JPH0799959B2 - Inverter with winding switching function - Google Patents

Inverter with winding switching function

Info

Publication number
JPH0799959B2
JPH0799959B2 JP62189574A JP18957487A JPH0799959B2 JP H0799959 B2 JPH0799959 B2 JP H0799959B2 JP 62189574 A JP62189574 A JP 62189574A JP 18957487 A JP18957487 A JP 18957487A JP H0799959 B2 JPH0799959 B2 JP H0799959B2
Authority
JP
Japan
Prior art keywords
inverter
phase bridge
circuit
bridge circuit
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62189574A
Other languages
Japanese (ja)
Other versions
JPS6434198A (en
Inventor
沢  俊裕
常生 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP62189574A priority Critical patent/JPH0799959B2/en
Publication of JPS6434198A publication Critical patent/JPS6434198A/en
Publication of JPH0799959B2 publication Critical patent/JPH0799959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、工作機械の主軸ドライブや、電気車両のドラ
イブ等、広い定出力制御範囲を要求される誘導電動機の
インバータに関する。
Description: TECHNICAL FIELD The present invention relates to an induction motor inverter that is required to have a wide constant output control range, such as a spindle drive of a machine tool or a drive of an electric vehicle.

〔従来の技術〕[Conventional technology]

誘導電動機をインバータトライブする場合、第5図に示
すように、モータ端子電圧をV,1次周波数をFとして、V
/F一定制御をすれば、巻線等の抵抗分による電圧降下が
無視できなくなる低速域を除き、ほぼ定トルク特性、す
なわち出力が回転数に比例する特性となる。
When an induction motor is driven by an inverter, as shown in Fig. 5, the motor terminal voltage is V, the primary frequency is F, and V
If the / F constant control is performed, the constant torque characteristic is obtained, that is, the output is proportional to the rotation speed, except in the low speed range where the voltage drop due to the resistance of the winding or the like cannot be ignored.

また、V=一定とすれば、モータ許容磁束密度で決まる
運転周波数下限値と、モータの最大トルクで決まる運転
周波数上限値の間で定出力特性が得られる。
If V = constant, a constant output characteristic can be obtained between the lower limit of the operating frequency determined by the motor allowable magnetic flux density and the upper limit of the operating frequency determined by the maximum torque of the motor.

第5図において、定トルク特性と定出力特性の切替点を
NB,定出力制御での最高回転数をNMとすると、誘導電動
機では、その比NM/NBは2〜3程度である。
In FIG. 5, the switching points between the constant torque characteristic and the constant output characteristic are shown.
N B, when the maximum speed in the constant power control and N M, the induction motor, the ratio N M / N B is about 2-3.

したがって、定出力制御範囲を拡大するためには、第5
図に一点鎖線で示す特性bのように、NBをNB1に下げれ
ばよい。このとき、定出力制御範囲はNB/NB1倍に拡大
するが、一方定格出力はNB1/NB倍に低下するので、同
一定格出力で定出力範囲を拡大するためには、NB/NB1
倍のインバータ容量が必要となる。
Therefore, in order to expand the constant output control range,
N B may be lowered to N B1 as indicated by the characteristic b indicated by the alternate long and short dash line in the figure. At this time, the constant output control range is expanded to N B / N B1 times, while the rated output is decreased to N B1 / N B times, so to expand the constant output range with the same rated output, N B / N B1
Double the inverter capacity is required.

定出力制御範囲を拡大する方法として、他にモータ巻線
の接続変更による出力特性の差を利用する方法がある。
第6図に、 接続の場合の回路接続例を、第7図にその出力特性を表
す。第6図において、6は三相巻線の各巻線が独立した
6端子の誘導電動機(以下、単にモータという)、15は
インバータ、13はモータ6を 接続にする電磁接触器等の開閉器、14はモータ6をΔ接
続にする開閉器である。
As another method of expanding the constant output control range, there is a method of utilizing a difference in output characteristics due to a change in connection of motor windings.
In Figure 6, FIG. 7 shows an output characteristic of a circuit connection example in the case of connection. In FIG. 6, 6 is an induction motor (hereinafter simply referred to as a motor) having 6 terminals in which each winding of the three-phase winding is independent, 15 is an inverter, and 13 is a motor 6. A switch such as an electromagnetic contactor for connection, 14 is a switch for connecting the motor 6 to a Δ connection.

第7図の実線で示す特性cは、開閉器13を閉、開閉器14
を開にしてモータ6を 接続して運転したときの特性で、NB2−NB間が定出力特
性となる。次に、一点鎖線で表す特性dは開閉器13を
開、開閉器14を閉にしてモータ6をΔ接続し、運転した
ときの特性で、NB−NM間が定出力特性となる。したがっ
て、巻線接続を切り替えて運転することによって、NB2
からNMまで、広い定出力制御範囲が得られるが、メカニ
カルに回路切替を行うため、切替ロスタイムを生じる。
The characteristic c shown by the solid line in FIG. 7 is that the switch 13 is closed and the switch 14 is closed.
Open the motor 6 It is the characteristic when connected and operated, and the constant output characteristic is between N B2 and N B. Next, the characteristic d represented by the alternate long and short dash line is a characteristic when the switch 13 is opened and the switch 14 is closed and the motor 6 is connected by Δ, and the motor 6 is operated, and the constant output characteristic is between N B and N M. Therefore, by switching and operating the winding connections, N B2
From to N M, although a wide constant power control range is obtained, in order to perform circuit switched mechanically, it produces a switching loss time.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上に述べたように、定出力制御範囲を拡大する方法と
して2案考えられるが、次のような問題点がある。
As described above, there are two possible methods for expanding the constant output control range, but there are the following problems.

(1)NBを下げて定出力制御範囲を拡大する場合、NB
NB1倍のインバータ容量が必要となる。
(1) When lowering N B and expanding the constant output control range, N B /
N B 1 times the inverter capacity is required.

(2)巻線切替により定出力制御範囲を拡大する場合、
巻線切替によるロスタイムを生じる。
(2) When expanding the constant output control range by switching windings,
Lost time occurs due to winding switching.

本発明は、このような実情に鑑みてなされたものであ
り、前記の問題点を解決して、切替ロスタイムのない巻
線切替方式のインバータを提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above problems and provide a winding switching type inverter without switching loss time.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明は、電圧形インバータ
において、サイリスタ,トランジスタ等の電力用半導体
スイッチング素子で構成される三相ブリッジ回路を2組
有し、一方の三相ブリッジ回路の正極端子及び負極端子
を直流電圧源の正極端子及び負極端子にそれぞれ直接接
続し、他方の三相ブリッジ回路を、電力用半導体素子又
は電磁接触器等のスイッチを介して直流電圧源の正極端
子及び負極端子に接続し、前記各三相ブリッジ回路の対
応する相間に誘導電動機の各相の巻線を接続し、且つ前
記各三相ブリッジ回路のスイッチング素子に対してΔ接
続運転又は等価 接続運転をするためのオンオフ信号及びPWM制御信号を
与える手段を設けたことを特徴とする。
In order to achieve this object, the present invention has, in a voltage source inverter, two sets of three-phase bridge circuits each composed of a power semiconductor switching element such as a thyristor and a transistor. Directly connect the negative electrode terminal to the positive electrode terminal and the negative electrode terminal of the DC voltage source, and connect the other three-phase bridge circuit to the positive electrode terminal and the negative electrode terminal of the DC voltage source via a switch such as a power semiconductor element or an electromagnetic contactor. Connected, the winding of each phase of the induction motor is connected between the corresponding phases of each of the three-phase bridge circuits, and Δ connection operation or equivalent to the switching element of each of the three-phase bridge circuits. It is characterized in that means is provided for providing an on / off signal and a PWM control signal for connection operation.

〔作用〕[Action]

本発明においては、2組の三相ブリッジ回路と2個のス
イッチを用いて、メカニカルな巻線切替機構なしに 接続運転とΔ接続運転を切り替えて誘導電動機を運転す
るものである。
In the present invention, two sets of three-phase bridge circuits and two switches are used, without a mechanical winding switching mechanism. The induction motor is operated by switching between connection operation and Δ connection operation.

接続運転を行う場合には、三相ブリッジ回路間に設けら
れたスイッチをオフにし、一方の三相ブリッジ回路のみ
に直流電圧を付加し、他方の三相ブリッジ回路のスイッ
チング素子をオンにする。前記一方の三ブリッジ回路を
PWM制御することにより、誘導電動機の 接続運転を行うことができる。Δ接続運転を行う場合に
は、両三相ブリッジ回路間のスイッチをオンにし、各三
相ブリッジ回路のスイッチング素子をPWM制御する。こ
のとき、巻線自体はΔ結線されるものではないが、巻線
に流れる電流を見ると、等価的にΔ結線されたものとな
る。
When performing the connection operation, a switch provided between the three-phase bridge circuits is turned off, a DC voltage is applied only to one of the three-phase bridge circuits, and a switching element of the other three-phase bridge circuit is turned on. One of the three bridge circuits
By controlling the PWM, the induction motor Connected operation can be performed. When the Δ connection operation is performed, the switch between both three-phase bridge circuits is turned on, and the switching element of each three-phase bridge circuit is PWM-controlled. At this time, the winding itself is not Δ-connected, but the current flowing through the winding is equivalently Δ-connected.

このようにして、スイッチ及びスイッチング素子のオン
オフを制御することにより、 接続運転及びΔ接続運転を切り替えて運転することがで
きる。
In this way, by controlling the on and off of the switch and the switching element, The operation can be switched between the connection operation and the Δ connection operation.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて具体的に説
明する。
Hereinafter, the present invention will be specifically described based on the embodiments shown in the drawings.

第1図は本発明のインバータの基本回路図である。図中
1は整流回路と平滑コンデンサの組合せや、蓄電池等に
よる直流電圧源、2はインバータの三相ブリッジ回路、
3は巻線接続切替のための三相ブリッジ回路である。三
相ブリッジ回路2は、スイッチ群21〜26を備えており、
また三相ブリッジ回路3は、スイッチ群31〜36を備えて
いる。これらのブリッジ回路2と3の電源ラインは、巻
線接続切替のための母線用スイッチ4,5によって接続さ
れている。ブリッジ回路2と3の対応する相間には、モ
ータ6の巻線61〜63が接続されている。
FIG. 1 is a basic circuit diagram of the inverter of the present invention. In the figure, 1 is a combination of a rectifying circuit and a smoothing capacitor, a DC voltage source such as a storage battery, 2 is a three-phase inverter bridge circuit,
Reference numeral 3 is a three-phase bridge circuit for switching winding connection. The three-phase bridge circuit 2 includes switch groups 21 to 26,
The three-phase bridge circuit 3 also includes switch groups 31 to 36. The power supply lines of these bridge circuits 2 and 3 are connected by busbar switches 4 and 5 for switching winding connection. The windings 61 to 63 of the motor 6 are connected between the corresponding phases of the bridge circuits 2 and 3.

ブリッジ回路2は、公知のPWM制御インバータと同一の
機能を有し、V/F制御やベクトル制御の制御出力信号で
あるPWM(パルス幅変調)信号により、第2図に示すタ
イムチャートのように、スイッチ21〜26がオンオフを繰
り返し、三相交流電圧を発生する。このとき、スイッチ
21と24,22と25,23と26は互いに反転動作をし、同時にオ
ンすることはないように設定されている。
The bridge circuit 2 has the same function as that of a known PWM control inverter, and by a PWM (pulse width modulation) signal which is a control output signal of V / F control or vector control, as shown in the time chart of FIG. , Switches 21 to 26 are repeatedly turned on and off to generate a three-phase AC voltage. At this time, switch
21 and 24, 22 and 25, and 23 and 26 are set so as to perform an inversion operation to each other and are not turned on at the same time.

一方、モータ巻線接続切替は、ブリッジ回路3及びスイ
ッチ4,5で行う。ここで巻線61〜63のブリッジ回路2側
の端子をU,V,W、ブリッジ回路3側の端子をX,Y,Zとす
る。
On the other hand, the switching of the motor winding connection is performed by the bridge circuit 3 and the switches 4 and 5. Here, the terminals on the bridge circuit 2 side of the windings 61 to 63 are U, V, W, and the terminals on the bridge circuit 3 side are X, Y, Z.

ブリッジ回路3のスイッチ31〜36をすべてオンにし、ス
イッチ4,5をオフにすれば、端子X,Y,Zは同電位になり、
かつ直流電圧源1の正極端子,負極端子とは電気的に遮
断されるため、モータ6は 接続になる。Δ接続の場合は、スイッチ4,5をオンに
し、ブリッジ回路3のスイッチ31〜36はPWM信号でオン
オフさせる。すなわちスイッチ21と33、22と31、23と3
2、24と36、25と34、26と35を同じPWM信号でオンオフさ
せる。この結果、巻線61〜63の端子UとZ、VとX、W
とYが同電位になり、モータ6はΔ接続と等価になる。
第3図は、 接続の場合とΔ接続の場合の端子U,V,W,X,Y,Zの直流電
圧源1の負極端子に対する電位を表している。
If all the switches 31 to 36 of the bridge circuit 3 are turned on and the switches 4 and 5 are turned off, the terminals X, Y and Z have the same potential,
Moreover, since the positive terminal and the negative terminal of the DC voltage source 1 are electrically disconnected, the motor 6 is Become a connection. In the case of Δ connection, the switches 4 and 5 are turned on, and the switches 31 to 36 of the bridge circuit 3 are turned on and off by the PWM signal. I.e. switches 21 and 33, 22 and 31, 23 and 3
2, 24 and 36, 25 and 34, 26 and 35 are turned on and off with the same PWM signal. As a result, the terminals U and Z, V and X, W of the windings 61 to 63 are
And Y become the same potential, and the motor 6 becomes equivalent to the Δ connection.
Figure 3 shows The potentials of the terminals U, V, W, X, Y, and Z in the case of connection and in the case of Δ connection with respect to the negative terminal of the DC voltage source 1 are shown.

次に、具体的な回路例を第4図に示す。ブリッジ回路2,
3、スイッチ4,5のスイッチは、トランジスタとダイオー
ドを逆並列に接続したものを使用している。7はブリッ
ジ回路2のスイッチのトランジスタのベースアンプ、8
はブリッジ回路3のスイッチのトランジスタのベースア
ンプ、9はスイッチ4,5のトランジスタのベースアンプ
であり、これらのベースアンプ7〜9は、フォトカプラ
等を用いて信号を電気的に絶縁する機能を持つ。10は 接続とΔ接続を選択するスイッチ、11は信号を反転する
論理回路の信号反転回路、12は信号を選択するオア回路
である。
Next, a specific circuit example is shown in FIG. Bridge circuit 2,
The switches 3, 4 and 5 use transistors and diodes connected in anti-parallel. 7 is a base amplifier of a switch transistor of the bridge circuit 2, 8
Is a base transistor amplifier of the switch of the bridge circuit 3, 9 is a base amplifier of the transistors of the switches 4 and 5, and these base amplifiers 7 to 9 have a function of electrically insulating a signal by using a photo coupler or the like. To have. 10 is A switch for selecting connection or Δ connection, 11 is a signal inverting circuit of a logic circuit for inverting a signal, and 12 is an OR circuit for selecting a signal.

スイッチ10を信号反転回路11、オア回路12の電源である
Vccに接続すると、ブリッジ回路3のトランジスタはす
べてオン、スイッチ4,5のトランジスタはオフになり、
モータ6の巻線61〜63は 接続になる。
The switch 10 is the power source for the signal inverting circuit 11 and the OR circuit 12.
When connected to Vcc, all the transistors of bridge circuit 3 are turned on, the transistors of switches 4 and 5 are turned off,
The windings 61 to 63 of the motor 6 are Become a connection.

スイッチ10を信号反転回路11、オア回路12のシグナルグ
ラウンドであるVssに接続すると、スイッチ4,5のトラン
ジスタはオンになり、ブリッジ回路3のトランジスタは
第4図のように接続されたPWM信号でドライブされるた
めに、Δ接続と等価になる。
When the switch 10 is connected to Vss which is the signal ground of the signal inverting circuit 11 and the OR circuit 12, the transistors of the switches 4 and 5 are turned on, and the transistor of the bridge circuit 3 is the PWM signal connected as shown in FIG. Being driven, it is equivalent to a delta connection.

以上のように、直流電圧源1、ブリッジ回路2及びその
ベースアンプ7からなる公知のインバータに、ブリッジ
回路3、スイッチ4,5、そのベースアンプ8,9とスイッチ
10、信号反転回路11、オア回路12からなる信号選択回路
を付加することで、メカニカルな回路切替機構なしに、
モータ6を 接続及びΔ接続相当で運転することが可能となる。
As described above, the known inverter including the DC voltage source 1, the bridge circuit 2 and the base amplifier 7 thereof is connected to the bridge circuit 3, the switches 4 and 5, the base amplifiers 8 and 9 thereof, and the switches thereof.
By adding a signal selection circuit consisting of 10, signal inversion circuit 11, and OR circuit 12, without a mechanical circuit switching mechanism,
The motor 6 It becomes possible to operate with connection and Δ connection.

本実施例は、スイッチにトランジスタとダイオードを使
用したものであるが、GTO(ゲートターンオフサイリス
タ)やサイリスタを用いても実現することができる。ま
た、制御方式は、V/F制御でもベクトル制御にも対応で
きるが、モータ6の巻線切替に伴うV/F特性の変更やベ
クトル制御時のモータ制御定数の変更を行うことが必要
となる。
Although this embodiment uses a transistor and a diode for the switch, it can also be realized by using a GTO (gate turn-off thyristor) or a thyristor. The control method can be applied to both V / F control and vector control, but it is necessary to change the V / F characteristic accompanying the switching of the winding of the motor 6 and the motor control constant during vector control. .

〔発明の効果〕〔The invention's effect〕

以上に述べたように、本発明は、2組の三相ブリッジ回
路と2個のスイッチを設けたことにより、メカニカルな
巻線切替機構なしに 接続運転とΔ接続運転を切り替えて誘導電動機を運転す
ることができる。したがって、インバータ容量を大きく
することなく、且つ、巻線切替ロスタイムなしに、誘導
電動機の定出力制御範囲を拡大することができ、特に工
作機主軸ドライブや電気車両のドライブ等に適用したと
き、その効果が発揮される。
As described above, according to the present invention, by providing two sets of three-phase bridge circuits and two switches, there is no need for a mechanical winding switching mechanism. The induction motor can be operated by switching between connection operation and Δ connection operation. Therefore, the constant output control range of the induction motor can be expanded without increasing the inverter capacity and without winding switching loss time. Especially, when it is applied to a machine tool spindle drive or a drive of an electric vehicle, The effect is demonstrated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のインバータの基本回路図、第2図はブ
リッジ回路のタイムチャート、第3図はモータの巻線の
電圧波形図、第4図は本発明の具体的実施例を示す回路
図、第5図はモータをインバータ運転した場合の出力特
性図、第6図は従来の巻線切替方式の主回路接続例を示
す回路図、第7図は巻線接続方法を切り替えたときのイ
ンバータ運転の出力特性図の例である。 1:直流電圧源、2,3:三相ブリッジ回路 4,5:スイッチ、6:モータ 21〜26,31〜36:スイッチ群 61〜63:モータの巻線
FIG. 1 is a basic circuit diagram of an inverter of the present invention, FIG. 2 is a time chart of a bridge circuit, FIG. 3 is a voltage waveform diagram of a winding of a motor, and FIG. 4 is a circuit showing a concrete embodiment of the present invention. Fig. 5 is an output characteristic diagram when the motor is operated by an inverter, Fig. 6 is a circuit diagram showing a main circuit connection example of a conventional winding switching system, and Fig. 7 is a diagram when the winding connection method is switched. It is an example of the output characteristic diagram of inverter operation. 1: DC voltage source, 2, 3: Three-phase bridge circuit 4,5: Switch, 6: Motor 21 to 26, 31 to 36: Switch group 61 to 63: Motor winding

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電圧形インバータにおいて、サイリスタ,
トランジスタ等の電力用半導体スイッチング素子で構成
される三相ブリッジ回路を2組有し、一方の三相ブリッ
ジ回路の正極端子及び負極端子を直流電圧源の正極端子
及び負極端子にそれぞれ直接接続し、他方の三相ブリッ
ジ回路を、電力用半導体素子又は電磁接触器等のスイッ
チを介して直流電圧源の正極端子及び負極端子に接続
し、前記各三相ブリッジ回路の対応する相間に誘導電動
機の各相の巻線を接続し、且つ前記各三相ブリッジ回路
のスイッチング素子に対してΔ接続運転又は等価 接続運転をするためのオンオフ信号及びPWM制御信号を
与える手段を設けたことを特徴とする巻線切替機能付イ
ンバータ。
1. A voltage source inverter comprising a thyristor,
There are two sets of three-phase bridge circuits composed of power semiconductor switching elements such as transistors, and the positive and negative terminals of one of the three-phase bridge circuits are directly connected to the positive and negative terminals of the DC voltage source, respectively. The other three-phase bridge circuit is connected to the positive electrode terminal and the negative electrode terminal of the DC voltage source via a switch such as a power semiconductor element or an electromagnetic contactor, and the induction motor is connected between the corresponding phases of the three-phase bridge circuit. Connect the phase windings and operate Δ equivalence or equivalent to the switching elements of each three-phase bridge circuit An inverter with a winding switching function, which is provided with means for giving an on / off signal and a PWM control signal for connection operation.
JP62189574A 1987-07-28 1987-07-28 Inverter with winding switching function Expired - Lifetime JPH0799959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62189574A JPH0799959B2 (en) 1987-07-28 1987-07-28 Inverter with winding switching function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62189574A JPH0799959B2 (en) 1987-07-28 1987-07-28 Inverter with winding switching function

Publications (2)

Publication Number Publication Date
JPS6434198A JPS6434198A (en) 1989-02-03
JPH0799959B2 true JPH0799959B2 (en) 1995-10-25

Family

ID=16243608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62189574A Expired - Lifetime JPH0799959B2 (en) 1987-07-28 1987-07-28 Inverter with winding switching function

Country Status (1)

Country Link
JP (1) JPH0799959B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219956A (en) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp Motor driving controller and motor
CN105917571A (en) * 2015-07-31 2016-08-31 深圳市大疆创新科技有限公司 Motor control circuit, method, motor system, unmanned plane, and control method thereof
WO2018056046A1 (en) * 2016-09-26 2018-03-29 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
JP2018107891A (en) * 2016-12-26 2018-07-05 日本電産エレシス株式会社 Power conversion apparatus, motor drive unit, and electric power steering apparatus
WO2019026493A1 (en) * 2017-07-31 2019-02-07 日本電産株式会社 Power conversion device, motor module, and electric power steering device
JPWO2018056045A1 (en) * 2016-09-26 2019-07-11 日本電産株式会社 Power converter, motor drive unit and electric power steering apparatus
JP2020124018A (en) * 2019-01-29 2020-08-13 株式会社Soken Driving device for rotary electric machine

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889423A (en) * 1981-11-25 1983-05-27 Honda Motor Co Ltd Exhaust device for motorcycle or the like
JP5127612B2 (en) * 2007-08-02 2013-01-23 三菱電機株式会社 Motor drive control device, air conditioner, ventilation fan and heat pump type water heater
JP4906836B2 (en) * 2008-04-07 2012-03-28 三菱電機株式会社 Electric motor drive device, refrigeration air conditioner, and electric motor drive method
WO2012098585A1 (en) * 2011-01-21 2012-07-26 Three Eye Co., Ltd. Three-phase inverter for driving variable-speed electric machine
JP5585783B2 (en) * 2011-04-14 2014-09-10 株式会社安川電機 AC motor winding switching device and AC motor drive system
JP6357320B2 (en) 2014-02-21 2018-07-11 株式会社エンプラス Optical receptacle and optical module
JP2016181949A (en) * 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 Power converter
JP6493164B2 (en) 2015-11-06 2019-04-03 株式会社デンソー Rotating electric machine drive system
JP2017093097A (en) 2015-11-06 2017-05-25 株式会社デンソー Rotary electric machine
JP6478114B2 (en) 2015-11-06 2019-03-06 株式会社デンソー Rotating electric machine drive system
JP6908303B2 (en) * 2016-03-23 2021-07-21 株式会社Soken Power converter
JP6717695B2 (en) * 2016-07-21 2020-07-01 株式会社Soken Power converter
JP6907171B2 (en) * 2018-09-25 2021-07-21 株式会社Soken Drive device for rotary electric machine
JP7185480B2 (en) 2018-10-16 2022-12-07 株式会社Soken power converter
JP7005471B2 (en) 2018-11-09 2022-01-21 株式会社Soken Drive system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219956A (en) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp Motor driving controller and motor
CN105917571A (en) * 2015-07-31 2016-08-31 深圳市大疆创新科技有限公司 Motor control circuit, method, motor system, unmanned plane, and control method thereof
WO2017020177A1 (en) * 2015-07-31 2017-02-09 深圳市大疆创新科技有限公司 Motor control circuit and method, motor system, unmanned aerial vehicle and control method thereof
JPWO2018056046A1 (en) * 2016-09-26 2019-07-04 日本電産株式会社 Power converter, motor drive unit and electric power steering apparatus
WO2018056046A1 (en) * 2016-09-26 2018-03-29 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
US11420672B2 (en) 2016-09-26 2022-08-23 Nidec Corporation Power conversion device, motor drive unit, and electric power steering device
JPWO2018056045A1 (en) * 2016-09-26 2019-07-11 日本電産株式会社 Power converter, motor drive unit and electric power steering apparatus
CN110168906A (en) * 2016-12-26 2019-08-23 日本电产株式会社 Power inverter, motor drive unit and electric power steering apparatus
WO2018123849A1 (en) * 2016-12-26 2018-07-05 日本電産株式会社 Power conversion device, motor driving unit, and electric power steering device
US10998842B2 (en) 2016-12-26 2021-05-04 Nidec Corporation Power conversion device, motor drive unit, and electric power steering device
CN110168906B (en) * 2016-12-26 2021-07-09 日本电产株式会社 Power conversion device, motor drive unit, and electric power steering device
JP2018107891A (en) * 2016-12-26 2018-07-05 日本電産エレシス株式会社 Power conversion apparatus, motor drive unit, and electric power steering apparatus
WO2019026493A1 (en) * 2017-07-31 2019-02-07 日本電産株式会社 Power conversion device, motor module, and electric power steering device
JPWO2019026493A1 (en) * 2017-07-31 2020-05-28 日本電産株式会社 Power conversion device, motor module, and electric power steering device
JP2020124018A (en) * 2019-01-29 2020-08-13 株式会社Soken Driving device for rotary electric machine

Also Published As

Publication number Publication date
JPS6434198A (en) 1989-02-03

Similar Documents

Publication Publication Date Title
JPH0799959B2 (en) Inverter with winding switching function
CN107306104B (en) Apparatus and method for controlling an electric drive with reconfigurable windings
US4777579A (en) Integrated current sensor configurations for AC motor drives
CN107306103B (en) Method for switching between full winding mode and half winding mode in a three-phase electric machine
US5166591A (en) Current chopping strategy for generating action in switched reluctance machines
KR100440668B1 (en) Converter circuit for a polyphase switched inductance load
JPH06217416A (en) Inverter device able to be constituted again for electric motor-car driving system
JPS58112476A (en) Multilevel inverter
US4136382A (en) Converter system
US7102321B2 (en) Control method for peak power delivery with limited DC-bus voltage
KR20210027673A (en) System and method for controlling motor
JPH08256497A (en) Motor drive method
Im et al. Novel winding changeover method for a high efficiency AC motor drive
US20230283210A1 (en) Direct drive system for brushless dc (bldc) motor
JP2821181B2 (en) Inverter device
JPH05308778A (en) Inverter for driving electric car
JP2755057B2 (en) DC brushless motor drive circuit
JPH0452068B2 (en)
JPH10304688A (en) Drive device with charging circuit
JP2001128468A (en) Semiconductor power conversion system
JP7146121B2 (en) Power converter and motor system
JP2000092879A (en) Motor drive
SU1377994A1 (en) Electric drive
JPS6399798A (en) Squirrel-cage induction motor
SU1224938A1 (en) Device for controlling dynamic braking of multimotor electric drive