WO2019026493A1 - Power conversion device, motor module, and electric power steering device - Google Patents

Power conversion device, motor module, and electric power steering device Download PDF

Info

Publication number
WO2019026493A1
WO2019026493A1 PCT/JP2018/024662 JP2018024662W WO2019026493A1 WO 2019026493 A1 WO2019026493 A1 WO 2019026493A1 JP 2018024662 W JP2018024662 W JP 2018024662W WO 2019026493 A1 WO2019026493 A1 WO 2019026493A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
power supply
drive circuit
circuit
low
Prior art date
Application number
PCT/JP2018/024662
Other languages
French (fr)
Japanese (ja)
Inventor
元気 堀内
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2019533977A priority Critical patent/JP7047844B2/en
Priority to US16/628,707 priority patent/US11356036B2/en
Priority to CN201880047509.8A priority patent/CN110915121B/en
Publication of WO2019026493A1 publication Critical patent/WO2019026493A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Definitions

  • the present disclosure relates to a power conversion device, a motor module, and an electric power steering device that convert power from a power supply into power to be supplied to an electric motor.
  • Patent Document 1 discloses a power conversion device that includes a control unit and two inverters, and converts power from a power supply into power to be supplied to a three-phase motor.
  • Each of the two inverters is connected to a power supply and a ground (hereinafter referred to as "GND").
  • One inverter is connected to one end of the three-phase winding of the motor, and the other inverter is connected to the other end of the three-phase winding.
  • Each inverter has a bridge circuit composed of three legs, each of which includes a high side switch element and a low side switch element.
  • the control unit switches motor control from normal control to abnormal control when it detects a failure of the switch element in the two inverters. In the normal control, for example, the motor is driven by switching switch elements of two inverters. In the control at the time of abnormality, for example, the motor is driven by the unfailed inverter using the neutral point of the winding in the broken inverter.
  • the peripheral circuit is a circuit necessary to drive the inverter, and includes, for example, a controller, a predriver, a power supply circuit, and the like described later. Failure of the peripheral circuit means, for example, failure of the predriver or the power supply circuit.
  • the circuit configuration of Patent Document 1 when a failure occurs in the control unit in addition to the failure of the switch element of the inverter, it is difficult to continue the motor drive.
  • a power conversion device capable of continuing motor driving using a neutral point even when a failure occurs in a peripheral circuit of an inverter, a motor module including the power conversion device, and the motor module An electric power steering apparatus is provided.
  • An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having n-phase (n is an integer of 3 or more) windings, A first inverter connected to one end of the winding of each phase, the first inverter comprising n legs each having a low side switching element and a high side switching element, and the other end of the winding of each phase A second inverter connected to the second inverter, the second inverter comprising n legs each having a low side switch element and a high side switch element, the n low side switch elements of the first inverter, and the second inverter A drive circuit connected to the n low-side switch elements of an inverter, wherein when a failure occurs on the first inverter side of the motor, the first in- A control signal for turning on the n low-side switching devices of the motor is applied to the n low-side switching devices, and when a failure occurs on the second inverter side of the motor, the n of the
  • a control circuit that controls the switching operation of the switch element and controls the drive circuit, and is generated on the first inverter side of the motor when a failure occurs on the second inverter side of the motor.
  • First power supply voltage is supplied to the drive circuit, and a failure occurs on the first inverter side of the motor.
  • the second power supply voltage generated by the second inverter side of the motor is supplied to the drive circuit.
  • a power converter capable of continuing motor drive using a neutral point in the event of a failure in a peripheral circuit of an inverter, a motor module including the power converter, and An electric power steering apparatus provided with the motor module is provided.
  • FIG. 1 is a schematic diagram showing a block configuration of a motor module 2000 according to an exemplary embodiment 1, mainly showing a block configuration of a power conversion device 1000.
  • FIG. 2A is a block diagram showing functional blocks of the first drive circuit 440A.
  • FIG. 2B is a block diagram showing functional blocks of the second drive circuit 440B.
  • FIG. 3 is a circuit diagram illustrating a circuit configuration of the first drive circuit 440A in the first peripheral circuit 400A.
  • FIG. 4 is a schematic view showing an example of a block configuration of a power conversion device 1000 according to a modification of the exemplary embodiment 1.
  • FIG. 5A is a schematic diagram showing a further exemplary block configuration of the power conversion device 1000 according to a modification of the exemplary embodiment 1.
  • FIG. 5B is a schematic view showing a further block configuration example of the power conversion device 1000 according to the modification of the exemplary embodiment 1.
  • FIG. 6 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in U-phase, V-phase and W-phase windings of motor 200 when power converter 1000 is controlled in accordance with three-phase energization control. Is a graph.
  • FIG. 7 is a schematic view illustrating states of currents flowing to two inverters at an electrical angle of 270 ° of the current waveform shown in FIG.
  • FIG. 8 shows a block configuration of a motor module 2000A according to an exemplary embodiment 2 and is a schematic view mainly showing a block configuration of the power conversion device 1000A.
  • FIG. 9 is a block diagram showing drive circuit 440 and functional blocks therearound.
  • FIG. 10 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to an exemplary embodiment 3. As shown in FIG.
  • the implementation of the present disclosure will be exemplified taking a power conversion apparatus that converts power from a power supply into power supplied to a three-phase motor having three-phase (U-phase, V-phase, W-phase) windings.
  • the form will be described.
  • a power conversion device that converts power from a power supply to power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase is also within the scope of the present disclosure. .
  • FIG. 1 schematically shows a block configuration of a motor module 2000 according to the present embodiment, and mainly shows a block configuration of the power conversion device 1000.
  • a first inverter 100A components on the left side of the motor 200 in the block diagram are denoted as a first inverter 100A, a first peripheral circuit 400A, etc.
  • components on the right side are a second inverter 100B and a second periphery. It is written as a circuit 400B or the like.
  • Motor module 2000 includes motor 200 and power converter 1000.
  • the motor module 2000 can be modularized and manufactured and sold as an electromechanical integrated motor including, for example, a motor, a sensor, a predriver and a controller.
  • Power converter 1000 includes a first inverter 100A, a second inverter 100B, first to sixth switch elements 311, 312, 313, 314, 315, 316, a first peripheral circuit 400A, a second peripheral circuit 400B, a controller 410, and the like.
  • a power supply circuit 430 is provided.
  • Power converter 1000 is connected to motor 200 and connected to power supply 500 via coil 600. Power converter 1000 can convert the power from power supply 500 into the power supplied to motor 200.
  • the first inverter 100A and the second inverter 100B can convert DC power into three-phase AC power which is a pseudo sine wave of U phase, V phase and W phase.
  • the motor 200 is, for example, a three-phase alternating current motor.
  • the motor 200 includes a U-phase winding M1, a V-phase winding M2, and a W-phase winding M3, and is connected to the first inverter 100A and the second inverter 100B.
  • the first inverter 100A is connected to one end of the winding of each phase of the motor 200
  • the second inverter 100B is connected to the other end of the winding of each phase.
  • Such motor connections are different from so-called star connections and delta connections.
  • “connection” between components (components) mainly means electrical connection.
  • the first inverter 100A includes three legs each having a low side switch element and a high side switch element.
  • the U-phase leg has a low side switch element 101A_L and a high side switch element 101A_H.
  • the V-phase leg has a low side switch element 102A_L and a high side switch element 102A_H.
  • the W phase leg has a low side switch element 103A_L and a high side switch element 103A_H.
  • a switch element for example, a combination of a field effect transistor (typically, a MOSFET) or an insulated gate bipolar transistor (IGBT) with a parasitic diode formed therein and a free wheel diode connected in parallel thereto can be used.
  • a field effect transistor typically, a MOSFET
  • IGBT insulated gate bipolar transistor
  • SW the switch element may be described as SW.
  • the switch elements 101A_L, 102A_L and 103A_L are described as SW 101A_L, 102A_L and 103A_L.
  • the first inverter 100A includes three shunt resistors 100A_R as current sensors for detecting the current flowing in the windings of the U-phase, V-phase, and W-phase.
  • the current sensor includes a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
  • three shunt resistors 100A_R are respectively connected between the three low-side switch elements included in the three legs of the first inverter 100A and GND.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ .
  • the second inverter 100B includes three legs each having a low side switch element and a high side switch element.
  • the U-phase leg has a low side switch element 101B_L and a high side switch element 101B_H.
  • the V-phase leg has a low side switch element 102B_L and a high side switch element 102B_H.
  • the W phase leg includes a low side switch element 103B_L and a high side switch element 103B_H.
  • the second inverter 100B includes three shunt resistors 100B_R. The shunt resistors are connected between the three low side switch elements included in the three legs and GND.
  • the number of shunt resistors is not limited to three for each inverter. For example, it is possible to use two shunt resistors for U phase and V phase, two shunt resistors for V phase and W phase, and two shunt resistors for U phase and W phase.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications and the like.
  • first inverter 100A and second inverter 100B can be electrically connected to power supply 500 and GND by first to fourth switch elements 311, 312, 313 and 314, respectively.
  • the first switch element 311 switches connection / non-connection between the first inverter 100A and GND.
  • the second switch element 312 switches connection / disconnection between the second inverter 100B and GND.
  • the third switch element 313 switches connection / non-connection between the power supply 500 and the first inverter 100A.
  • the fourth switch element 314 switches connection / disconnection between the power supply 500 and the second inverter 100B.
  • the first to fourth switch elements 311, 312, 313 and 314 can block bidirectional current.
  • semiconductor switches such as thyristors, analog switch ICs, or MOSFETs, and mechanical relays can be used.
  • a combination of a diode and an IGBT may be used.
  • the first to fourth switch elements 311, 312, 313 and 314 may be denoted as SWs 311, 312, 313 and 314, respectively.
  • the SWs 311, 312, 313 and 314 are described as MOSFETs.
  • the SW 311 is disposed such that forward current flows in the internal parasitic diode toward the first inverter 100A.
  • the SW 312 is arranged such that forward current flows in the parasitic diode toward the second inverter 100B.
  • the SW 313 is arranged such that forward current flows to the power supply 500 in the parasitic diode.
  • the SW 314 is arranged such that forward current flows to the power supply 500 in the parasitic diode.
  • the power conversion device 1000 may further include fifth and sixth switch elements 315 and 316 for reverse connection protection as illustrated.
  • the fifth and sixth switch elements 315, 316 are typically semiconductor switches of a MOSFET having parasitic diodes.
  • the fifth switch element 315 is connected in series to the SW 313, and is disposed such that a forward current flows toward the first inverter 100A in the parasitic diode.
  • the sixth switch element 316 is connected in series to the SW 314, and is disposed such that a forward current flows toward the second inverter 100B in the parasitic diode. Even when the power supply 500 is reversely connected, reverse current can be cut off by the two switch elements for reverse connection protection.
  • the number of switch elements to be used is not limited to the illustrated example, and is appropriately determined in consideration of design specifications and the like. Particularly in the on-vehicle field, high quality assurance is required from the viewpoint of safety, so it is preferable to provide a plurality of switch elements for each inverter.
  • the power supply 500 generates a predetermined power supply voltage (for example, 12 V).
  • a predetermined power supply voltage for example, 12 V.
  • the power supply 500 for example, a DC power supply is used.
  • the power supply 500 may be an AC-DC converter or a DC-DC converter, or may be a battery.
  • the power supply 500 may be a single power supply common to the first inverter 100A and the second inverter 100B, or a first power supply for the first inverter 100A and a second power supply for the second inverter 100B. May be provided.
  • a coil 600 is provided between the power supply 500 and each inverter of the power conversion device 1000.
  • the coil 600 functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 500 side.
  • a capacitor (not shown) is connected to the power supply terminal of each inverter.
  • the capacitor is a so-called bypass capacitor, which suppresses voltage ripple.
  • the capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications and the like.
  • the first peripheral circuit 400A is a circuit for controlling the driving of the first inverter 100A.
  • the first peripheral circuit 400A includes, for example, a first predriver 420A, a first drive circuit 440A, and a first subdriver 450A.
  • the second peripheral circuit 400B is a circuit for controlling the driving of the second inverter 100B. Similar to the first peripheral circuit 400A, the second peripheral circuit 400B includes, for example, a second predriver 420B, a second drive circuit 440B, and a second subdriver 450B.
  • the second peripheral circuit 400B typically has substantially the same structure and function as the first peripheral circuit 400A. More specifically, the individual parts have substantially the same structure and function.
  • the controller 410 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the controller 410 controls the first peripheral circuit 400A and the second peripheral circuit 400B. Specifically, the controller 410 controls the switching operation of the three low side switch elements and the three high side switch elements in each of the first inverter 100A and the second inverter 100B. For example, the controller 410 controls the first drive circuit 440A when the first pre-driver 420A fails, and controls the second drive circuit 440B when the second pre-driver 420B fails.
  • the controller 410 can control the target position, rotational speed, current, and the like of the rotor of the motor 200 to realize closed loop control. Therefore, the controller 410 typically includes an input port for inputting an output signal from the position sensor 700 that detects the position of the rotor.
  • the position sensor 700 is realized by, for example, a combination of an MR sensor having a resolver, a Hall IC, or a magnetoresistive (MR) element and a sensor magnet.
  • Position sensor 700 detects the position of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to controller 410.
  • the controller 410 may include an input port for inputting an output signal from the torque sensor 800, instead of or in addition to the input port for the position sensor 700. In this case, the controller 410 can control the target motor torque. In addition, the controller 410 can include, for example, a dedicated port for connecting to a vehicle-mounted control area network (CAN).
  • CAN vehicle-mounted control area network
  • two position sensors 700 and two torque sensors 800 may be provided in consideration of sensor redundancy. If one of the two sensors fails, motor control can continue using the non-failing sensor.
  • the controller 410 can further include an input port for inputting a current signal output from the above-described current sensor.
  • the controller 410 may receive a digital signal converted by an external AD (analog-digital) converter as an actual current value, or may receive an analog signal from the current sensor as it is and convert it into a digital signal inside the controller 410. You may
  • the controller 410 sets a target current value in accordance with the actual current value and the rotation signal of the rotor to generate a PWM (Pulse Width Modulation) signal, and outputs them to the first predriver 420A and the second predriver 420B. Further, in the present embodiment, the controller 410 outputs a control signal for controlling on / off of the SW 311 to the first sub driver 450A, and outputs a control signal for controlling on / off of the SW 312 to the second sub driver 450B. .
  • PWM Pulse Width Modulation
  • the predriver is also called a gate driver.
  • General-purpose predrivers can be widely used as the first predriver 420A and the second predriver 420B.
  • the first predriver 420A is connected between the controller 410 and the first inverter 100A.
  • the first pre-driver 420A generates control signals for controlling the switching operations of the three low-side switch elements and the three high-side switch elements in the first inverter 100A under the control of the controller 410, and controls these switch elements. give.
  • the first predriver 420A generates a control signal (gate control signal) for controlling the switching operation of each SW in the first inverter 100A in accordance with the PWM signal from the controller 410, and controls the gate of each SW. Give a signal.
  • the second predriver 420B is connected between the controller 410 and the second inverter 100B.
  • the second pre-driver 420B generates control signals for controlling switching operations of the three low-side switch devices and the three high-side switch devices in the second inverter 100B under the control of the controller 410, and controls these switch devices. give.
  • the second pre-driver 420B generates a gate control signal for controlling the switching operation of each SW in the second inverter 100B in accordance with the PWM signal from the controller 410, and supplies the control signal to the gate of each SW.
  • the first pre-driver 410A can generate a voltage CP_Pr1 larger than the voltage of the power supply 500 (for example, 12 V).
  • the second predriver 410B can generate a voltage CP_Pr2 larger than the voltage of the power supply 500.
  • the boosted voltages CP_Pr1 and CP_Pr2 are, for example, 18 V or 24 V.
  • Each predriver is a charge pump system.
  • the power supply circuit 430 is a power supply circuit common to the first peripheral circuit 400A and the second peripheral circuit 400B, and is, for example, a power supply IC.
  • a power supply IC For example, 12V power is supplied from the power supply 500 to the power supply circuit 430.
  • the power supply circuit 430 supplies the necessary power supply voltage to each block of the first peripheral circuit 400A and the second peripheral circuit 400B.
  • power supply circuit 430 is shown in FIG. 1 as two functional blocks, it is not intended to be separate physically separate power supply circuits.
  • the power supply circuit 430 supplies a power supply voltage VCC of, for example, 5.0 V or 3.3 V to the controller 410, the first predriver 420A, and the second predriver 420B.
  • VCC power supply voltage
  • the power supply circuit 430 can provide control signals for controlling the on / off of the SWs 313, 314, 315 and 316 to them.
  • the power supply circuit 430 can generate a voltage CP_PM that is larger than the voltage of the power supply 500.
  • the boosted voltage CP_PM is, for example, 18 V or 24 V.
  • a voltage larger than that of the power supply 500 is required. Therefore, as described above, such a large voltage is generated using the first predriver 420A, the second predriver 420B, and the power supply circuit 430.
  • gate control signals generated by the first predriver 420A and the second predriver 420B will be described.
  • the gate control signal will be described below by taking the first predriver 420A as an example.
  • control of the power conversion device 1000 when no failure occurs in the power conversion device 1000 is referred to as “control at normal time”, and control when a failure occurs is “control at abnormal time”. It shall be written as
  • the switches 311, 312, 313, 314, 315 and 316 are in the on state. Therefore, the potential of the node NA_L connecting the SWs 101A_L, 102A_L and 103A_L in the first inverter 100A is the GND potential. Therefore, the reference potentials of the gates of the SW 101A_L, 102A_L, and 103A_L, that is, the source potentials are low. In that case, the voltage level of the gate control signal applied to the gate of SW may be relatively low, and it is possible to control the switching operation of the low side switch element without any problem.
  • the voltage of the gate control signal may be referred to as “gate voltage”.
  • the reference potentials of the three SWs 101A_H, 102A_H and 103A_H of the first inverter 100A are the potentials of the nodes NA_1, NA_2 and NA_3 between the low side switch element and the high side switch element, that is, the windings M1 and M2 of each phase. And the drive voltage supplied to M3 are high. In order to turn on the high side switch element, it is necessary to apply a gate voltage higher than the gate voltage applied to the low side switch element to the high side switch element.
  • the first pre-driver 420A can boost a voltage of, for example, 12 V to generate a voltage of 18 V, and can apply high voltages to the SW 101A_H, 102A_H, and 103A_H. As a result, it becomes possible to properly turn on the high side switch element in the switching operation.
  • the first pre-driver 420A applies a gate voltage higher than the gate voltage applied to the low-side switch element to the high-side switch element in normal control.
  • the gate voltage applied to the low side switch element is 12 V, for example, and the gate voltage applied to the high side switch element is 18 V, for example.
  • failure mainly refers to a failure that occurs in the peripheral circuit.
  • the occurrence of a failure on the first inverter 100A side of the motor 200 means that a failure occurs in the first peripheral circuit 400A, and more specifically, for example, the first predriver 420A fails and becomes inoperable It means that.
  • the occurrence of a failure on the second inverter 100B side means that a failure occurs in the second peripheral circuit 400B, and more specifically, for example, the failure of the second predriver 420B to render it inoperable Do.
  • the first predriver 420A fails. In that case, naturally, the first predriver 420A can not drive the first inverter 100A under the control of the controller 410. However, if the low side node NA_L in the first inverter 100A can be made to function as a neutral point, driving of the motor 200 can be continued by driving the second inverter 100B using this neutral point.
  • the node NA_L on the low side of the first inverter 100A functions as a neutral point.
  • the controller 410 turns off the first switch element 311 so that current control can be appropriately performed.
  • the neutral point is electrically disconnected from GND.
  • the potential of the node NA_L on the low side is not the GND potential and is higher than the potential.
  • the reference potentials of the gates of SW101A_L, 102A_L and 103A_L are in a floating state. In this state, when a gate voltage of the same magnitude as the gate voltage (for example, 12 V) in the normal control is applied to the low side switch element, the gate-source voltage becomes smaller than that in the normal control.
  • the on-resistance value between the source and the drain of the SW 101A_L, 102A_L, and 103A_L may increase, or the SW 101A_L, 102A_L, and 103A_L may be unintentionally turned off.
  • the switches SW101A_L, 102A_L, and 103A_L need to be properly turned on. Therefore, the gate voltages applied to the switches SW101A_L, 102A_L and 103A_L need to be larger than those in the normal control.
  • the power conversion device 1000 includes a first drive circuit 440A and a second drive circuit 440B. Since the circuit structure and function of the second drive circuit 440B are substantially the same as those of the first drive circuit 440A, the circuit structure and function will be mainly described below by taking the first drive circuit 440A as an example.
  • the first drive circuit 440A is connected to the three low side switch elements of the first inverter 100A.
  • the first drive circuit 440A is a dedicated drive circuit for constantly turning on the switches 101A_L, 102A_L and 103A_L in the first inverter 100A when a failure occurs on the first inverter 100A side of the motor 200.
  • the low side node NA_L of the first inverter 100A can be appropriately functioned as a neutral point by the first drive circuit 440A.
  • the second drive circuit 440B is connected to the three low-side switch elements of the second inverter 100B.
  • the second drive circuit 440B is a dedicated drive circuit for constantly turning on the switches 101B_L, 102B_L and 103B_L in the second inverter 100B when a failure occurs on the second inverter 100B side of the motor 200.
  • the node NB_L on the low side of the second inverter 100B can be appropriately functioned as a neutral point.
  • the gate control signal of the low side switch element is supplied from the first predriver 420A to the switches 101A_L, 102A_L, and 103A_L.
  • the gate control signal is supplied from the first drive circuit 440A to the SW 101A_L, 102A_L, and 103A_L.
  • the voltage level of the control signal that the first drive circuit 440A gives to the three low side switch elements of the first inverter 100A is larger than the voltage level of the control signal that the first predriver 420A gives to those low side switch elements.
  • the voltage levels of the control signals that the first drive circuit 440A gives to the three low side switch elements of the first inverter 100A are the same as those of the first predriver 420A for the three high side switch elements of the first inverter 100A.
  • the gate voltage is, for example, 18V.
  • the voltage level of the control signal that the second drive circuit 440B gives to the three low side switch elements of the second inverter 100B is larger than the voltage level of the control signal that the second predriver 420B gives to those low side switch elements.
  • the voltage level of the control signal that the second drive circuit 440B gives to the three low-side switch elements of the second inverter 100B is the same as that of the second pre-driver 420B for the three high-side switch elements of the second inverter 100B.
  • the gate voltage is, for example, 18V.
  • the first power supply voltage generated on the first inverter 100A side is supplied to the second drive circuit 440B.
  • the voltage generated on the side of the first inverter 100A means the power supply voltage generated in the first peripheral circuit 400A.
  • the first power supply voltage is the boosted voltage CP_Pr1 generated by the first predriver 420A.
  • the magnitude of the first power supply voltage is greater than the voltage of the power supply 500, for example 18V.
  • the second power supply voltage generated on the second inverter 100B side is supplied to the first drive circuit 440A.
  • the voltage generated on the second inverter 100B side means the power supply voltage generated in the second peripheral circuit 400B.
  • the second power supply voltage is the boosted voltage CP_Pr2 generated by the second predriver 420B.
  • the magnitude of the second power supply voltage is greater than the voltage of the power supply 500, for example 18V. In the present embodiment, the magnitude of the first power supply voltage is equal to the magnitude of the second power supply voltage.
  • Each of the first power supply voltage and the second power supply voltage may be the boosted voltage CP_PM generated by the power supply circuit 430.
  • the boosted voltage CP_PM can be supplied to the first drive circuit 440A as the second power supply voltage.
  • the second drive circuit 440B may be supplied with the boosted voltage CP_PM as a first power supply voltage.
  • the first drive circuit 440A supplies a second power supply voltage to turn on a control signal to turn on the three low-side switch elements of the first inverter 100A. It applies to those low side switch elements.
  • the second drive circuit 440B supplies the first power supply voltage to turn on the low-side switch elements of the second inverter 100B for controlling the low-side switches. Give to the switch element.
  • FIG. 2A schematically shows a functional block of the first drive circuit 440A
  • FIG. 2B schematically shows a functional block of the second drive circuit 440B.
  • the second power supply voltage is supplied as the power supply voltage 443 to the first drive circuit 440A.
  • the second power supply voltage is, for example, boosted voltage CP_Pr2.
  • the first power supply voltage is supplied as a power supply voltage 443 to the second drive circuit 440B.
  • the first power supply voltage is, for example, boosted voltage CP_Pr1. It should be noted that the power supply voltage 443 is set so that the gate-source voltage of the low side switch element does not become larger than the withstand voltage.
  • Each of the first drive circuit 440A and the second drive circuit 440B has switches 441 and 442. In normal control, the switches 441 and 442 are off.
  • the controller 410 turns on the switch 441 of the first drive circuit 440A.
  • the power supply voltage 443 is applied as the gate voltage to the three low side switch elements of the first inverter 100A. All three low side switch elements are turned on, and the low side node NA_L of the first inverter 100A can function as a neutral point.
  • the operation of the power converter 1000 may be forcibly stopped.
  • the controller 410 turns on the switch 442. Since the GND potential is applied to the low side switch element as a gate voltage, the three low side switch elements are turned off.
  • the switch 442 is optional, and may not be in the drive circuit, for example, when the forced stop is not required.
  • FIG. 3 schematically illustrates the block configuration of the first drive circuit 440A in the first peripheral circuit 400A.
  • the switch element 315 is not shown in FIG.
  • the first drive circuit 440 A includes a plurality of switch elements 10, 11, 12, 13, 20, 21, 22 and 23 of the open collector output system.
  • the switch elements 11, 12, 13 and 20 are PNP bipolar transistors.
  • the switch elements 10, 21, 22 and 23 are NPN bipolar transistors.
  • a push-pull circuit is connected via a resistor to a gate control signal line for controlling the low side switch element of each phase.
  • the switches 441 and 442 may be configured by a combination of a plurality of transistors 10, 11, 12, 13, 20, 21, 22, 23 and a plurality of resistors.
  • controller 410 pulls transistor 20, transistors 21, 22 and 23 are pushed. As a result, the gate potentials of the switches SW101A_L, 102A_L and 103A_L in the first inverter 100A become low levels corresponding to the GND potential. On the other hand, when the controller 410 pushes the transistor 10, the transistors 11, 12 and 13 are pulled and the gate potentials of the SW 101A_L, 102A_L and 103A_L become high level corresponding to the power supply voltage 463.
  • protection circuits 31, 32, 33 in which a resistor and a diode are connected in parallel are connected.
  • protection circuits 41, 42 and 43 in which a resistor and a diode are connected in parallel are connected.
  • Power converter 1000 can include first and second protection circuits.
  • the first protection circuit has protection circuits 51, 52 and 53.
  • the protection circuit 51 is preferably connected between an output terminal (not shown) of the first predriver 420A connected to the gate of the SW 101A_L and the GND.
  • the protection circuit 52 is connected between the output terminal (not shown) of the first predriver 420A connected to the gate of the SW 102A_L and GND, and the first predriver connected to the gate of the SW 103A_L.
  • each of the protection circuits 51, 52, and 53 has a specified value (withstand voltage) for the first predriver 420A.
  • the withstand voltage here is, for example, the withstand voltage of the circuit element in the first pre-driver 420A that outputs the gate control signal for the SW 101A_L, 102A_L and 103A_L in the normal control.
  • the protection circuits 51, 52, 53 are, for example, zener diodes.
  • the protection circuits 51, 52, and 53 function when the voltage of the gate control signal output from the first drive circuit 440A is close to or higher than the withstand voltage.
  • the protection circuits 51, 52, and 53 function when the voltage of the gate control signal becomes 17 V or more.
  • the voltage supplied to the output terminal of the first predriver 420A can be made smaller than the withstand voltage.
  • a gate voltage higher than that in the normal control is supplied to the SW 101A_L, 102A_L, and 103A_L. Even if the high gate voltage unintentionally exceeds the withstand voltage, the protection circuits 51, 52 and 53 can protect the first predriver 420A.
  • the first drive circuit 440A gate voltages higher than those in the normal control can be supplied to the SWs 101A_L, 102A_L, and 103A_L.
  • By raising the gate voltage it is possible to suppress a decrease in the gate-source voltage even if the source potential becomes a potential at a neutral point. While being able to suppress that the ON-resistance value between source-drain of SW101A_L, 102A_L, and 103A_L becomes large, it can suppress that SW101A_L, 102A_L, and 103A_L turn off unintentionally.
  • Power converter 1000 includes a ROM (not shown).
  • the ROM is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory.
  • the ROM stores a control program including instructions for causing the controller 410 to control the power conversion apparatus 1000.
  • the control program is temporarily expanded in a RAM (not shown) at boot time.
  • the second power supply voltage generated on the second inverter 100B side of the motor 200 is supplied to the first drive circuit 440A.
  • the first power supply voltage generated on the side of the first inverter 100A of the motor 200 is supplied to the second drive circuit 440B. Therefore, the first power supply wiring and the second power supply wiring are provided on the circuit board.
  • the first power supply wiring is a power supply wiring for supplying a first power supply voltage from the first pre-driver 420A or the power supply circuit 430 to the second drive circuit 440B.
  • the second power supply wiring is a power supply wiring for supplying a second power supply voltage from the second predriver 420B or the power supply circuit 430 to the first drive circuit 440A.
  • the controller 410 may be communicably connected to the power supply circuit 430.
  • the communication may be realized using serial communication such as I 2 C, for example.
  • the power supply circuit 430 can detect an abnormal operation of the controller 410.
  • the power supply circuit 430 can provide a reset signal to restart the controller 410.
  • the controller 410 can monitor failures of the first predriver 420A and the second predriver 420B. For example, such monitoring may be realized by transmitting the status of the pre-driver, specifically, a status signal indicating a failure, from each pre-driver to the controller 410 periodically or at the timing when the failure occurs.
  • the controller 410 may instruct the second drive circuit 440B to start driving.
  • the second drive circuit 440B can provide control signals for turning on the three low-side switch elements of the second inverter 100B to the low-side switch elements in response to the instruction to start the drive.
  • the controller 410 may instruct the first drive circuit 440A to start driving.
  • the first drive circuit 440A can provide control signals for turning on the three low-side switch elements of the first inverter 100A to the low-side switch elements in response to the instruction to start the drive.
  • the drive circuit can be appropriately driven only when a failure occurs. As a result, power consumption can be reduced as compared with always driving the drive circuit.
  • FIG. 4 schematically shows a block configuration example of a power conversion device 1000 according to a modification of the present embodiment.
  • Power conversion device 1000 according to this modification is different from power conversion device 1000 shown in FIG. 1 in that power conversion device 1000 according to this modification does not include first predriver 420A and second predriver 420B. At this time, the controller 410 may incorporate a pre-driver.
  • controller 410 may incorporate a pre-driver. In that case, the controller 410 can directly control the first inverter 100A and the second inverter 100B.
  • the first power supply circuit 430A may be provided in the first peripheral circuit 400A, and the second power supply circuit 430B may be provided in the second peripheral circuit 400B.
  • the first power supply circuit 430A and the second power supply circuit 430B are separate power supply circuits.
  • the first power supply circuit 430A can boost the voltage of the power supply 500 to generate a voltage CP_PM1
  • the second power supply circuit 430B can boost the voltage of the power supply 500 to generate a voltage CP_PM2.
  • the boosted voltage CP_PM1 may be supplied as a first power supply voltage from the first power supply circuit 430A to the second drive circuit 440B, and the boosted voltage CP_PM2 may be supplied as a second power supply voltage from the second power supply circuit 430B to the first drive circuit 440A.
  • the power supply voltage VCC may be supplied to the controller 410 from the first power supply circuit 430A or the second power supply circuit 430B.
  • the second power supply circuit 430B can continue to supply the power supply voltage VCC to the controller 410.
  • the controller 410 can continuously control the switching operation of the switch element of the second inverter 100B.
  • the node NA_L on the low side of the first inverter 100A can function as a neutral point. Control using a neutral point will be described in detail later.
  • FIG. 5A and 5B schematically show a further exemplary block configuration of a power conversion device 1000 according to a modification of the present embodiment.
  • Power conversion device 1000 according to this modification differs from power conversion device 1000 shown in FIG. 1 in that power conversion device 1000 further includes a first booster circuit 460A and a second booster circuit 460B or a single booster circuit 460.
  • the power conversion device 1000 includes a booster circuit that generates the first power supply voltage and the second power supply voltage and is different from the power supply circuit and the predriver.
  • a single boost circuit 460 may be connected to the controller 410.
  • the booster circuit 460 boosts the voltage of the power supply 500 to generate a voltage CP_PV.
  • the boosted voltage CP_PV is, for example, 18V.
  • boosted voltage CP_PV is supplied as a first power supply voltage from booster circuit 460 to second drive circuit 440B, and boosted voltage CP_PV is supplied as a second power supply voltage from booster circuit 460 to first drive circuit 440A. obtain.
  • the first booster circuit 460A is provided in the first peripheral circuit 400A, and boosts the voltage of the power supply 500 to generate a voltage CP_PV1.
  • the second booster circuit 460B is provided in the second peripheral circuit 400B, and boosts the voltage of the power supply 500 to generate a voltage CP_PV2.
  • the boosted voltages CP_PV1 and CP_PV2 are, for example, 18V.
  • the boosted voltage CP_PV1 may be supplied to the second drive circuit 440B as a first power supply voltage
  • the boosted voltage CP_PV2 may be supplied to the first drive circuit 440A as a second power supply voltage.
  • the controller 410 outputs a control signal to turn on the SW 311 to the first sub driver 450A, and outputs a control signal to turn on the SW 312 to the second sub driver 450B.
  • the power supply circuit 430 (see FIG. 1) outputs a control signal to turn on the SWs 313, 314, 315, and 316.
  • the SWs 311, 312, 313, 314, 315 and 316 are all turned on.
  • the power supply 500 and the first inverter 100A are electrically connected, and the power supply 500 and the second inverter 100B are electrically connected. Further, the first inverter 100A and GND are electrically connected, and the second inverter 100B and GND are electrically connected.
  • the controller 410 outputs a PWM signal for controlling the switching operation of the switch elements of the first inverter 100A and the second inverter 100B to the first predriver 420A and the second predriver 420B.
  • energization control By switching the switch elements of the first inverter 100A and the second inverter 100B, it becomes possible to energize the three-phase windings M1, M2 and M3 to drive the motor 200.
  • energization of a three-phase winding may be referred to as “three-phase energization control”.
  • FIG. 6 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in U-phase, V-phase and W-phase windings of motor 200 when power converter 1000 is controlled in accordance with three-phase energization control. doing.
  • the horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • current values are plotted every 30 ° of electrical angle.
  • I pk represents the maximum current value (peak current value) of each phase.
  • Table 1 shows the current value flowing to each inverter for each electrical angle in the sine wave of FIG. Specifically, Table 1 shows current values at every electrical angle of 30 ° flowing through the nodes NA_1, NA_2 and NA_3 (see FIG. 1) of the first inverter 100A, and the nodes NB_1, NB_2 and the second inverter 100B. The electric current value for every electrical angle of 30 degrees which flows through NB_3 (refer FIG. 1) is shown.
  • the current direction flowing from the first inverter 100A to the second inverter 100B is defined as a positive direction.
  • the direction of the current shown in FIG. 6 follows this definition.
  • the current direction flowing from the second inverter 100B to the first inverter 100A is defined as a positive direction. Therefore, the phase difference between the current of the first inverter 100A and the current of the second inverter 100B is 180 °.
  • the magnitude of the current value I 1 is [(3) 1/2 / 2] * is I pk
  • the magnitude of the current value I 2 is I pk / 2.
  • the controller 410 outputs a PWM signal for obtaining the current waveform shown in FIG. 6 to the first predriver 420A and the second predriver 420B.
  • the first predriver 420A fails in the first peripheral circuit 400A. Since the first pre-driver 420A has a failure, although the first inverter 100A does not have a failure, three-phase energization control can not be performed under normal control.
  • the controller 410 When the controller 410 detects a failure of the first pre-driver 420A, it switches control of the motor 200 from normal control to abnormal control. The controller 410 instructs the first drive circuit 440A to start driving. For example, since the second power supply voltage is supplied from the second predriver 420B to the first drive circuit 440A, a failure of the first predriver 420A does not affect the first drive circuit 440A.
  • the first drive circuit 440A applies a control signal to them to turn on the SWs 101A_L, 102A_L and 103A_L of the first inverter 100A.
  • the controller 410 outputs a control signal to turn off the SW 311 to the first sub driver 450A.
  • the SW 311 is turned off, and the first inverter 100A is electrically disconnected from the GND.
  • the switches 101A_L, 102A_L and 103A_L are always in the on state, and the low side node NA_L of the first inverter 100A can function as a neutral point.
  • the switches SW101A_H, 102A_H and 103A_H of the first inverter 100A are in the OFF state.
  • the switch elements 313 and 315 may be in the on state or in the off state, but are preferably in the off state.
  • FIG. 7 exemplifies the state of current flowing to two inverters at an electrical angle of 270 ° of the current waveform shown in FIG.
  • the controller 410 can continue the three-phase conduction control using the neutral point of the first inverter 100A by outputting the PWM signal to the second predriver 420B.
  • the controller 410 can energize the windings M1, M2 and M3 by outputting a PWM signal for obtaining the current waveform shown in FIG. 6 to the switch element of the second inverter 100B.
  • the second power supply voltage is supplied to the first drive circuit 440A, so three-phase conduction control using the neutral point can be continued. It becomes possible.
  • the boosted voltage CP_PM2 generated by the second power supply circuit 430B or the boosted voltage CP_Pr2 generated by the second predriver 420B can be supplied to the first drive circuit 440A. Therefore, the first drive circuit 440A can give them a control signal to turn on the SWs 101A_L, 102A_L and 103A_L of the first inverter 100A without being affected by the failure of the first power supply circuit 430A.
  • FIG. 8 schematically shows a block configuration of a motor module 2000A according to the present embodiment and mainly shows a block configuration of a power conversion apparatus 1000A.
  • FIG. 9 schematically shows the drive circuit 440 and functional blocks around it.
  • Power conversion device 1000A differs from power conversion device 1000 according to the first embodiment in that power conversion device 1000A includes a drive circuit 440 common to first inverter 100A and second inverter 100B. The differences from the first embodiment will be mainly described below.
  • the power conversion device 1000A includes a drive circuit 440 common to the first inverter 100A and the second inverter 100B, a first switch 900, and a second switch 910.
  • the drive circuit 440 is connected to the three low side switch elements of the first inverter 100A and the three low side switch elements of the second inverter 100B.
  • the drive circuit 440 supplies control signals for turning on the three low-side switch elements of the first inverter 100A by supplying the second power supply voltage.
  • a control signal for turning on the three low-side switch elements of the second inverter 100B is supplied to the low-side switch elements and supplying a first power supply voltage when a failure occurs on the second inverter 100B side. Apply to the low side switch element.
  • the drive circuit 440 includes switches 441 and 442, and can be configured from a plurality of open collector output type transistors and a plurality of resistors. Drive circuit 440 is controlled by controller 410.
  • a failure occurs on the first inverter 100A side, that is, in the first peripheral circuit 400A.
  • the controller 410 starts control of the drive circuit 440.
  • the first switch 900 supplies the first power supply voltage as the power supply voltage 443 to the drive circuit 440 and supplies the second power supply voltage as the power supply voltage 443 to the drive circuit 440 under the control of the controller 410. Switch.
  • the controller 410 controls the first switch 900 to determine to supply the second power supply voltage (for example, CP_Pr2) as the power supply voltage 443 to the drive circuit 440.
  • the second power supply voltage for example, CP_Pr2
  • the second switch 910 supplies the output of the drive circuit 440 from the drive circuit 440 to the three low-side switch elements of the first inverter 100A, and the three low-side switch elements of the drive circuit 440 to the second inverter 100B.
  • the supply of the output is switched under the control of the controller 410.
  • the controller 410 detects a failure in the first pre-driver 420A, it controls the second switch 910 to determine to supply the output of the drive circuit 440 to the three low-side switch elements of the first inverter 100A.
  • the common drive circuit 440 is used for the first inverter 100A and the second inverter 100B, which is advantageous in terms of circuit area and cost.
  • the drive circuit 440 may be an integrated circuit in which the first drive circuit 440A and the second drive circuit 440B according to the first embodiment are integrated into one chip. Such circuit forms are also within the scope of the present disclosure.
  • FIG. 10 schematically shows a typical configuration of an electric power steering apparatus 3000 according to the present embodiment.
  • Vehicles such as automobiles generally have an electric power steering (EPS) device.
  • the electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque.
  • Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel. The assist torque reduces the burden on the driver's operation.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, rack shafts 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A, 528B, and left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, and a reduction mechanism 544.
  • the steering torque sensor 541 detects a steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
  • the ECU 542 includes, for example, a first peripheral circuit 400A and a second peripheral circuit 400B according to the first embodiment.
  • an electronic control system is built around an ECU.
  • a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545.
  • the motor module 2000, 2000A by Embodiment 1 and 2 can be used suitably for the unit.
  • Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.
  • first inverter 100B second inverter 200: motor 311, 312, 313, 314, 315, 316: switch element 400A: first peripheral circuit 400B: second peripheral circuit 410: controller 420A: first predriver 420B: Second pre-driver 430: power supply circuit 430A: first power supply circuit 430B: second power supply circuit 440A: first drive circuit 440B; second drive circuit 450A: first subdriver 450B: second subdriver 460: boost circuit 460A: First booster circuit 460B: second booster circuit 1000, 1000A: power converter 2000, 000A: Motor Module 3000: electric power steering system

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Power Steering Mechanism (AREA)

Abstract

A power conversion device 1000 comprises: a first inverter 100A; a second inverter 100B; a drive circuit 440 for applying, to a low-side switch element of the first inverter, a control signal for turning on the low-side switch element when a failure has occurred on the first inverter side, and applying, to the low-side switch element of the second inverter, the control signal for turning on the low-side switch element when a failure has occurred on the second inverter side; and a control circuit 410. When failure occurs on the second inverter side, a first power supply voltage generated on the first inverter side is supplied to the drive circuit, and when failure occurs on the first inverter side, a second power supply voltage generated on the second inverter side is supplied to the drive circuit.

Description

電力変換装置、モータモジュールおよび電動パワーステアリング装置Power converter, motor module and electric power steering apparatus
本開示は、電源からの電力を電動モータに供給する電力に変換する電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。 The present disclosure relates to a power conversion device, a motor module, and an electric power steering device that convert power from a power supply into power to be supplied to an electric motor.
近年、電動モータ(以下、単に「モータ」と表記する。)およびECU(Electrical Control Unit)が一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つのインバータを設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。  In recent years, a machine-electric integrated motor has been developed in which an electric motor (hereinafter simply referred to as "motor") and an ECU (Electrical Control Unit) are integrated. Particularly in the automotive field, high quality assurance is required from the viewpoint of safety. Therefore, a redundant design is adopted that can continue safe operation even if part of the part fails. As an example of redundant design, it is considered to provide two inverters for one motor. As another example, it is considered to provide a backup microcontroller on the main microcontroller.
特許文献1は、制御部と、2つのインバータとを有し、電源からの電力を三相モータに供給する電力に変換する電力変換装置を開示している。2つのインバータの各々は電源およびグランド(以下、「GND」と表記する。)に接続される。一方のインバータは、モータの三相の巻線の一端に接続され、他方のインバータは、三相の巻線の他端に接続される。各インバータは、各々がハイサイドスイッチ素子およびローサイドスイッチ素子を含む3つのレグから構成されるブリッジ回路を有する。制御部は、2つのインバータにおけるスイッチ素子の故障を検出した場合、モータ制御を正常時の制御から異常時の制御に切替える。正常時の制御では、例えば、2つのインバータのスイッチ素子をスイッチングすることによりモータが駆動される。異常時の制御では、例えば、故障したインバータにおける巻線の中性点を用いて、故障していないインバータによってモータが駆動される。 Patent Document 1 discloses a power conversion device that includes a control unit and two inverters, and converts power from a power supply into power to be supplied to a three-phase motor. Each of the two inverters is connected to a power supply and a ground (hereinafter referred to as "GND"). One inverter is connected to one end of the three-phase winding of the motor, and the other inverter is connected to the other end of the three-phase winding. Each inverter has a bridge circuit composed of three legs, each of which includes a high side switch element and a low side switch element. The control unit switches motor control from normal control to abnormal control when it detects a failure of the switch element in the two inverters. In the normal control, for example, the motor is driven by switching switch elements of two inverters. In the control at the time of abnormality, for example, the motor is driven by the unfailed inverter using the neutral point of the winding in the broken inverter.
特開2014-192950号公報JP 2014-192950 A
上述した従来の技術では、インバータの周辺回路が故障した場合の制御のさらなる向上が求められていた。ここで、周辺回路は、インバータを駆動するために必要な回路であり、例えば、後述するコントローラ、プリドライバおよび電源回路などを備える。周辺回路の故障とは、例えばプリドライバまたは電源回路が故障することを意味する。特許文献1の回路構成において、インバータのスイッチ素子の故障に加え、制御部にも故障が発生した場合、モータ駆動を継続させることは困難となる。  In the above-described prior art, there is a need for further improvement in control when the peripheral circuit of the inverter fails. Here, the peripheral circuit is a circuit necessary to drive the inverter, and includes, for example, a controller, a predriver, a power supply circuit, and the like described later. Failure of the peripheral circuit means, for example, failure of the predriver or the power supply circuit. In the circuit configuration of Patent Document 1, when a failure occurs in the control unit in addition to the failure of the switch element of the inverter, it is difficult to continue the motor drive.
本開示の実施形態は、インバータの周辺回路に故障が生じた場合においても中性点を用いたモータ駆動を継続させることが可能な電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置を提供する。 In an embodiment of the present disclosure, a power conversion device capable of continuing motor driving using a neutral point even when a failure occurs in a peripheral circuit of an inverter, a motor module including the power conversion device, and the motor module An electric power steering apparatus is provided.
本開示の例示的な電力変換装置は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、前記モータの各相の巻線の一端に接続される第1インバータであって、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有するn個のレグを備える第1インバータと、前記各相の巻線の他端に接続される第2インバータであって、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有するn個のレグを備える第2インバータと、前記第1インバータの前記n個のローサイドスイッチ素子および前記第2インバータの前記n個のローサイドスイッチ素子に接続された駆動回路であって、前記モータの前記第1インバータ側で故障が発生したとき、前記第1インバータの前記n個のローサイドスイッチ素子をオンにする制御信号を前記n個のローサイドスイッチ素子に与え、前記モータの前記第2インバータ側で故障が発生したとき、前記第2インバータの前記n個のローサイドスイッチ素子をオンにする制御信号を前記n個のローサイドスイッチ素子に与える駆動回路と、前記第1インバータおよび前記第2インバータの各々における前記n個のローサイドスイッチ素子および前記n個のハイサイドスイッチ素子のスイッチング動作を制御し、かつ、前記駆動回路を制御する制御回路と、を備え、前記モータの前記第2インバータ側で故障が発生したとき、前記モータの前記第1インバータ側で生成される第1電源電圧が前記駆動回路に供給され、かつ、前記モータの前記第1インバータ側で故障が発生したとき、前記モータの前記第2インバータ側で生成される第2電源電圧が前記駆動回路に供給される。 An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having n-phase (n is an integer of 3 or more) windings, A first inverter connected to one end of the winding of each phase, the first inverter comprising n legs each having a low side switching element and a high side switching element, and the other end of the winding of each phase A second inverter connected to the second inverter, the second inverter comprising n legs each having a low side switch element and a high side switch element, the n low side switch elements of the first inverter, and the second inverter A drive circuit connected to the n low-side switch elements of an inverter, wherein when a failure occurs on the first inverter side of the motor, the first in- A control signal for turning on the n low-side switching devices of the motor is applied to the n low-side switching devices, and when a failure occurs on the second inverter side of the motor, the n of the second And a drive circuit for supplying a control signal for turning on the low-side switching device to the n low-side switching devices, the n low-side switching devices and the n high sides in each of the first and second inverters. A control circuit that controls the switching operation of the switch element and controls the drive circuit, and is generated on the first inverter side of the motor when a failure occurs on the second inverter side of the motor First power supply voltage is supplied to the drive circuit, and a failure occurs on the first inverter side of the motor. When none, the second power supply voltage generated by the second inverter side of the motor is supplied to the drive circuit.
本開示の例示的な実施形態によると、インバータの周辺回路に故障が生じた場合において中性点を用いたモータ駆動を継続させることが可能な電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。 According to an exemplary embodiment of the present disclosure, a power converter capable of continuing motor drive using a neutral point in the event of a failure in a peripheral circuit of an inverter, a motor module including the power converter, and An electric power steering apparatus provided with the motor module is provided.
図1は、例示的な実施形態1によるモータモジュール2000のブロック構成を示し、主として電力変換装置1000のブロック構成を示す模式図である。FIG. 1 is a schematic diagram showing a block configuration of a motor module 2000 according to an exemplary embodiment 1, mainly showing a block configuration of a power conversion device 1000. As shown in FIG. 図2Aは、第1駆動回路440Aの機能ブロックを示すブロック図である。FIG. 2A is a block diagram showing functional blocks of the first drive circuit 440A. 図2Bは、第2駆動回路440Bの機能ブロックを示すブロック図である。FIG. 2B is a block diagram showing functional blocks of the second drive circuit 440B. 図3は、第1周辺回路400Aの中の第1駆動回路440Aの回路構成を例示する回路図である。FIG. 3 is a circuit diagram illustrating a circuit configuration of the first drive circuit 440A in the first peripheral circuit 400A. 図4は、例示的な実施形態1の変形例による電力変換装置1000のブロック構成例を示す模式図である。FIG. 4 is a schematic view showing an example of a block configuration of a power conversion device 1000 according to a modification of the exemplary embodiment 1. 図5Aは、例示的な実施形態1の変形例による電力変換装置1000のさらなるブロック構成例を示す模式図である。FIG. 5A is a schematic diagram showing a further exemplary block configuration of the power conversion device 1000 according to a modification of the exemplary embodiment 1. 図5Bは、例示的な実施形態1の変形例による電力変換装置1000のさらなるブロック構成例を示す模式図である。FIG. 5B is a schematic view showing a further block configuration example of the power conversion device 1000 according to the modification of the exemplary embodiment 1. 図6は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。FIG. 6 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in U-phase, V-phase and W-phase windings of motor 200 when power converter 1000 is controlled in accordance with three-phase energization control. Is a graph. 図7は、図6に示す電流波形の電気角270°において2つのインバータに流れる電流の様子を例示する模式図である。FIG. 7 is a schematic view illustrating states of currents flowing to two inverters at an electrical angle of 270 ° of the current waveform shown in FIG. 図8は、例示的な実施形態2によるモータモジュール2000Aのブロック構成を示し、主として電力変換装置1000Aのブロック構成を示す模式図である。FIG. 8 shows a block configuration of a motor module 2000A according to an exemplary embodiment 2 and is a schematic view mainly showing a block configuration of the power conversion device 1000A. 図9は、駆動回路440およびその周辺の機能ブロックを示すブロック図である。FIG. 9 is a block diagram showing drive circuit 440 and functional blocks therearound. 図10は、例示的な実施形態3による電動パワーステアリング装置3000の典型的な構成を示す模式図である。FIG. 10 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to an exemplary embodiment 3. As shown in FIG.
以下、添付の図面を参照しながら、本開示の電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。  Hereinafter, embodiments of a power conversion device, a motor module, and an electric power steering device of the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to facilitate the understanding of the person skilled in the art, the following description may be omitted unnecessarily to avoid redundant description. For example, detailed description of already well-known matters and redundant description of substantially the same configuration may be omitted.
本明細書において、電源からの電力を、三相(U相、V相、W相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置も本開示の範疇である。  In the present specification, the implementation of the present disclosure will be exemplified taking a power conversion apparatus that converts power from a power supply into power supplied to a three-phase motor having three-phase (U-phase, V-phase, W-phase) windings. The form will be described. However, a power conversion device that converts power from a power supply to power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase is also within the scope of the present disclosure. .
(実施形態1) 〔1-1.電力変換装置1000およびモータモジュール2000の構造〕 図1は、本実施形態によるモータモジュール2000のブロック構成を模式的に示し、主として電力変換装置1000のブロック構成を模式的に示している。本明細書では、説明の便宜上、ブロック図におけるモータ200の左側の構成要素を、第1インバータ100Aおよび第1周辺回路400Aなどと表記し、右側の構成要素を、第2インバータ100Bおよび第2周辺回路400Bなどと表記する。  Embodiment 1 [1-1. Structure of Power Conversion Device 1000 and Motor Module 2000] FIG. 1 schematically shows a block configuration of a motor module 2000 according to the present embodiment, and mainly shows a block configuration of the power conversion device 1000. As shown in FIG. In the present specification, for convenience of explanation, components on the left side of the motor 200 in the block diagram are denoted as a first inverter 100A, a first peripheral circuit 400A, etc., and components on the right side are a second inverter 100B and a second periphery. It is written as a circuit 400B or the like.
モータモジュール2000は、モータ200および電力変換装置1000を備える。モータモジュール2000は、モジュール化されて、例えば、モータ、センサ、プリドライバおよびコントローラを備える機電一体型モータとして製造および販売され得る。  Motor module 2000 includes motor 200 and power converter 1000. The motor module 2000 can be modularized and manufactured and sold as an electromechanical integrated motor including, for example, a motor, a sensor, a predriver and a controller.
電力変換装置1000は、第1インバータ100A、第2インバータ100B、第1から第6スイッチ素子311、312、313、314、315、316、第1周辺回路400A、第2周辺回路400B、コントローラ410および電源回路430を備える。  Power converter 1000 includes a first inverter 100A, a second inverter 100B, first to sixth switch elements 311, 312, 313, 314, 315, 316, a first peripheral circuit 400A, a second peripheral circuit 400B, a controller 410, and the like. A power supply circuit 430 is provided.
電力変換装置1000は、モータ200に接続され、かつ、コイル600を介して電源500に接続される。電力変換装置1000は、電源500からの電力を、モータ200に供給する電力に変換することができる。例えば、第1インバータ100Aおよび第2インバータ100Bは、直流電力を、U相、V相およびW相の擬似正弦波である三相交流電力に変換することが可能である。  Power converter 1000 is connected to motor 200 and connected to power supply 500 via coil 600. Power converter 1000 can convert the power from power supply 500 into the power supplied to motor 200. For example, the first inverter 100A and the second inverter 100B can convert DC power into three-phase AC power which is a pseudo sine wave of U phase, V phase and W phase.
モータ200は、例えば、三相交流モータである。モータ200は、U相の巻線M1、V相の巻線M2およびW相の巻線M3を備え、第1インバータ100Aと第2インバータ100Bとに接続される。具体的に説明すると、第1インバータ100Aはモータ200の各相の巻線の一端に接続され、第2インバータ100Bは各相の巻線の他端に接続される。このようなモータ結線は、いわゆるスター結線およびデルタ結線とは異なる。本明細書において、部品(構成要素)同士の間の「接続」は、主に電気的な接続を意味する。  The motor 200 is, for example, a three-phase alternating current motor. The motor 200 includes a U-phase winding M1, a V-phase winding M2, and a W-phase winding M3, and is connected to the first inverter 100A and the second inverter 100B. Specifically, the first inverter 100A is connected to one end of the winding of each phase of the motor 200, and the second inverter 100B is connected to the other end of the winding of each phase. Such motor connections are different from so-called star connections and delta connections. In the present specification, “connection” between components (components) mainly means electrical connection.
第1インバータ100Aは、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有する3個のレグを備える。U相用レグは、ローサイドスイッチ素子101A_Lおよびハイサイドスイッチ素子101A_Hを有する。V相用レグは、ローサイドスイッチ素子102A_Lおよびハイサイドスイッチ素子102A_Hを有する。W相用レグは、ローサイドスイッチ素子103A_Lおよびハイサイドスイッチ素子103A_Hを有する。  The first inverter 100A includes three legs each having a low side switch element and a high side switch element. The U-phase leg has a low side switch element 101A_L and a high side switch element 101A_H. The V-phase leg has a low side switch element 102A_L and a high side switch element 102A_H. The W phase leg has a low side switch element 103A_L and a high side switch element 103A_H.
スイッチ素子として、例えば、寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)または絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。以下、スイッチ素子としてMOSFETを用いる例を説明し、スイッチ素子をSWと表記する場合がある。例えば、スイッチ素子101A_L、102A_Lおよび103A_Lは、SW101A_L、102A_Lおよび103A_Lと表記される。  As a switch element, for example, a combination of a field effect transistor (typically, a MOSFET) or an insulated gate bipolar transistor (IGBT) with a parasitic diode formed therein and a free wheel diode connected in parallel thereto can be used. Hereinafter, an example using a MOSFET as a switch element will be described, and the switch element may be described as SW. For example, the switch elements 101A_L, 102A_L and 103A_L are described as SW 101A_L, 102A_L and 103A_L.
第1インバータ100Aは、U相、V相およびW相の各相の巻線に流れる電流を検出するための電流センサとして、3個のシャント抵抗100A_Rを備える。電流センサは、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を含む。図示されるように、例えば、3個のシャント抵抗100A_Rは、第1インバータ100Aの3個のレグに含まれる3個のローサイドスイッチ素子とGNDとの間にそれぞれ接続される。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。  The first inverter 100A includes three shunt resistors 100A_R as current sensors for detecting the current flowing in the windings of the U-phase, V-phase, and W-phase. The current sensor includes a current detection circuit (not shown) that detects the current flowing in each shunt resistor. As illustrated, for example, three shunt resistors 100A_R are respectively connected between the three low-side switch elements included in the three legs of the first inverter 100A and GND. The resistance value of the shunt resistor is, for example, about 0.5 mΩ to 1.0 mΩ.
第2インバータ100Bは、第1インバータ100Aと同様に、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有する3個のレグを備える。U相用レグは、ローサイドスイッチ素子101B_Lおよびハイサイドスイッチ素子101B_Hを有する。V相用レグは、ローサイドスイッチ素子102B_Lおよびハイサイドスイッチ素子102B_Hを有する。W相用レグは、ローサイドスイッチ素子103B_Lおよびハイサイドスイッチ素子103B_Hを有する。また、第2インバータ100Bは、3個のシャント抵抗100B_Rを備える。それらのシャント抵抗は、3個のレグに含まれる3個のローサイドスイッチ素子とGNDとの間に接続される。  Similar to the first inverter 100A, the second inverter 100B includes three legs each having a low side switch element and a high side switch element. The U-phase leg has a low side switch element 101B_L and a high side switch element 101B_H. The V-phase leg has a low side switch element 102B_L and a high side switch element 102B_H. The W phase leg includes a low side switch element 103B_L and a high side switch element 103B_H. Further, the second inverter 100B includes three shunt resistors 100B_R. The shunt resistors are connected between the three low side switch elements included in the three legs and GND.
各インバー
タに対し、シャント抵抗の数は3つに限られない。例えば、U相、V相用の2つのシャント抵抗、V相、W相用の2つのシャント抵抗、および、U相、W相用の2つのシャント抵抗を用いることが可能である。使用するシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などを考慮して適宜決定される。 
The number of shunt resistors is not limited to three for each inverter. For example, it is possible to use two shunt resistors for U phase and V phase, two shunt resistors for V phase and W phase, and two shunt resistors for U phase and W phase. The number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications and the like.
電力変換装置1000において、第1インバータ100Aおよび第2インバータ100Bは、第1から第4スイッチ素子311、312、313および314によって電源500とGNDとに電気的にそれぞれ接続可能である。具体的に説明すると、第1スイッチ素子311は、第1インバータ100AとGNDとの接続・非接続を切替える。第2スイッチ素子312は、第2インバータ100BとGNDとの接続・非接続を切替える。第3スイッチ素子313は、電源500と第1インバータ100Aとの接続・非接続を切替える。第4スイッチ素子314は、電源500と第2インバータ100Bとの接続・非接続を切替える。  In power converter 1000, first inverter 100A and second inverter 100B can be electrically connected to power supply 500 and GND by first to fourth switch elements 311, 312, 313 and 314, respectively. Specifically, the first switch element 311 switches connection / non-connection between the first inverter 100A and GND. The second switch element 312 switches connection / disconnection between the second inverter 100B and GND. The third switch element 313 switches connection / non-connection between the power supply 500 and the first inverter 100A. The fourth switch element 314 switches connection / disconnection between the power supply 500 and the second inverter 100B.
第1から第4スイッチ素子311、312、313および314は、双方向の電流を遮断することが可能である。第1から第4スイッチ素子311、312、313および314として、例えば、サイリスタ、アナログスイッチIC、またはMOSFETなどの半導体スイッチ、および、メカニカルリレーなどを用いることができる。ダイオードおよびIGBTなどの組み合わせを用いても構わない。本明細書において、第1から第4スイッチ素子311、312、313および314を、SW311、312、313および314とそれぞれ表記する場合がある。SW311、312、313および314をMOSFETとして説明する。  The first to fourth switch elements 311, 312, 313 and 314 can block bidirectional current. As the first to fourth switch elements 311, 312, 313 and 314, for example, semiconductor switches such as thyristors, analog switch ICs, or MOSFETs, and mechanical relays can be used. A combination of a diode and an IGBT may be used. In the present specification, the first to fourth switch elements 311, 312, 313 and 314 may be denoted as SWs 311, 312, 313 and 314, respectively. The SWs 311, 312, 313 and 314 are described as MOSFETs.
SW311は、内部の寄生ダイオードに順方向電流が第1インバータ100Aに向けて流れるよう配置される。SW312は、寄生ダイオードに順方向電流が第2インバータ100Bに向けて流れるよう配置される。SW313は、寄生ダイオードに順方向電流が電源500に向けて流れるよう配置される。SW314は、寄生ダイオードに順方向電流が電源500に向けて流れるよう配置される。  The SW 311 is disposed such that forward current flows in the internal parasitic diode toward the first inverter 100A. The SW 312 is arranged such that forward current flows in the parasitic diode toward the second inverter 100B. The SW 313 is arranged such that forward current flows to the power supply 500 in the parasitic diode. The SW 314 is arranged such that forward current flows to the power supply 500 in the parasitic diode.
電力変換装置1000は、図示されるように、逆接続保護用の第5および第6スイッチ素子315、316をさらに有していても構わない。第5および第6スイッチ素子315、316は、典型的に、寄生ダイオードを有するMOSFETの半導体スイッチである。第5スイッチ素子315は、SW313に直列に接続され、寄生ダイオードにおいて第1インバータ100Aに向けて順方向電流が流れるよう配置される。第6スイッチ素子316は、SW314に直列に接続され、寄生ダイオードにおいて第2インバータ100Bに向けて順方向電流が流れるよう配置される。電源500が逆向きに接続された場合でも、逆接続保護用の2つのスイッチ素子によって逆電流を遮断することができる。  The power conversion device 1000 may further include fifth and sixth switch elements 315 and 316 for reverse connection protection as illustrated. The fifth and sixth switch elements 315, 316 are typically semiconductor switches of a MOSFET having parasitic diodes. The fifth switch element 315 is connected in series to the SW 313, and is disposed such that a forward current flows toward the first inverter 100A in the parasitic diode. The sixth switch element 316 is connected in series to the SW 314, and is disposed such that a forward current flows toward the second inverter 100B in the parasitic diode. Even when the power supply 500 is reversely connected, reverse current can be cut off by the two switch elements for reverse connection protection.
図示する例に限られず、使用するスイッチ素子の個数は、設計仕様などを考慮して適宜決定される。特に車載分野においては、安全性の観点から高い品質保証が要求されるので、各インバータ用として複数のスイッチ素子を設けておくことが好ましい。  The number of switch elements to be used is not limited to the illustrated example, and is appropriately determined in consideration of design specifications and the like. Particularly in the on-vehicle field, high quality assurance is required from the viewpoint of safety, so it is preferable to provide a plurality of switch elements for each inverter.
電源500は所定の電源電圧(例えば、12V)を生成する。電源500として、例えば直流電源が用いられる。ただし、電源500は、AC-DCコンバータまたはDC-DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。  The power supply 500 generates a predetermined power supply voltage (for example, 12 V). As the power supply 500, for example, a DC power supply is used. However, the power supply 500 may be an AC-DC converter or a DC-DC converter, or may be a battery.
電源500は、図示するように、第1インバータ100Aおよび第2インバータ100Bに共通の単一電源であってもよいし、第1インバータ100A用の第1電源および第2インバータ100B用の第2電源を備えていてもよい。  As illustrated, the power supply 500 may be a single power supply common to the first inverter 100A and the second inverter 100B, or a first power supply for the first inverter 100A and a second power supply for the second inverter 100B. May be provided.
電源500と電力変換装置1000の各インバータとの間にコイル600が設けられている。コイル600は、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源500側に流出させないように平滑化する。  A coil 600 is provided between the power supply 500 and each inverter of the power conversion device 1000. The coil 600 functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 500 side.
各インバータの電源端子には、コンデンサ(不図示)が接続される。コンデンサは、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサは、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。  A capacitor (not shown) is connected to the power supply terminal of each inverter. The capacitor is a so-called bypass capacitor, which suppresses voltage ripple. The capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications and the like.
第1周辺回路400Aは、第1インバータ100Aの駆動を制御するための回路である。第1周辺回路400Aは、例えば、第1プリドライバ420A、第1駆動回路440Aおよび第1サブドライバ450Aを備える。  The first peripheral circuit 400A is a circuit for controlling the driving of the first inverter 100A. The first peripheral circuit 400A includes, for example, a first predriver 420A, a first drive circuit 440A, and a first subdriver 450A.
第2周辺回路400Bは、第2インバータ100Bの駆動を制御するための回路である。第2周辺回路400Bは、第1周辺回路400Aと同様に、例えば、第2プリドライバ420B、第2駆動回路440Bおよび第2サブドライバ450Bを備える。  The second peripheral circuit 400B is a circuit for controlling the driving of the second inverter 100B. Similar to the first peripheral circuit 400A, the second peripheral circuit 400B includes, for example, a second predriver 420B, a second drive circuit 440B, and a second subdriver 450B.
第2周辺回路400Bは、典型的に、第1周辺回路400Aと実質的に同じ構造および機能を備える。より詳細には、個々の部品同士は実質的に同じ構造および機能を備える。  The second peripheral circuit 400B typically has substantially the same structure and function as the first peripheral circuit 400A. More specifically, the individual parts have substantially the same structure and function.
コントローラ410は、電力変換装置1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。  The controller 410 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or a field programmable gate array (FPGA).
コントローラ410は、第1周辺回路400Aおよび第2周辺回路400Bを制御する。具体的には、コントローラ410は、第1インバータ100Aおよび第2インバータ100Bの各々における3個のローサイドスイッチ素子および3個のハイサイドスイッチ素子のスイッチング動作を制御する。例えば、コントローラ410は、第1プリドライバ420Aが故障した場合、第1駆動回路440Aを制御し、第2プリドライバ420Bが故障した場合、第2駆動回路440Bを制御する。  The controller 410 controls the first peripheral circuit 400A and the second peripheral circuit 400B. Specifically, the controller 410 controls the switching operation of the three low side switch elements and the three high side switch elements in each of the first inverter 100A and the second inverter 100B. For example, the controller 410 controls the first drive circuit 440A when the first pre-driver 420A fails, and controls the second drive circuit 440B when the second pre-driver 420B fails.
コントローラ410は、目的とするモータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。そのため、コントローラ410は、典型的に、ロータの位置を検出する位置センサ700からの出力信号を入力する入力ポートを備える。  The controller 410 can control the target position, rotational speed, current, and the like of the rotor of the motor 200 to realize closed loop control. Therefore, the controller 410 typically includes an input port for inputting an output signal from the position sensor 700 that detects the position of the rotor.
位置センサ700は、例えば、レゾルバ、ホールIC、または、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによって実現される。位置センサ700は、ロータの位置(以下、「回転信号」と表記する。)を検出し、コントローラ410に回転信号を出力する。  The position sensor 700 is realized by, for example, a combination of an MR sensor having a resolver, a Hall IC, or a magnetoresistive (MR) element and a sensor magnet. Position sensor 700 detects the position of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to controller 410.
コントローラ410は、位置センサ700用の入力ポートに代えて、またはその入力ポートと共に、トルクセンサ800からの出力信号を入力する入力ポートを備えていてもよい。この場合、コントローラ410は、目的とするモータトルクを制御することができる。また、コントローラ410は、例えば車載のコントロールエリアネットワーク(CAN)に接続するための専用ポートなどを備えることができる。  The controller 410 may include an input port for inputting an output signal from the torque sensor 800, instead of or in addition to the input port for the position sensor 700. In this case, the controller 410 can control the target motor torque. In addition, the controller 410 can include, for example, a dedicated port for connecting to a vehicle-mounted control area network (CAN).
センサの冗長性を考慮して、例えば2個の位置センサ700および2個のトルクセンサ800(図4を参照)を設けるようにしてもよい。2個のセンサのうちの1個が故障した場合でも、故障していないセンサを用いてモータ制御を継続することができる。  For example, two position sensors 700 and two torque sensors 800 (see FIG. 4) may be provided in consideration of sensor redundancy. If one of the two sensors fails, motor control can continue using the non-failing sensor.
コントローラ410は、上述した電流センサから出力される電流信号を入力する入力ポートをさらに備えることができる。コントローラ410は、実電流値として、外付けのAD(アナログ-デジタル)コンバータによって変換されたデジタル信号を受け取ってもよいし、電流センサからアナログ信号をそのまま受け取り、コントローラ410の内部でデジタル信号に変換してもよい。  The controller 410 can further include an input port for inputting a current signal output from the above-described current sensor. The controller 410 may receive a digital signal converted by an external AD (analog-digital) converter as an actual current value, or may receive an analog signal from the current sensor as it is and convert it into a digital signal inside the controller 410. You may
コントローラ410は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM(Pulse Width Modulation)信号を生成し、それらを第1プリドライバ420Aおよび第2プリドライバ420Bに出力する。また、本実施形態では、コントローラ410は、SW311のオン・オフを制御する制御信号を第1サブドライバ450Aに出力し、SW312のオン・オフを制御する制御信号を第2サブドライバ450Bに出力する。  The controller 410 sets a target current value in accordance with the actual current value and the rotation signal of the rotor to generate a PWM (Pulse Width Modulation) signal, and outputs them to the first predriver 420A and the second predriver 420B. Further, in the present embodiment, the controller 410 outputs a control signal for controlling on / off of the SW 311 to the first sub driver 450A, and outputs a control signal for controlling on / off of the SW 312 to the second sub driver 450B. .
プリドライバは、ゲートドライバとも呼ばれる。第1プリドライバ420Aおよび第2プリドライバ420Bとして、汎用のプリドライバを広く用いることができる。  The predriver is also called a gate driver. General-purpose predrivers can be widely used as the first predriver 420A and the second predriver 420B.
第1プリドライバ420Aは、コントローラ410と第1インバータ100Aとの間に接続されている。第1プリドライバ420Aは、第1インバータ100Aにおける3個のローサイドスイッチ素子および3個のハイサイドスイッチ素子のスイッチング動作を制御する制御信号をコントローラ410の制御の下で生成し、それらのスイッチ素子に与える。具体的には、第1プリドライバ420Aは、第1インバータ100Aにおける各SWのスイッチング動作を制御する制御信号(ゲート制御信号)を、コントローラ410からのPWM信号に従って生成し、各SWのゲートに制御信号を与える。  The first predriver 420A is connected between the controller 410 and the first inverter 100A. The first pre-driver 420A generates control signals for controlling the switching operations of the three low-side switch elements and the three high-side switch elements in the first inverter 100A under the control of the controller 410, and controls these switch elements. give. Specifically, the first predriver 420A generates a control signal (gate control signal) for controlling the switching operation of each SW in the first inverter 100A in accordance with the PWM signal from the controller 410, and controls the gate of each SW. Give a signal.
第2プリドライバ420Bは、コントローラ410と第2インバータ100Bとの間に接続されている。第2プリドライバ420Bは、第2インバータ100Bにおける3個のローサイドスイッチ素子および3個のハイサイドスイッチ素子のスイッチング動作を制御する制御信号をコントローラ410の制御の下で生成し、それらのスイッチ素子に与える。具体的には、第2プリドライバ420Bは、第2インバータ100Bにおける各SWのスイッチング動作を制御するゲート制御信号を、コントローラ410からのPWM信号に従って生成し、各SWのゲートに制御信号を与える。  The second predriver 420B is connected between the controller 410 and the second inverter 100B. The second pre-driver 420B generates control signals for controlling switching operations of the three low-side switch devices and the three high-side switch devices in the second inverter 100B under the control of the controller 410, and controls these switch devices. give. Specifically, the second pre-driver 420B generates a gate control signal for controlling the switching operation of each SW in the second inverter 100B in accordance with the PWM signal from the controller 410, and supplies the control signal to the gate of each SW.
第1プリドライバ410Aは、電源500の電圧(例えば12V)よりも大きい電圧CP_Pr1を生成することが可能である。第2プリドライバ410Bは、電源500の電圧よりも大きい電圧CP_Pr2を生成することが可能である。昇圧電圧CP_Pr1、CP_Pr2は、例えば18Vまたは24Vである。各プリドライバはチャージポンプ方式である。  The first pre-driver 410A can generate a voltage CP_Pr1 larger than the voltage of the power supply 500 (for example, 12 V). The second predriver 410B can generate a voltage CP_Pr2 larger than the voltage of the power supply 500. The boosted voltages CP_Pr1 and CP_Pr2 are, for example, 18 V or 24 V. Each predriver is a charge pump system.
本実施形態では、電源回路430は、第1周辺回路400Aおよび第2周辺回路400Bに共通の電源回路であり、例えば電源ICである。電源500から電源回路430に、例えば12Vの電源が供給される。電源回路430は、第1周辺回路400Aおよび第2周辺回路400Bの各ブロックに必要な電源電圧を各々に供給する。図1において、電源回路430を2つの機能ブロックで示しているが、それは、物理的に分離された個別の電源回路を意図しているわけではない。  In the present embodiment, the power supply circuit 430 is a power supply circuit common to the first peripheral circuit 400A and the second peripheral circuit 400B, and is, for example, a power supply IC. For example, 12V power is supplied from the power supply 500 to the power supply circuit 430. The power supply circuit 430 supplies the necessary power supply voltage to each block of the first peripheral circuit 400A and the second peripheral circuit 400B. Although power supply circuit 430 is shown in FIG. 1 as two functional blocks, it is not intended to be separate physically separate power supply circuits.
電源回路430は、例えば5.0Vまたは3.3Vの電源電圧VCCをコントローラ410、第1プリドライバ420Aおよび第2プリドライバ420Bに供給する。本実施形態では、電源回路430は、SW313、314、315および316のオン・オフを制御する制御信号をそれらに与えることが可能である。  The power supply circuit 430 supplies a power supply voltage VCC of, for example, 5.0 V or 3.3 V to the controller 410, the first predriver 420A, and the second predriver 420B. In the present embodiment, the power supply circuit 430 can provide control signals for controlling the on / off of the SWs 313, 314, 315 and 316 to them.
電源回路430は、電源500の電圧よりも大きい電圧CP_PMを生成することが可能である。昇圧電圧CP_PMは、例えば18Vまたは24Vである。  The power supply circuit 430 can generate a voltage CP_PM that is larger than the voltage of the power supply 500. The boosted voltage CP_PM is, for example, 18 V or 24 V.
本実施形態では、電源500の電圧よりも大きい電圧が必要になる。そのため、上述したとおり、第1プリドライバ420A、第2プリドライバ420Bおよび電源回路430を用いてそのような大きい電圧は生成される。電源500の電圧を昇圧するブロックは、各周辺回路に少なくとも1つあればよい。  In the present embodiment, a voltage larger than that of the power supply 500 is required. Therefore, as described above, such a large voltage is generated using the first predriver 420A, the second predriver 420B, and the power supply circuit 430. There may be at least one block for boosting the voltage of the power supply 500 in each peripheral circuit.
ここで、第1駆動回路440Aおよび第2駆動回路440Bを説明する前に、第1プリドライバ420Aおよび第2プリドライバ420Bにより生成されるゲート制御信号を説明する。以下、第1プリドライバ420Aを例にしてゲート制御信号を説明する。  Here, before describing the first drive circuit 440A and the second drive circuit 440B, gate control signals generated by the first predriver 420A and the second predriver 420B will be described. The gate control signal will be described below by taking the first predriver 420A as an example.
本明細書において、電力変換装置1000に故障が生じていないときの電力変換装置1000の制御を「正常時の制御」と表記し、故障が生じたときの制御を「異常時の制御」
と表記することとする。 
In the present specification, control of the power conversion device 1000 when no failure occurs in the power conversion device 1000 is referred to as “control at normal time”, and control when a failure occurs is “control at abnormal time”.
It shall be written as
正常時の制御では、SW311、312、313、314、315および316はオン状態である。従って、第1インバータ100AにおけるSW101A_L、102A_Lおよび103A_Lを接続するノードNA_Lの電位は、GND電位となる。そのため、SW101A_L、102A_Lおよび103A_Lのゲートの基準電位、つまり、ソース電位は低電位となる。その場合、SWのゲートに与えられるゲート制御信号の電圧レベルは比較的低くてもよく、ローサイドスイッチ素子のスイッチング動作を問題なく制御することが可能である。以下、ゲート制御信号の電圧を「ゲート電圧」と表記する場合がある。  In normal control, the switches 311, 312, 313, 314, 315 and 316 are in the on state. Therefore, the potential of the node NA_L connecting the SWs 101A_L, 102A_L and 103A_L in the first inverter 100A is the GND potential. Therefore, the reference potentials of the gates of the SW 101A_L, 102A_L, and 103A_L, that is, the source potentials are low. In that case, the voltage level of the gate control signal applied to the gate of SW may be relatively low, and it is possible to control the switching operation of the low side switch element without any problem. Hereinafter, the voltage of the gate control signal may be referred to as “gate voltage”.
一方、第1インバータ100Aの3個のSW101A_H、102A_Hおよび103A_Hの基準電位は、ローサイドスイッチ素子とハイサイドスイッチ素子の間のノードNA_1、NA_2およびNA_3の電位、つまり、各相の巻線M1、M2およびM3に供給される駆動電圧となるために高い。ハイサイドスイッチ素子をオンするためには、ローサイドスイッチ素子に与えるゲート電圧よりも高いゲート電圧をハイサイドスイッチ素子に与える必要がある。  On the other hand, the reference potentials of the three SWs 101A_H, 102A_H and 103A_H of the first inverter 100A are the potentials of the nodes NA_1, NA_2 and NA_3 between the low side switch element and the high side switch element, that is, the windings M1 and M2 of each phase. And the drive voltage supplied to M3 are high. In order to turn on the high side switch element, it is necessary to apply a gate voltage higher than the gate voltage applied to the low side switch element to the high side switch element.
既に説明したように、第1プリドライバ420Aは、例えば12Vの電圧を昇圧して18Vの電圧を生成し、高電圧をSW101A_H、102A_Hおよび103A_Hに与えることができる。その結果、スイッチング動作においてハイサイドスイッチ素子を適切にオンすることが可能となる。このように、第1プリドライバ420Aは、正常時の制御において、ローサイドスイッチ素子に与えるゲート電圧よりも高いゲート電圧をハイサイドスイッチ素子に与える。ローサイドスイッチ素子に与えるゲート電圧は、例えば12Vであり、ハイサイドスイッチ素子に与えるゲート電圧は、例えば18Vである。  As described above, the first pre-driver 420A can boost a voltage of, for example, 12 V to generate a voltage of 18 V, and can apply high voltages to the SW 101A_H, 102A_H, and 103A_H. As a result, it becomes possible to properly turn on the high side switch element in the switching operation. As described above, the first pre-driver 420A applies a gate voltage higher than the gate voltage applied to the low-side switch element to the high-side switch element in normal control. The gate voltage applied to the low side switch element is 12 V, for example, and the gate voltage applied to the high side switch element is 18 V, for example.
電力変換装置1000に故障が発生した場合を考える。「故障」とは、主に周辺回路内で発生する故障を意味する。モータ200の第1インバータ100A側で故障が発生するとは、第1周辺回路400A内で故障が発生することを意味し、より詳細には、例えば第1プリドライバ420Aが故障して動作不能になることを意味する。第2インバータ100B側で故障が発生するとは、第2周辺回路400B内で故障が発生することを意味し、より詳細には、例えば第2プリドライバ420Bが故障して動作不能になることを意味する。  A case where a failure occurs in the power converter 1000 will be considered. "Failure" mainly refers to a failure that occurs in the peripheral circuit. The occurrence of a failure on the first inverter 100A side of the motor 200 means that a failure occurs in the first peripheral circuit 400A, and more specifically, for example, the first predriver 420A fails and becomes inoperable It means that. The occurrence of a failure on the second inverter 100B side means that a failure occurs in the second peripheral circuit 400B, and more specifically, for example, the failure of the second predriver 420B to render it inoperable Do.
例えば、第1プリドライバ420Aが故障したとする。その場合、第1プリドライバ420Aは、当然に、コントローラ410の制御を受けて、第1インバータ100Aを駆動することはできなくなる。しかし、第1インバータ100Aにおけるローサイド側のノードNA_Lを中性点として機能させることができれば、この中性点を用いて第2インバータ100Bを駆動させることによりモータ200の駆動を継続させることができる。  For example, it is assumed that the first predriver 420A fails. In that case, naturally, the first predriver 420A can not drive the first inverter 100A under the control of the controller 410. However, if the low side node NA_L in the first inverter 100A can be made to function as a neutral point, driving of the motor 200 can be continued by driving the second inverter 100B using this neutral point.
本実施形態では、例えば第1プリドライバ420Aが故障した場合、第1インバータ100Aのローサイド側のノードNA_Lを中性点として機能させる。このとき、コントローラ410は電流制御を適切に行えるよう第1スイッチ素子311をオフにする。これにより、中性点はGNDから電気的に切り離される。その結果、ローサイド側のノードNA_Lの電位はGND電位ではなくなり、その電位よりも高い電位となる。換言すると、SW101A_L、102A_Lおよび103A_Lのゲートの基準電位は、フローティング状態になる。その状態で、正常時の制御におけるゲート電圧(例えば12V)と同じ大きさのゲート電圧をローサイドスイッチ素子に与えた場合、ゲート-ソース間電圧は、正常時の制御のそれと比較して小さくなる。  In the present embodiment, for example, when the first predriver 420A fails, the node NA_L on the low side of the first inverter 100A functions as a neutral point. At this time, the controller 410 turns off the first switch element 311 so that current control can be appropriately performed. Thus, the neutral point is electrically disconnected from GND. As a result, the potential of the node NA_L on the low side is not the GND potential and is higher than the potential. In other words, the reference potentials of the gates of SW101A_L, 102A_L and 103A_L are in a floating state. In this state, when a gate voltage of the same magnitude as the gate voltage (for example, 12 V) in the normal control is applied to the low side switch element, the gate-source voltage becomes smaller than that in the normal control.
ゲート-ソース間電圧が小さくなると、SW101A_L、102A_Lおよび103A_Lのソース-ドレイン間のオン抵抗値が大きくなったり、SW101A_L、102A_Lおよび103A_Lが意図せずにオフ状態になったりすることが発生し得る。第1インバータ100Aのローサイド側のノードNA_Lを中性点として機能させるためには、SW101A_L、102A_Lおよび103A_Lを適切にオン状態にしておく必要がある。従って、SW101A_L、102A_Lおよび103A_Lに与えられるゲート電圧は、正常時の制御のそれらよりも大きくしておく必要がある。  As the gate-source voltage decreases, the on-resistance value between the source and the drain of the SW 101A_L, 102A_L, and 103A_L may increase, or the SW 101A_L, 102A_L, and 103A_L may be unintentionally turned off. In order to cause the node NA_L on the low side of the first inverter 100A to function as a neutral point, the switches SW101A_L, 102A_L, and 103A_L need to be properly turned on. Therefore, the gate voltages applied to the switches SW101A_L, 102A_L and 103A_L need to be larger than those in the normal control.
上述した問題点を踏まえ、本開示による電力変換装置1000は、第1駆動回路440Aおよび第2駆動回路440Bを備える。第2駆動回路440Bの回路構造および機能は、第1駆動回路440Aのそれらと実質的に同じであるので、以下、第1駆動回路440Aを例に回路構造および機能を主に説明する。  In view of the problems described above, the power conversion device 1000 according to the present disclosure includes a first drive circuit 440A and a second drive circuit 440B. Since the circuit structure and function of the second drive circuit 440B are substantially the same as those of the first drive circuit 440A, the circuit structure and function will be mainly described below by taking the first drive circuit 440A as an example.
第1駆動回路440Aは、第1インバータ100Aの3個のローサイドスイッチ素子に接続されている。第1駆動回路440Aは、モータ200の第1インバータ100A側で故障が発生したとき、第1インバータ100AにおけるSW101A_L、102A_Lおよび103A_Lを常時オン状態にするための専用駆動回路である。第1駆動回路440Aにより、第1インバータ100Aのローサイド側のノードNA_Lを中性点として適切に機能させることができる。  The first drive circuit 440A is connected to the three low side switch elements of the first inverter 100A. The first drive circuit 440A is a dedicated drive circuit for constantly turning on the switches 101A_L, 102A_L and 103A_L in the first inverter 100A when a failure occurs on the first inverter 100A side of the motor 200. The low side node NA_L of the first inverter 100A can be appropriately functioned as a neutral point by the first drive circuit 440A.
第2駆動回路440Bは、第2インバータ100Bの3個のローサイドスイッチ素子に接続されている。第2駆動回路440Bは、モータ200の第2インバータ100B側で故障が発生したとき、第2インバータ100BにおけるSW101B_L、102B_Lおよび103B_Lを常時オン状態にするための専用駆動回路である。第2駆動回路440Bにより、第2インバータ100Bのローサイド側のノードNB_Lを中性点として適切に機能させることができる。  The second drive circuit 440B is connected to the three low-side switch elements of the second inverter 100B. The second drive circuit 440B is a dedicated drive circuit for constantly turning on the switches 101B_L, 102B_L and 103B_L in the second inverter 100B when a failure occurs on the second inverter 100B side of the motor 200. By the second drive circuit 440B, the node NB_L on the low side of the second inverter 100B can be appropriately functioned as a neutral point.
正常時の制御では、ローサイドスイッチ素子のゲート制御信号は、第1プリドライバ420AからSW101A_L、102A_L、103A_Lに供給される。異常時の制御では、ゲート制御信号は、第1駆動回路440AからSW101A_L、102A_L、103A_Lに供給される。  In normal control, the gate control signal of the low side switch element is supplied from the first predriver 420A to the switches 101A_L, 102A_L, and 103A_L. In the control at the time of abnormality, the gate control signal is supplied from the first drive circuit 440A to the SW 101A_L, 102A_L, and 103A_L.
第1駆動回路440Aが第1インバータ100Aの3個のローサイドスイッチ素子に与える制御信号の電圧レベルは、第1プリドライバ420Aがそれらのローサイドスイッチ素子に与える制御信号の電圧レベルよりも大きい。本実施形態では、第1駆動回路440Aが第1インバータ100Aの3個のローサイドスイッチ素子に与える制御信号の電圧レベルは、第1プリドライバ420Aが第1インバータ100Aの3個のハイサイドスイッチ素子に与える制御信号の電圧レベルと等しい。そのゲート電圧は、例えば18Vである。  The voltage level of the control signal that the first drive circuit 440A gives to the three low side switch elements of the first inverter 100A is larger than the voltage level of the control signal that the first predriver 420A gives to those low side switch elements. In the present embodiment, the voltage levels of the control signals that the first drive circuit 440A gives to the three low side switch elements of the first inverter 100A are the same as those of the first predriver 420A for the three high side switch elements of the first inverter 100A. Equal to the voltage level of the control signal to be given. The gate voltage is, for example, 18V.
第2駆動回路440Bが第2インバータ100Bの3個のローサイドスイッチ素子に与える制御信号の電圧レベルは、第2プリドライバ420Bがそれらのローサイドスイッチ素子に与える制御信号の電圧レベルよりも大きい。本実施形態では、第2駆動回路440Bが第2インバータ100Bの3個のローサイドスイッチ素子に与える制御信号の電圧レベルは、第2プリドライバ420Bが第2インバータ100Bの3個のハイサイドスイッチ素子に与える制御信号の電圧レベルと等しい。そのゲート電圧は、例えば18Vである。  The voltage level of the control signal that the second drive circuit 440B gives to the three low side switch elements of the second inverter 100B is larger than the voltage level of the control signal that the second predriver 420B gives to those low side switch elements. In this embodiment, the voltage level of the control signal that the second drive circuit 440B gives to the three low-side switch elements of the second inverter 100B is the same as that of the second pre-driver 420B for the three high-side switch elements of the second inverter 100B. Equal to the voltage level of the control signal to be given. The gate voltage is, for example, 18V.
モータ200の第2インバータ100B側で故障が発生したとき、第1インバータ100A側で生成される第1電源電圧が第2駆動回路440Bに供給される。第1インバータ100A側で生成される電圧とは、第1周辺回路400Aにおいて生成される電源電圧を意味する。例えば、第1電源電圧は、第1プリドライバ420Aにより生成される昇圧電圧CP_Pr1である。第1電源電圧の大きさは、電源500の電圧よりも大きく、例えば18Vである。  When a failure occurs on the second inverter 100B side of the motor 200, the first power supply voltage generated on the first inverter 100A side is supplied to the second drive circuit 440B. The voltage generated on the side of the first inverter 100A means the power supply voltage generated in the first peripheral circuit 400A. For example, the first power supply voltage is the boosted voltage CP_Pr1 generated by the first predriver 420A. The magnitude of the first power supply voltage is greater than the voltage of the power supply 500, for example 18V.
第1インバータ100A側で故障が発生したとき、第2インバータ100B側で生成される第2電源電圧が第1駆動回路440Aに供給される。第2インバータ100B側で生成される電圧とは、第2周辺回路400Bにおいて生成される電源電圧を意味する。例えば、第2電源電圧は、第2プリドライバ420Bにより生成される昇圧電圧CP_Pr2である。第2電源電圧の大きさは、電源500の電圧よりも大きく、例えば18Vである。本実施形態では、第1電源電圧の大きさは、第2電源電圧の大きさに等しい。  When a failure occurs on the first inverter 100A side, the second power supply voltage generated on the second inverter 100B side is supplied to the first drive circuit 440A. The voltage generated on the second inverter 100B side means the power supply voltage generated in the second peripheral circuit 400B. For example, the second power supply voltage is the boosted voltage CP_Pr2 generated by the second predriver 420B. The magnitude of the second power supply voltage is greater than the voltage of the power supply 500, for example 18V. In the present embodiment, the magnitude of the first power supply voltage is equal to the magnitude of the second power supply voltage.
第1電源電圧および第2電源電圧はそれぞれ、電源回路430によって生成される昇圧電圧CP_PMであってもよい。例えば、第1プリドライバ420Aが故障した場合、第1駆動回路440Aに、第2電源電圧として昇圧電圧CP_PMが供給され得る。例えば、第2プリドライバ420Bが故障した場合、第2駆動回路440Bに、第1電源電圧として昇圧電圧CP_PMが供給され得る。  Each of the first power supply voltage and the second power supply voltage may be the boosted voltage CP_PM generated by the power supply circuit 430. For example, when the first pre-driver 420A fails, the boosted voltage CP_PM can be supplied to the first drive circuit 440A as the second power supply voltage. For example, if the second predriver 420B fails, the second drive circuit 440B may be supplied with the boosted voltage CP_PM as a first power supply voltage.
第1駆動回路440Aは、モータ200の第1インバータ100A側で故障が発生したとき、第2電源電圧を供給することにより、第1インバータ100Aの3個のローサイドスイッチ素子をオンにする制御信号をそれらのローサイドスイッチ素子に与える。第2駆動回路440Bは、第2インバータ100B側で故障が発生したとき、第1電源電圧を供給することにより、第2インバータ100Bの3個のローサイドスイッチ素子をオンにする制御信号をそれらのローサイドスイッチ素子に与える。  When a failure occurs on the first inverter 100A side of the motor 200, the first drive circuit 440A supplies a second power supply voltage to turn on a control signal to turn on the three low-side switch elements of the first inverter 100A. It applies to those low side switch elements. When a failure occurs on the second inverter 100B side, the second drive circuit 440B supplies the first power supply voltage to turn on the low-side switch elements of the second inverter 100B for controlling the low-side switches. Give to the switch element.
図2Aは、第1駆動回路440Aの機能ブロックを模式的に示し、図2Bは、第2駆動回路440Bの機能ブロックを模式的に示している。  FIG. 2A schematically shows a functional block of the first drive circuit 440A, and FIG. 2B schematically shows a functional block of the second drive circuit 440B.
第2電源電圧は、電源電圧443として第1駆動回路440Aに供給される。第2電源電圧は、例えば昇圧電圧CP_Pr2である。第1電源電圧は、電源電圧443として第2駆動回路440Bに供給される。第1電源電圧は、例えば昇圧電圧CP_Pr1である。ローサイドスイッチ素子のゲート-ソース間電圧が耐圧よりも大きくならないよう電源電圧443を設定することに留意されたい。  The second power supply voltage is supplied as the power supply voltage 443 to the first drive circuit 440A. The second power supply voltage is, for example, boosted voltage CP_Pr2. The first power supply voltage is supplied as a power supply voltage 443 to the second drive circuit 440B. The first power supply voltage is, for example, boosted voltage CP_Pr1. It should be noted that the power supply voltage 443 is set so that the gate-source voltage of the low side switch element does not become larger than the withstand voltage.
第1駆動回路440Aおよび第2駆動回路440Bの各々は、スイッチ441および442を有する。正常時の制御では、スイッチ441および442はオフである。  Each of the first drive circuit 440A and the second drive circuit 440B has switches 441 and 442. In normal control, the switches 441 and 442 are off.
モータ200の第1インバータ100A側で故障が発生したとき、コントローラ410は、第1駆動回路440Aのスイッチ441をオンする。これにより、電源電圧443が、第1インバータ100Aの3個のローサイドスイッチ素子にゲート電圧として与えられる。3個のローサイドスイッチ素子は全てオン状態となり、第1インバータ100Aのローサイド側のノードNA_Lを中性点として機能させることができる。  When a failure occurs on the first inverter 100A side of the motor 200, the controller 410 turns on the switch 441 of the first drive circuit 440A. As a result, the power supply voltage 443 is applied as the gate voltage to the three low side switch elements of the first inverter 100A. All three low side switch elements are turned on, and the low side node NA_L of the first inverter 100A can function as a neutral point.
例えば、電力変換装置1000に故障が発生した場合、電力変換装置1000の動作を強制的に停止させてもよい。その場合、コントローラ410は、スイッチ442をオンする。GND電位がゲート電圧としてローサイドスイッチ素子に与えられるため、3個のローサイドスイッチ素子はオフ状態となる。ただし、スイッチ442は、オプションであり、強制的な停止を必要としない場合など、駆動回路になくてもよい。  For example, when a failure occurs in the power converter 1000, the operation of the power converter 1000 may be forcibly stopped. In that case, the controller 410 turns on the switch 442. Since the GND potential is applied to the low side switch element as a gate voltage, the three low side switch elements are turned off. However, the switch 442 is optional, and may not be in the drive circuit, for example, when the forced stop is not required.
図3は、第1周辺回路400Aの中の第1駆動回路440Aのブロック構成を模式的に例示している。なお、図3にスイッチ素子315を示していない。  FIG. 3 schematically illustrates the block configuration of the first drive circuit 440A in the first peripheral circuit 400A. The switch element 315 is not shown in FIG.
第1駆動回路440Aは、オープンコレクタ出力方式の複数のスイッチ素子10、11、12、13、20、21、22および23を備える。図示する例では、スイッチ素子11、12、13および20は、PNP型のバイポーラトランジスタである。スイッチ素子10、21、22および23は、NPN型のバイポーラトランジスタである。各相のローサイドスイッチ素子を制御するためのゲート制御信号線に、プッシュプル回路が抵抗を介して接続される。スイッチ441および442は、複数のトランジスタ10、11、12、13、20、21、22、23および複数の抵抗の組み合わせによって構成され得る。  The first drive circuit 440 A includes a plurality of switch elements 10, 11, 12, 13, 20, 21, 22 and 23 of the open collector output system. In the illustrated example, the switch elements 11, 12, 13 and 20 are PNP bipolar transistors. The switch elements 10, 21, 22 and 23 are NPN bipolar transistors. A push-pull circuit is connected via a resistor to a gate control signal line for controlling the low side switch element of each phase. The switches 441 and 442 may be configured by a combination of a plurality of transistors 10, 11, 12, 13, 20, 21, 22, 23 and a plurality of resistors.
コントローラ410がトランジスタ20をプルすると、トランジス
タ21、22および23はプッシュされる。これにより、第1インバータ100AにおけるSW101A_L、102A_Lおよび103A_Lのゲート電位は、GND電位に相当する低レベルとなる。これに対し、コントローラ410がトランジスタ10をプッシュすると、トランジスタ11、12および13はプルされて、SW101A_L、102A_Lおよび103A_Lのゲート電位は、電源電圧463に相当する高レベルとなる。 
When controller 410 pulls transistor 20, transistors 21, 22 and 23 are pushed. As a result, the gate potentials of the switches SW101A_L, 102A_L and 103A_L in the first inverter 100A become low levels corresponding to the GND potential. On the other hand, when the controller 410 pushes the transistor 10, the transistors 11, 12 and 13 are pulled and the gate potentials of the SW 101A_L, 102A_L and 103A_L become high level corresponding to the power supply voltage 463.
SW101A_L、102A_Lおよび103A_Lのソースとゲートとの間には、抵抗器とダイオードとが並列接続された保護回路31、32、33が接続されている。SW101A_H、102A_Hおよび103A_Hのソースとゲートとの間には、抵抗器とダイオードとが並列接続された保護回路41、42および43が接続されている。  Between the source and the gate of the SW 101A_L, 102A_L and 103A_L, protection circuits 31, 32, 33 in which a resistor and a diode are connected in parallel are connected. Between the source and the gate of SW101A_H, 102A_H and 103A_H, protection circuits 41, 42 and 43 in which a resistor and a diode are connected in parallel are connected.
電力変換装置1000は、第1および第2保護回路を備えることができる。第1保護回路は、保護回路51、52および53を有する。SW101A_Lのゲートに接続される第1プリドライバ420Aの出力端子(図示せず)とGNDとの間に、保護回路51を接続することが好ましい。これと同様に、SW102A_Lのゲートに接続される第1プリドライバ420Aの出力端子(図示せず)とGNDとの間に、保護回路52を接続し、SW103A_Lのゲートに接続される第1プリドライバ420Aの出力端子(図示せず)とGNDとの間に、保護回路53を接続することが好ましい。モータ200の第2インバータ100B側についてもこれと同様に3個の保護回路を有する第2保護回路を設けることが好ましい。  Power converter 1000 can include first and second protection circuits. The first protection circuit has protection circuits 51, 52 and 53. The protection circuit 51 is preferably connected between an output terminal (not shown) of the first predriver 420A connected to the gate of the SW 101A_L and the GND. Similarly, the protection circuit 52 is connected between the output terminal (not shown) of the first predriver 420A connected to the gate of the SW 102A_L and GND, and the first predriver connected to the gate of the SW 103A_L. It is preferable to connect a protection circuit 53 between the output terminal (not shown) of 420 A and GND. Similarly, it is preferable to provide a second protection circuit having three protection circuits on the second inverter 100 B side of the motor 200 as well.
第1駆動回路440Aから第1インバータ100Aに、3個のローサイドスイッチ素子をオンする制御信号が出力されるとき、保護回路51、52および53のそれぞれは、第1プリドライバ420Aに規定値(耐圧)以上の電圧レベルの信号が入力することを抑制する。ここでの耐圧は、例えば、正常時の制御においてSW101A_L、102A_Lおよび103A_L用のゲート制御信号を出力する第1プリドライバ420Aの中の回路素子の耐圧である。  When a control signal for turning on the three low-side switch elements is output from the first drive circuit 440A to the first inverter 100A, each of the protection circuits 51, 52, and 53 has a specified value (withstand voltage) for the first predriver 420A. ) Suppress the input of signals of the above voltage levels. The withstand voltage here is, for example, the withstand voltage of the circuit element in the first pre-driver 420A that outputs the gate control signal for the SW 101A_L, 102A_L and 103A_L in the normal control.
保護回路51、52、53は、例えばツェナーダイオードである。保護回路51、52、53は、第1駆動回路440Aが出力するゲート制御信号の電圧が、耐圧に近い大きさおよび耐圧以上になったときに機能する。例えば、耐圧が18Vの場合、ゲート制御信号の電圧が17V以上になったとき、保護回路51、52、53が機能する。これにより、第1プリドライバ420Aの出力端子に供給される電圧を耐圧未満にすることができる。本実施形態では、SW101A_L、102A_Lおよび103A_Lに、正常時の制御よりも高いゲート電圧を供給する。その高いゲート電圧が意図せずに耐圧以上になったとしても、保護回路51、52、53により第1プリドライバ420Aを保護することができる。  The protection circuits 51, 52, 53 are, for example, zener diodes. The protection circuits 51, 52, and 53 function when the voltage of the gate control signal output from the first drive circuit 440A is close to or higher than the withstand voltage. For example, in the case where the withstand voltage is 18 V, the protection circuits 51, 52, and 53 function when the voltage of the gate control signal becomes 17 V or more. Thereby, the voltage supplied to the output terminal of the first predriver 420A can be made smaller than the withstand voltage. In the present embodiment, a gate voltage higher than that in the normal control is supplied to the SW 101A_L, 102A_L, and 103A_L. Even if the high gate voltage unintentionally exceeds the withstand voltage, the protection circuits 51, 52 and 53 can protect the first predriver 420A.
第1駆動回路440Aによれば、正常時の制御よりも高いゲート電圧をSW101A_L、102A_Lおよび103A_Lに供給することができる。ゲート電圧を高くすることにより、ソース電位が中性点の電位になったとしても、ゲート-ソース間電圧の低下を抑制することができる。SW101A_L、102A_Lおよび103A_Lのソース-ドレイン間のオン抵抗値が大きくなることを抑制することができるとともに、SW101A_L、102A_Lおよび103A_Lが意図せずにオフ状態になることを抑制できる。  According to the first drive circuit 440A, gate voltages higher than those in the normal control can be supplied to the SWs 101A_L, 102A_L, and 103A_L. By raising the gate voltage, it is possible to suppress a decrease in the gate-source voltage even if the source potential becomes a potential at a neutral point. While being able to suppress that the ON-resistance value between source-drain of SW101A_L, 102A_L, and 103A_L becomes large, it can suppress that SW101A_L, 102A_L, and 103A_L turn off unintentionally.
電力変換装置1000は、ROM(不図示)を備える。ROMは、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROMは、コントローラ410に電力変換装置1000を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。  Power converter 1000 includes a ROM (not shown). The ROM is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory. The ROM stores a control program including instructions for causing the controller 410 to control the power conversion apparatus 1000. For example, the control program is temporarily expanded in a RAM (not shown) at boot time.
以下、電力変換装置1000の各部品が実装される回路基板(例えばプリント基板)の電源配線および信号配線について特筆すべき点を説明する。  Hereinafter, points to be noted about power supply wiring and signal wiring of a circuit board (for example, printed circuit board) on which each component of power conversion device 1000 is mounted will be described.
第1駆動回路440Aには、モータ200の第2インバータ100B側で生成される第2電源電圧が供給される。第2駆動回路440Bには、モータ200の第1インバータ100A側で生成される第1電源電圧が供給される。そのため、第1電源配線および第2電源配線が回路基板に設けられている。例えば、第1電源配線は、第1プリドライバ420Aまたは電源回路430から第2駆動回路440Bに第1電源電圧を供給するための電源配線である。例えば、第2電源配線は、第2プリドライバ420Bまたは電源回路430から第1駆動回路440Aに第2電源電圧を供給するための電源配線である。  The second power supply voltage generated on the second inverter 100B side of the motor 200 is supplied to the first drive circuit 440A. The first power supply voltage generated on the side of the first inverter 100A of the motor 200 is supplied to the second drive circuit 440B. Therefore, the first power supply wiring and the second power supply wiring are provided on the circuit board. For example, the first power supply wiring is a power supply wiring for supplying a first power supply voltage from the first pre-driver 420A or the power supply circuit 430 to the second drive circuit 440B. For example, the second power supply wiring is a power supply wiring for supplying a second power supply voltage from the second predriver 420B or the power supply circuit 430 to the first drive circuit 440A.
コントローラ410は、電源回路430と互いに通信可能に接続され得る。その通信は、例えばICなどのシリアル通信を用いて実現し得る。これにより、電源回路430は、コントローラ410の異常動作を検知することができる。電源回路430は、その異常動作を検知した場合、リセット信号を与えてコントローラ410を再起動することが可能となる。さらに、コントローラ410は、第1プリドライバ420Aおよび第2プリドライバ420Bの故障を監視することができる。例えば、このような監視は、プリドライバのステータス、具体的には故障を示すステータス信号を各プリドライバからコントローラ410に、定期的にまたは故障が発生したタイミングで送信することにより実現され得る。  The controller 410 may be communicably connected to the power supply circuit 430. The communication may be realized using serial communication such as I 2 C, for example. Thus, the power supply circuit 430 can detect an abnormal operation of the controller 410. When the power supply circuit 430 detects the abnormal operation, the power supply circuit 430 can provide a reset signal to restart the controller 410. Furthermore, the controller 410 can monitor failures of the first predriver 420A and the second predriver 420B. For example, such monitoring may be realized by transmitting the status of the pre-driver, specifically, a status signal indicating a failure, from each pre-driver to the controller 410 periodically or at the timing when the failure occurs.
例えば、コントローラ410は、モータ200の第2インバータ100B側における故障を検知したとき、第2駆動回路440Bに駆動の開始を指示するようにしてもよい。第2駆動回路440Bは、その駆動の開始の指示に応答して、第2インバータ100Bの3個のローサイドスイッチ素子をオンにする制御信号をそれらのローサイドスイッチ素子に与えることができる。  For example, when the controller 410 detects a failure on the second inverter 100B side of the motor 200, the controller 410 may instruct the second drive circuit 440B to start driving. The second drive circuit 440B can provide control signals for turning on the three low-side switch elements of the second inverter 100B to the low-side switch elements in response to the instruction to start the drive.
例えば、コントローラ410は、モータ200の第1インバータ100A側における故障を検知したとき、第1駆動回路440Aに駆動の開始を指示するようにしてもよい。第1駆動回路440Aは、その駆動の開始の指示に応答して、第1インバータ100Aの3個のローサイドスイッチ素子をオンにする制御信号をそれらのローサイドスイッチ素子に与えることができる。  For example, when the controller 410 detects a failure on the first inverter 100A side of the motor 200, the controller 410 may instruct the first drive circuit 440A to start driving. The first drive circuit 440A can provide control signals for turning on the three low-side switch elements of the first inverter 100A to the low-side switch elements in response to the instruction to start the drive.
このように、コントローラ410からの指示に応答して駆動回路を駆動させることにより、故障が発生したときにだけ、駆動回路を適切に駆動させることができる。その結果、駆動回路を常時駆動させることに比べて低消費電力化できる。  Thus, by driving the drive circuit in response to an instruction from the controller 410, the drive circuit can be appropriately driven only when a failure occurs. As a result, power consumption can be reduced as compared with always driving the drive circuit.
図4および図5を参照して、本実施形態の変形例を説明する。  A modification of the present embodiment will be described with reference to FIGS. 4 and 5.
図4は、本実施形態の変形例による電力変換装置1000のブロック構成例を模式的に示している。  FIG. 4 schematically shows a block configuration example of a power conversion device 1000 according to a modification of the present embodiment.
この変形例による電力変換装置1000は、第1プリドライバ420Aおよび第2プリドライバ420Bを備えていない点で図1に示す電力変換装置1000とは異なる。このとき、コントローラ410は、プリドライバを内蔵している場合がある。  Power conversion device 1000 according to this modification is different from power conversion device 1000 shown in FIG. 1 in that power conversion device 1000 according to this modification does not include first predriver 420A and second predriver 420B. At this time, the controller 410 may incorporate a pre-driver.
モータ駆動には、一般に、インバータのスイッチ素子(パワー素子)を駆動するための大きな電圧および電流が必要とされる。プリドライバは、コントローラからのPWM制御信号を高電圧および大電流の信号に変換するための回路として用いられる。換言すると、低電圧で駆動可能なモータは、プリドライバを必ずしも必要としない。そのため、プリドライバの機能は、コントローラに実装され得る。本開示において、低電圧で駆動可能なモータ200に電力を供給する電力変換装置1000において、コントローラ410はプリドライバを内蔵していてもよい。その場合、コントローラ410は、第1インバータ100Aおよび第2インバータ100Bを直接制御することができる。  Motor driving generally requires a large voltage and current to drive switch elements (power elements) of the inverter. The predriver is used as a circuit for converting the PWM control signal from the controller into a high voltage and high current signal. In other words, a low voltage drivable motor does not necessarily require a pre-driver. Therefore, the function of the predriver can be implemented in the controller. In the present disclosure, in power converter 1000 supplying power to low-voltage drivable motor 200, controller 410 may incorporate a pre-driver. In that case, the controller 410 can directly control the first inverter 100A and the second inverter 100B.
図4に示すように、電源回路として、第1周辺回路400Aに第1電源回路430Aを設け、第2周辺回路400Bに第2電源回路430Bを設けるようにしてもよい。第1電源回路430Aと第2電源回路430Bとは個別の電源回路である。第1電源回路430Aは、電源500の電圧を昇圧して電圧CP_PM1を生成し、第2電源回路430Bは、電源500の電圧を昇圧して電圧CP_PM2を生成することができる。  As shown in FIG. 4, as the power supply circuit, the first power supply circuit 430A may be provided in the first peripheral circuit 400A, and the second power supply circuit 430B may be provided in the second peripheral circuit 400B. The first power supply circuit 430A and the second power supply circuit 430B are separate power supply circuits. The first power supply circuit 430A can boost the voltage of the power supply 500 to generate a voltage CP_PM1, and the second power supply circuit 430B can boost the voltage of the power supply 500 to generate a voltage CP_PM2.
第1電源回路430Aから第2駆動回路440Bに昇圧電圧CP_PM1は、第1電源電圧として供給され、第2電源回路430Bから第1駆動回路440Aに昇圧電圧CP_PM2は、第2電源電圧として供給され得る。第1電源回路430Aまたは第2電源回路430Bからコントローラ410に電源電圧VCCは供給され得る。  The boosted voltage CP_PM1 may be supplied as a first power supply voltage from the first power supply circuit 430A to the second drive circuit 440B, and the boosted voltage CP_PM2 may be supplied as a second power supply voltage from the second power supply circuit 430B to the first drive circuit 440A. . The power supply voltage VCC may be supplied to the controller 410 from the first power supply circuit 430A or the second power supply circuit 430B.
このように、2個の電源回路を設けることにより、例えば、第1電源回路430Aが故障しても第2電源回路430Bによって、コントローラ410に電源電圧VCCを供給し続けることができる。その結果、コントローラ410は、第2インバータ100Bのスイッチ素子のスイッチング動作を継続して制御することが可能となる。さらに、第2電源回路430Bの昇圧電圧CP_PM2を第1駆動回路440Aに供給することにより、第1インバータ100Aのローサイド側のノードNA_Lを中性点として機能させることができる。中性点を用いる制御は、後で詳細に説明する。  Thus, by providing two power supply circuits, for example, even if the first power supply circuit 430A fails, the second power supply circuit 430B can continue to supply the power supply voltage VCC to the controller 410. As a result, the controller 410 can continuously control the switching operation of the switch element of the second inverter 100B. Furthermore, by supplying the boosted voltage CP_PM2 of the second power supply circuit 430B to the first drive circuit 440A, the node NA_L on the low side of the first inverter 100A can function as a neutral point. Control using a neutral point will be described in detail later.
図5Aおよび5Bは、本実施形態の変形例による電力変換装置1000のさらなるブロック構成例を模式的に示している。この変形例による電力変換装置1000は、第1昇圧回路460Aおよび第2昇圧回路460Bまたは単体の昇圧回路460をさらに備えている点で図1に示す電力変換装置1000とは異なる。  5A and 5B schematically show a further exemplary block configuration of a power conversion device 1000 according to a modification of the present embodiment. Power conversion device 1000 according to this modification differs from power conversion device 1000 shown in FIG. 1 in that power conversion device 1000 further includes a first booster circuit 460A and a second booster circuit 460B or a single booster circuit 460.
本実施形態では、第1プリドライバ420Aおよび電源回路430の少なくとも1つによって第1電源電圧を生成し、第2プリドライバ420Bおよび電源回路430の少なくとも1つによって第2電源電圧を生成する例を説明した。本変形例による電力変換装置1000は、第1電源電圧および第2電源電圧を生成する、電源回路およびプリドライバとは異なる昇圧回路を備える。  In this embodiment, an example in which the first power supply voltage is generated by at least one of the first predriver 420A and the power supply circuit 430 and the second power supply voltage is generated by at least one of the second predriver 420B and the power supply circuit 430 is described. explained. The power conversion device 1000 according to the present modification includes a booster circuit that generates the first power supply voltage and the second power supply voltage and is different from the power supply circuit and the predriver.
図5Aに示すように、単体の昇圧回路460は、コントローラ410に接続され得る。昇圧回路460は、電源500の電圧を昇圧して電圧CP_PVを生成する。昇圧電圧CP_PVは、例えば18Vである。この変形例では、昇圧回路460から第2駆動回路440Bに昇圧電圧CP_PVは、第1電源電圧として供給され、昇圧回路460から第1駆動回路440Aに昇圧電圧CP_PVは、第2電源電圧として供給され得る。  As shown in FIG. 5A, a single boost circuit 460 may be connected to the controller 410. The booster circuit 460 boosts the voltage of the power supply 500 to generate a voltage CP_PV. The boosted voltage CP_PV is, for example, 18V. In this modification, boosted voltage CP_PV is supplied as a first power supply voltage from booster circuit 460 to second drive circuit 440B, and boosted voltage CP_PV is supplied as a second power supply voltage from booster circuit 460 to first drive circuit 440A. obtain.
図5Bに示すように、2個の昇圧回路が、コントローラ410に接続されていてもよい。第1昇圧回路460Aは、第1周辺回路400Aに設けられ、電源500の電圧を昇圧して電圧CP_PV1を生成する。第2昇圧回路460Bは、第2周辺回路400Bに設けられ、電源500の電圧を昇圧して電圧CP_PV2を生成する。昇圧電圧CP_PV1およびCP_PV2は、例えば18Vである。この変形例では、昇圧電圧CP_PV1は、第1電源電圧として第2駆動回路440Bに供給され、昇圧電圧CP_PV2は、第2電源電圧として第1駆動回路440Aに供給され得る。  As shown in FIG. 5B, two booster circuits may be connected to the controller 410. The first booster circuit 460A is provided in the first peripheral circuit 400A, and boosts the voltage of the power supply 500 to generate a voltage CP_PV1. The second booster circuit 460B is provided in the second peripheral circuit 400B, and boosts the voltage of the power supply 500 to generate a voltage CP_PV2. The boosted voltages CP_PV1 and CP_PV2 are, for example, 18V. In this modification, the boosted voltage CP_PV1 may be supplied to the second drive circuit 440B as a first power supply voltage, and the boosted voltage CP_PV2 may be supplied to the first drive circuit 440A as a second power supply voltage.
〔1-2.電力変換装置1000の動作〕 先ず、電力変換装置1000の正常時の制御方法の具体例を説明する。正常時において、電力変換装置1000、モータ200の三相の巻線M1、M2およびM3のいずれも故障していない。  [1-2. Operation of Power Conversion Device 1000 First, a specific example of a control method of the power conversion device 1000 when it is normal will be described. At normal times, none of power conversion device 1000 and three-phase windings M1, M2 and M3 of motor 200 have failed.
コントローラ410は、SW311をオンする制御信号を第1サブドライバ450Aに出力し、SW312をオンする制御信号を第2サブドライバ450Bに出力する。電源回路430(図1を参照)は、SW313、314、315および316をオンにする制御信号を出力する。  The controller 410 outputs a control signal to turn on the SW 311 to the first sub driver 450A, and outputs a control signal to turn on the SW 312 to the second sub driver 450B. The power supply circuit 430 (see FIG. 1) outputs a control signal to turn on the SWs 313, 314, 315, and 316.
SW311、312、313、314、315および316は全てオン状態となる。電源500と第1インバータ100Aとが電気的に
接続され、かつ、電源500と第2インバータ100Bとが電気的に接続される。また、第1インバータ100AとGNDとが電気的に接続され、かつ、第2インバータ100BとGNDとが電気的に接続される。この接続状態において、コントローラ410は、第1インバータ100Aおよび第2インバータ100Bのスイッチ素子のスイッチング動作を制御するPWM信号を第1プリドライバ420Aおよび第2プリドライバ420Bに出力する。第1インバータ100Aおよび第2インバータ100Bのスイッチ素子をスイッチングすることにより、三相の巻線M1、M2およびM3を通電してモータ200を駆動することが可能となる。本明細書において、三相の巻線を通電することを「三相通電制御」と呼ぶ場合がある。 
The SWs 311, 312, 313, 314, 315 and 316 are all turned on. The power supply 500 and the first inverter 100A are electrically connected, and the power supply 500 and the second inverter 100B are electrically connected. Further, the first inverter 100A and GND are electrically connected, and the second inverter 100B and GND are electrically connected. In this connection state, the controller 410 outputs a PWM signal for controlling the switching operation of the switch elements of the first inverter 100A and the second inverter 100B to the first predriver 420A and the second predriver 420B. By switching the switch elements of the first inverter 100A and the second inverter 100B, it becomes possible to energize the three-phase windings M1, M2 and M3 to drive the motor 200. In the present specification, energization of a three-phase winding may be referred to as “three-phase energization control”.
図6は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図6の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。  FIG. 6 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in U-phase, V-phase and W-phase windings of motor 200 when power converter 1000 is controlled in accordance with three-phase energization control. doing. The horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A). In the current waveform of FIG. 6, current values are plotted every 30 ° of electrical angle. I pk represents the maximum current value (peak current value) of each phase.
表1は、図6の正弦波において電気角毎に、各インバータに流れる電流値を示す。具体的には、表1は、第1インバータ100AのノードNA_1、NA_2およびNA_3(図1を参照)を流れる、電気角30°毎の電流値、および、第2インバータ100BのノードNB_1、NB_2およびNB_3(図1を参照)を流れる、電気角30°毎の電流値を示す。ここで、第1インバータ100Aに対しては、第1インバータ100Aから第2インバータ100Bに流れる電流方向を正の方向と定義する。図6に示される電流の向きはこの定義に従う。また、第2インバータ100Bに対しては、第2インバータ100Bから第1インバータ100Aに流れる電流方向を正の方向と定義する。従って、第1インバータ100Aの電流と第2インバータ100Bの電流との位相差は180°となる。表1において、電流値Iの大きさは〔(3)1/2/2〕*Ipkであり、電流値Iの大きさはIpk/2である。  Table 1 shows the current value flowing to each inverter for each electrical angle in the sine wave of FIG. Specifically, Table 1 shows current values at every electrical angle of 30 ° flowing through the nodes NA_1, NA_2 and NA_3 (see FIG. 1) of the first inverter 100A, and the nodes NB_1, NB_2 and the second inverter 100B. The electric current value for every electrical angle of 30 degrees which flows through NB_3 (refer FIG. 1) is shown. Here, for the first inverter 100A, the current direction flowing from the first inverter 100A to the second inverter 100B is defined as a positive direction. The direction of the current shown in FIG. 6 follows this definition. Further, for the second inverter 100B, the current direction flowing from the second inverter 100B to the first inverter 100A is defined as a positive direction. Therefore, the phase difference between the current of the first inverter 100A and the current of the second inverter 100B is 180 °. In Table 1, the magnitude of the current value I 1 is [(3) 1/2 / 2] * is I pk, the magnitude of the current value I 2 is I pk / 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
図6に示される電流波形において、電流の向きを考慮した三相の巻線に流れる電流の総和は電気角毎に「0」となる。ただし、電力変換装置1000の回路構成によれば、三相の巻線に流れる電流を独立に制御することができるため、電流の総和が「0」とはならない制御を行うことも可能である。例えば、コントローラ410は、図6に示される電流波形を得るためのPWM信号を第1プリドライバ420Aおよび第2プリドライバ420Bに出力する。  In the current waveform shown in FIG. 6, the sum of the currents flowing in the three-phase winding considering the direction of the current is “0” for each electrical angle. However, according to the circuit configuration of power conversion apparatus 1000, the currents flowing through the three-phase windings can be controlled independently, so it is also possible to perform control such that the sum of the currents does not become "0". For example, the controller 410 outputs a PWM signal for obtaining the current waveform shown in FIG. 6 to the first predriver 420A and the second predriver 420B.
次に、第1周辺回路400Aにおいて故障が発生した場合を例にして、電力変換装置1000の異常時の制御方法の具体例を説明する。第2周辺回路400Bにおいて故障が発生した場合も以下で説明する制御方法が適用される。  Next, a specific example of a control method at the time of abnormality of the power conversion device 1000 will be described by taking a case where a failure occurs in the first peripheral circuit 400A as an example. The control method described below is applied also when a failure occurs in the second peripheral circuit 400B.
一例として、第1周辺回路400Aにおいて第1プリドライバ420Aが故障した場合を考える。第1プリドライバ420Aは故障しているため、第1インバータ100Aは故障していないものの、正常時の制御による三相通電制御は不可能となる。  As an example, consider the case where the first predriver 420A fails in the first peripheral circuit 400A. Since the first pre-driver 420A has a failure, although the first inverter 100A does not have a failure, three-phase energization control can not be performed under normal control.
コントローラ410は、第1プリドライバ420Aの故障を検知すると、モータ200の制御を正常時の制御から異常時の制御に切替える。コントローラ410は、第1駆動回路440Aに駆動の開始を指示する。例えば、第2プリドライバ420Bから第1駆動回路440Aに第2電源電圧は供給されるため、第1プリドライバ420Aの故障は第1駆動回路440Aに影響しない。  When the controller 410 detects a failure of the first pre-driver 420A, it switches control of the motor 200 from normal control to abnormal control. The controller 410 instructs the first drive circuit 440A to start driving. For example, since the second power supply voltage is supplied from the second predriver 420B to the first drive circuit 440A, a failure of the first predriver 420A does not affect the first drive circuit 440A.
第1駆動回路440Aは、コントローラ410からの駆動の開始の指示に応答して、第1インバータ100AのSW101A_L、102A_Lおよび103A_Lをオンにする制御信号をそれらに与える。コントローラ410は、SW311をオフにする制御信号を第1サブドライバ450Aに出力する。その結果、SW311はオフ状態となり、第1インバータ100Aは、GNDから電気的に切り離される。SW101A_L、102A_Lおよび103A_Lは常時オン状態となって、第1インバータ100Aのローサイド側のノードNA_Lは中性点として機能することができる。このとき、第1インバータ100AのSW101A_H、102A_Hおよび103A_Hはオフ状態である。スイッチ素子313および315はオン状態であってもオフ状態であっても構わないが、オフ状態であることが好ましい。  In response to the instruction to start driving from the controller 410, the first drive circuit 440A applies a control signal to them to turn on the SWs 101A_L, 102A_L and 103A_L of the first inverter 100A. The controller 410 outputs a control signal to turn off the SW 311 to the first sub driver 450A. As a result, the SW 311 is turned off, and the first inverter 100A is electrically disconnected from the GND. The switches 101A_L, 102A_L and 103A_L are always in the on state, and the low side node NA_L of the first inverter 100A can function as a neutral point. At this time, the switches SW101A_H, 102A_H and 103A_H of the first inverter 100A are in the OFF state. The switch elements 313 and 315 may be in the on state or in the off state, but are preferably in the off state.
図7は、図6に示す電流波形の電気角270°において2つのインバータに流れる電流の様子を例示している。  FIG. 7 exemplifies the state of current flowing to two inverters at an electrical angle of 270 ° of the current waveform shown in FIG.
コントローラ410は、第2プリドライバ420BにPWM信号を出力することにより、第1インバータ100Aの中性点を用いて三相通電制御を継続することができる。例えば、コントローラ410は、図6に示される電流波形を得るためのPWM信号を第2インバータ100Bのスイッチ素子に出力することにより、巻線M1、M2およびM3を通電することができる。  The controller 410 can continue the three-phase conduction control using the neutral point of the first inverter 100A by outputting the PWM signal to the second predriver 420B. For example, the controller 410 can energize the windings M1, M2 and M3 by outputting a PWM signal for obtaining the current waveform shown in FIG. 6 to the switch element of the second inverter 100B.
本実施形態によれば、第1プリドライバ420Aが故障したとしても、第1駆動回路440Aには第2電源電圧が供給されるため、中性点を用いた三相通電制御を継続することが可能となる。  According to the present embodiment, even if the first pre-driver 420A fails, the second power supply voltage is supplied to the first drive circuit 440A, so three-phase conduction control using the neutral point can be continued. It becomes possible.
他の一例として、図1に示す構成における電源回路430を、図4に示す2つの第1電源回路430Aおよび第2電源回路430Bに置き換えることが可能である。その場合、第1電源回路430Aが故障すると、第1プリドライバ420Aに電源電圧VCCを供給できなくなるため、第1インバータ100Aを駆動することが不可能となる。  As another example, it is possible to replace power supply circuit 430 in the configuration shown in FIG. 1 with two first power supply circuits 430A and second power supply circuit 430B shown in FIG. In such a case, if the first power supply circuit 430A fails, the power supply voltage VCC can not be supplied to the first predriver 420A, and it becomes impossible to drive the first inverter 100A.
本実施形態によれば、例えば、第2電源回路430Bによって生成される昇圧電圧CP_PM2または第2プリドライバ420Bによって生成される昇圧電圧CP_Pr2を第1駆動回路440Aに供給することができる。そのため、第1駆動回路440Aは、第1電源回路430Aの故障の影響を受けずに、第1インバータ100AのSW101A_L、102A_Lおよび103A_Lをオンにする制御信号をそれらに与えることができる。  According to the present embodiment, for example, the boosted voltage CP_PM2 generated by the second power supply circuit 430B or the boosted voltage CP_Pr2 generated by the second predriver 420B can be supplied to the first drive circuit 440A. Therefore, the first drive circuit 440A can give them a control signal to turn on the SWs 101A_L, 102A_L and 103A_L of the first inverter 100A without being affected by the failure of the first power supply circuit 430A.
(実施形態2) 図8は、本実施形態によるモータモジュール2000Aのブロック構成を模式的に示し、主として電力変換装置1000Aのブロック構成を模式的に示している。図9は、駆動回路440およびその周辺の機能ブロックを模式的に示している。  Second Embodiment FIG. 8 schematically shows a block configuration of a motor module 2000A according to the present embodiment and mainly shows a block configuration of a power conversion apparatus 1000A. FIG. 9 schematically shows the drive circuit 440 and functional blocks around it.
電力変換装置1000Aは、第1インバータ100Aおよび第2インバータ100Bに共通の駆動回路440を備えている点で第1実施形態による電力変換装置1000とは異なる。以下、第1実施形態との差異点を主に説明する。  Power conversion device 1000A differs from power conversion device 1000 according to the first embodiment in that power conversion device 1000A includes a drive circuit 440 common to first inverter 100A and second inverter 100B. The differences from the first embodiment will be mainly described below.
電力変換装置1000Aは、第1インバータ100Aおよび第2インバータ100Bに共通の駆動回路440、第1スイッチ900および第2スイッチ910を備える。  The power conversion device 1000A includes a drive circuit 440 common to the first inverter 100A and the second inverter 100B, a first switch 900, and a second switch 910.
駆動回路440は、第1インバータ100Aの3個のローサイドスイッチ素子および第2インバータ100Bの3個のローサイドスイッチ素子に接続されている。駆動回路440は、モータ200の第1インバータ100A側で故障が発生したとき、第2電源電圧を供給することにより、第1インバータ100Aの3個のローサイドスイッチ素子をオンにする制御信号をそれらのローサイドスイッチ素子に与え、かつ、第2インバータ100B側で故障が発生したとき、第1電源電圧を供給することにより、第2インバータ100Bの3個のローサイドスイッチ素子をオンにする制御信号をそれらのローサイドスイッチ素子に与える。  The drive circuit 440 is connected to the three low side switch elements of the first inverter 100A and the three low side switch elements of the second inverter 100B. When a failure occurs on the first inverter 100A side of the motor 200, the drive circuit 440 supplies control signals for turning on the three low-side switch elements of the first inverter 100A by supplying the second power supply voltage. A control signal for turning on the three low-side switch elements of the second inverter 100B is supplied to the low-side switch elements and supplying a first power supply voltage when a failure occurs on the second inverter 100B side. Apply to the low side switch element.
駆動回路440は、実施形態1による第1駆動回路440Aまたは第2駆動回路440Bと同様に、スイッチ441および442を備え、オープンコレクタ出力方式の複数のトランジスタおよび複数の抵抗から構成され得る。駆動回路440は、コントローラ410によって制御される。  Similar to the first drive circuit 440A or the second drive circuit 440B according to the first embodiment, the drive circuit 440 includes switches 441 and 442, and can be configured from a plurality of open collector output type transistors and a plurality of resistors. Drive circuit 440 is controlled by controller 410.
例えば、第1インバータ100A側で、つまり、第1周辺回路400A内で故障が発生した場合を考える。例えば、コントローラ410は、第1プリドライバ420Aから故障を示すステータス信号を受け取ると、駆動回路440の制御を開始する。  For example, it is assumed that a failure occurs on the first inverter 100A side, that is, in the first peripheral circuit 400A. For example, when receiving a status signal indicating a failure from the first pre-driver 420A, the controller 410 starts control of the drive circuit 440.
第1スイッチ900は、コントローラ410の制御の下で、駆動回路440に電源電圧443として第1電源電圧を供給することと、駆動回路440に電源電圧443として第2電源電圧を供給することとを切替える。コントローラ410は、第1プリドライバ420Aの故障を検知すると、第1スイッチ900を制御し、駆動回路440に電源電圧443として第2電源電圧(例えばCP_Pr2)を供給することを決定する。  The first switch 900 supplies the first power supply voltage as the power supply voltage 443 to the drive circuit 440 and supplies the second power supply voltage as the power supply voltage 443 to the drive circuit 440 under the control of the controller 410. Switch. When detecting the failure of the first pre-driver 420A, the controller 410 controls the first switch 900 to determine to supply the second power supply voltage (for example, CP_Pr2) as the power supply voltage 443 to the drive circuit 440.
第2スイッチ910は、駆動回路440から第1インバータ100Aの3個のローサイドスイッチ素子に駆動回路440の出力を供給することと、駆動回路440から第2インバータ100Bの3個のローサイドスイッチ素子にその出力を供給することを、コントローラ410の制御を受けて切替える。コントローラ410は、第1プリドライバ420Aの故障を検知すると、第2スイッチ910を制御し、第1インバータ100Aの3個のローサイドスイッチ素子に駆動回路440の出力を供給することを決定する。  The second switch 910 supplies the output of the drive circuit 440 from the drive circuit 440 to the three low-side switch elements of the first inverter 100A, and the three low-side switch elements of the drive circuit 440 to the second inverter 100B. The supply of the output is switched under the control of the controller 410. When the controller 410 detects a failure in the first pre-driver 420A, it controls the second switch 910 to determine to supply the output of the drive circuit 440 to the three low-side switch elements of the first inverter 100A.
本実施形態によると、実施形態1と同様に、第1周辺回路400Aまたは第2周辺回路400Bに故障が発生した場合でも、いずれか一方のインバータにおける中性点を用いた三相通電制御を継続することが可能となる。さらに、第1インバータ100Aおよび第2インバータ100Bに共通の駆動回路440を用いるため、回路面積およびコストの面で有利である。  According to the present embodiment, as in the first embodiment, even if a failure occurs in the first peripheral circuit 400A or the second peripheral circuit 400B, the three-phase conduction control using the neutral point in one of the inverters is continued It is possible to Furthermore, the common drive circuit 440 is used for the first inverter 100A and the second inverter 100B, which is advantageous in terms of circuit area and cost.
駆動回路440は、実施形態1による、第1駆動回路440Aおよび第2駆動回路440Bを1チップ化した集積回路などでもよい。このような回路形態も本開示の範疇である。  The drive circuit 440 may be an integrated circuit in which the first drive circuit 440A and the second drive circuit 440B according to the first embodiment are integrated into one chip. Such circuit forms are also within the scope of the present disclosure.
(実施形態3) 図10は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示す。  Third Embodiment FIG. 10 schematically shows a typical configuration of an electric power steering apparatus 3000 according to the present embodiment.
自動車等の車両は一般に、電動パワーステアリング(EPS)装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。  Vehicles such as automobiles generally have an electric power steering (EPS) device. The electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque. Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel. The assist torque reduces the burden on the driver's operation.
ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bを備える。  The steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, rack shafts 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A, 528B, and left and right steering wheels 529A, 529B.
補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544を備える。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。  The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, and a reduction mechanism 544. The steering torque sensor 541 detects a steering torque in the steering system 520. The ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal. The motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
ECU542は、例えば、実施形態1による第1周辺回路400Aおよび第2周辺回路400Bを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆
動ユニットが構築される。そのユニットに、実施形態1および2によるモータモジュール2000、2000Aを好適に用いることができる。
The ECU 542 includes, for example, a first peripheral circuit 400A and a second peripheral circuit 400B according to the first embodiment. In automobiles, an electronic control system is built around an ECU. In the electric power steering apparatus 3000, for example, a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545. The motor module 2000, 2000A by Embodiment 1 and 2 can be used suitably for the unit.
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。 Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.
100A  :第1インバータ  100B  :第2インバータ  200   :モータ  311、312、313、314、315、316  :スイッチ素子  400A  :第1周辺回路  400B  :第2周辺回路  410   :コントローラ  420A  :第1プリドライバ  420B  :第2プリドライバ  430   :電源回路  430A  :第1電源回路  430B  :第2電源回路  440A  :第1駆動回路  440B  ;第2駆動回路  450A  :第1サブドライバ  450B  :第2サブドライバ  460   :昇圧回路  460A  :第1昇圧回路  460B  :第2昇圧回路  1000、1000A  :電力変換装置  2000、2000A  :モータモジュール  3000  :電動パワーステアリング装置 100A: first inverter 100B: second inverter 200: motor 311, 312, 313, 314, 315, 316: switch element 400A: first peripheral circuit 400B: second peripheral circuit 410: controller 420A: first predriver 420B: Second pre-driver 430: power supply circuit 430A: first power supply circuit 430B: second power supply circuit 440A: first drive circuit 440B; second drive circuit 450A: first subdriver 450B: second subdriver 460: boost circuit 460A: First booster circuit 460B: second booster circuit 1000, 1000A: power converter 2000, 000A: Motor Module 3000: electric power steering system

Claims (20)

  1. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、

     前記モータの各相の巻線の一端に接続される第1インバータであって、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有するn個のレグを備える第1インバータと、

     前記各相の巻線の他端に接続される第2インバータであって、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有するn個のレグを備える第2インバータと、

     前記第1インバータの前記n個のローサイドスイッチ素子および前記第2インバータの前記n個のローサイドスイッチ素子に接続された駆動回路であって、

      前記モータの前記第1インバータ側で故障が発生したとき、前記第1インバータの前記n個のローサイドスイッチ素子をオンにする制御信号を前記n個のローサイドスイッチ素子に与え、

      前記モータの前記第2インバータ側で故障が発生したとき、前記第2インバータの前記n個のローサイドスイッチ素子をオンにする制御信号を前記n個のローサイドスイッチ素子に与える駆動回路と、

     前記第1インバータおよび前記第2インバータの各々における前記n個のローサイドスイッチ素子および前記n個のハイサイドスイッチ素子のスイッチング動作を制御し、かつ、前記駆動回路を制御する制御回路と、を備え、

     前記モータの前記第2インバータ側で故障が発生したとき、前記モータの前記第1インバータ側で生成される第1電源電圧が前記駆動回路に供給され、かつ、前記モータの前記第1インバータ側で故障が発生したとき、前記モータの前記第2インバータ側で生成される第2電源電圧が前記駆動回路に供給される、電力変換装置。
    A power converter that converts power from a power supply into power supplied to a motor having n-phase (n is an integer of 3 or more) windings,

    A first inverter connected to one end of a winding of each phase of the motor, the first inverter comprising n legs each having a low side switch element and a high side switch element;

    A second inverter connected to the other end of the winding of each phase, the second inverter comprising n legs each having a low side switch element and a high side switch element;

    A driving circuit connected to the n low-side switching devices of the first inverter and the n low-side switching devices of the second inverter,

    When a failure occurs on the first inverter side of the motor, a control signal is provided to the n low side switch elements to turn on the n low side switch elements of the first inverter,

    A drive circuit which gives a control signal for turning on the n low-side switch elements of the second inverter to the n low-side switch elements when a failure occurs on the second inverter side of the motor;

    A control circuit that controls switching operations of the n low-side switch elements and the n high-side switch elements in each of the first inverter and the second inverter, and controls the drive circuit;

    When a failure occurs on the second inverter side of the motor, a first power supply voltage generated on the first inverter side of the motor is supplied to the drive circuit, and on the first inverter side of the motor A power converter, wherein a second power supply voltage generated on the second inverter side of the motor is supplied to the drive circuit when a failure occurs.
  2. 前記駆動回路は、 前記第1インバータの前記n個のローサイドスイッチ素子に接続され、かつ、前記モータの前記第1インバータ側で故障が発生したとき、前記第2電源電圧を供給することにより、前記第1インバータの前記n個のローサイドスイッチ素子をオンにする前記制御信号を前記n個のローサイドスイッチ素子に与える第1駆動回路と、

     前記第2インバータの前記n個のローサイドスイッチ素子に接続され、かつ、前記モータの前記第2インバータ側で故障が発生したとき、前記第1電源電圧を供給することにより、前記第2インバータの前記n個のローサイドスイッチ素子をオンにする前記制御信号を前記n個のローサイドスイッチ素子に与える第2駆動回路と、を備え、 前記制御回路は、前記第1駆動回路および前記第2駆動回路を制御する、請求項1に記載の電力変換装置。
    The drive circuit is connected to the n low-side switch elements of the first inverter and supplies the second power supply voltage when a failure occurs on the first inverter side of the motor. A first drive circuit for providing the n low-side switch elements with the control signal to turn on the n low-side switch elements of the first inverter;

    It is connected to the n low-side switch elements of the second inverter, and when a failure occurs on the second inverter side of the motor, the first power supply voltage is supplied to the second inverter. and a second drive circuit that applies the control signal to turn on the n low-side switch elements to the n low-side switch elements, and the control circuit controls the first drive circuit and the second drive circuit. The power converter device according to claim 1.
  3. 前記第1インバータにおける前記n個のローサイドスイッチ素子および前記n個のハイサイドスイッチ素子のスイッチング動作を制御する制御信号を前記第1制御回路の制御の下で生成し、前記n個のローサイドスイッチ素子および前記n個のハイサイドスイッチ素子に与える第1プリドライバと、

     前記第2インバータにおける前記n個のローサイドスイッチ素子および前記n個のハイサイドスイッチ素子のスイッチング動作を制御する制御信号を前記第2制御回路の制御の下で生成し、前記n個のローサイドスイッチ素子および前記n個のハイサイドスイッチ素子に与える第2プリドライバと、をさらに備える、請求項2に記載の電力変換装置。
    A control signal for controlling the switching operation of the n low-side switch elements and the n high-side switch elements in the first inverter is generated under the control of the first control circuit, and the n low-side switch elements And a first predriver given to the n high side switch elements,

    A control signal for controlling the switching operation of the n low-side switching devices and the n high-side switching devices in the second inverter is generated under the control of the second control circuit, and the n low-side switching devices The power conversion device according to claim 2, further comprising: and a second predriver that supplies the n high-side switch elements.
  4. 前記第2駆動回路には、前記第1プリドライバが生成する前記第1電源電圧が供給され

    、前記第1駆動回路には、前記第2プリドライバが生成する前記第2電源電圧が供給され、

     前記第1電源電圧は、前記電源の電圧よりも大きく、前記第2電源電圧は、前記電源の電圧よりも大きい、請求項3に記載の電力変換装置。
    The first drive voltage generated by the first predriver is supplied to the second drive circuit.

    The second power supply voltage generated by the second predriver is supplied to the first drive circuit.

    The power conversion device according to claim 3, wherein the first power supply voltage is larger than a voltage of the power supply, and the second power supply voltage is larger than a voltage of the power supply.
  5. 前記制御回路、前記第1プリドライバおよび前記第2プリドライバに電源電圧を供給する電源回路をさらに備える、請求項4に記載の電力変換装置。 The power conversion device according to claim 4, further comprising a power supply circuit that supplies a power supply voltage to the control circuit, the first predriver and the second predriver.
  6. 前記第1プリドライバから前記第2駆動回路に前記第1電源電圧を供給するための第1電源配線と、

     前記第2プリドライバから前記第1駆動回路に前記第2電源電圧を供給するための第2電源配線と、をさらに備える、請求項3から5のいずれかに記載の電力変換装置。
    A first power supply line for supplying the first power supply voltage from the first predriver to the second drive circuit;

    The power conversion device according to any one of claims 3 to 5, further comprising: a second power supply wiring for supplying the second power supply voltage from the second predriver to the first drive circuit.
  7. 前記電源の電圧を昇圧して、前記第1電源電圧および前記第2電源電圧を生成する昇圧回路をさらに備え、

     前記第1電源電圧および前記第2電源電圧は、前記電源の電圧よりも大きく、

     前記昇圧回路から前記第2駆動回路に前記第1電源電圧は供給され、前記昇圧回路から前記第1駆動回路に前記第2電源電圧は供給される、請求項3に記載の電力変換装置。
    The semiconductor device further comprises a booster circuit that boosts the voltage of the power supply to generate the first power supply voltage and the second power supply voltage.

    The first power supply voltage and the second power supply voltage are greater than the voltage of the power supply,

    The power conversion device according to claim 3, wherein the first power supply voltage is supplied from the booster circuit to the second drive circuit, and the second power supply voltage is supplied from the booster circuit to the first drive circuit.
  8. 前記制御回路、前記第1プリドライバおよび前記第2プリドライバに電源電圧を供給する電源回路をさらに備え、

     前記第1駆動回路には、前記電源回路が生成する前記第2電源電圧が供給され、前記第2駆動回路には、前記電源回路が生成する前記第1電源電圧が供給され、

     前記第1電源電圧は、前記電源の電圧よりも大きく、前記第2電源電圧は、前記電源の電圧よりも大きい、請求項3に記載の電力変換装置。
    The power supply circuit further includes a power supply circuit that supplies a power supply voltage to the control circuit, the first predriver, and the second predriver.

    The first drive circuit is supplied with the second power supply voltage generated by the power supply circuit, and the second drive circuit is supplied with the first power supply voltage generated by the power supply circuit.

    The power conversion device according to claim 3, wherein the first power supply voltage is larger than a voltage of the power supply, and the second power supply voltage is larger than a voltage of the power supply.
  9. 前記第1電源電圧の大きさは、前記第2電源電圧の大きさに等しい、請求項1から8のいずれかに記載の電力変換装置。 The power converter according to any one of claims 1 to 8, wherein the magnitude of the first power supply voltage is equal to the magnitude of the second power supply voltage.
  10. 前記制御回路および前記電源回路は互いに通信可能に接続されている、請求項5または8に記載の電力変換装置。 The power conversion device according to claim 5, wherein the control circuit and the power supply circuit are communicably connected to each other.
  11. 前記制御回路が、前記モータの前記第2インバータ側における故障を検知したとき、前記第2駆動回路に駆動の開始を指示し、前記第2駆動回路は、前記駆動の開始の指示に応答して、前記第2インバータの前記n個のローサイドスイッチ素子をオンにする前記制御信号を前記n個のローサイドスイッチ素子に与え、

     前記制御回路が、前記モータの前記第1インバータ側における故障を検知したとき、前記第1駆動回路に駆動の開始を指示し、前記第1駆動回路は、前記駆動の開始の指示に応答して、前記第1インバータの前記n個のローサイドスイッチ素子をオンにする前記制御信号を前記n個のローサイドスイッチ素子に与える、請求項10に記載の電力変換装置。
    When the control circuit detects a failure on the second inverter side of the motor, the control circuit instructs the second drive circuit to start driving, and the second drive circuit responds to the command to start the drive. Providing the n low side switch elements with the control signal to turn on the n low side switch elements of the second inverter;

    When the control circuit detects a failure on the first inverter side of the motor, the control circuit instructs the first drive circuit to start driving, and the first drive circuit responds to the command to start the drive. The power conversion device according to claim 10, wherein the control signal for turning on the n low-side switch elements of the first inverter is provided to the n low-side switch elements.
  12. 前記第1インバータとグランドとの接続・非接続を切替える第1スイッチ素子と、

     前記第2インバータと前記グランドとの接続・非接続を切替える第2スイッチ素子と、

     前記第1インバータと前記電源との接続・非接続を切替える第3スイッチ素子と、

     前記第2インバータと前記電源との接続・非接続を切替える第4スイッチ素子と、

    をさらに備える、請求項1から11のいずれかに記載の電力変換装置。
    A first switch element for switching connection / disconnection between the first inverter and the ground;

    A second switch element for switching connection / disconnection between the second inverter and the ground;

    A third switch element for switching connection / disconnection between the first inverter and the power supply;

    A fourth switch element for switching connection / disconnection between the second inverter and the power supply;

    The power converter according to any one of claims 1 to 11, further comprising:
  13. 前記第1駆動回路が前記第1インバータの前記n個のローサイドスイッチに与える制御信号の電圧レベルは、前記第1プリドライバが前記第1インバータの前記n個のローサイドスイッチに与える制御信号の電圧レベルよりも大きく、

     前記第2駆動回路が前記第2インバータの前記n個のローサイドスイッチに与える制御信号の電圧レベルは、前記第2プリドライバが前記第2インバータの前記n個のローサイドスイッチに与える制御信号の電圧レベルよりも大きい、請求項3、4、5、6、7、8、10のいずれかに記載の電力変換装置。
    The voltage level of the control signal applied to the n low side switches of the first inverter by the first drive circuit is the voltage level of the control signal applied to the n low side switches of the first inverter by the first predriver. Greater than

    The voltage level of the control signal that the second drive circuit gives to the n low side switches of the second inverter is the voltage level of the control signal that the second predriver gives to the n low side switches of the second inverter The power converter according to any one of claims 3, 4, 5, 6, 7, 8, 10, which is larger than the above.
  14. 前記第1駆動回路が前記第1インバータの前記n個のローサイドスイッチに与える制御信号の電圧レベルは、前記第1プリドライバが前記第1インバータの前記n個のハイサイドスイッチに与える制御信号の電圧レベルと等しく、

     前記第2駆動回路が前記第2インバータの前記n個のローサイドスイッチに与える制御信号の電圧レベルは、前記第2プリドライバが前記第2インバータの前記n個のハイサイドスイッチに与える制御信号の電圧レベルと等しい、請求項3、4、5、6、7、8、10のいずれかに記載の電力変換装置。
    The voltage level of the control signal applied to the n low side switches of the first inverter by the first drive circuit is the voltage of the control signal applied to the n high side switches of the first inverter by the first predriver. Equal to the level,

    The voltage level of the control signal that the second drive circuit applies to the n low side switches of the second inverter is the voltage of the control signal that the second predriver applies to the n high side switches of the second inverter. The power converter according to any one of claims 3, 4, 5, 6, 7, 8, 10, which is equal to the level.
  15. 前記第1駆動回路および前記第2駆動回路の各々は、オープンコレクタ出力方式の複数のトランジスタを備える、請求項13または14に記載の電力変換装置。 The power converter according to claim 13, wherein each of the first drive circuit and the second drive circuit comprises a plurality of transistors of an open collector output system.
  16. 前記第1駆動回路から前記第1インバータに、前記n個のローサイドスイッチ素子をオンする制御信号が出力されるときに、前記第1プリドライバに規定値以上の電圧レベルの信号が入力することを抑制する第1保護回路と、

     前記第2駆動回路から前記第2インバータに、前記n個のローサイドスイッチ素子をオンする制御信号が出力されるときに、前記第2プリドライバに規定値以上の電圧レベルの信号が入力することを抑制する第2保護回路と、

    をさらに備える、請求項13から15のいずれかに記載の電力変換装置。
    When a control signal for turning on the n low-side switch elements is output from the first drive circuit to the first inverter, a signal having a voltage level higher than or equal to a specified value is input to the first predriver. A first protection circuit to suppress

    When a control signal for turning on the n low-side switch elements is output from the second drive circuit to the second inverter, a signal having a voltage level higher than or equal to a specified value is input to the second predriver. A second protection circuit to suppress

    The power conversion device according to any one of claims 13 to 15, further comprising:
  17. 前記第1保護回路および前記第2保護回路の各々は、ツェナーダイオードを備える、請求項16に記載の電力変換装置。 The power converter according to claim 16, wherein each of the first protection circuit and the second protection circuit comprises a Zener diode.
  18. 前記駆動回路に前記第1電源電圧を供給することと、前記駆動回路に前記第2電源電圧を供給することとを、前記制御回路の制御の下で切替えるスイッチをさらに備える、請求項1に記載の電力変換装置。 The switch according to claim 1, further comprising: a switch configured to switch the supply of the first power supply voltage to the drive circuit and the supply of the second power supply voltage to the drive circuit under control of the control circuit. Power converter.
  19. 前記モータと、

     請求項1から18のいずれかに記載の電力変換装置と、

    を備える、モータモジュール。
    The motor,

    The power converter according to any one of claims 1 to 18,

    , A motor module.
  20. 請求項19に記載のモータモジュールを備える電動パワーステアリング装置。  An electric power steering apparatus comprising the motor module according to claim 19.
PCT/JP2018/024662 2017-07-31 2018-06-28 Power conversion device, motor module, and electric power steering device WO2019026493A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019533977A JP7047844B2 (en) 2017-07-31 2018-06-28 Power converters, motor modules and electric power steering devices
US16/628,707 US11356036B2 (en) 2017-07-31 2018-06-28 Power conversion apparatus, motor module, and electric power steering apparatus
CN201880047509.8A CN110915121B (en) 2017-07-31 2018-06-28 Power conversion device, motor module, and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-148328 2017-07-31
JP2017148328 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026493A1 true WO2019026493A1 (en) 2019-02-07

Family

ID=65232430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024662 WO2019026493A1 (en) 2017-07-31 2018-06-28 Power conversion device, motor module, and electric power steering device

Country Status (4)

Country Link
US (1) US11356036B2 (en)
JP (1) JP7047844B2 (en)
CN (1) CN110915121B (en)
WO (1) WO2019026493A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200145345A (en) * 2019-06-21 2020-12-30 주식회사 만도 System for assist steering, Apparatus and Method for controlling steering
JP2021048735A (en) * 2019-09-20 2021-03-25 日本電産株式会社 Electric power conversion device, driving device and power steering device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037473B2 (en) * 2018-12-04 2022-03-16 株式会社Soken Power converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799959B2 (en) * 1987-07-28 1995-10-25 株式会社安川電機 Inverter with winding switching function
JP2015097472A (en) * 2013-08-12 2015-05-21 日本精工株式会社 Motor control device, and electric power steering device and vehicle using the same
JP5797751B2 (en) * 2010-06-14 2015-10-21 イスパノ・シユイザ Voltage inverter and method for controlling such an inverter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4322966C2 (en) 1993-07-09 1995-10-26 Rhodia Ag Rhone Poulenc Cellulose acetate molded structures and their use as filter tow and tobacco smoke filter element
JP2008005659A (en) * 2006-06-23 2008-01-10 Toyota Motor Corp Electric vehicle
JP5018516B2 (en) * 2008-01-31 2012-09-05 アイシン・エィ・ダブリュ株式会社 Rotating electrical machine control device
JP4643670B2 (en) * 2008-03-07 2011-03-02 株式会社東芝 Electric car drive
JP5183594B2 (en) * 2009-07-31 2013-04-17 日立オートモティブシステムズ株式会社 Motor control device and motor system including the same
JP5459311B2 (en) * 2010-01-25 2014-04-02 トヨタ自動車株式会社 Motor drive system, motor drive system control method, and travel device
JP4911231B2 (en) * 2010-02-15 2012-04-04 株式会社デンソー Rotating electrical machine control device and electric power steering device using the same
CN102208892B (en) * 2010-03-25 2016-02-17 罗姆股份有限公司 Motor-drive circuit, cooling device, electronic equipment, timely checking circuit
CN103001581B (en) * 2011-09-08 2015-08-26 台达电子工业股份有限公司 Parallel type inversion drive system and loop current suppression apparatus and method thereof
JP5688689B2 (en) * 2012-08-27 2015-03-25 株式会社デンソー Electric motor drive device and electric power steering device using the same
JP2014192950A (en) 2013-03-26 2014-10-06 Denso Corp Power converter
KR20150031828A (en) * 2013-09-17 2015-03-25 삼성전자주식회사 Dual inverter system and method for controlling the same
JP6241379B2 (en) * 2014-07-03 2017-12-06 トヨタ自動車株式会社 Electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799959B2 (en) * 1987-07-28 1995-10-25 株式会社安川電機 Inverter with winding switching function
JP5797751B2 (en) * 2010-06-14 2015-10-21 イスパノ・シユイザ Voltage inverter and method for controlling such an inverter
JP2015097472A (en) * 2013-08-12 2015-05-21 日本精工株式会社 Motor control device, and electric power steering device and vehicle using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200145345A (en) * 2019-06-21 2020-12-30 주식회사 만도 System for assist steering, Apparatus and Method for controlling steering
JP2021048735A (en) * 2019-09-20 2021-03-25 日本電産株式会社 Electric power conversion device, driving device and power steering device
JP7388082B2 (en) 2019-09-20 2023-11-29 ニデック株式会社 Power conversion equipment, drive equipment and power steering equipment

Also Published As

Publication number Publication date
US11356036B2 (en) 2022-06-07
CN110915121A (en) 2020-03-24
JP7047844B2 (en) 2022-04-05
CN110915121B (en) 2022-11-01
US20200195166A1 (en) 2020-06-18
JPWO2019026493A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP6933205B2 (en) Power converter, motor drive unit and electric power steering device
JP7010281B2 (en) Power converter, motor drive unit and electric power steering device
US11114969B2 (en) Power converter, motor driving unit, and electric power steering device
JP7136110B2 (en) Power conversion device, motor drive unit and electric power steering device
US10829147B2 (en) Power conversion device, motor drive unit, and electric power steering device
US11472472B2 (en) Power conversion device, motor module, and electric power steering device
JP7184038B2 (en) Power conversion device, motor module and electric power steering device
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
JP7047844B2 (en) Power converters, motor modules and electric power steering devices
JP7070548B2 (en) Power converter, motor drive unit and electric power steering device
US20200198697A1 (en) Power conversion device, motor module, electric power steering device
JP7052801B2 (en) Power converters, motor modules and electric power steering devices
JPWO2019049449A1 (en) Power converter, motor module and electric power steering device
CN216146261U (en) Power conversion device, motor drive unit, and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841506

Country of ref document: EP

Kind code of ref document: A1