原料と
する炭素粉末の黒鉛化に有効な窒素化合物の焼成前の添
加量は、窒素換算で重量比0.1%〜25%であること
が望ましい。窒素化合物に関しては、添加する化合物が
窒素換算で25重量%を越えた場合には、焼成後の炭素
粉中の窒素含有量が原子比10%を越えてしまうため、
初期効率の低下を引き起こすことになる。また、添加す
る窒素化合物が窒素換算で0.1重量%満たない場合に
は、焼成後の炭素粉中の窒素含有量が原子比0.1%未
満となるため、電池として実際に使用される場合と類似
の条件下での負荷特性が十分でない。
The amount of the boron compound to be calcined together with the carbon powder made from pitch such as pitch coke, that is, the boron compound effective for graphitizing the carbon powder made from pitch such as pitch coke before calcination is as follows: The weight ratio is desirably 0.1% to 25% in terms of boron. Since the temperature becomes extremely high at the time of calcination, the temperature reaches the melting point or the boiling point of the boron compound itself, which is a graphitization catalyst, and a part of the added boron compound partially disappears during the heat treatment. Therefore, the content of boron present in the carbon powder after firing is smaller than the content in terms of boron of the boron compound added before firing. However, when the boron compound added before firing exceeds 25% by weight in terms of boron, the boron content in the carbon powder after firing exceeds the atomic ratio of 10%, so that a large amount of boron carbide is mixed. As a result, the discharge capacity is reduced. On the other hand, when the amount of the boron compound to be added is less than 0.1% by weight in terms of boron, the compound does not sufficiently function as a graphitization catalyst in the firing step. On the other hand, the amount of the nitrogen compound to be calcined together with the carbon powder from the pitch such as pitch coke, that is, the nitrogen compound effective for graphitizing the carbon powder from the pitch such as pitch coke before calcining, is calculated in terms of nitrogen. Desirably, the weight ratio is 0.1% to 25%. Regarding nitrogen compounds, if the added compound exceeds 25% by weight in terms of nitrogen, the nitrogen content in the carbon powder after firing exceeds 10% by atomic ratio.
This will cause a decrease in the initial efficiency. When the nitrogen compound to be added is less than 0.1% by weight in terms of nitrogen, the nitrogen content in the fired carbon powder is less than 0.1% in atomic ratio, and therefore, it is actually used as a battery. Insufficient load characteristics under similar conditions.

【0032】上記のような炭素質材料とホウ素化合物及
び窒素化合物を混合する方法は、それらが均一に混合す
るのであれば何ら限定するものではないが、それらを直
接撹拌してもよいし、例えば水やアルコール等有機溶媒
などの液体を媒体として撹拌してもよい。
The method of mixing the carbonaceous material with the boron compound and the nitrogen compound as described above is not particularly limited as long as they are uniformly mixed, but they may be directly stirred. Stirring may be performed using a liquid such as water or an organic solvent such as alcohol as a medium.

【0033】熱処理温度に関しては、熱処理後の材料の
黒鉛結晶性を発達させる目的から、できるだけ高い温度
が望ましく、不活性雰囲気(窒素、或いはアルゴンガ
ス)下あるいは還元性雰囲気下、2500℃以上の温度
で0.1時間以上の熱処理が望ましい。熱処理温度が2
500℃未満であると、黒鉛化後の炭素粉末の黒鉛構造
が十分に発達しないため、放電容量が小さく、且つ、充
放電サイクルの特に第一回目の電流効率が低くなってし
まう。また、熱処理時間が0.1時間未満では、黒鉛化
触媒の触媒作用を機能させるのに十分でなく、熱処理後
の炭素質粉末の黒鉛構造が発達せず、放電容量、初期効
率共に高い性能を得ることができない。ここで、熱処理
温度については黒鉛化促進を進めるために可能な限り高
い温度が望ましいが、黒鉛化炉の装置上の能力の限界、
温度上昇に伴う設備の損耗の加速化、温度上昇に比例し
た炭素の蒸気圧上昇に伴う焼成品の重量の目減り、測温
の精度の低下などの問題から3300℃以下にすること
が好ましい。また、熱処理時間に関しては、黒鉛化触媒
の触媒作用を機能させるために可能な限り長時間焼成す
ることが望ましいが、2500℃以上の温度で1000
時間以下の熱処理でも触媒黒鉛化反応が進行して炭素質
粉末の結晶構造が十分に発達するため、1000時間を
越えて熱処理することは経済的理由から適当でない。ま
た、1000時間を越えて熱処理することにより、原料
の炭素粉末同士が焼結して、焼成後の炭素粉末の粒度が
大きくなる傾向にあるため、電極作成に適した粒度範囲
の材料を効率良く得ることができないことからも好まし
くない。
The heat treatment temperature is desirably as high as possible for the purpose of developing the graphite crystallinity of the heat-treated material, and is preferably a temperature of 2500 ° C. or more under an inert atmosphere (nitrogen or argon gas) or a reducing atmosphere. And heat treatment for 0.1 hour or more is desirable. Heat treatment temperature is 2
If the temperature is lower than 500 ° C., the graphite structure of the graphitized carbon powder does not sufficiently develop, so that the discharge capacity is small and the current efficiency in the first charge / discharge cycle is particularly low. Further, if the heat treatment time is less than 0.1 hour, it is not enough to function the catalytic action of the graphitization catalyst, the graphite structure of the carbonaceous powder after the heat treatment does not develop, and both the discharge capacity and the initial efficiency are high. I can't get it. Here, the heat treatment temperature is desirably as high as possible in order to promote graphitization, but the limit of the capacity of the graphitization furnace equipment,
The temperature is preferably set to 3300 ° C. or less in view of problems such as accelerated wear of equipment due to a rise in temperature, a decrease in the weight of the fired product due to an increase in the vapor pressure of carbon in proportion to the rise in temperature, and a decrease in accuracy of temperature measurement. Regarding the heat treatment time, it is desirable to perform calcination as long as possible in order to function the catalytic action of the graphitization catalyst.
Even if the heat treatment is performed for less than an hour, the catalytic graphitization reaction proceeds and the crystal structure of the carbonaceous powder is sufficiently developed, so that the heat treatment for more than 1000 hours is not appropriate for economic reasons. Further, by performing heat treatment for more than 1000 hours, the carbon powders as raw materials are sintered, and the particle size of the carbon powder after firing tends to increase. It is not preferable because it cannot be obtained.

【0034】焼成後の粉末の分級に関しては、上述の平
均粒度の範囲であることを満たす方法、装置であれば何
らこれを制限するものではなく、例示すれば、ふるい分
級機や気流分級機などを好適に使用することができる。
The classification of the powder after calcination is not limited in any way if it is a method or an apparatus which satisfies the above-mentioned average particle size range. For example, a sieve classifier or an airflow classifier may be used. Can be suitably used.

【0035】本発明が提供する黒鉛化炭素粉末の成型に
関しては、リチウム電池に用いる粉末状電池活物質に対
し、通常用いられる方法で成型することが可能であり、
炭素質粉末の性能を十分に引き出し、且つ、粉末に対す
る賦型性が高く、化学的、電気化学的に安定であれば何
らこれに制限されるものではないが、例示すれば、炭素
質粉末にポリテトラフルオロエチレン等フッ素系樹脂の
粉末あるいはディスパージョン溶液を添加後、混合、混
練する方法がある。また、炭素質粉末にポリエチレン、
ポリビニルアルコール等の樹脂粉末を添加した後、乾式
混合物を金型に挿入し、ホットプレスにより成型する方
法もある。さらに、炭素質粉末にポリフッ化ビニリデン
等のフッ素系樹脂粉末あるいはカルボキシメチルセルロ
ース等の水溶性粘結剤をバインダーにして、N−メチル
ピロリドン、ジメチルホルムアミドあるいは水、アルコ
ール等の溶媒を用いて混合することによりスラリーを作
成し、集電体上に塗布、乾燥することにより成型するこ
ともできる。
With respect to the molding of the graphitized carbon powder provided by the present invention, it is possible to mold the powdered battery active material used for a lithium battery by a method generally used,
The performance of the carbonaceous powder is sufficiently extracted, and the shapeability of the powder is high, and it is not limited to this as long as it is chemically and electrochemically stable. There is a method in which a powder or dispersion solution of a fluororesin such as polytetrafluoroethylene is added, followed by mixing and kneading. In addition, polyethylene,
There is also a method of adding a resin powder such as polyvinyl alcohol, inserting the dry mixture into a mold, and molding by hot pressing. Further, a carbonaceous powder is mixed with a fluorine-based resin powder such as polyvinylidene fluoride or a water-soluble binder such as carboxymethyl cellulose as a binder, and mixed with a solvent such as N-methylpyrrolidone, dimethylformamide or water or alcohol. Can be formed by applying a slurry on a current collector and drying the slurry.

【0036】本発明の炭素材料は、正極活物質と有機溶
媒系電解質と適宜に組み合わせて用いることができる
が、これらの有機溶媒系電解質や正極活物質は、リチウ
ム二次電池に通常用いることのできるものであれば、特
にこれを制限するものではない。
The carbon material of the present invention can be used in an appropriate combination with a positive electrode active material and an organic solvent-based electrolyte. These organic solvent-based electrolytes and the positive electrode active material are usually used in lithium secondary batteries. This is not particularly limited as long as it is possible.

【0037】正極活物質としては、例えば、リチウム含
有遷移金属酸化物LiM(1)x 2 (式中xは0≦x
≦1の範囲の数値であり、式中M(1)は遷移金属を表
しCo、Ni、Mn、Cr、Ti、V、Fe、Zn、A
l、In、Snの少なくとも一種類からなる)或いはL
iM(2)2-y 4 (式中yは0≦y≦1の範囲の数値
であり、式中M(2)は遷移金属を表しCo、Ni、M
n、Cr、Ti、V、Fe、Zn、B、Al、In、S
nの少なくとも一種類からなる)、遷移金属カルコゲン
化物(TiS2 、NbSe3 、etc.)、バナジウム
酸化物(V2 5 、V6 13、V2 4 、V3 8 、e
tc.)及びそのLi化合物、一般式Mx Mo6 Ch
8-y (式中xは0≦x≦4、yは0≦y≦1の範囲の数
値であり、式中Mは遷移金属をはじめとする金属、Ch
はカルコゲン元素を表す)で表されるシェブレル相化合
物、或いは活性炭、活性炭素繊維等を用いることができ
る。
As the positive electrode active material, for example, a lithium-containing transition metal oxide LiM (1) x O 2 (where x is 0 ≦ x
≦ 1 where M (1) represents a transition metal, Co, Ni, Mn, Cr, Ti, V, Fe, Zn, A
l, In, Sn) or L
iM (2) 2-y O 4 (where y is a numerical value in the range of 0 ≦ y ≦ 1, where M (2) represents a transition metal, Co, Ni, M
n, Cr, Ti, V, Fe, Zn, B, Al, In, S
n), transition metal chalcogenides (TiS 2 , NbSe 3 , etc.), vanadium oxides (V 2 O 5 , V 6 O 13 , V 2 O 4 , V 3 O 8 , e
tc. ) And its Li compound, general formula M x Mo 6 Ch
8-y (where x is a numerical value in the range of 0 ≦ x ≦ 4, y is a numerical value in the range of 0 ≦ y ≦ 1, and M is a metal including transition metals, Ch
Represents a chalcogen element), activated carbon, activated carbon fiber or the like.

【0038】有機溶媒系電解質における有機溶媒として
は、特に制限されるものではないが、例えば、プロピレ
ンカーボネート、エチレンカーボネート、ジメチルカー
ボネート、ジエチルカーボネート、1,1−及び1,2
−ジメトキシエタン、1,2−ジエトキシエタン、γ−
ブチロラクトン、テトラヒドロフラン、2−メチルテト
ラヒドロフラン、1,3−ジオキソラン、4−メチル−
1,3−ジオキソラン、アニソール、ジエチルエーテ
ル、スルホラン、メチルスルホラン、アセトニトリル、
クロロニトリル、プロピオニトリル、ホウ酸トリメチ
ル、ケイ酸テトラメチル、ニトロメタン、ジメチルホル
ムアミド、N−メチルピロリドン、酢酸エチル、トリメ
チルオルトホルメート、ニトロベンゼン、塩化ベンゾイ
ル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチ
ルスルホキシド、3−メチル−2−オキサゾリドン、エ
チレングリコール、サルファイト、ジメチルサルファイ
ト等の単独もしくは2種類以上の混合溶媒が使用でき
る。
The organic solvent in the organic solvent-based electrolyte is not particularly restricted but includes, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,1- and 1,2.
-Dimethoxyethane, 1,2-diethoxyethane, γ-
Butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-
1,3-dioxolan, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile,
Chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3 A single solvent such as -methyl-2-oxazolidone, ethylene glycol, sulfite, dimethyl sulfite and the like, or a mixed solvent of two or more thereof can be used.

【0039】電解質としては、従来より公知のものを何
れも使用することができ、例えば、LiClO4 、Li
BF4 、LiPF6 、LiAsF6 、LiB(C
6 5 )、LiCl、LiBr、LiCF3 SO3 、L
iCH3 SO3 、Li(CF3 SO2 2 N、Li(C
3 SO2 3 C、Li(CF3 CH2 OSO2
2 N、Li(CF3 CF2 CH2 OSO2 2 N、Li
(HCF2 CF2 CH2 OSO22 N、Li((CF
3 2 CHOSO2 2 N、LiB(C6 3 (C
3 2 4 等の一種または二種以上の混合物を挙げる
ことができる。
As the electrolyte, any of conventionally known electrolytes can be used. For example, LiClO 4 , Li
BF 4 , LiPF 6 , LiAsF 6 , LiB (C
6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , L
iCH 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C
F 3 SO 2 ) 3 C, Li (CF 3 CH 2 OSO 2 )
2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N, Li
(HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((CF
3 ) 2 CHOSO 2 ) 2 N, LiB (C 6 H 3 (C
F 3) 2) can be exemplified one or two or more thereof, such as 4.

【0040】[0040]

【実施例】【Example】

実施例 コールタールピッチを原料としたピッチコークス塊をピ
ンミルを用いて粉砕し、平均粒度20μmの粉末を得
た。そのピッチコークス粉末を75μmのふるいで分級
したものに表1に示した各種化合物を添加し、十分混合
した後、アルゴン雰囲気下で各々一時間黒鉛化処理を施
した。ここで、熱処理温度はサンプル7、8でそれぞれ
2500、2700℃とした他は全て3000℃とし
た。得られた黒鉛化粉末の黒鉛結晶構造、焼成粉に含ま
れるホウ素量及び窒素量、焼成粉の75μmの振動ふる
いで分級した際の歩留りは表1の通りである。得られた
黒鉛化粉末の結晶構造は理想的な黒鉛結晶の構造(d
002 =0.3354nm)に近く、ピッチコークスは窒
化ホウ素の添加によりその黒鉛構造が発達した。また、
焼成粉に含まれる窒素量は焼成前の窒化ホウ素の添加量
に依存した。また焼成後の粉末をレーザー回折散乱式粒
度分布測定機により測定した結果、粉体の粒度分布は焼
成前後でほとんど変化がなく、実際に黒鉛化粉末の振動
ふるいによる分級を行ったところ非常に高い効率で目的
とする粒度範囲の粉体を得ることができた。
Example A pitch coke lump using coal tar pitch as a raw material was pulverized using a pin mill to obtain a powder having an average particle size of 20 μm. The various compounds shown in Table 1 were added to the pitch coke powder classified with a 75 μm sieve, mixed well, and then each was graphitized for 1 hour in an argon atmosphere. Here, the heat treatment temperature was 3000 ° C. except that the heat treatment temperature was 2500 and 2700 ° C. for samples 7 and 8, respectively. Table 1 shows the graphite crystal structure of the obtained graphitized powder, the amounts of boron and nitrogen contained in the calcined powder, and the yield when the calcined powder was classified using a 75 μm vibration sieve. The crystal structure of the obtained graphitized powder is an ideal graphite crystal structure (d
002 = 0.3354 nm), the pitch coke developed its graphite structure by the addition of boron nitride. Also,
The amount of nitrogen contained in the fired powder depended on the amount of boron nitride added before firing. In addition, as a result of measuring the powder after firing with a laser diffraction scattering type particle size distribution analyzer, the particle size distribution of the powder hardly changed before and after firing, and it was very high when actually classified by vibrating the graphitized powder. A powder having a desired particle size range could be obtained with high efficiency.

【0041】[0041]

【表1】 [Table 1]

【0042】このようにして調製した焼成粉末に、バイ
ンダーとしてポリテトラフルオロエチレン粉末を5重量
%加えて混練し、約0.1mm厚の電極シートを作成
し、約10.5mgに切り出し(炭素材料に換算して1
0mg)、集電体であるNiメッシュに圧着することに
より負極電極を作成した。
5% by weight of a polytetrafluoroethylene powder as a binder was added to the calcined powder thus prepared and kneaded to prepare an electrode sheet having a thickness of about 0.1 mm, which was cut into about 10.5 mg (carbon material). Converted to 1
0 mg) and pressed against a Ni mesh as a current collector to form a negative electrode.

【0043】上記成型電極の単極での電極特性を評価す
るために、対極、参照極にリチウム金属を用いた三極式
セルを用いた。電解液には、エチレンカーボネートとジ
エチルカーボネートの混合溶媒(体積比で1:1混合)
にLiPF6 を1mol/lの割合で溶解したものを用
いた。充放電試験に関しては、電位規制の下、充電、放
電共に定電流(0.5mA/cm2 )で行なった。電位
範囲は0Vから1.0V(リチウム金属基準)とした。
また、重負荷特性試験については、充電(Li吸蔵)過
程を定電流(0.5mA/cm2 )で行って0Vになっ
た状態でその電圧を保持する定電流−定電圧法で行なっ
た。全体の充電時間を12時間とし、放電(Li放出)
過程を0.5、1、2、3、4mA/cm2 の定電流法
で行った。その電位範囲は0Vから1.0V(リチウム
金属基準)とした。
In order to evaluate the monopolar electrode characteristics of the molded electrode, a three-electrode cell using lithium metal for the counter electrode and the reference electrode was used. In the electrolyte, a mixed solvent of ethylene carbonate and diethyl carbonate (1: 1 mixture by volume ratio)
Was used in which LiPF 6 was dissolved at a rate of 1 mol / l. Regarding the charge / discharge test, both charging and discharging were performed at a constant current (0.5 mA / cm 2 ) under regulation of potential. The potential range was 0 V to 1.0 V (based on lithium metal).
The heavy load characteristic test was performed by a constant current-constant voltage method in which the charging (Li occlusion) process was performed at a constant current (0.5 mA / cm 2 ) and the voltage was maintained at 0 V. Discharge (Li release) with a total charge time of 12 hours
The process was performed by a constant current method of 0.5, 1, 2, 3 , 4 mA / cm 2 . The potential range was 0 V to 1.0 V (based on lithium metal).

【0044】その電極特性の結果を表2及び表3に示
す。炭素材への初期のリチウムドープにおいて、0.8
V近傍の電位平坦部分(プラトー)は非常に小さいため
初期充放電効率は非常に高く、3サイクル目以降ほぼ1
00%で安定に推移した。重量当たりの放電容量も高
く、充放電サイクルに伴う容量低下は小さく、優れた電
極性能であった。また、重負荷特性は焼成粉に含まれる
窒素量と相関があり、窒素が残存するほど電流密度の違
いによる放電容量の変化が小さく重負荷特性に優れるこ
とが判明した。
Tables 2 and 3 show the results of the electrode characteristics. In the initial lithium doping of the carbon material, 0.8
Since the potential flat portion (plateau) in the vicinity of V is very small, the initial charge / discharge efficiency is very high, and is approximately 1 after the third cycle.
It was stable at 00%. The discharge capacity per weight was high, and the capacity decrease accompanying the charge / discharge cycle was small, and the electrode performance was excellent. The heavy load characteristics correlated with the amount of nitrogen contained in the baked powder, and it was found that as nitrogen remained, the change in discharge capacity due to the difference in current density was small and the heavy load characteristics were excellent.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】比較例1 実施例で用いたのと同じピッチコークス粉末を毎分10
℃の速度で昇温し、2500、2700、2900、3
000℃で一時間黒鉛化処理を施した。得られた黒鉛化
粉末の黒鉛結晶構造、焼成粉に含まれるホウ素量及び窒
素量、75μmの振動ふるいで分級した後の分級歩留り
は表4の通りである。触媒を加えていないため焼成前後
の重量変化はほとんどなく、また焼成後も粉体の粒径が
大きくならないが、黒鉛結晶構造の指標である層間距離
(d002 )はこれほど高い温度で焼成しても0.335
4nmまでには縮まらない。
COMPARATIVE EXAMPLE 1 The same pitch coke powder as used in the examples was added at a rate of 10 / min.
Temperature at a rate of 2500C, 2500, 2700, 2900, 3
Graphitization treatment was performed at 000 ° C. for 1 hour. Table 4 shows the graphite crystal structure of the obtained graphitized powder, the amounts of boron and nitrogen contained in the calcined powder, and the classification yield after classification with a vibration sieve of 75 μm. Since no catalyst is added, there is almost no change in weight before and after firing, and the particle size of the powder does not increase even after firing. However, firing at such a high temperature is the interlayer distance (d 002 ) which is an index of the graphite crystal structure. Even 0.335
It does not shrink to 4 nm.

【0048】[0048]

【表4】 [Table 4]

【0049】このようにして調製したピッチコークス粉
末を成型する際には、実施例と同様の手法を用いた。ま
た、充放電試験も実施例に準じて行ない、その結果を表
5に示す。炭素粉末への初期のリチウムドープにおい
て、0.6V〜0.9Vの長い電位平坦部分(プラト
ー)が観測されたことに加えて、リチウムドープ後の開
路状態までの電圧差が大きく材料中でのリチウムの拡散
が容易に進行しないため、充放電効率が非常に低い数値
となった。また、この充放電反応は5サイクル目以降に
ようやくほぼ100%に到達し、その後は100%で推
移した。しかし、放電容量は低く、充放電サイクルに伴
う容量低下も大きかった。また負荷特性も1mA/cm
2 から容量が落ち始め、4mA/cm2 では0.5mA
/cm2 の時の放電容量の80%台にまで低下した。
When the pitch coke powder thus prepared was molded, the same method as in the example was used. The charge / discharge test was also performed according to the examples, and the results are shown in Table 5. In the initial lithium doping of carbon powder, a long potential flat portion (plateau) of 0.6 V to 0.9 V was observed, and the voltage difference until the open circuit state after lithium doping was large. Since the diffusion of lithium did not easily proceed, the charge / discharge efficiency was very low. The charge / discharge reaction reached almost 100% only after the fifth cycle, and thereafter changed to 100%. However, the discharge capacity was low, and the capacity decrease accompanying the charge / discharge cycle was large. The load characteristics are also 1 mA / cm
The capacity starts dropping from 2 and 0.5 mA at 4 mA / cm 2
/ Cm 2 , to 80% of the discharge capacity.

【0050】[0050]

【表5】 [Table 5]

【0051】比較例2 実施例で用いたピッチコークス粉末に表6で示した条件
で各種ホウ素化合物をホウ素換算で6重量%添加混合
し、毎分10℃の速度で昇温し、3000℃で一時間黒
鉛化処理を施して得られた黒鉛化粉末の黒鉛結晶構造、
焼成粉に含まれるホウ素量及び窒素量、75μmの振動
ふるいで分級した後の分級歩留りは表6の通りである。
黒鉛結晶構造の指標である層間距離(d002 )はいずれ
の場合にも触媒を添加していない比較例1と比較して
0.3354nmに近い値となった。一方、特に酸化ホ
ウ素、ホウ酸添加系で焼成前後の重量減少が大きく、ま
た焼成後の粉体の粒径は全ての場合に大きくなり、分級
歩留りは低い値となった。
Comparative Example 2 The pitch coke powder used in the examples was mixed with 6 wt% of various boron compounds in terms of boron under the conditions shown in Table 6, mixed and heated at a rate of 10 ° C./min. Graphite crystal structure of graphitized powder obtained by performing graphitization treatment for one hour,
Table 6 shows the amount of boron and the amount of nitrogen contained in the baked powder, and the classification yield after classification with a vibration sieve of 75 μm.
In each case, the interlayer distance (d 002 ), which is an index of the graphite crystal structure, was closer to 0.3354 nm as compared with Comparative Example 1 in which no catalyst was added. On the other hand, especially in the boron oxide and boric acid addition systems, the weight loss before and after calcination was large, and the particle size of the powder after calcination was large in all cases, and the classification yield was low.

【0052】[0052]

【表6】 [Table 6]

【0053】このようにして調製したピッチコークス粉
末に、実施例と同様の手法で電極シートを作成し、負極
電極を作成した。上記成型電極の単極での電極特性を評
価する方法は、全て実施例に準じて行なった。その電極
特性の結果を表7に示す。充放電曲線は窒化ホウ素添加
の場合とほとんど同一で充放電効率が高い数値となっ
た。また、放電容量は高く、充放電サイクルに伴う容量
低下も小さくサイクル特性も良好であった。一方、負荷
特性は1mA/cm2 から容量が落ち始め、4mA/c
2 では0.5mA/cm2 の時の放電容量の90%近
くにまで低下した。
An electrode sheet was formed on the thus prepared pitch coke powder in the same manner as in the example, and a negative electrode was formed. All of the methods for evaluating the electrode characteristics of the above-mentioned molded electrode with a single electrode were performed in accordance with the examples. Table 7 shows the results of the electrode characteristics. The charge / discharge curve was almost the same as that in the case of adding boron nitride, and the value of the charge / discharge efficiency was high. In addition, the discharge capacity was high, the capacity decrease accompanying the charge / discharge cycle was small, and the cycle characteristics were good. On the other hand, as for the load characteristics, the capacity starts decreasing from 1 mA / cm 2 and is 4 mA / c.
At m 2 , the discharge capacity was reduced to nearly 90% of the discharge capacity at 0.5 mA / cm 2 .

【0054】[0054]

【表7】 [Table 7]

【0055】[0055]

【発明の効果】以上の説明からも明白なように、本発明
のリチウム二次電池用炭素負極材料の製造方法は、易黒
鉛化性炭素材料の部類に属する炭素質粉末を黒鉛化触媒
として働くホウ素化合物及び窒素化合物を共に熱処理し
たものであり、通常の超高温熱処理では得られない高い
黒鉛化度をもった黒鉛結晶を保有し、且つ、材料中に窒
素を含有する材料を得ることが可能である。これによ
り、高い放電容量、初期充放電効率、及び負荷特性の優
れた粉末状炭素材料を提供することができる。
As is apparent from the above description, the method for producing a carbon negative electrode material for a lithium secondary battery according to the present invention uses a carbonaceous powder belonging to the class of graphitizable carbon materials as a graphitization catalyst. Both boron compounds and nitrogen compounds are heat-treated, and it is possible to obtain graphite crystals with a high degree of graphitization that cannot be obtained by ordinary ultra-high temperature heat treatment, and to obtain a material containing nitrogen in the material. It is. Thereby, a powdery carbon material having high discharge capacity, initial charge / discharge efficiency, and excellent load characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 健了 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 (72)発明者 稲田 幸輝 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 (72)発明者 杉浦 勉 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Takeshi Sasaki 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Nippon Steel Corporation Technology Development Division (72) Inventor Koki Inada 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Address: Nippon Steel Corporation Technology Development Division (72) Inventor Tsutomu Sugiura 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Nippon Steel Corporation Technology Development Division

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ピッチを原料とする炭素粉末を熱処理し
て調製した黒鉛化粉末であって、X線広角回折法におけ
る炭素網面層の面間隔(d002 )及び結晶子のc軸方向
の大きさ(Lc)がd002 ≦0.337nm、Lc≧4
0nmであり、且つ、ホウ素を原子比で0.1〜10
%、窒素を原子比で0.1〜10%含有することを特徴
とするリチウム二次電池用負極材料。
1. A graphitized powder prepared by heat-treating a carbon powder using pitch as a raw material, wherein the distance between the carbon mesh plane layers (d 002 ) and the c-axis direction of crystallites are measured by X-ray wide-angle diffraction. The size (Lc) is d 002 ≦ 0.337 nm, Lc ≧ 4
0 nm, and an atomic ratio of boron of 0.1 to 10
% And nitrogen in an atomic ratio of 0.1 to 10%.
【請求項2】 ピッチを原料とする炭素粉末に対して、
ホウ素化合物をホウ素換算で重量比0.1〜25%、及
び、窒素化合物を窒素換算で重量比0.1〜25%添
加、混合し、不活性あるいは還元性雰囲気下、2500
℃以上の温度で0.1時間以上熱処理することを特徴と
するリチウム二次電池用負極材料の製造方法。
2. A method according to claim 1, wherein said carbon powder is made from pitch.
A boron compound is added and mixed in a weight ratio of 0.1 to 25% in terms of boron, and a nitrogen compound is added and mixed in a weight ratio of 0.1 to 25% in terms of nitrogen.
A method for producing a negative electrode material for a lithium secondary battery, comprising heat-treating at a temperature of at least 100C for at least 0.1 hour.
【請求項3】 ホウ素化合物が、金属ホウ素、ホウ酸、
酸化ホウ素、炭化ホウ素、窒化ホウ素、ホウ酸塩のうち
少なくとも一つである請求項2に記載の製造方法。
3. The method according to claim 1, wherein the boron compound is metallic boron, boric acid,
The method according to claim 2, wherein the method is at least one of boron oxide, boron carbide, boron nitride, and borate.
【請求項4】 窒素化合物が、窒化物、硝酸塩、アンモ
ニウム塩、シアン化物のうち少なくとも一つである請求
項2に記載の製造方法。
4. The method according to claim 2, wherein the nitrogen compound is at least one of a nitride, a nitrate, an ammonium salt, and a cyanide.
【請求項5】 窒素化合物が窒化ホウ素であることを特
徴とする請求項4に記載の製造方法。
5. The method according to claim 4, wherein the nitrogen compound is boron nitride.
JP9024038A 1997-02-06 1997-02-06 Anode material for lithium secondary battery and manufacture thereof Pending JPH10223223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9024038A JPH10223223A (en) 1997-02-06 1997-02-06 Anode material for lithium secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9024038A JPH10223223A (en) 1997-02-06 1997-02-06 Anode material for lithium secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10223223A true JPH10223223A (en) 1998-08-21

Family

ID=12127338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9024038A Pending JPH10223223A (en) 1997-02-06 1997-02-06 Anode material for lithium secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10223223A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233208A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002008661A (en) * 2000-05-17 2002-01-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery
US6869546B1 (en) * 1999-05-25 2005-03-22 Sanyo Electric Co., Ltd. Carbon materials, electrodes and nonaqueous electrolyte secondary cells
DE10247452B4 (en) * 2001-10-11 2007-08-16 Honda Giken Kogyo K.K. Electrode for polymer electrolyte fuel cell
JP2012074323A (en) * 2010-09-30 2012-04-12 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
JP2018514936A (en) * 2015-03-27 2018-06-07 日本電気株式会社 Boron doped activated carbon material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233208A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6869546B1 (en) * 1999-05-25 2005-03-22 Sanyo Electric Co., Ltd. Carbon materials, electrodes and nonaqueous electrolyte secondary cells
JP2002008661A (en) * 2000-05-17 2002-01-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery
DE10247452B4 (en) * 2001-10-11 2007-08-16 Honda Giken Kogyo K.K. Electrode for polymer electrolyte fuel cell
JP2012074323A (en) * 2010-09-30 2012-04-12 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
JP2018514936A (en) * 2015-03-27 2018-06-07 日本電気株式会社 Boron doped activated carbon material

Similar Documents

Publication Publication Date Title
JP4215633B2 (en) Method for producing composite graphite particles
US7052803B2 (en) Lithium rechargeable battery
KR101618386B1 (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
WO2002071515A1 (en) Graphite material for negative pole of lithium secondary battery, method of manufacturing the graphite material, and lithium secondary battery
JP3276983B2 (en) Anode material for lithium secondary battery and method for producing the same
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
KR19990083322A (en) Graphite Powders Suited for Negative Electrode Material of Lithium Ion Secondary Battery
JP4866611B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JPH10326611A (en) Carbon material for negative electrode of lithium secondary battery
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
KR20170102949A (en) Carbon material, production method thereof and use thereof
WO2019131862A1 (en) Negative electrode material for lithium-ion secondary cells
JP2018006270A (en) Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof
WO2019131861A1 (en) Negative electrode material for lithium-ion secondary cells
WO2019131864A1 (en) Negative electrode material for lithium ion secondary battery
JP3496901B2 (en) Carbonaceous materials for secondary battery electrodes
JP2011029197A (en) Negative electrode carbon material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery, and lithium secondary battery
JPH10223223A (en) Anode material for lithium secondary battery and manufacture thereof
EP3896758A1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
JP5053541B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP4299608B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4721038B2 (en) Negative electrode carbon material for lithium secondary battery, method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2001357849A (en) Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2001006662A (en) Negative electrode material for lithium secondary battery and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905